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Canonica | commutatio n relations , the Weierstras s Zeta
function , and infinit e dimensiona | Hilbert space
representation s of the quantu m group U,(sl,)

Asao Arai®
Departmen of Mathematics Hokkaidb University, Sappop 060, Japan

(Receivel 13 Novembe 1995 acceptd for publicatian 25 April 1996

A two-dimensionhquantun systen of a charge particle interactirg with a vector
potentid determiné by the Weierstras Zeta function is consideredThe position
ard the physicd momentun operatos give arepresentatio of the canonica com-
mutatian relatiors with two degres of freedom If the charge of the particle is not
an intege (the case correspondig to the Aharonov—Bohm effec}, then the repre-
sentatim is inequivalen to the Schralinge representationlt is shown tha the
inequivalen representatio induces infinite-dimensionb Hilbert spae representa-
tions of the quantun groyp U,(sl,). Some properties of thes representatias of
Uq(sly) are investigated © 199 American Institute of Physics.
[S0022-248806)00108-9

I. INTRODUCTION

In a previos papert we considerd a quantun systen of a chargel partick moving in the
Euclidea plare R? unde the influenc of a perpendiculamagnett field, which may be strongly
singula at sone fixed points ay,...ay in R2 If the magnet field is concentrate on the discrete
se {a,}N_; in the sen of distribution then the position ard the physica momentun operators
give a representatio of the canonich commutatia relatiors (CCR9 (Heisenbeg relations with
two degres of freedom.

Here we recal sone technich terms in the representatio theoy of CCR A set
{7,24Q; ,Pj}?: 1} consistig of a Hilbert spa@ .7, a den® subspae & of .77, ard self-adjoint
operatos Q;, Pj, (j=1,...,d) is called arepresentatio of the CCR with d degres of freedam if
QZ‘Cﬂﬂk:l[D(Qij)ﬂD(Qij)ﬂD(Pij)mD(Pij)] [D(T) denote the doman of operator
T] ard the CCR,

[QJ‘,QK]:O,—! [Pj,Pk]:O,—I [QJ,Pk]:iéjk,_l j,kzl,...,d,

hold on &, whete [S,T]: =ST—TS. Following Putnan? we sa tha a se 1Q; ,Pj}?zl of self-
adjoirt operatos on a Hilbert spa@is a Schralinge d systen if it is unitarily equivalem to adirect
sum of the Schralinge representatio of the CCR with d degres of freedom A representation
{7#,2{Q; ,P;}{_1} of CCR is called equivalen (resp, inequivalent if {Q;,P;}L; is (resp, nop
a Schralinge d system.

In Ref. 1 the following facts were shown (i) the representatio of CCR mention& abow is
equivalenif and only if the magnett flux islocally quantizel (i.e., the magnett flux at ead point
a, (n=1...,N) is an intege multiple of 27/, where « is the charge of the partigle(ii) the
inequivalet representatio appearig in the cae where the magnett flux is nat locally quantized
may be regardel as amathematickform of the Aharono/—Bohm effect® A geometrt construction
of a representatio of CCR tha is unitarily equivalen to the one given in Ref. 1 was considered
by Kurose and Nakazatd’ and more detailal properties of the representatio were discussed.

3E|ectront mail: irai@math.hokudai.ac.jp

0022-2488/96/37(9)/4203/16/$10.00
J. Math. Phys. 37 (9), September 1996~ © 1996 American Institute of Physics 4203

Copyright ©2001. All Rights Reserved.



4204~ Asao Arai: Hilbert space representations of U,(sl,)

To investigae difference betwee the equivalet ard the inequivalem representatiosiof CCR
in Ref. 1, an analyss has bean mack on Dirac—Weyl operatos definel in terns of the physical
momentun operator, Moreover the framewok ard resuls in Ref 1 were extende to the cas of
a non-Abelian gauge theory®”’

Recenty Wiegmam and Zabrodirf considerd a quantun systen of a particle on a two-
dimensionasquae lattice in a magnett field and showel that magnett translatiors on the lattice
are related to finite-dimensionkrepresentatianof the quantun group U(sl,). Inspired by their
work, we investigae in this pape if ther is any connectio betwea the quantum systen consid-
ered in Ref. 1 and representatiogiof U, (sl,). We shal shaw that for avecta potentid determined
by the Weierstras Zeta function, speci& elemens of the unitary groups generatd by the compo-
nens of the physicd momentun operato induce representatiogof U(sl;) on the Hilbert space
L2(R?). This establishe aconnectim of a classicaspeci# function to Uq(slp). A particula feature
of the representatiomof U(sl,) given in this pape is tha they have no finite-dimensionkirre-
ducible components.

The presem pape is organize as follows. In Sec Il we conside a quantum systen of a
chargel partice in R? unde the influene of a perpendiculamagnett field tha may be singular
at points in an infinite lattice [see (2.1)]. This is an extensim of the framewok of Ref 1 to the
ca® whete the numbe of possibé singula points of the magnett field is infinite. Fundamental
resuls in Ref. 1 continwe to hold in the preseih cas too with no significart modifications As in
the ca® of Ref. 1, the position operate and the physicd momentun operate P=(P,,P,) of the
particle give arepresentatio of the CCR with two degres of freedam if the magnett field is
concentrate on the infinite lattice Spectra properties of the unitaly operatos generatd by P,
ard P, are analyzed Also, we shawv that unde some conditiors for the vecta potentiad of the
magnett field, P, ard P, hawe permutation-reflectio symmetries.

In Secs I11-V, we conside the specid ca® where the vecta potentid A=A; dx+A, dy (a
1-form) of the magnett field is given by the Weierstras Zeta function ¢ in such a way that
{=A,+iA; [see (3.2—(3.4)]. Wefirst shav in Sec Il that if the charge of the particle is nat an
integer then speci& elemens of the unitaly groups generatd by P, ard P, give representations
of the quantum plane Unitary equivalence of thes representatianare discussedAsis shown in
Ref. 8, a representatio of the quantun plane with sone additiona properties induces represen-
tatiors of U, (sl,). Applying thisidea we construtin Secs1V and V representatiasiof U, (sl,) on
L2(R? ard investigae some properties of them.

Il. A CHARGED PARTICLE IN A MAGNETIC FIELD WITH POSSIBLE SINGULARITIES
ON AN INFINITE LATTICE
A. Representatio n of CCR

We conside a quantun systen of a chargel particle with chargeaR\{0} moving in the
plare R%={r=(x,y)|x,y € R} unde the influenc of a perpendiculamagnet field B tha may be
singula at points in the infinite lattice,

2% o ={Qmn=(@1m,0n)|mnez},~ 2.1)
where w;, j=1,2 are positive constarg and Z is the sé of integers A vecta potentid of the

magnett field B is given by a continuousy differentiabk red 1-form A=A, dx+A, dy on the
nonsimpy connectd domain

M=RAZZ , - (2.2)
suc that

B=D,A;—DyA; - 2.3
J. Math. Phys., Vol. 37, No. 9, September 1996
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Asao Arai: Hilbert space representations of U,(sl,) 4205

in the distribution sensewhere D, and D, are the generalize partid differentid operatos in the
variables x and y, respectivelyWe say tha A isflat on M if B=0 on M, i.e,, B is concentrated
on Zilvwz (in the sene of distribution.

Throughot this pape we use aphysica unit systen such tha 7 (the Pland constamh divided
by 27)=c (the light velocity=1. Let (Q,Q,) be the position operato of the particle i.e., Q, and
Q, are the maximd multiplication operatos by x armd y acting in the Hilbert space
L2(M)=L2(R?), respectively The physica (kinetic) momentun operato P=(P,,P,) of the par-
ticle is definel by the operators

P]=pj—aAJ ,71 j=1,2,_| (24)

acting in L%(R?), wher (p;,p,) is the momentun operato of the free particle:
p;=—iDy,m p,=—iDy.~ (2.5

We denot by C7'(M) (m=0,1,2...) the spa@ of m times continuousy differentiabk func-
tions on M with bounde suppot in M. In the sanme way asin Ref. 1, we can prove the following
fact.

Lemna 2.1

(i) Each P; is essentiay self-adjoirt on C3(M). (We denoe the closure of P, by the same
symbol.)

(i) Suppos that A is flat on M. Then {L%R?), C§(M), {Q,P}_4} is arepresentatia of the
CCR with two degres of freedom

The analyss of the representatio{L*(R%, C§(M), {Q; ,P;}?_1} in Lemma 2.1 can be dorein
quite the sane way as in the cag where Zf,l o5 isreplacel by afinite discree se in R? (see Refs.

1, 4, ard 6). Hence as for that, we descrile only resuls needé later. Let

Si=R\{Moitnezm S=R{nwalnez-

For (x,y) eRXS,, we can define

Ul(x,y)=exp(—iaJOXAl(x’,y)dx’).—- (2.6

Then U, defines a unique unitary operato as amultiplication operato on L?(R?). Similarly, the
function

U2(x,y)=exp( —ianyAz(x,y’)dy’) 7 (Xy)e S xR, = 2.7

defines a unique unitary operato as amultiplication operato on L?(R?). We then have operator
equalities

Pi=U;'pU; - j=1.2~ (2.9

It follows from the relatiors that for all teR, ¥ eL?(R), and for almog everywhee (a.e)
(x.y),

<eitpl¢><x,y>=exp( —ia LXHAl(X’,y)dX’) PXHLY), 29

J. Math. Phys., Vol. 37, No. 9, September 1996
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(e‘tp2¢)(x,y)=eXD( —iaJyyHAz(X,Y’)dY’) p(x,y+t).- (2.10
Let C.(x,y;s,t) (x,y,s,teR) be hook-shapeé paths from (x,y) to (x+s,y+t) given by
C_(x,y;8,)={(x+ 0s,y)|0< o<1} U{(x+s,y+ 6t)|0< =<1},
C.(x,y;8,1)={(X,y+ 0t)|0< <1} U{(x+ 0s,y+1)|0< 9<1},
and set
C(x,y;8,t)=C,(x,y;8,t) " C_(x,y;S,1),m (2.11
the rectangula path (x,y)—(X+s,y)—(x+s,y+t)—(X,y+t)—(X,y). For s,te R, we sd
S¥=R\w;mwm—smeZz}, SY=R\{w,nw,n—tlnez}, - (2.12
and define
Mg =S%xS) = steR.- (2.13

For eath s,t eR, we can define afunction d)ét on Mg, by

2 (x,y)= f A (0Y)eMqgm (2.14
C(Xx,y;s,t)

which physically mears the magnett flux passig throudh the interior doman of the closed curve
C(x,y;s,t). Since RAM st isanull se with respetto the two-dimensionblLebesge measurgone
can regad @£, as areal-value function on R? which is a.e finite. Hene @2, defines a unique
self-adjoirt multiplication operato on L%(R?). We deno this operato by the same symbol The
following theoren gives commutatim relatiors for the one parameteunitary grougs generatd by
Q] a.rd P] y J:1,2

Theorem 2.2 (cf. Theoren 2.1 in Ref. 1): For all s,teR,

eiSQjeith:e*iStﬁjkeitheiSQj,_| (215)

eiSP1gitP2— g~ 1a®f itPogisPy (2.16

Following Ref. 1, we say tha the magnett flux is locally quantizel if, for all s,te R, CIDQt isa
27Zla-valued function orMy ;.

Theoren 2.2 implies the following characterizatio of the representatio{Q; ,Pj}j2=l of CCR
in the cae wher A is flat [Lemma 2.1(ii)].

Theorem 2.3 Suppos that A is flat on M. Then the representatia {Q ,Pi}jzil of CCR is
equivalen if and only if the magnett flux is locally quantized

Remark (i) In the ca® where the magnett flux is naot locally quantizedformula (2.16 may
be regarde as amathematichform of the Aharonav—Bohm effect® Thus the inequivalen repre-
sentatio of {Q; ,Pj}jzzl correspond to the Aharono/—Bohm effect.

(ii) In operato theory, two self-adjoirt operatorsS and T, on a Hilbert spa@ are sad to be
strongly commutirg if their spectrameasurecommute It iswell known tha Sard T are strongly
commutirg if and only if e25%'PT=¢e®Te'@S for all a,beR (Theoren VIII.13 in Ref. 10). It
follows from this fact and (2.16 tha P, ard P, are strongy commutirg if and only if the
magnett flux is locally quantized

J. Math. Phys., Vol. 37, No. 9, September 1996
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Let w;>0 be a numbe suc that for all (m,n),(m’,n’)eZ? with (m,n)#(m’,n’),
{r|Ir = @ nl < wo}N{r||r = Qv | < wo} = 0. Thefollowingfactiseasily proven.
Lemna 2.4: Suppos that A isflat. Let 0<6<wy. Then

'ym|n(A): = f An (2.1

“_Qm,n‘zfs

is independenof &, where the orientation of the integral on the right-hand side (rhs) is taken to
be anticlockwise Moreover for all s,teR,

DL(xy)=€(s)e(t) X, | YmalA)m (xY) €My,

m'neD(x,y;s,t
wherre D(x,y;s,) is the interior domah of C(x,y;s,) and «(t) is the sign functiong(t) =1 for t=0;
e(t)=—1 for t<0.
Theoren 2.3 and Lemma 2.4 imply the following fact.

Theorem 2.5 Suppoe that A is flat. Then the representatia {Q, ,PJ-}J?:l of CCRis equivalent
if and only if ¥, {A)e2nZ/a for all m,neZ.

B. Spectral properties

For later use we investigaé spectr properties of sone unitary operators For a densely
defined closed linear operato T on aHilbert space we denoe by o(T) [resp.,o,(T)] the spec-
trum (resp, point spectrum of T. We sd

T={zeC||z|=1}.- (2.18

Lemna 2.6:

(i) o(P)=R, oy(P)=0,j=12 .

(i) For all teR{0} andj=1,2, (") = T, a;,(€") =0.

Proof. (i) By (2.8), we haveo(P;)=a(p;) =R, op(P;)=0,(p;)=0. (ii) This follows from
pat (i) and the spectrb mappirg theorems |

Lemna 2.7: For all s,teR\{0},

o_p(eisPleith):q), a_p(eitPZeisPl):@._| (2.19)

Proof. It follows from (2.9) ard (2.10 that, for all s,teR,

eisP1eitP2= gy —iaf A |eisPigitPz (2.20
C_(xy;s,t)

e'tP2gisP1=gx —iaj A |e'tP2g!sP1 o (2.21)
CL(xy;st)

Since €'*P1€''P2 s unitary, we have o,(e'*P1e''"2)CT. Suppos tha there exiss a vector
yeL?(R? ard a constat NeT sud tha €'sF1e''P2yy = Ay. Then, by (2.20, we have
expe ' “fc_wysyA WX + sy + 1) = Ng(xy) a.e. & y). Henceg(x,y) |=|¢(x+s,y +1)| a.e. &),
which, togethe with the fact ¢ e L?(R?), implies #=0. Thus the first formula 0f2.19 follows.
Similarly, using (2.21), we can prove the secom one of (2.19.- |

Propositian 2.8 Conside the case where the magnett flux is locally quantized Then for all
t,se R\{0},

O'( eiSPleith) — 0_( eitpleiSPz) =T.
J. Math. Phys., Vol. 37, No. 9, September 1996
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Proof. Unde the presen assumptionP; and P, strongy commue [see Remak (ii) after
Theoran 2.3]. Hence by the two variabke functiond calculus we see tha sP; +tP, is essentially
self-adjoirt ard 'sP1e'tP2 = gltP2g!sP1 = @l(SPL¥1P2) \yheresP; +tP, isthe closue of P, +tP,.
By the two variabk functiond calculis ard Lemma 2.6(i), we haveo(sP; +tP,) = R. Thus by
the spectrd mappirg theorem we obtan the desiral result- |

Remark We have been unabk to identify o(e'"1e''P2) and o(e'tP2e'sP1) in the case where
the magnett field is not locally quantized It would be interestig to see if there appeas any
difference from the ca® where the magnett field is locally quantizedIn the case of Dirac—Weyl
operatos defina in terms of P, and P,, sud differences exist see Ref 5. We leawe this problem
as an open problem.

C. Permutation-reflectio n symmetr y of the physica | momentu m operator

Let R; :L*(R®—L?(R?, j=1,2, be the unitaly operatos defined by

(Rup)(X,Y)=¢(—Y,X), (Ro)(X,y)=9(y,—X), $eL*R?.~ (2.22

Then it is eay to see that

R1R2:R2Rl:|,_| (223
Rlleflz — P2, RlszIl: P, (2.24
Rop1R, '=pz.~ RoPoR; '=—py.= (2.29

As usual we denoe by z=x+iy the point in the complex plare C correspondig to
r=(x,y) eR? We sd

A(2) =Ax(X,y) +iAL(X,y).~ (2.26
Propositian 2.9:
(i) Suppos that
Aliz)=—iA(2).~ (2.27)
Then
R.PiR; '=—P,,= R,P,R; =P, . (2.29
(i) Suppos that
Aliz)=iA(—2).~ (2.29
Then
R,P1R, =P, ,~ RyP,R, '=—P; .- (2.30

Proof. (i) Condition (2.27) is equivalen to that

AZ( _y,X) :Al(xly) 1 Al( _y!X) = _AZ(X!y)-
Hence for all e C3(M),

R;P1R; Y= —Pyih,m RiP,R; =Py~ (2.3

J. Math. Phys., Vol. 37, No. 9, September 1996
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Sinee R, leaves C5(M) invariart bijectively and P;, j = 1,2, are essentiaj} self-adjoirt on C5(M)
[Lemma 2.1(i)], the vecta equatioms in (2.31) exterd to operato equalities (2.28).
(ii) Similar to patt (i).— [ |

In Sec Ill, we shal conside the cas of a vecta potentid satisfyirg (2.27) ard (2.29.

D. Small couplin g limit

Finally we conside the smal coupling limit «—0 of P; .
Lemna 2.1Q For all teR and j=1,2,

slim e'tPi=¢'tPi (2.32

a—0

where s-lim denota strong limit.

Proof. For all ¢ e C%(M), we hawe P;— p;i («—0). Note thatC(l,(M) is a comma core of
P; and p; . Hence by gener& convergene theorens [Theoren VIII.25 (a) ard Theoren VIII.21
in Ref. 10], we obtain (2.32.~ |

lll. A VECTOR POTENTIAL GIVEN BY THE WEIERSTRASS ZETA FUNCTION AND
REPRESENTATIONS OF THE QUANTUM PLANE

We now specialie the vecta potentid A. We se
Omn=Mw;+inw,,m mneZ.- (3.1
Let {(2) (zeC) be the Weierstrass Zeta function with polegzat(), ,,m,neZ:
1 1 z

(D=2+ 3 +—t 3.2
Z)=— | - _
Z  (mn)ezA{(00)} Z=Qmn Qun Q4

In what follows, we assune tha the vecta potentid A is given by A=A, dx+ A, dy with
Ai(r)=Im {(z), Ax(r)=Rel(2), (3.3
so that
L(2)=Ay(r)+iA(r).= (3.9

Then by the Caucly—Riemam equation A is flat on M.
In the presem case the constanty,, ,(A) definel by (2.17) is computel as

ym,n(A):Zﬂ'y (3.5

independentl of (m,n) eZ2 Henc the magnett flux is locally quantizel if and only if « is an
integer Thus the locd quantization of the magnett flux is equivalen to the “charge quantiza-
tion.” The representatia {Q, ,P]-}J-Z:1 of CCRin the presen cas is an inequivalen representation
if and only if « is not an integer

Let

Qo=62"%A (3.6)
Lemma 3.1 For all m,neZ,

einoz)ZPZeimwlPl:qzmeimculPleinoz)ZPZ._| (37)

J. Math. Phys., Vol. 37, No. 9, September 1996
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Proof. For all (x,y) e M D(Xx,y;w1,w5) contairs only one point in the lattice Zil,wz'
Hence by Lemma 2.4 ard (3.5), % ,= 21, a.e., which, together wit(2.16), implies(3.7) with

wq,0
m=n=1. Using this relation repeatedlywe obtain (3.7) with m,n e NU{0}, whos adjoirt gives
(3.7) with m,n<0. Noting tha e'tFi (teR) is invertible with (e'"i) "1 = e~ i, we obtahn (3.7)
with m=0,n<0 or m=0n>0.- |
Relation (3.7) naturaly leads us to the quantum plane* which is definal to be the algebra

generatd by two elemens X,Y subjec to the relation

01,05

axY=YX,

with g a parametet? We denoe the quantun plare by CZ.

For an algebe i1, a sé (7,V) of a complex vector spacé and an algebraic homomorphism
7u—EndV) is called arepresentatio of .

We denoe by B(L2(R?)) the* algebr of boundel linear operatos on L?(R?). The following
theoren immediatey follows from Lemma 3.1.

Theorem 3.2 The following correspondencer, :{X,YI—B(L%(R?) define arepresentation
of Cf]a on LAR?):

m(X)=e“1P1 g (Y)=¢e“2P2~ (3.9
It shoutl be notad that, in the representatio (,,L%(R?), 7,(X) and 7,(Y) are unitary
operatorsAlso, q,# 1 if ard only if a¢Z.

We have

lim q,=1,- (3.9

a—0
which mears that the smal coupling limit «—0 corresponds to the “classical limit” of deforma-
tion by the parameteq,, .
The representatio (, ,L2(R?) has a nontrivid classica limit.
Propositian 3.3:

slim m (X)=€e“P1£] = slim 7, (Y)=¢e“2P2#],

a—0 a—0
whete | denots the identity operata on L%(R?).
Proof. This follows from Lemna 2.10= |
For a subalgeba 9t of B(L%(R?)), we denoe by M’ the commutan of 9
M’ ={TeB(L*(R?))|TS=ST,Se M}.~ (3.10
Let ¢, be the algeba generatd by {e'“1"1,e'“2P2}:
€¢,=7,(Ca).
Lemna 3.4 e*2mQulor g*2mQxluzc ! |
Proof. This follows from (2.15.- |

By Lemma 3.1, we have

qae*inPZeiwlplz ei“’lplefinPZ’—‘ qaei w2P2e*iw1P1: e*iwlplei w2P2’_| (31])

qaefiwlplefiwzpzze*inPZefiwlPl._‘ (312
J. Math. Phys., Vol. 37, No. 9, September 1996
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Hence ead of {e~'2P2,e'@1P1} [el@2P2 @ 1@1P1l  and {e~“1P1,e71“2P2} gives a representation
of C3 . We denoe the representatiamby () ,L*(R?), j=1,2,3 respectively.
Proposmm 3.5 Suppos that

W= Wy (3.13

Then eac representatio (79 ,L%(R?)) is unitarily equivalett to (7, ,L%(R?)).
Proof. It is eay to chedk that if (3.13 is satisfied then (2.27) ard (2.29 hold with A(z)
replacel by £(z). Hence we havé2.28 and(2.30, which imply that, for allt eR,

RleitleI].:e—itPZ,_' RleitPZRIlzeitpl,_‘ RzeitPle_lzeitPZ," Rzeitszz_lzeitpl.

(3.19

The= relatiors give a unitaly equivalene betwea (7, ,L%(R?) ard (700 ,L2(R?) (j=1,2).
Moreover (3.14) implies that

R%eitPlRIZZ e*i'[P]_’_‘ RgeitPZREZZ e*itPZI

It is eay to see tha R3=R3. Thus the unitay equivalene betwea (w,,L%(R?) and
(¥, L2(R?) follows.~ []
Remark (i) In the case w,#w,, we hawe bee unabk to clarify whethe (7, ,L%(R?)),
(77, L2(R?), j=1,2,3 are unitarily equivalet to eah othe or not.
(i) Relatin (2.15 implies that

qanWin]’ /(,u]ela)J P] — elu)J PJeZ’ﬂIaQI /wj'ﬂ J — 1,2.

Hence for ead j = 1,2 {e2™*Qi/j e'“iPi} gives arepresentatio of CS It is a problem to clarify
whethe thes representationard the representatios (7, ,L?(R?)), (77(') L2(R?), j=1,2,3 are
unitarily equivalet to eat othea or not.

In this pape we concentrat our attentian on the representatio (7, ,L?(R?). The methods
developd in wha follows apply also to the othe representatiamof the quantum plane.

(iii) Conside the ca® where« is a rational numberay=p/r with peZ andr e Z\{0}. Then
q',=1. It follows from (3.7) that, for all m, neZ with mn=r, €™1"1 and e"“2P2 commute But,
if « is irrational, thene'™“1P1 ard e'"“2P2 do not commue for all m, n e Z\{0}.

IV. REPRESENTATION OF U,(sl,) (1)

For acomplex numbe qeC\0,1,— 1} the quantum growp U(sl,) is defmed to be the algebra
generatd by four elemens E, F, K, K ! subjet to the following relations®®

KK 1=K k=1,
KEK 1=qg%E,- KFK '=q?F,
-1

a—-q

[E,F]: -1 -

The Casimi elemen C of U,(sl,) is defined by
_ gK=2+g7'K™!
- (g—a )’

Given arepresentatio (7,V) of the quantum planéiﬁ sud that 7(X) and #(Y) are bijec-
tive, we can construt a representatio of U(sly).

+FE.- (4.1
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Lemna 4.1 (cf. Ref 8): Let (7,V) be as above and a,B,&' eC be constants satisfying

1
abq=a’b’q_1=—mz.—| (42)

q
Then the following correspondereIT:{E,F,K,K 1} —EndV) define a representatia of Uq(sly):
II(E)=m(X)(@n(X)+a'm(X) " Hm(Y) "4,
II(F)=m(Y)(bm(X)+b’m(X) " Hm(X)~H,
I(K)=m(X)?~ MK YH)=m(X)"%

In this representationwe have

2
H(C)=a’b+ab’—m.—| (43)

Proof. Direct computations: ]
Remark By (4.2), we can write I1(C) as

II(C)=(a’'+aq)(b+b’'g™?).

In the rest of the paper, we assune that Ay, j=1,2, are given by (3.3) and

- (4.4

Z
CMGEE

Hene q2+1.
Leta,, a,, b,, b, be constars satisfying

, 1 1

-1_ _ -
oY (qa—q;l)2 4sirf 2mra” (4.5

aabaqa:a(,yb
By Lemma 4.1 ard Theoren 3.2, we haw the following theorem.

Theorem 4.2 The following correspondere I1,,:{E,F,K,K 5} —B(L%R?) define arepre-
sentation of U, (sl) on L*(R?):

Ha(E) — eiwlPl(aaeiw1P1+ a;e—iwlPl)e—iszz,
Ha(F) — eiszz(baeiw1P1+ b;e—iwlPl)e—iwlPl,
l—la(K)zeZiwlPl,_| Ha(Kfl)=e72iw1Pl.

We investigae bast properties of the representatio (IT, ,L%(R?)).

Theorem 4.3 The representatia (IT,,L%R?) has no weigh vectors In particular, there
exiss no nonzeo finite-dimensionasubspae W sud that (II,,W) gives a representatio of
Uqa(ﬁ[z).

Proof: A weight vecta of weight A e C in the representatio (IT,,,L%(R?)) is anonzep vector
y satisfyirg T ,(K)y=qg\y. Hence ¢ is an eigenvector o£?“1P1. But, by Lemma 2.6(ii),
e?“1P1 has no eigenvectorsThe lag assertio in Theoren 4.3 follows from the well-known fact
tha any nonzeo finite-dimensionaU ,(sl;)-moduk contairs a highes weight vecta (Proposition
VI.3.3in Ref. 11).- [ |
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Let

#,=T1,(Ug (s1)).= (4.6)

Theorem 4.4: Supposthata), = b,, b/, = a, (zdenotsthe comple conjugat of the complex
numbe z). Then

(i) 4, isa* subalgeba of B(LY(R?)).

(i) The representatia (I1,,L%(R?)) is completey reducible

Proof. (i) In the preseh assumptionwe have

I (E)* =11,(F),

where T* denotes the adjoirt of operato T. It is obviows that I1(K)*=II(K ). Hene it
follows tha 4, is self-adjoirt (i.e, Tel =T* eil,). Thus pat (i) follows.
(i) Asin Lemma 3.4, we have

R e T 4.7

which impliestha 4/, # Cl. As proven in patt (i), L, is self-adjoint Hence 4, is nat irreducible
(Propositim 2.38 in Ref 14). Let W be ary closal subspae of L?(R?), which is invariart under
the action of . Sinae 4, is self-adjoint it follows tha W* [the orthogon& complemenof W in
L2(R?] is also invariart unde the action of 4. Thus (IT,,,L?(R?) is completey reducible W

For asubsée M of B(L%(R?)), we denoe by M1 the closue of M with respet to the operator
norm.

We denok by §, the algeba generatd by e*#“1P1, e*!v2P2, which is a * subalgeba of
B(L3(R?), so that F, isa C* subalgebra.

Theorem 4.5: Supposthat |a,| #| a)|, |b,| #| b.|. Then

(i)

Fa=Ug.m 4.9

(i) iTa is completey reducible
Proof. (i) For simplicity, wes¢ a=a,,a’ = a,, b=b,,b’ = b),. Wehave

,(E)=Se '“2P2 - TI (F)=¢'“2"2T,~ (4.9
with
S=ae?*1iPi+a’ - T=b+b'e 2Py,
Hence it follows that ,C5,, implying
U, CFom (4.10

To prove the convere inclusion relation we expres e*'“22 in terms of I1 (E), IT (F),
II,,(K), ard IT (K ~1). We first conside the cas |a|/|a’|<1. We can write

S=all (K)+a'=a’

o
L+ 7 I1,(K) |.

We haw |all (K)/a’'|=|a|/|a’|<1, wher||L| with operato L e B(L?(R?) denots the opera-
tor nom of L. Hence S is bijective with
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1< a\"
-1_ _1\n| n
sl= 2 (-1 (a) I1,(K)
in the operato nom topology. Therefoe we obtain
e 192Pa=S 1[I _(E) e 4,,.

In the ca= |al|/|a’|>1, we write

a/
S=all (K)| 1+ = HQ(K1)>.

Then in the same way as in the precediig case we can shav tha S is bijective with

!

S*l:aleO (_ 1)n(%) Ha(Kfl)nJrl’

in the operato nom topology. Hence e 1@2P2 ¢ ¢ . Similarly, the secom relation in (4.9) implies

tha €'“2P2 e {(,. Thus,3,C4l,, which, togethe with (4.10), gives (4.9).
(i) Relatin (4.7) implies that

{eiZWIQJ /u)J}]2:1CLT;.

By the precedimy result, i1, is self-adjoirt (in fact, aC* subalgebra Thus by the sane reasoning
as in the prod of Theoren 4.4(ii), we obtan the desiral result- [ ]
Remark Intheca®a, = *a,, Sisinjective but not surjective [Lemma 2.6(ii)]. Hene st
isunboundedThe sane appliesto T inthecag b, = *=b,,.
For (m,n) eZ?, we defire afunction F, ,(x,y) by

ex;{—iaJ A)," (va)EMwl,wzl
Fmna(Xy)= C-(xyi2mey Nwy) (4.11

0;= (xy)eM

wq,0p"

For e L?(R?), we s

Pmn(X,Y) = P(X+2Meq,y+nw,), (Mn)eZ? - (4.12

Corollary 4.6 Supposthat |a,| #| a.|, |b.| #| b.|. Let Wbeanyirreducible closed subspace
of the representatia (I1,,L%(R?). Then each nonzeo vector e W is cyclic and W is generated
by vectoss of the form F, i, . (M,N)e z2

Proof. Thefirst half is due to agener&fact (Proposition 2.38 in Ref. 14). By Theoren 4.5(i),
W is generatd by vectos of the form

¢m n= ezimwlPleinszzwy_| (m'n) c ZZ.

Using (2.20, we see that ¢, ,=F  n¥mn - |

Corollaty 4.6 clarifies the structue of ary irreducibk closed subspae W of the representation
(IT,,L2(R?) inthecas|a,| #| a.|, |b.| #| b.|. By Theoren 4.3, dim W=,
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V. REPRESENTATION OF U,(sl,) (Il)

In this section we construt representatiosiof U,(sl,) tha are differert from the one given in
Sec IV.

Lemna 5.1 (cf. Ref. 8): Supposthat ge C\{0,1,—1}. Let (7r,V) be a representation (ﬂ [i.e.,
o?m(X)m(Y)==(Y)m(X)] with the following properties

(i) m(X) andw(Y) are bijective on V

(i) There exist a bijection Ze EndV) such that Z2=m(Y) 1m(X).

Let c. and d-. be constarg satisfying

1
C:di=F——7>5.0 5.1)
e o (q_q 1)2 ( )

Then the following correspondencel] . :{E,F,K,K"}—End (V) defire representatios of Uqy(slo):
M. (E)=c.Z(m(X) " *+7(Y)™H),
. (F)=d.(a(X)+ 7(Y))Z™4,
. (K)=%q~t7(Y) " t7(X),
(K™ H=xqm(X) " m(Y).
In the® representationswe have

(1+9*)7(Y) tm(X) +(1+q~ ) m(X) 177(Y)

I.(C)== (q—q 52 (5.2

Proof. Direct computations: |
To apply Lemma 5.1 with the representatio (7, ,L%(R?) of Cg given in Theoren 3.2, we
neel the following lemma.

Lemna 5.2 Let U be aunitary operata on a Hilbert spa® .7. Then there exiss a unitary
operatag T on .7 such that

T?=U.- (5.3

Proof. By the spectra theoren for unitaly operators there exists a unigue resolution of
identity F(6) such thatF(0)=0, F(27)=I, and U=[2"e'? dF(6). Let T=[32"e'?2 dF(#).
Then by the functiond calculus T is unitaly ard (5.3) holds= |

The operato e~ '“2P2¢!“1P1 js unitary on L?(R?). Hence by Lemma 5.2, there exiss a unitary
operato Z,, on L2(R? satisfying

72 =g 102P2glorP1 (5.4
Let
qicly/ZI I71'oz._| (55)

Applying Lemma 5.1 with 7w(X) = €'“1P1, 7(Y) = e€'“2P2, we obtan the following theorem.
Theorem 5.3 Let c.(@) and d.(a) be constants satisfying

1 1

Co(a)di(a)= G 7= 4sin2 e (5.6

(q
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Then the following correspondencell; :{E,F,K,K "1} —B(L?(R?) defire representatioa of
Uq(slp) with g=q2/2:

I} (E)=c.(a)Z,(e P14+ e 1@2P2),
Hi(F) = di(a’)(eiwlpl—l— ei“’zpz)z;l,
1% (K)=+q Y2 iw2PogiorPy,
I (K Y =+q% ioiPigioaP2,
In thes representationswe have

(1+ qa)efiszZeiwlpl_’_ (1+ qfl)e*iwlPiei wyPy
~127 7 5.
(2= q. 772 (5.7)

:(C)==+

By Lemma 2.7, we obtan the following theorem.

Theorem 5.4 The representation (IT; ,L%(R?) hawe no weigh vectors In particular, there
exi¢ no nonzeo finite-dimensionasubspace W.., sud that (I, ,W.) give representatios of
qu/Z(s[z).

Let

Uy =TI (Uqua(sly)).m (5.8

Theorem 5.5 Let c.(a) = d.(a). Then

(i) 4 are* subalgebra of B(L2(R?)).

(i) (IT; ,L%(R?) are completey reducible.

Proof Unde the assumptionsl;, are self-adjoint since we have

I, (E)*=I,(F)~ II;(K)*=II;(K™1).

Note that, if TeB(L%(R?) commutes with e '“2P2e'®1P1 then T commute with Z, . In particu-
lar, Z,, commute with €2™i’j, j=1,2 Henae {e2™Qi /wj}jzzlcuf,' . Thus by the same reason-
ing as in the prod of Theoren 4.4, we obtan the desiral result- |

Note tha g3/°=q,. Hene (I1;,,L*(R?) are representationof U,(sly) with g=gq,,. It is
naturd to ak if thes representatiomare equivalen to the representatio (11, ,L2(R?) constructed
in the precedirg section.

Theorem 5.6 The representatios (I;,,L%(R?) are not equivalen to (IT,,L%R?)).

Proof By (5.7), (2.20, ard (2.21), we have for all e L3(R?),

+ 1+q3 )
(Hia(c)l/l)(xay):i( — —1\2 EX%—ZIaJ’ A I;D(X+(1)l=y_(1)2)
4=, ") Ci(xy;01,— w3)

1+4q,” p( i f A) ( )
rT——exp 2la X—wq, Y+ wy),m a.e.
(qa_qa1)2 C_(xy;—w1,03) v vy 2

From this expressionit is see that I15,,(C) are not scala multiples of the identity. [For example,
conside a function ¢ e L2(R?), +0, with support inS=(0,w;) X (0,w,). Then the suppot of
I15,(C) ¢ is outside ofS.] On the other hand, b4.3), IT(C) is ascala multiple of the identity.
Thus the desirel resut follows.- |
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We can prove a more detailel fact on the inequivalene betwea (I15,,L%(R?) and
(IT,,,L2(R?)). For this purpose we prepae alemma Let

h;()\):i(l+?;£,)2\j(::;2q2al))\,—| AeC. (5.9
Note that h;, are red valued.
Lemnma 5.7:
(i)
a(I15(C))={h; (N)|\ e o(e™'2P2e! “1P1)} o (5.10
In particular,
o(I1;(C))C[—R, R~ (5.11)
where
2[1+q,| _|[cosmal
a:|qi/2—q;1/2|2 =S aa (5.12
(i)
op(I1;(C))=0.~ (5.13
Proof. (i) We first note that
U =@ 192P2gi®1P1

o
isunitary ard U = e 1@1P1el“2P2, We have

(1+q)U,+(1+qhut
172_ —1/2)2

Mm:(C)==+
«(C) (@7,

Relatian (5.10 follows from this expressia and the spectré mappirg theoren for unitary opera-
tors It is eay to see tha there exiss a constants, €[0,27) such that

h:(e'%)=+R, cos(6+5,), 6HeR. (5.14

Hence (5.11) follows.

(i) Suppos that o,(IT;(C))# amd X e o,(I1;(C)). Then by (5.11), —~R,<A<R, and
there exiss anonzeo vector e L?(R?) suc tha I1 (C) =\ . Let E be the spectral measure
of U,:

2w
Ua=J e'? dE(9).
0
Then we have

2 i
0= Cop-nu= [ ;@ -APdlE i
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which implies tha the suppot of the measue [E(-)#|® is included in the set
{0e[0,27]|hi(e'®)=\}. By (5.14), the equatim h}(e'®)=\ has at mog two solutions:
0;€[0,2m), j=1,2. This implies that one d&({6;})# (j =1,2) is not zero and an eigenvector of
U, with eigenvale e'%. But this contradics Lemma 2.7. Thus o,(IT, (C)) mug be empty.
Similarly, we can prove o, (I1,,(C))=0.- ]

Theorem 5.8 Let (I1,,,W) be any irreducible componenof (IT,,,L%(R?)) (WCL%R?). Then
(IT,,W) is not equivalen to any irreducible componenof (I15,,L%R?)).

Proof. By Lemma 5.7(ii), I15,(C) are not scala multiples of the identity in ary irreducible
componers of (IT5,,L2(R?)). Thus the desirel resut follows.~ [ ]

Remark It is an open problem to clarify whethe (IT} ,L?(R?)) is equivalento (IT, ,L%(R?)
or not.
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