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Canonica l commutatio n relations , the Weierstras s Zeta
function , and infinit e dimensiona l Hilber t space
representation s of the quantu m group Uq(sl2)

Asao Araia)
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

~Received 13 November 1995; accepted for publication 25 April 1996!

A two-dimensional quantum system of a charged particle interacting with a vector
potential determined by the Weierstrass Zeta function is considered. The position
and the physical momentum operators give arepresentation of the canonical com-
mutation relations with two degrees of freedom. If the charge of the particle is not
an integer ~the case corresponding to the Aharonov–Bohm effect!, then the repre-
sentation is inequivalent to the Schrödinger representation. It is shown that the
inequivalent representation induces infinite-dimensional Hilbert space representa-
tions of the quantum group Uq~sl2!. Some properties of these representations of
Uq~sl2! are investigated. © 1996 American Institute of Physics.
@S0022-2488~96!00108-9#

I. INTRODUCTION

In a previous paper,1 we considered a quantum system of a charged particle moving in the
Euclidean planeR2 under the influence of a perpendicular magnetic field, which may be strongly
singular at some fixed points a1,...,aN in R2. If the magnetic field is concentrated on the discrete
set $an%n51

N in the sense of distribution, then the position and the physical momentum operators
give a representation of the canonical commutation relations ~CCRs! ~Heisenberg relations! with
two degrees of freedom.

Here we recall some technical terms in the representation theory of CCR. A set
$H,D ,$Qj ,Pj% j51

d % consisting of a Hilbert spaceH, a dense subspaceD of H, and self-adjoint
operatorsQj , Pj , ( j51,...,d) is called arepresentation of the CCR with d degrees of freedom if
D,ùj ,k51

d [D(QjQk)ùD(QjPk)ùD(PkQj )ùD(PjPk)] @D(T) denotes the domain of operator
T# and the CCR,

@Qj ,Qk#50,¬ @Pj ,Pk#50,¬ @Qj ,Pk#5 id jk ,¬ j ,k51,...,d,

hold on D , where [S,T]:5ST2TS. Following Putnam,2 we say that a set $Qj ,Pj% j51
d of self-

adjoint operatorson aHilbert space isaSchrödinger d system if it is unitarily equivalent to adirect
sum of the Schrödinger representation of the CCR with d degrees of freedom. A representation
$H,D ,$Qj ,Pj% j51

d % of CCR is called equivalent ~resp., inequivalent! if $Qj ,Pj% j51
d is ~resp., not!

a Schrödinger d system.
In Ref. 1 the following facts were shown: ~i! the representation of CCR mentioned above is

equivalent if and only if themagnetic flux is locally quantized ~i.e., themagnetic flux at each point
an (n51,...,N) is an integer multiple of 2p/a, wherea is the charge of the particle!; ~ii ! the
inequivalent representation appearing in the casewhere themagnetic flux is not locally quantized
may be regarded as amathematical form of theAharonov–Bohmeffect.3 A geometric construction
of a representation of CCR that is unitarily equivalent to the one given in Ref. 1 was considered
by Kurose and Nakazato,4 and more detailed properties of the representation were discussed.

a!Electronic mail: irai@math.hokudai.ac.jp
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To investigatedifferencesbetween theequivalent and the inequivalent representationsof CCR
in Ref. 1, an analysis has been made on Dirac–Weyl operators defined in terms of the physical
momentum operator.5 Moreover, the framework and results in Ref. 1 were extended to the case of
a non-Abelian gauge theory.6,7

Recently Wiegmann and Zabrodin8 considered a quantum system of a particle on a two-
dimensional square lattice in amagnetic field and showed that magnetic translations on the lattice
are related to finite-dimensional representations of the quantum group Uq~sl2!. Inspired by their
work, we investigate in this paper if there is any connection between the quantum system consid-
ered in Ref. 1 and representationsof Uq~sl2!. Weshall show that, for a vector potential determined
by theWeierstrass Zeta function, special elements of the unitary groups generated by the compo-
nents of the physical momentum operator induce representations of Uq~sl2! on the Hilbert space
L2~R2!. Thisestablishes aconnection of a classical special function toUq~sl2!. A particular feature
of the representations of Uq~sl2! given in this paper is that they have no finite-dimensional irre-
ducible components.

The present paper is organized as follows. In Sec. II we consider a quantum system of a
charged particle in R2 under the influence of a perpendicular magnetic field that may be singular
at points in an infinite lattice @see ~2.1!#. This is an extension of the framework of Ref. 1 to the
case where the number of possible singular points of the magnetic field is infinite. Fundamental
results in Ref. 1 continue to hold in the present case too with no significant modifications. As in
the case of Ref. 1, the position operator and the physical momentum operator P5(P1 ,P2) of the
particle give a representation of the CCR with two degrees of freedom if the magnetic field is
concentrated on the infinite lattice. Spectral properties of the unitary operators generated by P1
and P2 are analyzed. Also, we show that, under some conditions for the vector potential of the
magnetic field, P1 and P2 have permutation-reflection symmetries.

In Secs. II I–V, we consider the special case where the vector potential A5A1 dx1A2 dy ~a
1-form! of the magnetic field is given by the Weierstrass Zeta function z in such a way that
z5A21 iA1 @see ~3.2!–~3.4!#. We first show in Sec. II I that, if the charge of the particle is not an
integer, then special elements of the unitary groups generated by P1 and P2 give representations
of the quantum plane. Unitary equivalences of these representations are discussed. As is shown in
Ref. 8, a representation of the quantum plane with some additional properties induces represen-
tationsof Uq~sl2!. Applying this idea, weconstruct in Secs. IV and V representationsof Uq~sl2! on
L2~R2! and investigate some properties of them.

II. A CHARGED PARTICLE IN A MAGNETIC FIELD WITH POSSIBLE SINGULARITIES
ON AN INFINITE LATTICE

A. Representatio n of CCR

We consider a quantum system of a charged particle with chargeaPR\$0% moving in the
planeR25$r5(x,y)ux,yPR% under the influence of a perpendicular magnetic field B that may be
singular at points in the infinite lattice,

Zv1 ,v2

2 :5$Vm,n5~v1m,v2n!um,nPZ%,¬ ~2.1!

wherev j , j51,2, are positive constants and Z is the set of integers. A vector potential of the
magnetic field B is given by a continuously differentiable real 1-form A5A1 dx1A2 dy on the
nonsimply connected domain

M5R2\Zv1 ,v2

2 ,¬ ~2.2!

such that

B5DxA22DyA1 ,¬ ~2.3!
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in the distribution sense, whereDx and Dy are the generalized partial differential operators in the
variables x and y, respectively. We say that A is flat on M if B50 on M , i.e., B is concentrated
on Zv1 ,v2

2 ~in the sense of distribution!.

Throughout this paper we use aphysical unit system such that \ ~the Planck constant divided
by 2p!5c ~the light velocity!51. Let (Q1 ,Q2) be theposition operator of theparticle, i.e.,Q1 and
Q2 are the maximal multiplication operators by x and y acting in the Hilbert space
L2~M !>L2~R2!, respectively. The physical ~kinetic! momentum operator P5(P1 ,P2) of the par-
ticle is defined by the operators

Pj5pj2aAj ,¬ j51,2,¬ ~2.4!

acting in L2~R2!, where (p1 ,p2) is the momentum operator of the free particle:

p152 iD x ,¬ p252 iD y .¬ ~2.5!

We denote by C0
m~M ! (m50,1,2,...) the space of m times continuously differentiable func-

tions onM with bounded support inM . In the sameway as in Ref. 1, we can prove the following
fact.

Lemma 2.1:
~i! Each Pj is essentially self-adjoint on C0

1(M ). (We denote the closure of Pj by the same
symbol.)

~ii ! Suppose that A is flat on M . Then $L2(R2), C0
2(M ), $Qj ,Pj%j51

2 % is a representation of the
CCR with two degrees of freedom.

Theanalysis of the representation $L2~R2!, C0
2~M !, $Qj ,Pj% j51

2 % in Lemma2.1 can bedone in
quite the sameway as in the casewhereZv1 ,v2

2 is replaced by a finite discrete set in R2 ~seeRefs.

1, 4, and 6!. Hence, as for that, we describe only results needed later. Let

S15R\$mv1%mPZ ,¬ S25R\$nv2%nPZ .

For (x,y)PR3S2, we can define

U1~x,y!5expS 2 iaE
0

x

A1~x8,y!dx8D .¬ ~2.6!

Then U1 defines a unique unitary operator as amultiplication operator on L
2~R2!. Similarly, the

function

U2~x,y!5expS 2 iaE
0

y

A2~x,y8!dy8D ,¬ ~x,y!PS13R,¬ ~2.7!

defines a unique unitary operator as amultiplication operator on L2~R2!. We then have operator
equalities,

Pj5Uj
21pjU j ,¬ j51,2.¬ ~2.8!

It follows from these relations that, for all tPR, cPL2~R!, and for almost everywhere ~a.e.!
(x,y),

~ei tP1c!~x,y!5expS 2 iaE
x

x1t

A1~x8,y!dx8Dc~x1t,y!,¬ ~2.9!
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~ei tP2c!~x,y!5expS 2 iaE
y

y1t

A2~x,y8!dy8Dc~x,y1t !.¬ ~2.10!

Let C6(x,y;s,t) ~x,y,s,tPR! be hook-shaped paths from (x,y) to (x1s,y1t) given by

C2~x,y;s,t !5$~x1us,y!u0<u<1%ø$~x1s,y1ut !u0<u<1%,

C1~x,y;s,t !5$~x,y1ut !u0<u<1%ø$~x1us,y1t !u0<u<1%,

and set

C~x,y;s,t !5C1~x,y;s,t !21+C2~x,y;s,t !,¬ ~2.11!

the rectangular path: (x,y)→(x1s,y)→(x1s,y1t)→(x,y1t)→(x,y). For s,tPR, we set

S1
~s!5R\$v1m,v1m2sumPZ%, S2

~ t !5R\$v2n,v2n2tunPZ%, ¬ ~2.12!

and define

M s,t5S1
~s!3S2

~ t ! ,¬ s,tPR.¬ ~2.13!

For each s,tPR, we can define afunction Fs,t
A on M s,t by

Fs,t
A ~x,y!5E

C~x,y;s,t !
A,¬ ~x,y!PM s,t ,¬ ~2.14!

which physically means themagnetic flux passing through the interior domain of the closed curve
C(x,y;s,t). SinceR2\M s,t is anull set with respect to the two-dimensional Lebesguemeasure, one
can regard Fs,t

A as a real-valued function on R2, which is a.e. finite. HenceFs,t
A defines a unique

self-adjoint multiplication operator on L2~R2!. We denote this operator by the same symbol. The
following theorem gives commutation relations for the one parameter unitary groups generated by
Qj and Pj , j51,2.

Theorem 2.2. ~cf. Theorem 2.1 in Ref. 1!: For all s,tPR,

eisQjei tPk5e2 istd jkei tPkeisQj ,¬ ~2.15!

eisP1ei tP25e2 iaFs,t
A
ei tP2eisP1.¬ ~2.16!

Following Ref. 1, we say that themagnetic flux is locally quantized if, for all s,tPR, Fs,t
A is a

2pZ/a-valued function onM s,t.
Theorem 2.2 implies the following characterization of the representation $Qj ,Pj% j51

2 of CCR
in the case where A is flat @Lemma 2.1~ii !#.

Theorem 2.3: Suppose that A is flat on M . Then the representation $Qj ,Pj%j51
2 of CCR is

equivalent if and only if the magnetic flux is locally quantized.
Remark: ~i! In the case where the magnetic flux is not locally quantized, formula ~2.16! may

be regarded as amathematical form of the Aharonov–Bohm effect.9 Thus the inequivalent repre-
sentation of $Qj ,Pj% j51

2 corresponds to the Aharonov–Bohm effect.
~ii ! In operator theory, two self-adjoint operators, S and T, on a Hilbert space are said to be

strongly commuting if their spectral measures commute. It iswell known that S and T are strongly
commuting if and only if eiaSeibT5eibTeiaS for all a,bPR ~Theorem VIII.13 in Ref. 10!. It
follows from this fact and ~2.16! that P1 and P2 are strongly commuting if and only if the
magnetic flux is locally quantized.
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Let v0.0 be a number such that, for all (m,n),(m8,n8)PZ2 with (m,n)Þ(m8,n8),
$r uur 2 Vm,nu , v0%ù$r uur 2 Vm8,n8u , v0% 5 0”. Thefollowingfact iseasilyproven.

Lemma 2.4: Suppose that A is flat. Let 0,d,v0. Then

gm,n~A!:5E
ur2Vm,nu5d

A¬ ~2.17!

is independent of d, where the orientation of the integral on the right-hand side (rhs) is taken to
be anticlockwise. Moreover, for all s,tPR,

Fs,t
A ~x,y!5e~s!e~ t ! (

Vm,nPD~x,y;s,t !
gm,n~A!,¬ ~x,y!PM s,t ,

where D(x,y;s,t) is the interior domain of C(x,y;s,t) and e(t) is the sign function:e(t)51 for t>0;
e(t)521 for t,0.

Theorem 2.3 and Lemma 2.4 imply the following fact.
Theorem 2.5: Suppose that A is flat. Then the representation $Qj ,Pj%j51

2 of CCR is equivalent
if and only if gm,n(A)P2pZ/a for all m,nPZ.

B. Spectra l properties

For later use, we investigate spectral properties of some unitary operators. For a densely
defined closed linear operator T on aHilbert space, we denote by s(T) @resp.,sp(T)# the spec-
trum ~resp., point spectrum! of T. We set

T5$zPCuuzu51%.¬ ~2.18!

Lemma 2.6:
~i! s(Pj)5R, sp(Pj)50”, j51,2.
~ii ! For all tPR\$0% and j51,2, s(eitPj) 5 T, sp(e

itPj)50”.
Proof: ~i! By ~2.8!, we haves(Pj )5s(pj )5R, sp(Pj )5sp(pj )50” . ~ii ! This follows from

part ~i! and the spectral mapping theorem.¬ j

Lemma 2.7: For all s,tPR\$0%,

sp~e
isP1ei tP2!50”, sp~e

i tP2eisP1!50”.¬ ~2.19!

Proof: It follows from ~2.9! and ~2.10! that, for all s,tPR,

eisP1ei tP25expS 2 iaE
C2~x,y;s,t !

AD eisp1ei tp2,¬ ~2.20!

ei tP2eisP15expS 2 iaE
C1~x,y;s,t !

AD ei tp2eisp1.¬ ~2.21!

Since eisP1ei tP2 is unitary, we have sp(e
isP1ei tP2),T. Suppose that there exists a vector

cPL2~R2! and a constant lPT such that eisP1ei tP2c 5 lc. Then, by ~2.20!, we have
exp(e2ia*C2(x,y;s,t)

A)c(x1 s,y1 t)5 lc(x,y) a.e. (x,y). Henceuc(x,y)u5uc(x1s,y1t)u a.e. (x,y),
which, together with the fact cPL2~R2!, implies c50. Thus the first formula of~2.19! follows.
Similarly, using ~2.21!, we can prove the second one of ~2.19!.¬ j

Proposition 2.8: Consider the casewhere themagnetic flux is locally quantized. Then, for all
t,sPR\$0%,

s~eisP1ei tP2!5s~ei tP1eisP2!5T.
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Proof: Under the present assumption, P1 and P2 strongly commute @see Remark ~ii ! after
Theorem 2.3#. Hence, by the two variable functional calculus, we see that sP11tP2 is essentially
self-adjoint and eisP1ei tP2 5 ei tP2eisP1 5 ei (sP11tP2), wheresP11tP2 is theclosureof sP11tP2 .
By the two variable functional calculus and Lemma 2.6~i!, we haves(sP11tP2) 5 R. Thus, by
the spectral mapping theorem, we obtain the desired result.¬ j

Remark: We have been unable to identify s(eisP1ei tP2) ands(ei tP2eisP1) in the case where
the magnetic field is not locally quantized. It would be interesting to see if there appears any
difference from the casewhere themagnetic field is locally quantized. In the case of Dirac–Weyl
operators defined in termsof P1 and P2 , such differences exist; seeRef. 5. We leave this problem
as an open problem.

C. Permutation-reflectio n symmetr y of the physica l momentu m operator

Let Rj :L
2~R2!→L2~R2!, j51,2, be the unitary operators defined by

~R1c!~x,y!5c~2y,x!, ~R2c!~x,y!5c~y,2x!, cPL2~R2!.¬ ~2.22!

Then it is easy to see that

R1R25R2R15I ,¬ ~2.23!

R1p1R1
2152p2 ,¬ R1p2R1

215p1 ,¬ ~2.24!

R2p1R2
215p2 ,¬ R2p2R2

2152p1 .¬ ~2.25!

As usual, we denote by z5x1 i y the point in the complex plane C corresponding to
r5(x,y)PR2. We set

Ã~z!5A2~x,y!1 iA1~x,y!.¬ ~2.26!

Proposition 2.9:
~i! Suppose that

Ã~ i z!52 iÃ~z!.¬ ~2.27!

Then

R1P1R1
2152P2 ,¬ R1P2R1

215P1 .¬ ~2.28!

~ii ! Suppose that

Ã~ i z!5 iÃ~2z!.¬ ~2.29!

Then

R2P1R2
215P2 ,¬ R2P2R2

2152P1 .¬ ~2.30!

Proof: ~i! Condition ~2.27! is equivalent to that

A2~2y,x!5A1~x,y!,¬ A1~2y,x!52A2~x,y!.

Hence, for all cPC0
1~M !,

R1P1R1
21c52P2c,¬ R1P2R1

21c5P1c.¬ ~2.31!
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SinceR1 leavesC0
1~M ! invariant bijectively and Pj , j51,2, are essentially self-adjoint on C0

1~M !
@Lemma 2.1~i!#, the vector equations in ~2.31! extend to operator equalities ~2.28!.

~ii ! Similar to part ~i!.¬ j

In Sec. III , we shall consider the case of a vector potential satisfying ~2.27! and ~2.29!.

D. Smal l couplin g limit

Finally we consider the small coupling limit a→0 of Pj .
Lemma 2.10: For all tPR and j51,2,

s-lim
a→0

ei tPj5ei tpj ,¬ ~2.32!

where s-lim denotes strong limit.
Proof: For all cPC0

1~M !, we have Pjc→pjc ~a→0!. Note thatC0
1~M ! is a common core of

Pj and pj . Hence, by general convergence theorems @Theorem VIII.25 ~a! and Theorem VIII.21
in Ref. 10#, we obtain ~2.32!.¬ j

III. A VECTOR POTENTIAL GIVEN BY THE WEIERSTRASS ZETA FUNCTION AND
REPRESENTATIONS OF THE QUANTUM PLANE

We now specialize the vector potential A. We set

Vm,n5mv11 inv2 ,¬ m,nPZ.¬ ~3.1!

Let z(z) ~zPC! be the Weierstrass Zeta function with poles atz5Vm,n ,m,nPZ:

z~z!5
1

z
1 (

~m,n!PZ2\$~0,0!%
S 1

z2Vm,n
1

1

Vm,n
1

z

Vm,n
2¬ D .¬ ~3.2!

In what follows, we assume that the vector potential A is given by A5A1 dx1A2 dy with

A1~r !5Im z~z!, A2~r !5Re z~z!, ~3.3!

so that

z~z!5A2~r !1 iA1~r !.¬ ~3.4!

Then, by the Cauchy–Riemann equation, A is flat on M .
In the present case, the constantgm,n(A) defined by ~2.17! is computed as

gm,n~A!52p, ~3.5!

independently of (m,n)PZ2. Hence the magnetic flux is locally quantized if and only if a is an
integer. Thus the local quantization of the magnetic flux is equivalent to the ‘‘charge quantiza-
tion.’’ The representation $Qj ,Pj%j51

2 of CCR in the present case is an inequivalent representation
if and only if a is not an integer.

Let

qa5e2p ia.¬ ~3.6!

Lemma 3.1: For all m,nPZ,

einv2P2eimv1P15qa
nmeimv1P1einv2P2.¬ ~3.7!
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Proof: For all (x,y) P Mv1 ,v2
, D(x,y;v1 ,v2) contains only one point in the lattice Zv1 ,v2

2 .

Hence, by Lemma2.4 and ~3.5!,Fv1 ,v2

A 5 2p, a.e., which, together with~2.16!, implies~3.7! with

m5n51. Using this relation repeatedly, we obtain ~3.7! with m,nPNø$0%, whose adjoint gives
~3.7! with m,n,0. Noting that ei tPj ~tPR! is invertible with (ei tPj)21 5 e2 i tPj , we obtain ~3.7!
with m>0,n,0 or m<0,n.0.¬ j

Relation ~3.7! naturally leads us to the quantum plane,11 which is defined to be the algebra
generated by two elements X,Y subject to the relation

qXY5YX,

with q a parameter.12 We denote the quantum plane by Cq
2.

For an algebra U, a set (p,V) of a complex vector spaceV and an algebraic homomorphism
p :u→End(V) is called a representation of U.

We denote by B„L2~R2!… the* algebra of bounded linear operators on L
2~R2!. The following

theorem immediately follows from Lemma 3.1.
Theorem 3.2: The following correspondencepa :$X,Y%→B„L2~R2!… defines a representation

of Cqa

2 on L2(R2):

pa~X!5eiv1P1, pa~Y!5eiv2P2.¬ ~3.8!

It should be noted that, in the representation „pa ,L
2~R2!…, pa(X) and pa(Y) are unitary

operators. Also, qaÞ1 if and only if a¹Z.
We have

lim
a→0

qa51,¬ ~3.9!

which means that the small coupling limit a→0 corresponds to the ‘‘classical limit’’ of deforma-
tion by the parameter qa .

The representation „pa ,L
2~R2!… has a nontrivial classical limit.

Proposition 3.3:

s-lim
a→0

pa~X!5eiv1p1ÞI ,¬ s-lim
a→0

pa~Y!5eiv2p2ÞI ,

where I denotes the identity operator on L2(R2).
Proof: This follows from Lemma 2.10.¬ j

For a subalgebraM of B„L2~R2!…, we denote by M8 the commutant of M:

M85$TPB„L2~R2!…uTS5ST,SPM%.¬ ~3.10!

Let Ea be the algebra generated by $eiv1P1,eiv2P2%:

Ea5pa~Cq
2a!.

Lemma 3.4: e62piQ1 /v1, e62piQ2 /v2PEa8 .
Proof: This follows from ~2.15!.¬ j

By Lemma 3.1, we have

qae
2 iv2P2eiv1P15eiv1P1e2 iv2P2,¬ qae

iv2P2e2 iv1P15e2 iv1P1eiv2P2,¬ ~3.11!

qae
2 iv1P1e2 iv2P25e2 iv2P2e2 iv1P1.¬ ~3.12!
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Hence, each of $e2 iv2P2,eiv1P1%, $eiv2P2,e2 iv1P1%, and $e2v1P1,e2 iv2P2% gives a representation
of Cqa

2 . We denote these representations by „pa
( j ) ,L2~R2!…, j51,2,3, respectively.

Proposition 3.5: Suppose that

v15v2 .¬ ~3.13!

Then, each representation „pa
(j) ,L2(R2)… is unitarily equivalent to „pa ,L

2(R2)….
Proof: It is easy to check that, if ~3.13! is satisfied, then ~2.27! and ~2.29! hold with Ã(z)

replaced by z(z). Hence we have~2.28! and ~2.30!, which imply that, for alltPR,

R1e
i tP1R1

215e2 i tP2,¬ R1e
i tP2R1

215ei tP1,¬ R2e
i tP1R2

215ei tP2,¬ R2e
i tP2R2

215ei tP1.
~3.14!

These relations give a unitary equivalence between „pa ,L
2~R2!… and „pa

( j ) ,L2~R2!… ( j51,2).
Moreover, ~3.14! implies that

R1
2ei tP1R1

225e2 i tP1,¬ R2
2ei tP2R2

225e2 i tP2.

It is easy to see that R1
25R2

2. Thus, the unitary equivalence between „pa ,L
2~R2!… and

„pa
(3) ,L2~R2!… follows.¬ j

Remark: ~i! In the casev1Þv2, we have been unable to clarify whether „pa ,L
2~R2!…,

„pa
( j ) ,L2~R2!…, j51,2,3, are unitarily equivalent to each other or not.

~ii ! Relation ~2.15! implies that

qae
2p iaQj /v jeiv j Pj5eiv j Pje2p iaQj /v j ,¬ j51,2.

Hence, for each j51,2 $e2p iaQj /v j ,eiv j Pj% gives a representation of Cqa

2 . It is a problem to clarify

whether these representations and the representations „pa ,L
2~R2!…, „pa

( j ) ,L2~R2!…, j51,2,3, are
unitarily equivalent to each other or not.

In this paper we concentrate our attention on the representation „pa ,L
2~R2!…. The methods

developed in what follows apply also to the other representations of the quantum plane.
~iii ! Consider the case wherea is a rational number:a5p/r with pPZ and rPZ\$0%. Then

qa
r 51. It follows from ~3.7! that, for all m, nPZ withmn5r , eimv1P1 and einv2P2 commute. But,
if a is irrational, theneimv1P1 and einv2P2 do not commute for all m, nPZ\$0%.

IV. REPRESENTATION OF Uq(sl2) (I)

For a complex number qPC\$0,1,21%, the quantum group Uq~sl2! is defined to be the algebra
generated by four elements E, F, K, K21 subject to the following relations:13

KK215K21K51,

KEK215q2E,¬ KFK215q22F,

@E,F#5
K2K21

q2q21 .

The Casimir element C of Uq~sl2! is defined by

C5
qK221q21K21

~q2q21!2
1FE.¬ ~4.1!

Given a representation (p,V) of the quantum planeCq
2 such thatp(X) andp(Y) are bijec-

tive, we can construct a representation of Uq~sl2!.
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Lemma 4.1 ~cf. Ref. 8!: Let (p,V) be as above and a,b,a8,b8PC be constants satisfying

abq5a8b8q2152
1

~q2q21!2
.¬ ~4.2!

Then the following correspondence P:$E,F,K,K21%→End(V) defines a representation of Uq(sl2):

P~E!5p~X!„ap~X!1a8p~X!21
…p~Y!21,

P~F !5p~Y!„bp~X!1b8p~X!21
…p~X!21,

P~K !5p~X!2,¬ P~K21!5p~X!22.

In this representation, we have

P~C!5a8b1ab82
2

~q2q21!2
.¬ ~4.3!

Proof: Direct computations.¬ j

Remark: By ~4.2!, we can write P(C) as

P~C!5~a81aq!~b1b8q21!.

In the rest of the paper, we assume that Aj , j51,2, are given by (3.3) and

a¹
Z

2
.¬ ~4.4!

Hence qa
2Þ1.

Let aa , aa8 , ba , ba8 be constants satisfying

aabaqa5aa8ba8qa
2152

1

~qa2qa
21!2

5
1

4 sin2 2pa
.¬ ~4.5!

By Lemma 4.1 and Theorem 3.2, we have the following theorem.
Theorem 4.2: The following correspondence Pa :$E,F,K,K

21%→B„L2(R2)… defines a repre-
sentation of Uqa

(sl2) on L
2(R2):

Pa~E!5eiv1P1~aae
iv1P11aa8e

2 iv1P1!e2 iv2P2,

Pa~F !5eiv2P2~bae
iv1P11ba8e

2 iv1P1!e2 iv1P1,

Pa~K !5e2iv1P1,¬ Pa~K21!5e22iv1P1.

We investigate basic properties of the representation „Pa ,L
2~R2!….

Theorem 4.3: The representation „Pa ,L
2~R2!… has no weight vectors. In particular, there

exists no nonzero finite-dimensional subspace W such that (Pa ,W) gives a representation of
Uqa

(sl2).
Proof: A weight vector of weight lPC in the representation „Pa ,L

2~R2!… is anonzero vector
c satisfying Pa(K)c5qa

lc. Hencec is an eigenvector ofe2iv1P1. But, by Lemma 2.6~ii !,
e2iv1P1 has no eigenvectors. The last assertion in Theorem 4.3 follows from the well-known fact
that any nonzero finite-dimensional Uq~sl2!-module contains a highest weight vector ~Proposition
VI.3.3 in Ref. 11!.¬ j
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Let

Ua5Pa„Uqa
~sl2!….¬ ~4.6!

Theorem 4.4: Supposethat aa8 5 b̄a , ba8 5 āa (z̄denotesthecomplexconjugateof thecomplex
number z). Then

~i! Ua is a * subalgebra of B„L2(R2)….
~ii ! The representation „Pa ,L

2(R2)… is completely reducible.
Proof: ~i! In the present assumption, we have

Pa~E!*5Pa~F !,

where T* denotes the adjoint of operator T. It is obvious that Pa(K)*5Pa(K
21). Hence it

follows that Ua is self-adjoint ~i.e., TPUa⇒T*PUa!. Thus part ~i! follows.
~ii ! As in Lemma 3.4, we have

$e62p iQ j /v j% j51
2 ,Ua8 ,¬ ~4.7!

which implies that Ua8 Þ CI . As proven in part ~i!, Ua is self-adjoint. HenceUa is not irreducible
~Proposition 2.3.8 in Ref. 14!. Let W be any closed subspace of L2~R2!, which is invariant under
the action of Ua . SinceUa is self-adjoint, it follows that W

' @the orthogonal complement of W in
L2~R2!# is also invariant under the action of Ua . Thus „Pa ,L

2~R2!… is completely reducible. j

For a subset M of B„L2~R2!…, we denote by M̄ the closure of M with respect to the operator
norm.

We denote by Fa the algebra generated by e62iv1P1, e6 iv2P2, which is a * subalgebra of
B„L2~R2!…, so thatFa is a C* subalgebra.

Theorem 4.5: Supposethat uaau Þu aa8 u, ubau Þu ba8 u. Then
~i!

Fa5Ua.¬ ~4.8!

~ii ! Ua is completely reducible.
Proof: ~i! For simplicity, weset a5aa , a8 5 aa8 , b5ba , b8 5 ba8 . Wehave

Pa~E!5Se2 iv2P2,¬ Pa~F !5eiv2P2T,¬ ~4.9!

with

S5ae2iv1P11a8,¬ T5b1b8e22iv1P1.

Hence it follows that Ua,Fa , implying

Ua,Fa.¬ ~4.10!

To prove the converse inclusion relation, we express e6 iv2P2 in terms of Pa(E), Pa(F),
Pa(K), and Pa(K

21). We first consider the case uau/ua8u,1. We can write

S5aPa~K !1a85a8S 11
a

a8
Pa~K ! D .

We have iaPa(K)/a8i5uau/ua8u,1, where iLi with operator LPB„L2~R2!… denotes the opera-
tor norm of L. Hence, S is bijective with
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S215
1

a8 (
n50

`

~21!nS aa8D
n

Pa~K !n

in the operator norm topology. Therefore we obtain

e2 iv2P25S21Pa~E!PUa.

In the case uau/ua8u.1, we write

S5aPa~K !S 11
a8

a
Pa~K21! D .

Then, in the same way as in the preceding case, we can show that S is bijective with

S215a21(
n50

`

~21!nS a8

a D nPa~K21!n11,

in theoperator norm topology. Hencee2 iv2P2 P Ua. Similarly, thesecond relation in ~4.9! implies
that eiv2P2 P Ua. Thus,Fa,Ua, which, together with ~4.10!, gives ~4.8!.

~ii ! Relation ~4.7! implies that

$e62p iQ j /v j% j51
2 ,Ua8 .

By the preceding result,Ua is self-adjoint ~in fact, aC* subalgebra!. Thus, by the same reasoning
as in the proof of Theorem 4.4~ii !, we obtain the desired result.¬ j

Remark: In the caseaa 5 6aa8 , S is injective, but not surjective @Lemma2.6~ii !#. HenceS21

is unbounded. The sameapplies to T in the case ba 5 6ba8 .
For (m,n)PZ2, we define afunction Fm,n(x,y) by

Fm,n~x,y!5H expS 2 iaE
C2~x,y;2mv1 ,nv2!

AD ;¬ ~x,y!PMv1 ,v2
,

0;¬ ~x,y!¹Mv1 ,v2
.

~4.11!

For cPL2~R2!, we set

cm,n~x,y!5c~x12mv1 ,y1nv2!, ~m,n!PZ2. ¬ ~4.12!

Corollary4.6: Supposethat uaau Þu aa8 u, ubau Þu ba8 u. LetWbeany irreducibleclosedsubspace
of the representation „Pa ,L

2(R2)…. Then each nonzero vectorcPW is cyclic and W is generated
by vectors of the form Fm,ncm,n, (m,n)PZ2.

Proof: Thefirst half is due to ageneral fact ~Proposition 2.3.8 in Ref. 14!. By Theorem 4.5~i!,
W is generated by vectors of the form

fm,n5e2imv1P1einv2P2c,¬ ~m,n!PZ2.

Using ~2.20!, we see thatfm,n5Fm,ncm,n .¬ j

Corollary 4.6 clarifies the structure of any irreducible closed subspaceW of the representation
„Pa ,L

2~R2!… in thecase uaau Þu aa8 u, ubau Þu ba8 u. By Theorem4.3, dimW5`.
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V. REPRESENTATION OF Uq(sl2) (II)

In this section, we construct representations of Uq~sl2! that are different from theonegiven in
Sec. IV.

Lemma 5.1 ~cf. Ref. 8!: Suppose that qPC\$0,1,21%. Let (p,V) be a representation ofCq2
2 [i.e.,

q2p(X)p(Y)5p(Y)p(X)] with the following properties.
~i! p(X) andp(Y) are bijective on V.
~ii ! There exists a bijection ZPEnd(V) such that Z25p(Y)21p(X).
Let c6 and d6 be constants satisfying

c6d656
1

~q2q21!2
.¬ ~5.1!

Then the following correspondencesP6 :$E,F,K,K
21%→End (V) define representations of Uq(sl2):

P6~E!5c6Z„p~X!211p~Y!21
…,

P6~F !5d6„p~X!1p~Y!…Z21,

P6~K !56q21p~Y!21p~X!,

P6~K21!56qp~X!21p~Y!.

In these representations, we have

P6~C!56
~11q2!p~Y!21p~X!1~11q22!p~X!21p~Y!

~q2q21!2
.¬ ~5.2!

Proof: Direct computations.¬ j

To apply Lemma 5.1 with the representation „pa ,L
2~R2!… of Cqa

2 given in Theorem 3.2, we

need the following lemma.
Lemma 5.2: Let U be a unitary operator on a Hilbert spaceH. Then there exists a unitary

operator T onH such that

T25U.¬ ~5.3!

Proof: By the spectral theorem for unitary operators, there exists a unique resolution of
identity F(u) such thatF(0)50, F(2p)5I , and U5*0

2peiu dF(u). Let T5*0
2peiu/2 dF(u).

Then, by the functional calculus, T is unitary and ~5.3! holds.¬ j

The operator e2 iv2P2eiv1P1 is unitary on L2~R2!. Hence, by Lemma5.2, there exists a unitary
operator Za on L2~R2! satisfying

Za
25e2 iv2P2eiv1P1.¬ ~5.4!

Let

qa
1/2:5eipa.¬ ~5.5!

Applying Lemma5.1 with p(X) 5 eiv1P1, p(Y) 5 eiv2P2, weobtain the following theorem.
Theorem 5.3: Let c6(a) and d6(a) be constants satisfying

c6~a!d6~a!56
1

~qa
1/22qa

21/2!2
57

1

4 sin2 pa
.¬ ~5.6!
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Then the following correspondences Pa
6 :$E,F,K,K21%→B„L2(R2)… define representations of

Uq~sl2! with q5qa
1/2:

Pa
6~E!5c6~a!Za~e2 iv1P11e2 iv2P2!,

Pa
6~F !5d6~a!~eiv1P11eiv2P2!Za

21,

Pa
6~K !56qa

21/2e2 iv2P2eiv1P1,

Pa
6~K21!56qa

1/2e2 iv1P1eiv2P2.

In these representations, we have

Pa
6~C!56

~11qa!e2 iv2P2eiv1P11~11qa
21!e2 iv1P1eiv2P2

~qa
1/22qa

21/2!2
.¬ ~5.7!

By Lemma 2.7, we obtain the following theorem.
Theorem 5.4: The representations „Pa

6 ,L2(R2)… have no weight vectors. In particular, there
exist no nonzero finite-dimensional subspaces W6 , such that (Pa

6 ,W6) give representations of
Uq

a
1/2(sl2).

Let

Ua
65Pa

6
„Uq

a
1/2~sl2!….¬ ~5.8!

Theorem 5.5: Let c6(a) 5 d6(a). Then
~i! Ua

6 are * subalgebras of B„L2(R2)….
~ii ! ~Pa

6 ,L2(R2)! are completely reducible.
Proof: Under the assumption, Ua

6 are self-adjoint, since we have

Pa
6~E!*5Pa

6~F !,¬ Pa
6~K !*5Pa

6~K21!.

Note that, if TPB„L2~R2!… commutes with e2 iv2P2eiv1P1, then T commutes with Za . In particu-

lar, Za commuteswith e
2p iQ j /v j , j51,2. Hence $e2p iQ j /v j% j51

2 ,Ua
68 . Thus, by the same reason-

ing as in the proof of Theorem 4.4, we obtain the desired result.¬ j

Note that q2a
1/25qa . Hence „P2a

6 ,L2~R2!… are representations of Uq~sl2! with q5qa . It is
natural to ask if these representationsareequivalent to the representation „Pa ,L

2~R2)… constructed
in the preceding section.

Theorem 5.6: The representations „P2a
6 ,L2(R2)… are not equivalent to „Pa ,L

2(R2)….
Proof: By ~5.7!, ~2.20!, and ~2.21!, we have, for all cPL2~R2!,

„P2a
6 ~C!c…~x,y!56

11qa
2

~qa2qa
21!2

expS 22iaE
C1~x,y;v1 ,2v2!

ADc~x1v1 ,y2v2!

6
11qa

22

~qa2qa
21!2

expS 22iaE
C2~x,y;2v1 ,v2!

ADc~x2v1 ,y1v2!,¬ a.e.

From this expression, it is seen that P2a
6 (C) are not scalar multiples of the identity. @For example,

consider a function cPL2~R2!, cÞ0, with support inS5(0,v1)3(0,v2). Then the support of
P2a

6 (C)c is outside ofS.# On the other hand, by~4.3!, Pa(C) is ascalar multiple of the identity.
Thus, the desired result follows.¬ j

4216¬ Asao Arai: Hilbert space representations of Uq(sl2)

J. Math. Phys., Vol. 37, No. 9, September 1996

Copyright ©2001. All Rights Reserved.



We can prove a more detailed fact on the inequivalence between „P2a
6 ,L2~R2!… and

„Pa ,L
2~R2!…. For this purpose, we prepare alemma. Let

ha
6~l!56

~11qa!l1~11qa
21!l̄

~qa
1/22qa

21/2!2
,¬ lPC.¬ ~5.9!

Note that ha
6 are real valued.

Lemma 5.7:
~i!

s„Pa
6~C!…5$ha

6~l!ulPs~e2 iv2P2eiv1P1!%.¬ ~5.10!

In particular,

s„Pa
6~C!…,@2Ra ,Ra#,¬ ~5.11!

where

Ra5
2u11qau

uqa
1/22qa

21/2u2
5

ucospau
sin2 pa

.¬ ~5.12!

~ii !

sp„Pa
6~C!…50”.¬ ~5.13!

Proof: ~i! We first note that

Ua :5e2 iv2P2eiv1P1

isunitary andUa
21 5 e2 iv1P1eiv2P2. Wehave

Pa
6~C!56

~11qa!Ua1~11qa
21!Ua

21

~qa
1/22qa

21/2!2
.

Relation ~5.10! follows from this expression and the spectral mapping theorem for unitary opera-
tors. It is easy to see that there exists a constantdaP@0,2p! such that

ha
6~eiu!56Ra cos~u1da!, uPR. ~5.14!

Hence ~5.11! follows.
~ii ! Suppose that sp„Pa

1(C)…Þ and lPsp„Pa
1(C)…. Then, by ~5.11!, 2Ra<l<Ra and

there exists anonzero vectorcPL2~R2! such that Pa
1(C)c5lc. Let E be the spectral measure

of Ua :

Ua5E
0

2p

eiu dE~u!.

Then we have

05iPa
1~C!c2lci25E

0

2p

uha
1~eiu!2lu2diE~u!ci2,
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which implies that the support of the measure iE(•)ci2 is included in the set
$uP[0,2p] uha

1(eiu)5l%. By ~5.14!, the equation ha
1(eiu)5l has at most two solutions:

u jP[ 0,2p), j51,2. This implies that one ofE($u j%)c ( j51,2) is not zero and an eigenvector of
Ua with eigenvalue eiu j . But this contradicts Lemma 2.7. Thus sp„Pa

1(C)… must be empty.
Similarly, we can provesp„Pa

2(C)…50”.¬ j

Theorem 5.8: Let (Pa ,W) be any irreducible component of „Pa ,L
2(R2)… „W,L2(R2)…. Then

(Pa ,W) is not equivalent to any irreducible component of „P2a
6 ,L2(R2)….

Proof: By Lemma 5.7~ii !, P2a
6 (C) are not scalar multiples of the identity in any irreducible

components of „P2a
1 ,L2~R2!…. Thus, the desired result follows.¬ j

Remark: It is an open problem to clarify whether „Pa
1 ,L2~R2!… is equivalent to „Pa

2 ,L2~R2!…
or not.
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