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A theorem on essential self-adjointness with application to Hamiltonians 
in nonrelativistic quantum field theory 

Asao Arai 
Department of Mathematics, Hokkaido University, Sapporo 060, Japan 

(Received 9 October 1990; accepted for publication 26 February 1991) 

An abstract theorem is given on essential self-adjointness of operators in infinite direct sum of 
Hilbert spaces and is applied to a class of Hamiltonians in nonrelativistic quantum field theory 
to prove their essential self-adjointness. 

I. INTRODUCTION 

In this paper we present an abstract theorem on essential 
self-adjointness of operators in infinite direct sum of Hilbert 
spaces and apply it to a class of Hamiltonians in nonrelativis- 
tic quantum field theory (QET) to prove their essential self- 
adjointness. 

About 20 years ago, D. Masson and W. K. McClary’ 
gave an interesting proof of the essential self-adjointness of 
the Hamiltonian of (+“), theory with a space cutoff. Their 
proof makes use of some specific properties of the interaction 
Hamiltonian acting in the boson Fock space over L ‘( IR). 
We have found that their method can be formulated in an 
abstract way to give a criterion for essential self-adjointness 
of operators in infinite direct sum of Hilbert spaces. This is a 
background of the present work. 

The outline of the present paper is as follows. In Sec. II 
we first state the abstract theorem mentioned above and then 
prove it. The proof of the theorem is quite similar to that of 
Masson and McClary in Ref. 1, but, we give it for complete- 
ness. Section III is devoted to the application of the theorem 
to a class of models in nonrelativistic QFT. Each model in 
the class describes a quantum system of a finite number of 
nonrelativistic particles interacting with some quantum sca- 
lar fields. In Sec. IV we discuss some examples: the linear 
polaron mode1,2-5 the RWA oscillator,G8 a model of a 
bounded electron interacting with a quantized radiation 
field,‘-” their generalizations, and scalar quantum electro- 
dynamics with cutoff~.‘~ 

ii. THE ABSTRACT THEOREM 
Let X, , n = 0, I,2 ,..., be Hilbert spaces and 

R= ;sv, (2.1) 
n=O .. 

be the infinite direct sum ofx,,, n)O. Every vectorf#is a 
sequence f = {f cn)};Z 0 of vectors f (%P with 

llfll’= 2 Ilf’“‘ll’< ‘we 
We identify fen) with the vector CO,0 ,..., O,f(“),O,...,&Y 
[the (n + 1) th component isf’“’ and all the other compo- 
nents are zero]. We introduce the subspace 

go = {fZ@‘lf’“’ = 0 for all but finitely many n), 
(2.2) 

which is degse in ;t;“, and the degree operator (“number 
operator”) N by 

(G-f,‘“’ = nfcm), n>O, (2.3) 
with domain 

d3 = 1 fzzcq nzo n211f’“‘I12 < co) * 

The operator 2 is self-adjoint and non-negative. 
Let A be a self-adjoint operator in X which is reduced 

by each P,,, so that for all n>O, 
A:D(A) fLvfi -x,. (2.4) 

is self-adjoint. It is easy to see that A is essentially self-adjoint 
on the dense subspace 

29 = D(A)i-mo. (2.5) 
Let B be a symmetric operator in 8 that satisfies the 

following conditions (B 1) and (B2). 
(B 1) 9, CD(B) and there exist a constant c > 0 and a 

linear operator L in P such that D(L) 1 
D([(A 4-B) E91*), 

L:D(L) n2Yn -Rn, 

for all n>O, and 

Iwg)l~cllLfItll(~+ U”gfl, J;kE~. 
(B2) There exists an integerp>O such that for all&~O, 
( f ‘m),Bf (n)) = 0 unless Irn - nl = O,l,..., p, 
The following theorem gives a criterion for the essential 

self-adjointness of the operator A + B. 
Theorem 2.1: Let A and B be as above. Suppose that 

A f Bis bounded from below. Then A + B is essentially self- 
adjoint on g. 

To prove this theorem, we prepare a lemma, which may 
be interesting in its own right. 

Lemma 2.2: Let Sand T be symmetric operators in $?Y 
and 

RrSf T 

isstrictly positiveon asubspaceDCD(S) no(T), i.e., for a 
constant /1> 0, 

R>A on D. (2.6) 

Let {f, );= , CD be a sequence satisfying the following con- 
ditions (i)-(iv): 
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(9 f, #O; 
(ii) (f,,f,) =0, unless m=n; 
(iii) ( fm,Sfn ) = 0, unless m = n; 

(iv) (J;,,Tf,) = 0, for ]m - n1>2; 
(VI (f,-,,Tf,) +cf,,wi, + (f,+,x.f,) =Q nal9 

(2.7) 

where we set fO = 0. Then, for all n) 1, f, #O and 

(AT+,, Vi,, ~0. (2.8) 
Moreover, 

1 
2 I(f,+,Jx)I <** 

(2.9) 

Prooj Conditions (i) and (ii) imply that CT= ,f, #O for 
all n) 1. Therefore (2.6) gives 

(2.10) 
\,=I j=, / 

Using conditions (iii)-(v), we can show that the left-hand 
side of (2.10) equals - (f,, ,,Tfn). Hence, f,, , f-0 and 
(2.8) follows. 

To prove (2.9)) we define a set of numbers {a,};= , by 
the following recursion relations: 
a, = 1, (2.11) 

a,,-,(fn-,,TL) +a,(fnJK) +c,+,(f,+,,Tf,) 

=/..wJf,~1*, n>l, (2.12) 
where,u is a constant with 0 <p <A and we set a, = 0. It is 
easy to see that for all n)2, a, is real. Let 

g, = adin 
and 

ii=R-p, 

which is strictly positive. Multiplying (2.12) by a,, , we have 
k-,,Tg,) + (g,&) + k+,J”,) =O. 

Hence, we can apply the preceding result with f,, R, and S 
replaced by g,, , R, and S - p, respectively, to obtain 

o> k, I, CL) = -%+,%I(f,+,9Tf,)l. 
Since a, = 1 > 0, this inequality implies that for all n>2, 
a, > 0. Multiplying (2.7) [ resp. (2.12)] by a’, (resp. a, ) 
and making the subtraction to eliminate the term ( f, ,Rf, ), 
we obtain 

(a,, -a,+,)I(L+,,Tfn)l 
=/.La,IIfn~~2+ (a,-, -%)I(f,-,J-L)l, 01. 

(2.13) 

Taking n = 1 in this equation, we see that a, > u2. It then 
turns out that for all n) 1, a, > a, + , . Combining this result 
with (2.13), we obtain 

-=*+t 
Icf,+:~rf./~llf,l12 ’ 

N 1 
n% ICL+J'i'~,~~l;,12~ 

Thus (2.9) follows. a 
Proof of Theorem 2. I: Without loss of generality, we can 

assume that for a constant y> 0, 
A+B>y 

on a. Throughout the proof, we set 
C=A+B. 

It is sufficient to prove that Ker (C 1 9 )* = {0} (e.g., 
Theorem X.26 in Ref. 13 ) . Let geKer( C 1 9 ) *. Then 

(g&f) =o, (2.14) 
for all feLi3. By (2.4), we have 

(g’“‘,/if) = (gslf’“‘) = k,(C- B)f’“‘) 

= - (g,Bf(“) 1. 
Using (Bl ) and (B2), we obtain 

I(g’“‘,Af)I<c(n +P+ U211Lgllllf 11. 
Hence, the map: f- (g'"',Af ) defines uniquely a continuous 
linear functional on Z. Hence, by the Riesz lemma, there 
exists a vector $n&F such that 

(g'"'Jf) = (3,,f,, Pg. 
Since 9 is a core of A, this equation extends to all fsD(A ), 
which implies that g’“‘ED(A *) = D(A). Hence, g’“‘&. 

Ifp = 0, then B: Z’, -+Zn for all n)O and hence 
c:~iX,+Z,, 

for all n>O. Therefore, puttingf= g(“,Ea into (2.14), we 
have 

0 = (g,Cg’“‘) = (g(n),Cg(n))>,yllg(n)l12. 
Hence, g(“) = 0 for all n>O, i.e., g = 0. 

Let p> 1 and define 
P---l 

h, = c g(pn+jkg. 

j=O 

Putting f = h, into (2.14)) we have 
(g,Ch, 1 = 0, 

which implies that 
(h,-,,Bh,) + (h,,Ch,) + (h,+,,Bh,) =O, n>O, 

where we set h _ , = 0. It is easy to see that 
(h,,h,, I= 0 (h,,Ah,) = 0, 

unless m = n and 
(h,,Bh,) = 0, 

for Irn - nl>2. Suppose that g#O. Then, for some n, h, #O. 
Hence, we can define 

N= min{n>O( llhn 11 #O). 

Then we can apply Lemma 2.2 with f, = h, i. n _ , (n> 1 ), 
S= A,T= B, to obtain 

K= 2 
n=N ,(h.+:,Bh,)l <*’ 

which imphes that 
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Hf,) = s 
a,(k)f(k)dk. 

<K ,” ( .ZN II& + I II2 ) ‘I4 pN Ilk il’) I/4 

dY~ll~gtlllglf - (2.15) 
On the other hand, we have by (B 1) 

II&z t I Nl4z II I 
I(h n+,>Bk&p2(n+ 11~’ 

which implies that the left-hand side of (2.15) diverges. This 
is a contradiction. Thus g must be zero. n 

Ill. ESSENTIAL SELF-ADJOINTNESS OF A CLASS OF 
HAMILTONIANS IN NONRELATIVISTIC QUANTUM 
FIELD THEORY 

In this section we apply Theorem 2.1 to prove the essen- 
tial self-adjointness of a class of Hamiltonians in nonrelativ- 
istic quantum field theory, The Hamiltonians we consider 
correspond to models of a finite number of nonrelativistic 
particles interacting with some quantum scalar fields. 

For a mathematical generality, we assume that the sca- 
lar fields under consideration are over Rd with d> 1. The 
Hilbert space for state vectors of the particle system is taken 
tobeL2(WN). Wedenotebyq= (q,,...,qN)&Nthecoordi- 
nate variable of RN and define the “momentum operator” p 
by 

P= (P I ,‘.-,pN 1, 
with 

. a 
pJ= -z’ 

(3.1) 

where i = m and the partial derivatives are taken in the 
generalized sense. 

The mathematical framework for the quantum scalar 
fields is given as follows: Let X be the M direct sum of 
L2(Wd) (M>l): 

(3.2) 
M tTii.3 

and S”( X) (n> 1) be the n-fold symmetric tensor product 
of%: 

S”(37) = @yF- (3.3) 
[we set SO(A”7 = @I. The Hilbert space for the scalar fields 
is taken to be the symmetric Fock space over X: 

9,(-m = ii S”(X). (3.4) 
??=O 

We denote by a(F) (FEZ) the annihilation operator in 
F, (x) (antilinear in F) and by Nb the number operator, 
The mapping: L 2(Rd) 3f-f = (0 ,..., 0,f;O ,..., O)EX (the 
tih component isfand the other components are zero) de- 
fines an embedding of L 2(Rd) into X. Let Y(Rd) be the 
Schwartz space of rapidly decreasing Co functions on R’. 
Then the mapping: P( I@) 3f-+a( f, ) defines an operator- 
valued distribution; we denote its kernel by a, (k) : 

The operator-valued distributions {a, (k)}y= , satisfy the 
canonical commutation relations: 

[a,(k),a,(p)*] = S,&k -ph 
[a,(k),a,(p)] = o,r,s = I,..., M. 

Let F0 ( X 1 be the finite particle vector space of 9f (X) : 
90 (Xl = CY = W”‘~,“=,E~‘, (x-) pP 

= 0 for all but finitely many n}. (3.5) 
For each Wm,n~2(Rd(m+n))(m + n>I,m,n)O) and 
r,,sj = 1 ,...,M, we can define a unique closed linear operator 
JV,., (a?:,..,,a~,,;a,,,...,~,~) in 3,(X) with 

~fw~*,(~::,...,~~“;~,,,...,~,“))~~o(~) (3.6) 
such that F. (Z) is a core for IV,,, (a; ,..., aFm;a,, ,...,asn ) 
and 

W,,, (a~,...,a$a,, ,...,asm) 

= 
s &n + n, rv,,, (k , ~-A,,,~, ,..&a 1 

X ( Jj a, ( k I*) (fJ as, (Sj ) )dk 47 (3.7) 

as a quadratic form on Y, (x) X .FO (x) (see Theorem 
X.44 in Ref. 13 1. Some fundamental properties of the opera- 
tor W,,, (at r-.,a$a,, , . . ..(ls., ) are summarized in the follow- 
ing lemma. 

Lemma 3. I: (i) If k and lare non-negative integers such 
thatk +l=m+n,then 

(1 + NL.) -k’2~~.n(a~,...,a~~;aSr~-.,as”)(1 + ivb) -l/2 
is a bounded operator with 

If ( 1 + Nb 1 - k’Z~m,, (a: ,..., $;a,, ,..., as”) ( 1 + Nb) - ‘“/I 
C(W[fWII,,, 

where C(k,l) > 0 is a constant. 
(ii) Let 

it,,, (k I ~-A,,,~, ,...R, 1 = W,,, Cl,, . . . . t&k, ,a.+, k, )*, 
Then 

o(@m,, (a% ,... ,aF,;q., ,...,a,” 1) 

and 
jtm,n(a::t...,aZ,;a,l,...rar,) = Wn,m(a;, . . . . ~:;a, ,,..., asm)* ” 
on D(Rm., (a~,...,Qq ~...,a,~). 

(iii) W,,, (a::,...,a~~;a,,,...,a,” 1 maps Sk(%) into 
Sktm-“(5Y) (resp. CO]) fork>n (resp. k<n). 

For proof of this lemma, see Theorem X.44 in Ref. 13. 
Let m, (k) ,r = 1 ,...,M, be non-negative measurabIe 

functions on L ‘( Rd) with w,EL fm ( IEd) and 
h m= cB~~,,w, 

be the direct sum of w, as multiplication operators. We de- 
fine 

HF =dr(;j, (3.8) 
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to be the second quantization of the operator 2. We have F=L2(RN)@Fs(X). (3.9) 

H, = 2 j-dWk)*a,(k)dk 
r= I 

as a quadratic form on 
[x&m-w&)] x [%&%Vm(H,)]. 

Every closed operator A (resp. B) in L 2(RN) [ resp. 
Y,(X)] extendstoFasAeI(resp.leB),whereI de- 
notes identity. In what follows, however, we shall denote 
them by the same symbols, provided that there is no danger 
of confusion. 

We now consider the following Hamiltonian: 
The Hilbert space of the coupled system of the particles 

and the scalar fields is defined by 

+ ,&4 ,<Jk Cvj,. ,j$j, ' * 'pj,Qj,+ , ' ' 'qjI + c.. .jkqj,+ , * ' 'qj,Jj, ' * *Pi,) + ,,nFm,4 C W~,Yrm*s'~~~~*sn' (a: ,...,a$a,, ,...,asn 1 

c C CYj,. .j*pj, * * ‘Pj,qj,+ t * * ‘4j, 
l<k+m+nC4 l<l<k 

(3.10) 

where mj > 0, Aj ,... jk, pj ,... jk ER, vi ,,,. jk, yj ,... jk~C, are con- 
stants, 

w(~;*~-+n), y~;;-A~)d, Z(apd(m + n)), 
and s&&rations with respect to the repeated indicesjl,ri,si, 
are understood. The operator H is a sum of operators of 
polynomial type with degree less than or equal to 4 in 
qj>Pj@FYj= l,.**, NJ= l,..., M. By Lemma 3.1(i) and the 
fact that pj and qj leave y( RN) invariant, His a symmetric 
operator with 

D(H)>Y(@‘) ~(~o(X)~D(HF))&‘H, (3.11) 
where $ denotes algebraic tensor product. We prove the 
following theorem. 

Theorem 3.2: Suppose that His bounded from below on 
B H. Then H is essentially self-adjoint on 9 H. 

To prove Theorem 3.2, we need a preliminary. To apply 
Theorem 2.1 to the present case, we must rewrite F as an 
infinite direct sum. To this end, we make use of the Fock- 
Hermite-Wiener decomposition of L *(RN). We first recall 
this decomposition. Let v, > 0,j = l,...,N, be constants and 
introduce the annihilation and creation operators for the 
particles as follows: 

bj = (I/&) (ipi + V,qj)t (3.12) 

bj = (l/&)( - i/~j + Vjqj), j= l,...,iV, (3.13) 
which leave Y ( RN) invariant and satisfy the commutation 
relations 

[b,,b:] =6jk, [b,,b,] =O,j,k= l,..., N, (3.14) 
on Y(WN). Wehavefrom (3.12) and (3.13) 

qj = (l/&l (bj + bJ), (3.15) 

pi = iv(b; - bj). (3.16) 
Let 

$. = jfJ ((y’e- ,,) . (3.17) 

khenwehave]]&,]]=land 
b,rCt, = 0, j= l,..., iV. (3.18) 

For z = (zi ,...,zN)gGN, we define the operators b(z) and 
b(z)+ by 

b(z) = 2 zj*b,, b(z)+ = 2 zjb;. (3.19) 
j= I j= 1 

Then (3.14) is equivalent to the following commutation re- 
lations: 

[b(z),b(w)+l = (z,~)~av, [b(z),b(w)] = O,z,uxCN. 
(3.20) 

Let 
64f, = Caq4J @x2, 

C aj,...j,b(Zj, )t”.b(zj”)ttCoIaj,...j, 

EC,Z~,EC~,J~)~ , n>l. I 
(3.21) 

Then one can easily see that 
A, = {P,, (q) t+& 1 P, :polynomials of order n] C Y ( lRN) . 

(3.22) 
Hence, for all n)O, AZ, is finite dimensional. Moreover, we 
can show that A?,, I-&,,, for m # n and 

LZ(RN) = ; -M,sFs(CN). (3.23) 
n=O 

This is the desired decomposition of L 2 ( RN). In the decom- 
position (3.23), the degree operator is given by 

N, = 2 b;b,. (3.24) 
j= 1 

Using (3.23), the entire Hilbert space 3 is decomposed as 

.9-= iis,, (3.25) 
?I=0 

where 
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7, = e 4, @PSrn(X). t+m-n 
One can easily show that 

(3.26) where C,<, > 0 is a constant. 
We are now ready to prove Theorem 3.2, 
Proof of Theorem 3.2: Write H as 

~~b,Y~l~c11(N, + l)“‘$[j, WWy),j= A...&. H=Ho +H,, 
(3.27) with 

Using (3.15),( 3.16), and (3.27), wecan prove the following 
estimate: H,=f l - (pj -I- $q;) + HF 

lip,, v * *pj,qi, * * ‘qi,ti[I SCttt,, II (Np + 1) (m + n”2@ll* 
,=I 2m, 

+!ED(N;~+““*), (3.28) and 

N ti 
HI=-c L qf + 

I=, 2mj 
C C/z,,. .jAqj, ’ “qi, f Pj,“.j,P), * * ‘Pj, 1 

l<k<4 

+ 2 C {V,,. .jlpj, * . .p,,qj,, , ’ * ‘q,, + 6 ...I ,qj, t , + ’ ‘qj,pj, ” *pj,l + 
l<kr4 I<.(<k I~ntm.4 

+ W~~~..,r,,‘sr.....s,’ (a; ,..., aFm;a,, ,..., a,” ) *3 + , (i k +z+ m~4 , Sk (75, I, .Qjt ’ ’ ‘Ph% i 1 ’ ’ ‘%A II 

X V~~~...rm*r”...sn’(a~ ,..., a~,;a,,,...,a,J + e...j,qj,+, “‘q,P,, ..‘pjIV:,~~~“‘r”“S”““‘st”(ff~ ,..., a~m;U, ,,..., a,,)*}, 

The operator H, is self-adjoint and positive with 
Dw,) = fyV=, Cmp;)nm&lnmH,). 

Since Ii, is written as 

I 
+ff,, 

it follows that H, is reduced by each 9,. Let 
so = {Y = {Yqy= oE9-p%F,, 

\I/(“) = 0 for all but finitely many n} 
and 

4 = Ls,fw(H,). 
Ey (3.22), we can show that 
9 = (P(q) $o 1 P:polynomials} 

G [D(H,u-LFo(X,] cg;,. (3.29) 
The degree operator in .F represented as (3.25) is given by 

%=N,+N,. 
By Lemma 3.1 (iii) and the fact that bJ (resp. 6, ) maps A, 
into dk+, (resp. dk _ , ), we see that for all 
Y = CY(n’):zO, @ = Cw”‘l-n”=oE~o, 

( \v(“),HI@“)) = 0, Im - n/ > 4. 

Moreover, by Lemma 3.1 (i) and (3.28), we can show that 

IlHI‘ylls c c,,,II(N, + llk(N, f l)‘yl[, *Ego, 
k+ I<2 

where C,,, > 0 is a constant. It is easy to see that 
/(N, + llk(N, + l)‘lullSllC~+ 2>“+9’fl 

<2k+y(s+ l)kf%ll. 
Hence, we get 
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I 
with C> 0 being a constant. Thus we can apply Theorem 2-l 
with %’ = .F, A = Ho, J3 = H, to conclude that His essen- 
tially self-adjoint on g, which, together with (3.29), gives 
Theorem 3.2. n 

IV. EXAMPLES 

In this section we discuss some concrete examples of the 
Hamiltonian Hgiven by (3.10). We follow the notations in 
Sec. III unless otherwise stated. 

Example I: Let us take X = L *(Rd) (i.e., the case 
M= I), so that 

3 = L 2(lRN) Q F,(L 2( Rg”,). 

Let w, = w and consider the Hamiltonian 

H, =p2/2m f V(q) f dr(w) 

+ i 4, J (Aj(k)a(k)* + Aj(k)*a(k))dk 
j= I 

+ 
Ix:= IAjtk)qjjZdk 

w(k) * 
(4.1) 

Here, m > 0 is a constant, V(q) is a polynomial of the form 

(4.2) 
la/r*4 

with gj,,.,jrEW and ;1, is a measurable function on Rd with 
/I;i,Aj/&zi, 2( If@). We assume that V is bounded from be- 
low: 

inf V(q) > - ~0. 
q&e 

(4.3) 

In the case where N = 1 and V(q) = Kq*/2 with a constant 
K> 0, H, gives the Hamiltonian of a model of laser,2 which 
was discussed rigorously in Refs. 4 and 5, in connection with 
the problem of Lamb shift and spontaneous emission of light 
in quantum electrodynamics. Thecase where N = d = 3 and 
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V(q) = Kq’/2 is the linear polaron model.3 The Hamilto- 
nian H, with N = 1 and with a nonquadratic V was pro- 
posed by Caldeira and Leggett” to discuss quantum tunnel- 
ing and coherence with dissipation. For quantum coherence, 
V is taken to be a double well potential, e.g., 
V(q) = g( 1 - 4’)’ with a constant g> 0. The model given 
by (4.1) is a generalization of these models. 

Let 
.L&, = Y(w); [~o(L2(IWd))no(dr(w))]. (4.4) 
Theorem 4.1: The operator H, is bounded from below 

and essentially self-adjoint on 9 H,. 
Pro08 Since H, is of the form of the operator H defined 

by (3. lo), we need only to show that it is bounded from 
below. Then Theorem 3.2 gives the essential self-adjointness 
ofH, on &?“I. Introducing the operators 

Hb =dr(a) + % qj J(Aj(k)a(k)* +Aj(k)*a(k))dk 
j= I 

+ 
s 

Ix;= fAj(k)4j12dk 
w(k) 

and 

H,, =p2/2m + V(q), 
we can write H, as 

H, =H,+H,. 

(4.5) 

By (4.3), HP is bounded from below. We note that for all 
Ye2 ff, , 

(‘J’,Hb’?‘) = S(( ma(k) + 2 &@.% 
i=l JZ@j 

V, 

ma(k) + 2 &@!L 
)) 

Y dk. 
i=l &JEJ 

The right-hand side is non-negative and hence (Y,H, \y ) >O. 
Thus it follows that H, is bounded from below on gH,. n 

Example2:Letb,Fbegivenby (3.12) and (3.13) and V 
be as in Example 1. Let 

H, =p2/2m + V(q) + dr(w) 

+ 5 I(Aj(k)bja(k)* +Aj(k)*b;a(k))dk 
j= I 

+i,$,ldk 
ni(k)*/Zi(k) btb, 

w(k) 
I I' (4.6) 

This model is a variant of Example 1. The case where N = 1 
and 

HP = (v,/m)b:b, 
is called the RWA oscillator (e.g., Refs. 6-8). 

Theorem 4.2: The operator H2 is bounded from below 
and essentially self-adjoint on 9 H,. 

Proox The operator Hz is of the form of H given by 
(3.10). Hence, we need only to prove the boundedness from 
below of H2 on 23 H,. This can be done in the same way as in 
the proof of Theorem 4.1; in fact, we can show that 
Hz - H,>Oon g,,,. n 

Example 3: We consider the following case: 

N=d, m,=m, j= I,..., d, 

X= ted-‘L2(Wd) (i.e., M=d- l), 
w,(k) =w(k), r= I,..., d- 1, 

so that 
3=r,2(Itsd)~~S(~d--1L2(~d)). 

This choice gives a framework to discuss models of a d-di- 
mensional electron coupled to a quantized radiation 
field.9~‘o~‘4~‘5 Let p (x) be a real distribution on ilXd such that 
its Fourier transform j(k) is a measurable function with 

,iV,h 1 k I/;/&L *(I@) (4.7) 
and {e(“( k)}F:: be a set of vectors in Rd (“polarization 
vectors” of a photon with momentum k) such that 

e”‘(k)*e’“‘(k) = a,, k*e”‘(k) = O,r,s= l,...,d - 1. 
The time zero radiation field with cutoff j is defined by 

Ai = I 
s 

-e,Y’(k)@(k)a,(k)* 
dma 

Xe-ik”f~(k)*a,(k)eik”}dk, j= l,...,d. 
We consider the following Hamiltonian: 

H3 =$ -1.e i qj(+4)(O;p) 
> 

2 

j= I 

+ F’(q) + dT( ed-‘u), (4.8) 
where e& is a parameter denoting the elementary charge, 
A&f& and V(q) is a polynomial given by (4.2 j with (4.3) 
(N = d - 1). The case A = 0 corresponds to the usual di- 
pole approximation. The case where I’( 4) = eq2/2 (E > 0) 
and ;1= 0 has been discussed in Ref. 10 (cf. also Ref. 9). Let 
LSH3 = .Y’(Rd) $ [D(dT( CB d- ‘w)) 

fwo(63d-1LZ(nxd))]. (4.9) 
Theorem 4.3: The operator H, is bounded from below 

and essentially self-adjoint on a H,. 
Proofi The operator H3 is also of the form of H given by 

(3.10). It is obvious that H3 is bounded from below on gH,. 
Thus, applying Theorem 3.1, we get the desired result. n 

Remarks: In the case A = 0, the second condition for b 
in (4.7) can be dropped. The above theorem slightly im- 
proves the result in Ref. 10 on the essential self-adjointness 
of H3 with V(q) = eq2/2 and with R = 0 in the sense that 
concerning the condition for p, we need to assume only the 
first condition in (4.7)) while in Ref. 10, we assume, in addi- 
tion to the first condition in (4.7)) &&EL 2( Wd). 

Example 4: Scalar quantum electrodynamics with cut- 
offs. We consider a quantum system of a charged scalar field 
interacting with a radiation field. The Fock space to describe 
such a system is given by 

F=sT,(X) 
(i.e., the case “N = 0” in the framework given in Sec. III), 
WhereXisgivenby (3.2) withM=2+ (d- 1). Weset 
a, (k) = b(k), a2 (k) = c(k), w, (k) = w2 (k) =p(k), 

wj(k) = e-0 =w,+,(k) =o(k), 

and rename a,(k),r = 3,..., 2 + (d- 1) as a,(k),r 
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= l,...,d - 1, respectively. Let v be a measurable function 
on IWd such that 

+j/fi, tk l;i&, JT;riid *(Rd). 
Then the time-zero charged scalar field and its conjugate 
with the ultraviolet cutoff 4 are defined by 

(bcx;~) = l J 
~ Cfff(p)c(p)*e-‘PX 
Jzm 

+ 4(p)*b(p)eikp)dp, 

d&v) = i ru(p> {Q(p)b(p)*e-rpx 
2 

- ij(p)*c(pP?dp. 
We consider the following Hamiltonian: 

H4 = 
I 

g(x)b(x;v)*n-(x;rl) 

+ (V + ieA(x;p))#(x;?7)*(V - ie~(x;p)M(.vj) 

+ m*&(x;~)*W;rl)Mx + HEM, (4.10) 

where 

HEM = ~~‘~~(k)a,(k)*o,(k)dk, 
,= I 

and g&‘( !Rd) is positive. 
Theorem 4.4: The operator H4 is non-negative and es- 

sentially self-adjoint on D( HE,,,, ) i-i.%-, (X), 

Prooj One can easily check that H, is of the form of H 
given by (3.10) and is non-negative on D( HEM ) fLFo (Z). 
Thus we can apply Theorem 3.1 to obtain the desired result. 

For formal aspects of the model H4 without cutoffs, see, 
e.g., Ref. 12. 
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