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DYNAMICAL YANG-BAXTER MAPS

YOUICHI SHIBUKAWA

Abstract. In this work, we propose and investigate dynamical Yang-
Baxter maps, some of which produce solutions to the quantum dynam-
ical Yang-Baxter equation. Suppose that L is a loop and a group. If
their unit elements coincide, then L gives birth to a bijective dynamical
Yang-Baxter map from L×L to L×L whose dynamical parameter be-
longs to L. The above group L is abelian if and only if the corresponding
dynamical Yang-Baxter map satisfies the unitary condition.

1. Introduction

The (quantum) Yang-Baxter equation (YBE) [1, 2, 28, 29] has been rec-
ognized as a characteristic feature of the integrable systems. In addition to
the YBE, the (quantum) dynamical Yang-Baxter equation (DYBE) and the
Yang-Baxter map (YB map) have attracted much interest in recent years.

Baxter’s corner transfer matrix method [1, 3] in solving the lattice models
showed the importance of the YBE. This study and related investigations
gave birth to the quantum group [7, 17], which is a powerful tool in con-
structing trigonometric solutions to the YBE. Instead of the YBE, the DYBE
[11, 12, 14] was required in order to define the elliptic quantum groups as-
sociated with elliptic solutions to the YBE.

The solution to the YBE, which we call the R-matrix, is a linear mapping
on the tensor product of the vector space, while the YB map [8, 10, 13, 21,
24, 26, 27] is defined on the Cartesian product of the set. For this reason, we
also call it the set-theoretical solution to the YBE. The geometric crystals
[4, 9] produce YB maps, and so do the crystals [18, 19, 20], which are closely
related to the soliton cellular automata called box-ball systems [15, 16, 25].

To this time, no work has focused on set-theoretical solutions to the
DYBE.

In this paper, we propose and investigate dynamical Yang-Baxter maps
(dynamical YB maps), some of which produce solutions to the DYBE. Sup-
pose that L is a loop [5, 6, 23] and a group. If their unit elements coincide,
then L gives birth to a bijective dynamical YB map from L×L to L×L whose
dynamical parameter belongs to L. This construction is a generalization of
the works [10], [21], [24], and [27].

The organization of the article is as follows. Section 2 describes the def-
initions of the dynamical YB map and the dynamical braiding map, which
are equivalent. Some of the dynamical YB maps induce solutions to the
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DYBE. In Sections 3, 4, and 5, we construct dynamical YB maps, and in-
vestigate their properties. Let L be a loop, G a group, and π : L → G
a set-theoretical bijection satisfying π(eL) = eG. Here eL and eG are the
unit elements of L and G, respectively. We denote by LGπ the set of all
such triplets (L,G, π). Define the equivalence relation in LGπ as follows:
(L,G, π) ∈ LGπ is equivalent to (L′, G′, π′) ∈ LGπ if

L = L′ as loops, and the mapping π′π−1 : G→ G′ is an(1.1)
isomorphism of groups.

From (1.1), all loops in the representatives (L,G, π) of an equivalence class
V coincide, and we denote by LV the loop L. Let [(L,G, π)] denote the
equivalence class to which (L,G, π) belongs. Then every equivalence class
V = [(LV , G, π)] produces a bijective dynamical YB mapRV (λ) : LV×LV →
LV ×LV (λ ∈ LV ). In addition, we give a characterization of such dynamical
YB maps RV (λ), methods to construct more general dynamical YB maps,
and a sufficient condition for the dynamical YB map RV (λ) to be dependent
on the dynamical parameter λ. The above group G is abelian if and only if
the corresponding dynamical YB map RV (λ) satisfies the unitary condition.
Finally Section 6 demonstrates several examples of the dynamical YB maps
constructed in Section 3.

Dynamical L-maps associated with the dynamical YB maps, solutions to
the RLL=LLR relation, will be discussed in a forthcoming paper.

2. Dynamical Yang-Baxter Maps

In this section, we introduce dynamical YB maps.
Let H and X be non-empty sets. Let φ be a mapping from H × X to

H. A mapping R(λ) : X × X → X × X (λ ∈ H) is a dynamical YB map
associated with H, X, and φ, if, for every λ ∈ H, R(λ) satisfies the following
equation on X ×X ×X:

R23(λ)R13(φ(λ,X(2)))R12(λ) = R12(φ(λ,X(3)))R13(λ)R23(φ(λ,X(1))).

Here R12(λ), R12(φ(λ,X(3))), etc., are the mappings from X × X × X to
X ×X ×X defined as follows:

R12(λ)(u, v, w) = (R(λ)(u, v), w) (u, v, w ∈ X);

R12(φ(λ,X(3)))(u, v, w) = (R(φ(λ,w))(u, v), w) (u, v, w ∈ X).

If R(λ) is independent of the dynamical parameter λ, then R(λ) is just a
YB map, i.e., a set-theoretical solution to the YBE [8].

Let V denote the C-vector space generated by the set X. For a dynamical
YB map R(λ) associated with H, X, and φ, define the C-linear mapping
R̃(λ) : V ⊗ V → V ⊗ V by

R̃(λ)(u⊗ v) = u′ ⊗ v′ (u, v ∈ X).
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Here (u′, v′) = R(λ)(u, v). Because R(λ) is a dynamical YB map, R̃(λ)
satisfies a version of the DYBE (For the YB map, see [8].):

R̃23(λ)R̃13(φ(λ,X(2)))R̃12(λ) = R̃12(φ(λ,X(3)))R̃13(λ)R̃23(φ(λ,X(1))).

Here R̃12(λ), R̃12(φ(λ,X(3))), etc., are the C-linear mappings from V ⊗V ⊗V
to V ⊗ V ⊗ V defined as follows:

R̃12(λ)(u⊗ v ⊗ w) = R̃(λ)(u⊗ v)⊗ w (u, v, w ∈ X);

R̃12(φ(λ,X(3)))(u⊗ v ⊗ w) = R̃(φ(λ,w))(u⊗ v)⊗ w (u, v, w ∈ X).

Let h be a finite-dimensional abelian Lie algebra over C. Let us suppose
that H = h∗, and that there exists a mapping wt : X → h∗ satisfying
φ(λ, u) = λ − wt(u) (λ ∈ h∗, u ∈ X). In addition, we assume that, for all
λ ∈ h∗ and all u, v ∈ X, wt(u′) + wt(v′) = wt(u) + wt(v), where (u′, v′) =
R(λ)(u, v). Then the vector space V is an h-module with respect to the
action

a · u = wt(u)(a)u (a ∈ h, u ∈ X).

This means that the element u of the basis X is of weight wt(u) ∈ h∗. The
linear mapping R̃(λ) is thus an h-invariant solution to the DYBE [11, 12, 14]:

R̃23(λ)R̃13(λ− h(2))R̃12(λ) = R̃12(λ− h(3))R̃13(λ)R̃23(λ− h(1)).

If R(λ) is bijective, R̃(λ) is a (quantum) dynamical R-matrix [11] (See Re-
mark 6.1.).

A mapping σ(λ) : X ×X → X ×X (λ ∈ H) is a dynamical braiding map
associated with H, X, and φ, if, for every λ ∈ H, σ(λ) satisfies the following
equation on X ×X ×X:

σ(λ)12σ(φ(λ,X(1)))23σ(λ)12 = σ(φ(λ,X(1)))23σ(λ)12σ(φ(λ,X(1)))23.

Proposition 2.1. Let us define the mapping P : X × X → X × X by
P (u, v) = (v, u) (u, v ∈ X). Suppose that mappings R(λ) and σ(λ) (λ ∈ H)
from X ×X to X ×X satisfy σ(λ) = PR(λ). The following conditions are
equivalent :
(1) R(λ) is a dynamical YB map associated with H, X, and φ;
(2) σ(λ) is a dynamical braiding map associated with H, X, and φ.

Proof. The proof is straightforward. ¤

3. Construction of Dynamical Yang-Baxter Maps

Our main aim in the present section is to show how to construct dynam-
ical YB maps associated with a loop L, L, and (·). Here (·) is the binary
operation on the loop L.

Let us introduce the quasigroup and the loop [5, 6, 23]. We say that (Q, ·)
is a quasigroup if Q is a non-empty set, together with a binary operation (·)
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having the properties below:

For all u, w ∈ Q, there uniquely exists v ∈ Q such that u · v = w.(3.1)
For all v, w ∈ Q, there uniquely exists u ∈ Q such that u · v = w.(3.2)

We will simply denote by Q a quasigroup (Q, ·), and, for u, v ∈ Q, the
symbol uv will be used in place of u · v.
Remark 3.1. The binary operation on a quasigroup is not always associative
(See Remark 6.2.).

It is clear that a quasigroup Q satisfies the cancellation laws:

For a, u, v ∈ Q, au = av implies that u = v.(3.3)
For a, u, v ∈ Q, ua = va implies that u = v.(3.4)

By virtue of (3.1), for elements u and w of a quasigroup Q, there uniquely
exists the element v ∈ Q such that uv = w. Let us define the binary
operation (\) on Q by u\w = v.

Let λ be an element of a quasigroup Q. Define the binary operation m(λ)
on Q by

(3.5) m(λ)(u, v) = λ\((λu)v) (u, v ∈ Q).

By taking Remark 3.1 into account, m(λ)(u, v) does not always equal uv
(See Remark 6.2.).

Lemma 3.2. (1) For λ ∈ Q, (Q,m(λ)) is a quasigroup.
(2) For λ, u, v, w ∈ Q, m(λ)(m(λ)(u, v), w) = m(λ)(u,m(λu)(v, w)).

Proof. (1) Let u and w be elements of Q. Because of (3.1), there uniquely
exists v ∈ Q such that (λu)v = λw. From (3.5), m(λ)(u, v) = λ\(λw) = w.
We omit the rest of the proof.
(2) By means of (3.5),

m(λ)(m(λ)(u, v), w) = λ\(((λu)v)w)
= λ\((λu)m(λu)(v, w))
= m(λ)(u,m(λu)(v, w)).

We have thus proved (2). ¤
The following proposition is a generalization of Theorem 1 in [21].

Proposition 3.3. Let Q be a quasigroup. For λ, u, v ∈ Q, let ξλ(u) and
ηλ(v) be mappings from Q to Q having the properties below :

ξλ(u)ξλu(v) = ξλ(m(λ)(u, v)) (∀λ, u, v ∈ Q);(3.6)
ηλξλ(u)(v)(w)(ηλ(v)(u)) = ηλ(m(λu)(v, w))(u) (∀λ, u, v, w ∈ Q);(3.7)
m(λ)(ξλ(u)(v), ηλ(v)(u)) = m(λ)(u, v) (∀λ, u, v ∈ Q).(3.8)

For λ ∈ Q, define the mapping σ(λ) : Q×Q→ Q×Q by

σ(λ)(u, v) = (ξλ(u)(v), ηλ(v)(u)) (u, v ∈ Q).
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Then σ(λ) is a dynamical braiding map associated with Q, Q, and (·).
Proof. Let u, v, and w be elements of Q. Define the elements ui, vi, and wi

of Q (i = 1, 2) by

(u1, v1, w1) = σ(λ)12σ(λQ(1))23σ(λ)12(u, v, w),

(u2, v2, w2) = σ(λQ(1))23σ(λ)12σ(λQ(1))23(u, v, w).

The equations (3.6), (3.7), and (3.8) imply that u1 = u2 and that w1 = w2.
By means of (3.8) and Lemma 3.2 (2),

m(λ)m(λ)12(u1, v1, w1) = m(λ)m(λ)12(u, v, w)
= m(λ)m(λu2)23(u2, v2, w2)
= m(λ)m(λ)12(u1, v2, w1).

Here m(λ)12 = m(λ) × idQ, and m(λ)23 = idQ × m(λ). The cancellation
laws (3.3) and (3.4) of the quasigroup (Q,m(λ)) induce that v1 = v2. ¤

We say that (L, ·, e) is a loop if (L, ·) is a quasigroup satisfying that there
exists an element e ∈ L such that ue = eu = u for all u ∈ L. Because the
above element e ∈ L is uniquely determined, we call e the unit element of
the loop (L, ·, e). We will simply denote by L a loop (L, ·, e).
Remark 3.4. An associative loop is a group, and vice versa. More precisely,
groups are associative quasigroups (See Theorem I.1.7 and Definition I.1.9
of [23].).

On account of Lemma 3.2 (1), the following lemma means that, for a loop
(L, ·, e), every (L,m(λ), e) is also a loop.

Lemma 3.5. Let (L, ·, e) be a loop. For λ, u ∈ L, m(λ)(u, e) = m(λ)(e, u) =
u.

Lemma 3.6. Let λ and u be elements of a loop (L, ·, e), and let u−1
λ,r (resp.

u−1
λ,l ) denote the right inverse (resp. the left inverse) of the element u with

respect to m(λ): m(λ)(u, u−1
λ,r) = m(λ)(u−1

λ,l , u) = e. Then u−1
λ,r = u−1

λu,l.

Proof. From Lemma 3.2 (2) and Lemma 3.5,

m(λ)(m(λ)(u, u−1
λ,r), u) = m(λ)(e, u)

= m(λ)(u, e)

= m(λ)(u,m(λu)(u−1
λu,l, u))

= m(λ)(m(λ)(u, u−1
λu,l), u).

Lemma 3.2 (1) implies the cancellation laws (3.3) and (3.4) of (L,m(λ)),
and consequently u−1

λ,r = u−1
λu,l. ¤

For the main theorem, we need categories A and D [22].
Let L = (L, ·, eL) be a loop, G = (G, ∗, eG) a group, and π : L → G a

set-theoretical bijection satisfying π(eL) = eG. We denote by LGπ the set of
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all such triplets (L,G, π). Define the equivalence relation in LGπ by (1.1).
We write this relation in the form (L,G, π) ∼ (L′, G′, π′). Let [(L,G, π)]
denote the equivalence class to which (L,G, π) belongs, Ob(A) the class of
all equivalence classes with respect to the above relation. On account of
(1.1), all loops in the representatives (L,G, π) of V ∈ Ob(A) coincide, and
we denote by LV the loop L.

For V , V ′ ∈ Ob(A), define the class HomA(V, V ′) as follows: f is an
element of HomA(V, V ′) if

f : LV → LV ′ is a homomorphism of loops such that(3.9)
π′fπ−1 : G→ G′ is a homomorphism of groups for any
representatives (LV , G, π) ∈ V and (LV ′ , G

′, π′) ∈ V ′.
A is a category: its objects are the elements of Ob(A) and its morphisms

with a source V and a target V ′ are the elements of HomA(V, V ′).
Let L = (L, ·, eL) be a loop, and ξλ(u) and ηλ(u) (λ, u ∈ L) mappings

from L to L satisfying the properties below:

ξλ(u)ξλu(v) = ξλ(m(λ)(u, v)) (∀λ, u, v ∈ L);(3.10)
ηλξλ(u)(v)(w)(ηλ(v)(u)) = ηλ(m(λu)(v, w))(u) (∀λ, u, v, w ∈ L);(3.11)
m(λ)(ξλ(u)(v), ηλ(v)(u)) = m(λ)(u, v) (∀λ, u, v ∈ L);(3.12)
ξλ(eL) = ηλ(eL) = idL (∀λ ∈ L).(3.13)

We denote by Ob(D) the class of all such triplets (L, ξ, η), where ξ =
(ξλ(u))λ,u∈L and η = (ηλ(u))λ,u∈L.

For V = (L, ξ, η), V ′ = (L′, ξ′, η′) ∈ Ob(D), define the class HomD(V, V ′)
as follows: f is an element of HomD(V, V ′) if

f : L→ L′ is a homomorphism of loops satisfying(3.14)
f(ξλ(u)(v)) = ξ′f(λ)(f(u))(f(v)) for all λ, u, v ∈ L.

D is a category: its objects are the elements of Ob(D) and its morphisms
with a source V and a target V ′ are the elements of HomD(V, V ′).

We are in a position to state the main theorem in this article (Cf. Theorem
2 of [21].).

Theorem 3.7. The category A is isomorphic to the category D.

In the next section, for the proof of Theorem 3.7, we will explicitly con-
struct functors S : A → D and T : D → A satisfying TS = idA and
ST = idD.

On account of Propositions 2.1, 3.3, and Theorem 3.7, every object V ∈
Ob(A) gives birth to a dynamical YB map RV (λ) associated with LV , LV ,
and (·).

The following proposition gives methods to produce more general dynam-
ical YB maps.

Proposition 3.8. (1) Let H be a non-empty set, and R′(λ) a dynamical YB
map associated with H ′, X, and φ. Let us suppose that there exist mappings
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ψ : H → H ′ and ρ : H ′ → H satisfying ψρ = idH′. Define the mapping
R(λ) : X × X → X × X (λ ∈ H) by R(λ) = R′(ψ(λ)). Then R(λ) is a
dynamical YB map associated with H, X, and ρφ(ψ × idX).
(2) Let X be a non-empty set, and R′(λ) a dynamical YB map associated
with H, X ′, and φ. Let us suppose that there exist mappings ρ : X ′ → X
and ψ : X → X ′ satisfying ψρ = idX′. Define the mapping R(λ) : X ×X →
X ×X (λ ∈ H) by R(λ) = (ρ× ρ)R′(λ)(ψ × ψ). Then R(λ) is a dynamical
YB map associated with H, X, and φ(idH × ψ).

4. Proof of Theorem 3.7

Let us introduce the lemma below before we define a functor S : A → D.

Lemma 4.1. Let (Q, ·) be a quasigroup, and let us suppose that, for λ, u, v ∈
Q, there exist mappings ξλ(u), ηλ(v) : Q → Q. For λ ∈ Q, define the
mapping σ(λ) : Q×Q→ Q×Q by

σ(λ)(u, v) = (ξλ(u)(v), ηλ(v)(u)) (u, v ∈ Q).

If σ(λ) satisfies m(λ)σ(λ) = m(λ) for all λ ∈ Q, then the following condi-
tions are equivalent :

ηλξλ(u)(v)(w)(ηλ(v)(u)) = ηλ(m(λu)(v, w))(u) (∀λ, u, v, w ∈ Q);(4.1)
ξλ(u)(m(λu)(v, w)) = m(λ)(ξλ(u)(v), ξλξλ(u)(v)(ηλ(v)(u))(w))(4.2)

(∀λ, u, v, w ∈ Q);

σ(λ)m(λQ(1))23 = m(λ)12σ(λQ(1))23σ(λ)12 (∀λ ∈ Q).(4.3)

Here m(λQ(1))23 : Q × Q × Q → Q × Q × Q is the mapping defined by
m(λQ(1))23(u, v, w) = (u,m(λu)(v, w)) for u, v, w ∈ Q.

Proof. It follows immediately that the condition (4.3) implies (4.1) and (4.2).
The rest of the proof is essentially the same as that of Proposition 3.3. ¤

Let (L,G, π) be an element of LGπ. For u ∈ L = (L, ·, eL), define the
mapping θ(L,G,π)(u) : G→ G by

(4.4) θ(L,G,π)(u)(x) = π(u)−1 ∗ π(uπ−1(x)) (x ∈ G = (G, ∗, eG)).

Here we denote by π(u)−1 ∈ G the inverse of the element π(u).

Lemma 4.2. The mapping θ(L,G,π)(u) is bijective for every u ∈ L.

Proof. Let us define the mapping θ(L,G,π)(u)−1 : G→ G by

(4.5) θ(L,G,π)(u)−1(x) = π(u\π−1(π(u) ∗ x)) (x ∈ G).

This is the inverse of the mapping θ(L,G,π)(u). ¤

For λ, u ∈ L, define the mappings ξ(L,G,π)
λ (u), η(L,G,π)

λ (u) : L→ L by

ξ
(L,G,π)
λ (u) = π−1θ(L,G,π)(λ)−1θ(L,G,π)(λu)π,(4.6)

η
(L,G,π)
λ (u)(v) = (λξ(L,G,π)

λ (v)(u))\((λv)u) (v ∈ L).(4.7)
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Let V = [(LV , G, π)] be an object of the category A. Define S(V ) by
S(V ) = (LV , ξ

(LV ,G,π), η(LV ,G,π)). Here ξ(LV ,G,π) and η(LV ,G,π) are as follows:

ξ(LV ,G,π) = (ξ(LV ,G,π)
λ (u))λ,u∈LV

, η(LV ,G,π) = (η(LV ,G,π)
λ (u))λ,u∈LV

.

Proposition 4.3 says that the definition of S(V ) does not depend on a
choice of representatives of V , and that S(V ) ∈ Ob(D).

Proposition 4.3. (1) Let (L,G, π) and (L′, G′, π′) be elements of LGπ.
If (L,G, π) ∼ (L′, G′, π′), then L = L′ as loops, ξ(L,G,π) = ξ(L

′,G′,π′), and
η(L,G,π) = η(L′,G′,π′).
(2) For (L,G, π) ∈ LGπ, (L, ξ(L,G,π), η(L,G,π)) ∈ Ob(D).

Proof of (1). From (1.1), it follows immediately that L = L′ as loops. Let
λ and u be elements of L. Because π′π−1 : G → G′ is an isomorphism of
groups,

θ(L′,G′,π′)(u) = π′π−1θ(L,G,π)(u)(π′π−1)−1

by means of (4.4). On account of (4.6), ξ(L
′,G′,π′)

λ (u) = ξ
(L,G,π)
λ (u), and

consequently η(L′,G′,π′)
λ (u) = η

(L,G,π)
λ (u) by virtue of (4.7). ¤

Next we prove (2). In place of θ(L,G,π)(u), ξ(L,G,π)
λ (u), and η(L,G,π)

λ (u), we
will use the symbols θ(u), ξλ(u), and ηλ(u), respectively.

Lemma 4.4. (1) θ(eL) = idG.
(2) For u ∈ L, θ(u)(eG) = eG.

For λ, u ∈ L, define the mapping θλ(u) : G→ G by

(4.8) θλ(u) = θ(λ)−1θ(λu).

Lemma 4.5. Let λ, u, and v be elements of L.
(1) θλ(eL) = idG.
(2) θλ(u)θλu(v) = θλ(m(λ)(u, v)).
(3) ξλ(eL) = idL.
(4) ξλ(u)ξλu(v) = ξλ(m(λ)(u, v)).

(5) The mapping ξλ(u) is bijective: ξλ(u)−1 = ξλu(u−1
λ,r).

Lemma 4.6. Let λ, u, v, and w be elements of L.
(1) ηλ(eL) = idL.
(2) m(λ)(u, v) = (π−1θ(λ)−1)(θ(λ)(π(u)) ∗ θ(λu)(π(v))).
(3) The mappings ξλ(u) and ηλ(u) satisfy (4.2).

Proof. (1) Due to Lemma 4.4 (2), we deduce ξλ(u)(eL) = eL. By using this
equation and the definition of ηλ(eL)(u), the rest of the proof is immediate.
(2) By the definition (4.4) of θ(λ),

π(λm(λ)(u, v)) = π(λ) ∗ θ(λ)(π(m(λ)(u, v))).
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In a similar fashion,

π((λu)v) = π(λu) ∗ θ(λu)(π(v)) = π(λ) ∗ θ(λ)(π(u)) ∗ θ(λu)(π(v)).

Because of (3.5), we get the desired result.
(3) With the aid of (2), (4.6), and (4.7),

R.H.S. of (4.2) = (π−1θ(λ)−1)(θ(λ)(π(ξλ(u)(v)))
∗θ(λξλ(u)(v))(π(ξλξλ(u)(v)(ηλ(v)(u))(w))))

= (π−1θ(λ)−1)(θ(λ)(θλ(u)(π(v)))
∗θ(λξλ(u)(v))(θλξλ(u)(v)(ηλ(v)(u))(π(w))))

= (π−1θ(λ)−1)(θ(λu)(π(v)) ∗ θ((λu)v)(π(w))).

By using (2) and (4.6) again,

L.H.S. of (4.2) = (π−1θ(λ)−1θ(λu))(π(m(λu)(v, w)))
= (π−1θ(λ)−1)(θ(λu)(π(v)) ∗ θ((λu)v)(π(w))).

We have thus proved (3). ¤
Proof of Proposition 4.3 (2). The equation (3.12) is derived from (3.5) and
(4.7). Lemmas 4.1, 4.6 (3), and (3.12) imply (3.11). The equations (3.10)
and (3.13) have been proved in Lemmas 4.5 and 4.6. ¤
Lemma 4.7. Let V and W be objects of the category A. If f ∈ HomA(V,W ),
then f ∈ HomD(S(V ), S(W )).

Proof. Let (LV , G, π) and (LW , G′, π′) be representatives of V and W , re-
spectively. From (3.9) and (4.4),

θ(LW ,G′,π′)(f(u))(π′fπ−1) = (π′fπ−1)θ(LV ,G,π)(u) (∀u ∈ LV ).

With the aid of (3.9) and (4.6), ξ(LW ,G′,π′)
f(λ) (f(u))(f(v)) = f(ξ(LV ,G,π)(v)) for

all λ, u, v ∈ LV . We have thus proved the lemma. ¤
For f ∈ HomA(V,W ) (V,W ∈ Ob(A)), define S(f) ∈ HomD(S(V ), S(W ))
by S(f) = f .

Proposition 4.8. S is a functor from A to D.

Remark 4.9. Let (L,G, π) be an element of LGπ. From (4.4), π(u(vw)) =
π((uv)w) for u, v, w ∈ L if and only if θ(L,G,π)(u)(π(v)∗θ(L,G,π)(v)(π(w))) =
θ(L,G,π)(u)(π(v)) ∗ θ(L,G,π)(uv)(π(w)) for u, v, w ∈ L. On account of Lemma
4.2, if we assume one of the following conditions, then the others are equiv-
alent:
(1) the loop L is associative;
(2) the mapping θ(L,G,π)(u) satisfies

(4.9) θ(L,G,π)(uv) = θ(L,G,π)(u)θ(L,G,π)(v) (∀u, v ∈ L);

(3) for every u ∈ L, θ(L,G,π)(u) is a homomorphism of groups.
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Let us assume any two conditions of (1), (2), and (3). Remark 3.4 induces
that L is a group, and π is consequently a bijective 1-cocycle of L with
coefficients in G [10, 21] (See Proposition 4.10.).

We describe a sufficient condition for RV (λ) to be dependent on the dy-
namical parameter λ.

Proposition 4.10. Let V = [(LV , G, π)] be an object of the category A. If
the dynamical YB map RV (λ) is independent of the dynamical parameter λ,
then the mapping θ(LV ,G,π)(u) (u ∈ LV ) satisfies (4.9).

Proof. Because RV (λ) is independent of λ, all the mappings ξ(LV ,G,π)
λ (u)

are also independent of λ, and, due to (4.6), θ(LV ,G,π)(λ)−1θ(LV ,G,π)(λu) =
θ(LV ,G,π)(eL)−1θ(LV ,G,π)(u) for all λ, u ∈ LV . Lemma 4.4 (1) implies the
desired result. ¤

Next we present a functor T : D → A.
Let V = (L, ξ, η) be an object of the category D. For λ ∈ L, define the

binary operation ?λ : L× L→ L by

(4.10) u ?λ v = λ\((λu)ξλu(u−1
λ,r)(v)) = m(λ)(u, ξλu(u−1

λ,r)(v)).

Proposition 4.11. Every (L, ?λ, eL) is a group.

For the proof, we need the following.

Lemma 4.12. (1) For all λ, u ∈ L, the mapping ξλ(u) is bijective: the
inverse is ξλu(u−1

λ,r).
(2) For all λ, u ∈ L, ξλ(u)(eL) = eL.

Proof. (1) The proof is immediate from (3.10), (3.13), and Lemma 3.6.
(2) By taking the cancellation law (3.4) of (L,m(λ)) into account, it suffices
to prove that m(λ)(ξλ(u)(eL), u) = m(λ)(eL, u). Due to (3.12), (3.13), and
Lemma 3.5, we get

m(λ)(ξλ(u)(eL), u) = m(λ)(ξλ(u)(eL), ηλ(eL)(u)) = m(λ)(u, eL) = m(λ)(eL, u),

thereby completing the proof. ¤
The lemma below induces Proposition 4.11.

Lemma 4.13. (1) For λ, u, v, w ∈ L, (u ?λ v) ?λ w = u ?λ (v ?λ w).
(2) The element eL satisfies that eL ?λ u = u ?λ eL = u for all λ, u ∈ L.
(3) For λ, u ∈ L, u ?λ (ξλ(u)(u−1

λ,r)) = (ξλ(u)(u−1
λ,r)) ?λ u = eL.

Proof. (1) The definition (4.10) of ?λ, Lemmas 3.2 (2), and 4.1 imply that

u ?λ (v ?λ w)

= m(λ)(u, ξλu(u−1
λ,r)(m((λu)u−1

λ,r)(v, ξλv(v−1
λ,r)(w))))

= m(λ)(u,m(λu)(ξλu(u−1
λ,r)(v), ξ(λu)ξλu(u−1

λ,r)(v)(ηλu(v)(u−1
λ,r))(ξλv(v−1

λ,r)(w))))

= m(λ)(u ?λ v, ξ(λu)ξλu(u−1
λ,r)(v)(ηλu(v)(u−1

λ,r))(ξλv(v−1
λ,r)(w))).



DYNAMICAL YANG-BAXTER MAPS 11

From this equation, it suffices to show that

(4.11) ξλ(u?λv)((u ?λ v)−1
λ,r) = ξ(λu)ξλu(u−1

λ,r)(v)(ηλu(v)(u−1
λ,r))ξλv(v−1

λ,r).

By means of (3.12) and (4.10),

(u ?λ v)−1
λ,r = m(λ(u ?λ v))(ηλu(v)(u−1

λ,r), v
−1
λ,r),

and

(λ(u ?λ v))(ηλu(v)(u−1
λ,r)) = ((λu)ξλu(u−1

λ,r)(v))ηλu(v)(u−1
λ,r) = λv.

Hence (3.10) induces (4.11).

(2) Due to Lemma 4.12 (2), u ?λ eL = u. By using (3.13), we get

eL ?λ u = m(λ)(eL, ξλ(eL)(u)) = u,

thereby completing the proof.

(3) By virtue of Lemma 4.12 (1), u?λ ξλ(u)(u−1
λ,r) = eL. The equation (3.12)

implies that (ξλ(u)(u−1
λ,r))

−1
λ,r = ηλ(u−1

λ,r)(u), and consequently

(ξλ(u)(u−1
λ,r)) ?λ u = m(λ)(ξλ(u)(u−1

λ,r), ξλξλ(u)(u−1
λ,r)(ηλ(u−1

λ,r)(u))(u))

= ξλ(u)(m(λu)(u−1
λ,r, u))

because of Lemma 4.1. Lemmas 3.6 and 4.12 (2) imply that (ξλ(u)(u−1
λ,r))?λ

u = eL. ¤

Remark 4.14. For every λ ∈ L, the group (L, ?λ, eL) is isomorphic to (L, ?eL , eL).
For the proof, it suffices to show that, for λ, u, v, w ∈ L,

(4.12) ξλ(u)(v ?λu w) = ξλ(u)(v) ?λ ξλ(u)(w).

By means of (3.10), (3.12), and Lemma 4.1,

L.H.S. of (4.12)

= ξλ(u)(m(λu)(v, ξ(λu)v(v
−1
λu,r)(w)))

= m(λ)(ξλ(u)(v), ξλξλ(u)(v)(ηλ(v)(u))(ξ(λu)v(v
−1
λu,r)(w)))

= m(λ)(ξλ(u)(v), ξλξλ(u)(v)(m(λξλ(u)(v))(ηλ(v)(u), v−1
λu,r))(w)).

Because m(λξλ(u)(v))(ηλ(v)(u), v−1
λu,r) = m(λξλ(u)(v))((ξλ(u)(v))−1

λ,r, u), we
get (4.12).

For V = (L, ξ, η) ∈ Ob(D), let us define T (V ) ∈ Ob(A) by

T (V ) = [(L, (L, ?eL , eL), idL)].

Lemma 4.15. Let V = (L, ξ, η) and W = (L′, ξ′, η′) be objects of the cate-
gory D. If f ∈ HomD(V,W ), then f ∈ HomA(T (V ), T (W )).
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Proof. Because f satisfies (3.14) and m(eL) is the binary operation (·),
f(u ?eL v) = f(uξu(u−1

eL,r)(v))

= f(u)f(ξu(u−1
eL,r)(v))

= f(u)ξ′f(u)(f(u−1
eL,r))(f(v))

for u, v ∈ L. From (4.10),

f(u) ?eL′ f(v) = f(u)ξ′f(u)(f(u)−1
eL′ ,r)(f(v)).

Since f : L → L′ is a homomorphism of loops, f(u−1
eL,r) = f(u)−1

eL′ ,r, and
f : (L, ?eL , eL) → (L′, ?eL′ , eL′) is a homomorphism of groups as a result.

For (L,G, π) ∈ T (V ) and (L′, G′, π′) ∈ T (W ), the mappings π−1 =
idLπ

−1 : G → (L, ?eL , eL) and π′ = π′id−1
L′ : (L′, ?eL′ , eL′) → G′ are all

homomorphisms of groups because of (1.1). The mapping π′fπ−1 : G→ G′
is hence a homomorphism of groups. This completes the proof. ¤

For f ∈ HomD(V,W ), define T (f) ∈ HomA(T (V ), T (W )) by T (f) = f .

Proposition 4.16. T is a functor from D to A.

Proof of Theorem 3.7. For completing the proof, we need to show: (1) TS =
idA; and (2) ST = idD.
(1) We only show that TS(V ) = V for V = [(LV , G, π)] ∈ Ob(A).

Lemma 4.17. The mapping π : (LV , ?eLV
, eLV

) → G is an isomorphism of
groups. Here ?eLV

is defined from S(V ) ∈ Ob(D) (See (4.10).).

Proof. For the proof, it suffices to show that π is a homomorphism of groups.
Let u and v be elements of LV . The equations (4.5), (4.6), and Lemma 4.4
(1) induce that

u ?eLV
v = u(ξu(u−1

eLV
,r)(v)) = u((π−1θ(u)−1)(π(v))) = π−1(π(u) ∗ π(v)),

because m(eLV
) is exactly the binary operation (·). We have thus proved

the lemma. ¤

From the above lemma, (LV , G, π) ∼ (LV , (LV , ?eLV
, eLV

), idLV
), and we

hence obtain TS(V ) = V .
(2) Let V = (L, (ξλ(u)), (ηλ(u))) be an object of the category D. We only
demonstrate that ST (V ) = V . By the definition, the object T (V ) is the
equivalence class to which (L,G, π) = (L, (L, ?eL , eL), idL) belongs. On ac-
count of the definition of ST (V ), we can denote ST (V ) by (L, (ξ′λ(u)), (η′λ(u))).
It suffices to prove that ξ′λ(u)(v) = ξλ(u)(v) and η′λ(u)(v) = ηλ(u)(v) for
λ, u, v ∈ L.

Lemma 4.18. For u ∈ L, let θ′(u) denote θ(L,G,π)(u) defined by (4.4). Then
θ′(u) = ξeL(u).
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Proof. Let v be an element of L. From (4.4), θ′(u)(v) = u−1 ?eL (uv), where
u−1 is the inverse of u with respect to ?eL . With the aid of Lemma 4.13 (3)
and (4.10),

(4.13) u−1 ?eL (uv) = ξeL(u)(u−1
eL,r)ξξeL

(u)(u−1
eL,r)((ξeL(u)(u−1

eL,r))
−1
eL,r)(uv).

By virtue of (3.12), (ξeL(u)(u−1
eL,r))

−1
eL,r = ηeL(u−1

eL,r)(u), and, from Lemma
4.1,

R.H.S. of (4.13)
= m(eL)(ξeL(u)(u−1

eL,r), ξξeL
(u)(u−1

eL,r)(ηeL(u−1
eL,r)(u))(uv))

= ξeL(u)(m(u)(u−1
eL,r, uv))

= ξeL(u)(v)

as a result. We have thus proved the lemma. ¤
By taking this lemma into account, θ′(u)−1(v) = ξeL(u)−1(v), and con-
sequently ξ′λ(u)(v) = θ′(λ)−1θ′(λu)(v) = ξλ(u)(v). From (4.7), it follows
immediately that η′λ(u)(v) = ηλ(u)(v). ¤

5. Properties of RV (λ)

Let V be an object of the category A. This section is devoted to investi-
gating properties of RV (λ), the dynamical YB map constructed in Theorem
3.7 (Cf. Theorem 1 and Proposition 4 of [21].).

Let (L,G, π) be a representative of V . In place of ξ(L,G,π)
λ (u) and η(L,G,π)

λ (u)
defined by (4.6) and (4.7), we will use the symbols ξλ(u) and ηλ(u), respec-
tively. They hence satisfy (3.10), (3.11), (3.12), and (3.13).

Proposition 5.1. RV (λ) is bijective for all λ ∈ L.

Denote by σV (λ) the corresponding dynamical braiding map to RV (λ):
σV (λ) = PRV (λ). The lemma below means that σV (λ) is bijective, and
implies Proposition 5.1 as a result.

Lemma 5.2. For λ ∈ L, define the mapping ιλ : L× L→ L× L by

ιλ(u, v) = (u−1
λv,r, v

−1
λ,r) (u, v ∈ L).

(1) The mapping ιλ is bijective: the inverse ι−1
λ is as follows.

ι−1
λ (u, v) = (u−1

λ(v−1
λ,l ),l

, v−1
λ,l ) (u, v ∈ L).

(2) Pι−1
λ σV ((λ(L(2))−1

λ,l )(L
(1))−1

λ((L(2))−1
λ,l),l

)ιλPσV (λ) = idL×L.

(3) ιλPσV (λ)Pι−1
λ σV ((λ(L(2))−1

λ,l )(L
(1))−1

λ((L(2))−1
λ,l),l

) = idL×L.

Here the mapping σV ((λ(L(2))−1
λ,l )(L

(1))−1

λ((L(2))−1
λ,l),l

) : L×L→ L×L is defined

by

σV ((λ(L(2))−1
λ,l )(L

(1))−1

λ((L(2))−1
λ,l),l

)(u, v) = σV ((λ(v−1
λ,l ))u

−1

λ(v−1
λ,l ),l

)(u, v)
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for u, v ∈ L.

We give only the proof of (2) and (3).
Fix elements u and v of L, and let us define the elements x, y ∈ L by

(y, x) = σV (λ)(u, v) = (ξλ(u)(v), ηλ(v)(u)). The proof of Lemma 5.2 (2) is
immediate from the lemma below.

Lemma 5.3. (1) v−1
λu,r = ξ(λy)x(x−1

λy,r)(y
−1
λ,r).

(2) u−1
λ,r = η(λy)x(y−1

λ,r)(x
−1
λy,r).

Proof. (1) The equation (3.13) and Lemma 4.1 imply that

ξλ(u)(m(λu)(v, ξ(λy)x(x−1
λy,r)(y

−1
λ,r)))(5.1)

= m(λ)(ξλ(u)(v), ξλξλ(u)(v)(ηλ(v)(u))(ξ(λy)x(x−1
λy,r)(y

−1
λ,r)))

= m(λ)(x, ξλx(y)(ξ(λy)x(x−1
λy,r)(y

−1
λ,r))).

From (3.10) and (3.13), R.H.S. of (5.1) = eL. With the aid of Lemma 4.12,
we get the desired result.
(2) By means of (3.12), (λy)x = (λu)v, and consequently

m((λy)x)(v−1
λu,r, u

−1
λ,r) = m((λu)v)(v−1

λu,r, u
−1
λ,r)

= ((λu)v)\λ
= ((λy)x)\λ
= m((λy)x)(x−1

λy,r, y
−1
λ,r).

From (1) and (3.12), we conclude that

m((λy)x)(v−1
λu,r, η(λy)x(y−1

λ,r)(x
−1
λy,r))

= m((λy)x)(ξ(λy)x(x−1
λy,r)(y

−1
λ,r), η(λy)x(y−1

λ,r)(x
−1
λy,r))

= m((λy)x)(x−1
λy,r, y

−1
λ,r).

This completes the proof by taking account of the cancellation law (3.3) of
the quasigroup (L,m((λy)x)) (See Lemma 3.2 (1).). ¤

Now we prove Lemma 5.2 (3). Fix elements u and v of L, and let us
define the elements x, y ∈ L by

(y, x) = σV ((λ(L(2))−1
λ,l )(L

(1))−1

λ((L(2))−1
λ,l),l

)(u, v)

= (ξ(λ(v−1
λ,l ))(u

−1

λ(v−1
λ,l

),l
)(u)(v), η(λ(v−1

λ,l ))(u
−1

λ(v−1
λ,l

),l
)(v)(u)).

For the proof, it suffices to show the following.

Lemma 5.4. (1) m(λ)(x−1
λ,l , y

−1

λ(x−1
λ,l),l

) = m(λ)(v−1
λ,l , u

−1

λ(v−1
λ,l ),l

).

(2) v−1
λ,l = ξλ(x−1

λ,l )(y
−1

λ(x−1
λ,l),l

).

(3) u−1

λ(v−1
λ,l ),l

= η
λ
(y−1

λ(x−1
λ,l),l

)(x−1
λ,l ).
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Proof. (1) By the definition of x and y,

(((λ(x−1
λ,l ))(y

−1

λ(x−1
λ,l),l

))y)x = λ

= (((λ(v−1
λ,l ))(u

−1

λ(v−1
λ,l ),l

))u)v

= (((λ(v−1
λ,l ))(u

−1

λ(v−1
λ,l ),l

))y)x.

The cancellation law (3.4) of (L, ·) and (3.5) imply the desired result.
(2) From Lemma 4.12 (1), it suffices to prove that y−1

λ(x−1
λ,l),l

= ξλ(x−1
λ,l)

(x)(v−1
λ,l ).

It follows from (1), the definition of x, (3.11), and (3.13) that ηλ(x−1
λ,l)

(v−1

λ(v−1
λ,l ),r

)(x) =

u. By means of (3.12), we deduce

m(λ(x−1
λ,l ))(x, v

−1

λ(v−1
λ,l ),r

) = m(λ(x−1
λ,l ))(ξλ(x−1

λ,l)
(x)(v−1

λ(v−1
λ,l ),r

), u).

This equation and (1) induce

m((λ(x−1
λ,l ))(y

−1

λ(x−1
λ,l),l

))(m((λ(x−1
λ,l ))(y

−1

λ(x−1
λ,l),l

))(y, ξλ(x−1
λ,l)

(x)(v−1

λ(v−1
λ,l ),r

)), u)

= m((λ(x−1
λ,l ))(y

−1

λ(x−1
λ,l),l

))(y,m(λ(x−1
λ,l ))(x, v

−1

λ(v−1
λ,l ),r

))

= m((λ(v−1
λ,l ))(u

−1

λ(v−1
λ,l ),l

))(m((λ(v−1
λ,l ))(u

−1

λ(v−1
λ,l ),l

))(y, x), v−1

λ(v−1
λ,l ),r

)

= m((λ(v−1
λ,l ))(u

−1

λ(v−1
λ,l ),l

))(m((λ(v−1
λ,l ))(u

−1

λ(v−1
λ,l ),l

))(u, v), v−1

λ(v−1
λ,l ),r

)

= u.

As a consequence of the cancellation law (3.4) of (L,m((λ(x−1
λ,l )(y

−1

λ(x−1
λ,l)

)))

and the above equation,

m((λ(x−1
λ,l ))(y

−1

λ(x−1
λ,l),l

))(y, ξλ(x−1
λ,l)

(x)(v−1

λ(v−1
λ,l ),r

)) = eL.

By taking Lemma 3.6 into account, this equation implies

ξλ(x−1
λ,l)

(x)(v−1
λ,l ) = ξλ(x−1

λ,l)
(x)(v−1

λ(v−1
λ,l ),r

) = y−1

(λ(x−1
λ,l))(y

−1

λ(x−1
λ,l

),l
),r

= y−1

λ(x−1
λ,l),l

.

(3) By means of (1) and (3.12),

m(λ)(ξλ(x−1
λ,l )(y

−1

λ(x−1
λ,l),l

), η
λ
(y−1

λ(x−1
λ,l),l

)(x−1
λ,l )) = m(λ)(x−1

λ,l , y
−1

λ(x−1
λ,l),l

)

= m(λ)(v−1
λ,l , u

−1

λ(v−1
λ,l ),l

).

From (2) and the cancellation law (3.3) of (L,m(λ)), we get the desired
result. ¤

The dynamical YB map R(λ) associated with H, X, and φ is said to
satisfy the unitary condition if R(λ)PR(λ) = P for all λ ∈ H.

Theorem 5.5. Let V = [(L,G, π)] be an object of the category A. The
following conditions are equivalent :
(1) RV (λ) satisfies the unitary condition;
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(2) σV (λ)2 = idL×L for all λ ∈ L;

(3) ξλ(u)(v) = (η(λu)v(u
−1
λ,r)(v

−1
λu,r))

−1
λ,l for all λ, u, v ∈ L;

(4) all the groups (L, ?λ, eL) are abelian.

Remark 4.14, Lemma 4.17, and Theorem 5.5 imply the following corollary.

Corollary 5.6. Let V = [(L,G, π)] be an element of Ob(A). RV (λ) satisfies
the unitary condition if and only if the group G is abelian.

The definition of σV (λ) immediately shows that the conditions (1) and
(2) in Theorem 5.5 are equivalent.

Proof ((2) ⇔ (3)). Let λ, u, and v be elements of L. Define the elements ui

and vi (i = 1, 2) of L by (u1, v1) = σV (λ)−1(u, v) and (u2, v2) = σV (λ)(u, v).
From (3.12),

m(λ)(u1, v1) = m(λ)σV (λ)(u1, v1) = m(λ)(u, v) = m(λ)(u2, v2).

By virtue of Lemma 5.2, the condition (3) means that u1 = u2, and the
cancellation law (3.3) of (L,m(λ)) implies that v1 = v2 as a result. We have
thus proved (2) from (3). The rest of the proof is immediate. ¤

The following lemma is useful to prove that the conditions (3) and (4) are
equivalent.

Lemma 5.7. u ?λ v = m(λ)(v, (ηλu(v)(u−1
λ,r))

−1
λv,l) (∀λ, u, v ∈ L).

Proof. Because v = m(λ)(u,m(λu)(ξλu(u−1
λ,r)(v), ηλu(v)(u−1

λ,r))), we obtain

m(λ)(v,
(
ηλu(v)(u−1

λ,r)
)−1

(λu)ξλu(u−1
λ,r)(v),r

) = u ?λ v.

On account of Lemma 3.6,
(
ηλu(v)(u−1

λ,r)
)−1

(λu)ξλu(u−1
λ,r)(v),r

= (ηλu(v)(u−1
λ,r))

−1
λv,l,

and we conclude the lemma. ¤

Proof ((3) ⇔ (4)). Lemma 3.6 induces that u−1
λu,l?λuv = m(λu)(u−1

λu,l, ξλ(u)(v)).
With the aid of Lemma 5.7,

v ?λu (u−1
λu,l) = m(λu)(u−1

λu,l,
(
η(λu)v(u

−1
λu,l)(v

−1
λu,r)

)−1

(λu)u−1
λu,l, l

),

and the conditions (5.2) and (5.3) are equivalent as a result:

the condition (3) of Theorem 5.5;(5.2)

u−1
λu,l ?λu v = v ?λu (u−1

λu,l) for all λ, u, v ∈ L.(5.3)

Because Lemma 3.6 implies that u?λ v = (u−1
λu,l)

−1

(λu)(u−1
λu,l),l

?(λu)(u−1
λu,l)

v, (5.3)

is equivalent to (4). ¤
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6. Examples

The present section describes several examples of the dynamical YB maps
constructed in Theorem 3.7 and Proposition 3.8.

Let K denote the field R, or C, and let V be a vector space over K,
together with a mapping N : V → K satisfying the following properties:

(1) N(u) = 0 if and only if u = 0.
(2) N(αu) = |α|2N(u) (α ∈ K, u ∈ V ).

V is an abelian group (and a loop, of course) with respect to the addition
+. Define the mapping π : V → V by

π(u) =
{
N(u)−1u, if u 6= 0,

0, if u = 0.

This mapping π is bijective: the inverse of π is as follows.

π−1(u) =

{
N(u)

−1
u, if u 6= 0,
0, if u = 0.

Theorem 3.7 and Corollary 5.6 give a dynamical YB map R[(V,V,π)](λ) sat-
isfying the unitary condition.

In place of θ(V,V,π)(u), we will use θ(u). For a non-zero element u of V ,
θ(2u) 6= θ(u)θ(u) because

θ(u)(−N(u)−1u) = −N(u)−1u,

θ(2u)(−N(u)−1u) = (1/2)N(u)−1u.

From Proposition 4.10, R[(V,V,π)](λ) is dependent on the dynamical param-
eter λ.

If V = K, and N(u) = |u|2, then the mapping ξλ(u) = ξ
(V,V,π)
λ (u) (λ, u ∈

V ) defined by (4.6) is as follows:

ξλ(u)(v) =





λ2v
(λ+u)2+uv

, if λv(λ+ u)(λ+ u+ v){(λ+ u)2 + uv} 6= 0,

− (λ+u)(λ+u+v)
v , if v(λ+ u)(λ+ u+ v) 6= 0

and λ{(λ+ u)2 + uv} = 0,
− λ2

λ+v , if (λ+ u)(λ+ u+ v) = 0 and λv(λ+ v) 6= 0,
v, if v(λ+ u)(λ+ u+ v) = 0 and λv(λ+ v) = 0.

Let W be a vector space over K. Suppose that there exist mappings
ψ : W → V and ρ : V → W satisfying ψρ = idV . By using Proposition
3.8 (1), R[(V,V,π)](λ) gives birth to a dynamical YB map associated with W ,
V , and φ. Here φ(λ, u) = ρ(ψ(λ) + u) (λ ∈ W,u ∈ V ). Proposition 3.8 (2)
similarly produces dynamical YB maps from R[(V,V,π)](λ).

Remark 6.1. Let h be a finite-dimensional abelian Lie algebra over C, and
{ei} a basis of h. Define the mapping N from h to C by N(u) =

∑
i |ui|2

(u =
∑

i uiei, ui ∈ C). Let ρ denote an isomorphism from h to h∗, and let us
define the mapping φ from h∗×h→ h∗ by φ(λ, u) = λ+ρ(u) (λ ∈ h∗, u ∈ h).
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Proposition 3.8 (1) implies that R(λ) = R[(h,h,π)](ρ−1(λ)) (λ ∈ h∗) is a
dynamical YB map associated with h∗, h, and φ.

Let V denote the C-vector space generated by the set h. For λ ∈ h∗
and u, v ∈ h, define (u′, v′) = R(λ)(u, v). The condition (3.12) induces that
u′ + v′ = u + v, and ρ(u′) + ρ(v′) = ρ(u) + ρ(v) as a result. Because R(λ)
is bijective and wt = −ρ, the above R(λ) produces a dynamical R-matrix
R̃(λ) : V ⊗ V → V ⊗ V (See Section 2.).

Let us next introduce an example for the case that LV (V ∈ Ob(A)) is
finite. The straightforward computation shows that RV (λ) = idLV ×LV

, if
the order of LV is less than or equal to three.

Let L6 = {1, 2, . . . , 6} be a loop, together with a binary operation (·)
presented in Table 1 [5]. Here 4 · 6 = 1.

1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 4 3 6 5
3 3 6 5 1 4 2
4 4 5 6 2 3 1
5 5 3 1 6 2 4
6 6 4 2 5 1 3

Table 1. Multiplication table of L6

Remark 6.2. The binary operation (·) on the loop L6 is not associative
because (5 · 4) · 6 6= 5 · (4 · 6). By the definition of m(5), m(5)(4, 6) 6= 4 · 6.

Let g denote a generator of C6, the cyclic group of order 6. Define the bijec-
tion π from L6 to C6 by π(k) = gk−1. Theorem 3.7 and Corollary 5.6 imply
that R[(L6,C6,π)](λ) is a dynamical YB map satisfying the unitary condition,
and we deduce, owing to Proposition 4.10, that R[(L6,C6,π)](λ) is depen-
dent on the dynamical parameter λ. The Tables 2 and 3 are the mappings
R[(L6,C6,π)](2) and R[(L6,C6,π)](3). Here R[(L6,C6,π)](2)(2, 4) = (6, 6).
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