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Operator-theoretical analysis of a representation 
of a supersymmetry algebra in Hilbert space 

Asao Arai 
Department of Mathematics, Hokkaido University, Sapporo 060, Japan 

(Received 11 July 1994; accepted for publication 9 September 1994) 

Operator-theoretical analysis is made on (unbounded) representations, in Hilbert 
spaces, of a supersymmetry (SUSY) algebra coming from a supersymmetric quan- 
tum field theory in two-dimensional space-time. A basic idea for the analysis is to 
apply the theory of strongly anticommuting self-adjoint operators. A theorem on 
integrability of a representation of the SUSY algebra is established. Moreover, it is 
shown that strong anticommutativity of self-adjoint operators is a natural and suit- 
able concept in analyzing representations of the SUSY algebra in Hilbert 
space. 0 I995 American Institute of Physics. 

I. INTRODUCTION 

In a relativistic supersymmetric quantum field theory (SSQFT) in two-dimensional space- 
time, the generators {Q r , Q,} of supersymmetry (SUSY), called supercharges, play an important 
role, forming, together with the generators {H,P} of the space-time translation, the SUSY 
algebra’ 

Q:=H+P, Q;=H-P, Q,Qz+Q~QI=O. (1.1) 
In this article we consider representations, in Hilbert spaces, of the SUSY algebra (l.l), 

concentrating our attention on their operator-theoretical contents. Let .B be a Hilbert space and B 
be a dense subspace in 5%. We say that the set {&%,s,H, P, Q 1 , Q,} is a symmetric representation 
of Eq. (1.1) if H, P, Q i , and Q2 are symmetric operators in 38, leave &?? invariant, and satisfy Eq. 
(1.1) on ZZ. An interesting problem is then to formulate integrability conditions for a symmetric 
representation {.%‘,~,H,P,Q, ,Q2} of Eq. (1.1) in the sense that (i) H, P, Q, , and Q2 are essen- 
tially self-adjoint on g (denote their closures by H, P, Q r , and (2,) respectively); (ii) {I?,P,Q,} 
and {I?,i,Q,} are families of strongly commuting self-adjoint operators, respectively (see Defi- - - 
nition 2.1(i) below); (iii) the pair {H,P} satisfies 

+PsH. (1.2) 

In the context of relativistic quantum field theory, where fi and p denote the Hamiltonian and the 
momentum operator, respectively, the last condition together with the strong commutativity of fi 
and p is called the spectral condition. Formulating such an integrability condition in an abstract 
form may also be useful in applications, in particular, in mathematically rigorous constructions of 
models of SSQlT.2-5 

A key to analyze symmetric representations of the SUSY algebra is to note that the super- 
charges Q, and Q2 anticommute in a “naive” sense [see the last relation in (1. l)]. In operator 
theory, there is a proper concept of anticommutativity for (unbounded) self-adjoint operators, 
which was introduced by Vasilescu6 and has been developed by some autbors.7-‘1 In this article 
we call it strong anticommutativity for clarity [see Definition 2.l(ii) below]. Indeed, for un- 
bounded self-adjoint operators, there is essential difference between strong anticommutativity and 
the ordinary “naive” anticommutativity [see Remark (2) after Definition 2.1].12 Thus we are 
naturally led to apply the theory of strongly anticommuting self-adjoint operators to operator- 
theoretical analysis of symmetric representations of the SUSY algebra. This is the basic idea of our 
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614 Asao Arai: Representation of super-symmetry algebra 

method and this viewpoint is new. I3 We shall show that the concept of strong anticommutativity of 
self-adjoint operators is actually a natural concept to analyze representations of the SUSY algebra. 

As is well known in the physics literature,14 the SUSY algebra (1.1) may be regarded as the 
Lie superalgebra of a “supergroup.” In this connection, it may be desirable to formulate integra- 
bility conditions for representations of the SUSY algebra in such a way that H, P, Q, , and Q2 
become the generators of a representation of the supergroup. However, the notion of a supergroup 
representation cannot be realized within Hilbert space formalism (one would need a concept like 
a “Hilbert module over an infinite-dimensional Grassmann algebra”). In this article, we do not 
discuss this aspect; we stay within the Hilbert space formalism and concentrate our attention on 
operator-theoretical contents of representations of the SUSY algebra in Hilbert spaces. 

This article is organized as follows. In Sec. II we prove a theorem on integrability of a 
representation of the SUSY algebra (1.1). In Sec. III, we show that, under a natural condition, 
strong anticommutativity for the supercharges is necessary for a symmetric representation of Eq. 
(1.1) in which {H, P} has a strongly commuting self-adjoint extension. We also give an example 
of nonintegrable symmetric representations of Eq. (1.1) in which the supercharges do not strongly 
anticommute. In the last section, we present a method to construct an integrable symmetric rep- 
resentation of Eq. (1.1) from two strongly anticommuting self-adjoint supercharges. 

II. INTEGRABILITY 

We first give a definition of strong (anti)commutativity of two self-adjoint operators. 
Definition 2.1: Let A and B be self-adjoint operators in a Hilbert space. 
(i) We say that A and B strongly commute if their spectral measures commute. 
(ii) We say that A and B strongly anticommute if 

for all tEiR. 
Remark: 
(1) Definition 2.l(ii) is symmetric in A and B (see Ref. 8). 
(2) Let A and B be self-adjoint operators in a Hilbert space. If A and B are bounded, then the 

strong anticommutativity of A and B is equivalent to the ordinary anticommutativity of them: 
AB + BA = 0. However, in the case where A and B are unbounded, these two concepts of anti- 
commutativity are not equivalent; it can be shown that the concept of strong anticommutativity is 
certainly stronger than that of the ordinary anticommutativity. In fact, the following holds (see 
Ref. 6): ZfA and B strongly anticommute, then D(A)fID(B)nD(AB)=D(A)nDonD(B)nD(BA) 
and 

(AB+BA)f=O, f ED(A)nD(B)nD(AB), 

where B(T) denotes the domain of the operator T. However, the converse is not true. See Ex- 
ample 3.3 in Ref. 6 and the example in Sec. III below. 

In what follows, the domain of the sum A + B of two linear operators A and B in a Hilbert 
space is taken to be D(A) fID(B), unless otherwise stated. 

We shall prove the following: 
Theorem 2.2: Let {.%?,@,H,P,Q, ,Q,} b e a symmetric representation of Eq. (1.1). Suppose 

that H is essentially self-adjoint on Z9 (its closure is denoted I?). Then the following (i)-(iii) hold: 
(i) The symmetric operators Q , t Q2, Q, and Q2 are essentially selfadjoint on 9 and the 

closures Q, and Q, strongly anticommute. Moreover, the following operator equalities hold: 

(2.1) 
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(ii) (Spe_ctyal condition) P is essentially self-adjoint on 5 and p strongly commutes with fi. 
Moreover; {H,P} satisjes Eq. (1.2). 

(iii) Each Qj (j= 1,2) strongly commutes with p and fi. 
Some remarks may be in order on this theorem: 
(1) In constructing a model of SSQFT in a mathematically rigorous way, one usually starts 

with proving the essential self-adjointness of the Hamiltonian of the model on a suitable dense 
domain.15 Thus the assumption of Theorem 2.2 is natural from such a viewpoint. Moreover, 
Theorem 2.2 may be remarkable in the sense that it shows that we need only to assume the 
essential self-adjointness of H on 9 to obtain all the desired properties for {H,P,Q, ,Q,} men- 
tioned in the introduction as well as the strong anticommutativity of 0, and OZ. 
_ (2) Theorem 2.2(i) implies the following: if Q 1 and Q2 are essentially self-adjoint on @, but 

Q, and 0, do not strongly anticommute, then H cannot be essentially self-adjoint on 9. This 
suggests that strong anticommutativity is a natural concept to characterize properties of the super- 
charges properly. In the next section, we shall discuss this aspect in some more detail. 

(3) We can construct a symmetric representation {%,B,H, P,Ql , Q,} of Eq. (1.1) in an ab- 
stract Boson-Fermion Fock space16 which satisfies the assumption of Theorem 2.2 and in which 
each Qj is an infinite-dimensional Dirac-type operator and H and P are second quantized 
operators.‘7 

To prove Theorem 2.2, we recall basic results in the theory of strongly anticommuting self- 
adjoint operators. 

Lemma 2.3: (Refs. 6,8) Let A and B be strongly anticommuting self-adjoint operators in a 
Hilbert space. Then the following (i) and (ii) hold: 

(i) The operators A + B and A2 + B2 are self-adjoint and the operator equality 

holds. 
(ii) A (resp. B) and IBI (resp. [AI) strongly commute. 
(iii) IAl and IBI strongly commute. 
Theorem 2.4: Let A and B be symmetric operators in a Hilbert space 98 and let ,& be a 

dense subspace of X which is lefr invariant by A and B. Assume that A2 + B2 is essentially 
self-adjoint on . & and ABf + BAf = 0 f or all f E&5. Then A + B, A and B are essentially self- 
adjoint on .ZF and the closures of A and B strongly anticommute. Moreovel; the following operator 
equalities hold: 

Proof: Similar to the proof of Corollq 4.5 in Ref. 8. n 
Remark: The conclusion of Theorem 2.4 is slightly stronger than that of the corollary of the 

cited article in that ,J8 is a common core for A + B, A and B. 
We also need the following lemma: 
Lemma 2.5: (RejI 18) Let A be a self-adjoint operator and B be a symmetric operator: Suppose 

that D(A)CD(B) and (AJ; Bg) = (BJAg) for all J g E D(A). Then B is essentially self-adjoint and its 
closure strongly commutes with A. 

Proof of Theorem 2.2: 
(i) It follows from the first two equations in (1.1) that 

H= %QT+Q$ 

p= ~K+Q;) 

(2.2) 

(2.3) 
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on s Hence, by the assumption, Q: + Q: is essentially self-adjoint on Z Therefore we can apply 
Theorem 2.4 with A = Q, , B = Q,, and . &=a to obtain the first half of part (i) and the first 
equality in (2.1). It is easy to see that Q i + Q2 = Q i 2 Q2. Hence the first equality in (2.1) and 
Lemma 2.3 imply the second and third equalities in (2.1). 

(ii) By the third equation in (1. l), we have 

By this fact and Eq. (2.2), we obtain 

By Eqs. (2.3) and (2.4), we have for all $EP 

(2.5) 

A direct computation shows that 

By a limiting argument using Eq. (2.5) and the fact that J.Z’is a core for fi, we can show that 
D(Z?)CD(P) and 

where p is the closure of P restricted to Z Thus, by applying Lemma 2.5 with A = I? and B = P, 
we conclude that p is self-adjoint and strongly commutes with g. 

By Eqs. (2.2) and (2.3), we have 

btw~@)~(1CI,HJI)> 1cIEB (2.6) 

Then, by a limiting argument using Eq. (2.5), we can extend Eq. (2.6) to all +IZ D(G). Thus Eq. 
(1.2) follows. 

(iii) By Lemma 2.3(ii), Q, and Q: strongly commute (j,k= 1,2). Hence, by the two variable 
functional calculus, we obtain the desired result. n 

III. NECESSITY OF STRONG ANTICOMMUTATIVITY 

In this section, we show that the strong anticommutativity of the supercharges is necessary for 
a symmetric representation of the SUSY algebra (1.1) to be integrable. A basic fact is the follow- 
ing: 

Theorem 3.1: Let A and B be self-adjoint operators in a Hilbert space .X and J&Y be a dense 
subspace of L# left invariant by A and B. Suppose that -6% is a common core for A2 and B2, 
AB+BA=O on J&Y, and A2 and B2 strongly commute. Then A and B strongly anticommute. 

The idea of the proof of this theorem is to apply the following lemma: 
Lemma 3.2: (Ref 19) Let A and B be self-adjoint operators in a Hilbert space and A= UJAl, 

B= U,lBl be the polar decompositions of A and B, respectively. Then A and B strongly anticom- 
mute if and only if (i) U,U,= -U&J,; (ii) lJ,lBl~lBlU,; (iii) U,lAlclAlU,; (iv) IAl and IBI 
strongly commute. 

The following lemma, which can be easily proven, is well known. 
Lemma 3.3: Let A and B be self-adjoint operators in a Hilbert space. Suppose that A is 

bounded. Then A and B strongly commute if and only if ABCBA. 
Proof of Theorem 3.1: It is shown2’ that 
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UAf=lim A(A2+e)-1’2f, f E.95’. 
El0 

The strong commutativity of A2 and B2 implies that of (A2+~)-“2 and B2 for all e>O. Hence, 
by Lemma 3.3, we have 

for all e>O. Note that 

B2Af=AB2f, f E/&J. 

Using these facts, we have for all f ,g E -8& 

Since . 4 is a core for B2, it follows that U,g E D(B2) and B2U,g= U,B2g. By the condition 
that. 4 is a core for B2 again, this equality extends to all g E D(B2), showing that U,B2C B2U,, 
which implies that VA and B2 strongly commute (Lemma 3.3). In particular, we have 

(B2+~)-1’2U/,=UA(B2+~)-1’2. 

Since I BI = @, it follows that U,., and I B I strongly commute. Hence U,] B 1 c 1 B 1 U, . Similarly 
we can show that U,IA I C /A I U, . Moreover, we have for all f ,g E ,& 

( upf, Usg I= $((A 2 + e) - 1’2Af, Usg) 

=;n$Af,UB(A2+e)-1’2g) 

=-;; li1i(ABf,(B2+S)-“2(A2+e)-“2g) 

=-FE liJi(B(B2+ S)-1’2f,A(A2+e)-“2g)= -(UBf,UAg), 

which implies that UA UB + U&U, = 0. Of course, IAl and I BI strongly commute. Thus we can 
apply Lemma 3.2 to obtain the desired result. n 

The main result in this section is the following: 
ThTorem 3.4: Let {Z,LZ,H, P,Q, ,Q,} be a symmetric representation of Eq. (1.1) and let I? 

(resp. P) be any self-adioint ex:ension of H (resp. P). Suppose that, for j= 1,2, Qf are essentially 
self-adjoint on 9 and H and P strongly commute. Then each Qj is essentially self-adjoint on 9 
and (2, and Q2 strongly anticommute. 

To prove this theorem, we need a lemma. 
Lemma 3.5: Let A be a symmetric operator in a Hilbert space and 9 be a dense subspace of 

.F. Suppose that 9CD(A2) and A2 is essentially self-adjoint on 9. Then A is essentially self- 
adjoint on 9’ and the operator equality 
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-$,A2 (3.1) 

holds. 
Proof: This lemma is well known (e.g., Ref. 21, Chap. X, p. 341, Problem 28), but, to be self 

contained, we give a proof of it. Let T = p. For all f E 9, we have l\Af 11 S llfl/ 11 Tf 11. Since 9 is 
a core for T, this inequality implies that D(T) C D(A), where 2 is the closure of A restricted to 9, 
and 

Il~f~~~l~fllIITfh f ED(T). (3.2) 

It is obvious that 

(~fJd=Uf,&d, f,gES. (3.3) 

By Eq. (3.2) and the condition that 9 is a core for T, we can show that Eq. (3.3) extends to all 
f,g E D(T). Thus we can apply Lemma 2.5 to conclude that A is self-adjoint. We have A2CA2. 
Hence TCA2. Since the both sides are self-adjoint, Eq. (3.1) follows. n 

Proof of Theorem 3.4: We have from Eq. (1.1) 

By Lemma 3.5, Qj is essentially self-adjoint on .9 and 

2 Qj=Q;, j= 1,2. 

Hence we obtain 

+I;r, &F-F. (3.4) 

Since {Z?,lf} is a family of strongly commuting self-adjoint operators, Eq. (3.4) implies that Q: 
strongly commutes with Qg. Hence, by Theorem 3.1, Q, and Q2 strongly anticommute. n 

Theorem 3.4 implies the following: Let {.X,S,H, P, Q, , Q2} be a symmetric representation of 
Eq. (1.1). Suppose that, for j = 1,2, Qj are essentially self-adjoint on B (then, by Lemma 3.5, Qj 
is essentially self-adjoint on 3, but Q, and Q2 do not strongly anticommute. Then {@} cannot 
be a family of strongly commuting self-adjoint operators (in particular; {k,rj> does not satisfy the 
spectral condition). 

In Theorem 3.4, the condition that Qf(j= 1,2) is essentially self-adjoint on 9 is not so 
restrictive for applications. On the other hand, it is natural to require, as a condition of (weaker) 
integrability of a symmetric representation {.???,S,H, P, Q i , Q2} of Ea. $1. l), that there exist self- 
adjoint extensions H and P of H and P, respectively, such that {H,P} is a family of strongly 
commuting self-adjoint operators (otherwise the concept of the spectral condition could not be 
defined properly). In this sense, Theorem 3.4 tells us that the strong anticommutativity of the 
supercharges is necessary for integrability of the SUSY algebra {.-%,9,H,P,Q, ,Q,}. 

We conclude this section with a counterexample of a symmetric representation of the SUSY 
algebra (1.1) in which each Qj is essentially self-adjoint on 9, but, Q i and Q2 do not strongly 
anticommute. Although the example given below is taken from supersymmetric quantum mechan- 
ics, not from SSQFT, it is interesting both mathematically and physically.22*23 

Example: Let {ad”,=, be a finite set of isolated points in R2 and set M: =R2\{aV}“,, , . Let 

A,(r)=- 5 2 
v=l a,p=o 

J. Math. Phys., Vol. 36, No. 2, February 1995 
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A,(r)=i 5 
v=l a,p=o 

where Cg), are real constants, m 30 is an integer, and D, and D, are the distributional partial 
differential operators in x and y, respectively. Note that 

DP2(r)-DyA,(r)=2ni g CgbDzDfs(r-a,), 
u=l a,p=o 

(3.5) 

where qr) is the Dirac delta distribution on R’. Let 

PI=-iD,-Al, P2=-iDy-A2 

acting in L2(R2). Obviously each Pi leaves CT(M) invariant. It follows from Eq. (3.5) that 

P,Pzf=P2PJ, fd;(M). (3.6) 

In Ref. 22 we proved that Pj is essentially self-adjoint on Cr( M) . 
Let ~j, j= 1,2, be the first two of the Pauli matrices 

In the Hilbert space 

2?=L2(R2)@C2= 

we define the self-adjoint operators 

Qj=Uj~~j, j= 1,2. 

Let 

gk f 
ii iI g f~&T~Gw) ’ 

I 

Then 9 is dense in .X’ and each Qj is essentially self-adjoint on %T Moreover, Qj leaves 94 
invariant. By Eq. (3.6) and the anticommutativity of (it and c2, we have 

Q,Qz$+Q,Q,G=O, GE=@- 

Let 

H:= +(Z@Fp:+Z@f$ P:= $(Z@+k#). 

Then we can easily see that the first two equations of (1.1) hold on Z It follows that 
{.F,G?,H, P,Q, ,Q,} is a symmetric representation of the SUSY algebra (1.1). 

In the same way as in Ref. 22, we can show that each Qj is essentially self-adjoint on 5 By 
Theorem 3.4 in Ref. 10, Q, and Q2 strongly anticommqtte if ayd only if P, and p2 strongly 
commute. On the other hand, it was shown in Ref. 22 that PI and P2 strongly commute if and only 
if the constant Cbyi is an integer for all v= 1 , . . . ,n (in this case we say that the magnetic flux is 
locally quantized). Hence, if the magnetic flux is not locally quantized, then Q, and Q2 do not 
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strongly anticommute. Thus, by Theorem 3.4, any self-adjoint extension of {H,P} is not a family 
of strongly commuting self-adjoint operators if the magnetic flux is not locally quantized. It also 
follows that, under the same condition, H is not essentially self-adjoint on 5% (by Theorem 2.2). 

Remark: The operator Q: = Q t + Q, is called a Dirac-Weyl operator. In the case where the 
magnetic flux is not locally quantized, it has nontrivial and interesting properties, see Ref. 23 for 
the details. 

IV. REPRESENTATION BASED ON TWO STRONGLY ANTICOMMUTING SELF-ADJOINT 
OPERATORS 

In this section, we shall show that the strong anticommutativity of the self-adjoint super- 
charges is sufficient to construct an integrable symmetric representation of the SUSY algebra 
(1.1). 

Let Q , and Q2 be strongly anticommuting self-adjoint operators in a Hilbert space .% and let 
Et and E2 be the spectral measures of IQ,1 and IQ,], respectively. Then, by Lemma 2.3(iii), we 
can define a two-dimensional spectral measure by 

E=E,@E2. 

By Lemma 2.3(i) (or the functional calculus) 

H:=;(Qf+Q;)=$ R,(X2+p2)dE(X,,u) 
I 

is a non-negative self-adjoint operator. It follows from Lemma 2.3(iii) and the functional calculus 
that Q:-Q%=IQl12-IQ212> is essentially self-adjoint. Hence we can define the self-adjoint 
operator 

p:=;(Q:-Q:)=/ a2 (X2-p2)dE(L/4 (4.2) 

Let 

9= U Ran E([a,blX[c,dl), 
Oca<b<m,Osc<d<m 

where Ran T denotes the range of the operator T. Then 9 is a dense subspace of Z and left 
invariant by IQj/, j= 1,2. 

Lemma 4.1: The set {S9,9,H,P,Q, ,Q2} is a symmetric representation of Eq. (1.1). 
Proofi Let Qj= UjlQjl (j= 1,2) be the ~01~ decomposition of Qj . Then, by Lemma 3.2, Uj 

commutes with E, (j,k = 1,2). Hence it follows that H, P, Q , , and Q2 leaves .6@ invariant, 
satisfying the first two equations in (1.1) on 5 The third equation in (1.1) follows from condition 
(i) in Lemma 3.2. n 

Lemma 4.2: The subspace 5% is a core for H. 
Proof:Let$ED(H)and&=E([O,n]X[O,n])+,n=1,2 ,... Thenq,,e=@.Bythefunctional 

calculus, one can easily show that fi,, -+ Ijl, H ICI, -+ H$ as n --+ ~0. Thus the desired result 
follows. H 

By Lemmas 4.1 and 4.2, we can apply Theorem 2.2 to obtain the following result: 
Theorem 4.3: Let {B,S,H, P, Q, , Q2} be as above. Then the conclusion of Theorem 2.2 holds 

with I?, p, 0, , and e2 replaced by H, R Q, , and Q2, respectively. 
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