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Long-time behavior of an electron interacting with a quantized radiation field 
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Department of Mathematics, Hokkaido University, Sapporo 060, Japan 

(Received 7 August 1990; accepted for publication 19 March 199 1) 

The long-time behavior of an electron coupled to a quantized radiation field is discussed in the 
ground state and in equilibrium states at finite temperatures. The electron is not confined in an 
external potential. The model used is a d-dimensional extension of a standard model (the 
Pauli-Fierz model) in nonrelativistic quantum electrodynamics: The electron moves in Rd 
(d>2) and the radiation field is over Rd. Further, the energy function w of one free photon is 
taken to be a general one. In defining the interaction part of the Hamiltonian of the model, an 
ultraviolet cutoff is introduced for photon momenta with a cutoff functionp and the dipole 
approximation is used. It is proved that at each finite temperature T> 0, the mean-square 
displacement of the electron behaves like (k, Td /m ) t ’ as time t tends to infinity, where k, is 
the Boltzmann constant and m > 0 is a renormalized mass of the electron which should be 
identified with the observed mass of the electron. The long-time asymptotics of the mean 
square displacement of the electron in the ground state is different from that at the finite 
temperatures; it depends on the space dimension d and on the infrared behavior of w and ,& 

1. INTRODUCTION 

In this paper we consider an electron coupled to a quan- 
tized radiation field. The main purpose is to investigate the 
long-time behavior of the electron in the ground state and in 
equilibrium states at finite temperatures in the case where 
the electron is “free,” i.e., not confined in an external poten- 
tial. For a mathematical generality, we use a model that is a 
d-dimensional extension of a standard model (the Pauli- 
Fierz model) in nonrelativistic quantum electrodynamics 
(e.g., Refs. l-3) : The electron moves in Wd and the radiation 
field is over Rd (d>2). Further, we take the energy function 
w ofone free photon to be general. This setting has an advan- 
tage also in physical considerations, because it may give us a 
chance to characterize the physical case: d = 3, w(k) = Jkl, 
k&. In defining the interaction between the electron and 
the radiation field, which is taken to be minimal with AZ- 
term retained, an ultraviolet cutoff is introduced for photon 
momenta with a cutoff function j? and the dipole approxima- 
tion is used. 

* Generally speaking, the long-time behavior of a quan- 
tum particle interacting with a (random) environment is 
connected with its transport properties. An interesting ques- 
tion is then whether the particle diffuses or not. A conven- 
ient quantity to classify the long-time behavior of the parti- 
cle, giving also a criterion for the diffusion of the particle, is 
the mean-square displacement of the particle in a state (e.g., 
Ref. 4 and references therein). From this point of view, we 
analyze the long-time behavior of the mean-square displace- 
ment of the electron in the ground state and in equilibrium 
states at finite temperatures. Thus our first task is to estab- 
lish the existence of the ground state and equilibrium states 
of the quantum system under consideration. However, this 
problem is not so trivial. In fact, in the present case, neither 
the ground state nor equilibrium states may exist, because 
the electron is not confined in an external potential and the 
electron and photons move in the continuum Rd. Taking this 
possibility into account, we first consider the situation where 

the electron is confined in a quadratic potential with a cou- 
pling constant E > 0, i.e., we treat a model of a harmonically 
bound electron coupled to a quantized radiation field.. Con- 
cerning this model, we can show that the ground state and an 
equilibrium (KMS) state at each finite temperature exist, 
Then, by taking the “no-binding limit” e--r 0 of these states in 
terms of correlation functions, we try to define the ground 
state and equilibrium states of the quantum system of the 
free electron coupled to the quantized radiation field. We 
find that the no-binding limit does not exist for the “usual” 
correlation functions ofthe electron position operator. This 
fact may be interpreted as an indication of nonexistence of 
the ground state and equilibrium states in the case where the 
electron is free. We can prove, however, that for the correIa- 
tion functions of the position displacement operator of the 
electron, the no-binding limit does exist. In this way we can 
define a mean-square displacement (Aq(t)Z)M(fi) of the 
free electron coupled to the quantized radiation field in an 
equilibrium state at each finite temperature 6 - ’ and in the 
ground state (,Q = 00 ), where q(t) is the position operator 
of the electron at time t, Aq(t) = q(t) - q, and 1K>O is a 
parameter denoting the “photon mass.” We show that for all 
,&(O,CO) and M>O, 

(AqW2)M(Bl - (dh$)t’ (1.1) 

as t-t co, where m > 0 is a renormalized mass of the electron 
that should be identified with the observed mass of the elec- 
tron (Theorems 4.6 and 4.9). Formula ( 1.1) means that at 
finite temperatures, the electron diffuses with an infinite dif- 
fusion constant. On the other hand, we see that the long-time 
aymptotics of the mean-square displacement of the electron 
in the ground state is different from ( 1.1) ; it depends on the 
space dimension d and on the infrared behavior of w and the 
cutoff function; (Theorem 3.5). 

One might argue that the use of the dipole approxima- 
tion may bephy.sicalZy questionable in the case under consi- 
deration, i.e., in the situation where the electron moves far 
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away from the origin, because the dipole approximation may 
be valid only if the electron stays close near the origin. Un- 
fortunately, we do not have any answer to this question at 
present. We leave this problem for future studies. The pres- 
ent model should be regarded as a mathematical one, which 
may still be meaningful as a model of a quantum (Brow- 
nian) particle interacting with a heat bath (e.g., cf. Ref. 5). 
The present work should be considered a preliminary one 
toward analysis of the long-time behavior of the Pauli-Fierz 
model without the dipole approximation.6 

The outline of the present paper is as follows. Following 
the strategy stated above, we first consider in Sec. II a model 
of a harmonically bound electron coupled to a quantized 
radiation field. We introduce an ultraviolet cutoff/j for pho- 
ton momenta in the interaction between the electron and the 
radiation field, so that the Hamiltonian of the model can be 
realized as a self-adjoint operator in the Fock space of the 
electron and the radiation field. The model is a d-dimension- 
al extension of the model discussed in Ref. 7 in that (i) the 
electron and photons move in Wd (d>2); (ii) the energy 
w(k) of a free photon with momentum keRd is taken to be 
general, including the standard case w (k) = Jm. In 
Ref. 7, the physical case [d = 3, w(k) = lk]] was discussed 
to analyze the mathematical structure of the “Lamb shift” 
and the spontaneous emission of light (cf. also Refs. 8-l 3). 
We show that the present model makes a difference between 
the massless case M = 0 and the massive case M> 0. The 
method to analyze the present model is quite similar to that 
in Ref. 7. Thus we shall state almost all of the results without 
proof. The main results in this section include: (i) the identi- 
fication of the spectra of the total Hamiltonian H, (ii) the 
existence of the ground state of H; (iii) derivation of explicit 
formulas of the vacuum expectation values (VEVs) for Hei- 
senberg operators. 

In Sec. III we consider the no-binding limit E+O of the 
model in the ground state. We show that for the VEVs of the 
electron position operator, the no-binding limit does not ex- 
ist, but, for the VEVs of Aq( t), it does if M> 0; we derive an 
explicit formula for ( Aq( t) “) M, the mean-square displace- 
ment of the electron in the ground state. The mean-square 
displacement of the electron in the case M = 0 is defined as 
the limit of (Aq(t)2),v as M-O. We prove the following 
facts:(i)ifM>O,then(Aq(t)*),isboundedintandhence 
the electron does not diffuse; (ii) if A4 = 0, then the long- 
time asymptotics of (Aq( t)*), depends on d and on the 
infrared behavior of w and /j. Moreover, we show that the 
VEVs of the electron velocity v(t) = dq(t)/dt have the no- 
binding limits. 

In Sec. IV we discuss the case where the quantum sys- 
tem of the electron and the radiation field is in a finite tem- 
perature state. We first construct an equilibrium (KMS) 
state ( *),rr,r (fi) of the model discussed in Sec. II and derive 
explicit formulas for correlation functions of the electron. As 
in the case of the ground state, we show that the no-binding 
limit does not exist for the “usual” correlation functions of 
the electron position operator, but, for the correlation func- 
tions of Aq( t), it does exist. In particular, we derive an ex- 
plicit formula for the no-binding limit of the mean-square 
displacement: 

(As(O*MP) = ~~@q(f)*b,,, CP). 
Then we analyze the long-time behavior of ( Aq( t) ‘) M (/3) 
and prove ( 1.1) . The correlation functions of the electron 
velocity are also discussed. We show that they have the no- 
binding limits and, in the no-binding limit, the correlation 
between v(t) and v(0) persists as (t (-+ CD. 

In Appendix A we give an estimate of a one-dimensional 
integral, which is used in the text to prove the nonexistence 
of the no-binding limit of the VEVs or the correlation func- 
tions of q( t) . In Appendix B we establish an elementary limit 
theorem for a one-dimensional integral, which is applied in 
the text to derive the long-time asymptotic formulas of the 
mean-square displacement of the electron. 

II. A HARMONICALLY BOUND ELECTRON COUPLED 
TO A QUANTIZED RADIATION FIELD 

Models of a harmonically bound electron coupled to a 
quantized radiation field have been discussed from various 
points of view (e.g., Refs. 7-13, see also Refs. 14-19 for their 
scalar field versions). In this section we reconsider one of 
such models in a mathematically rigorous way and summa- 
rize some fundamental properties of it. The model here is ad- 
dimensional extension of the model discussed in Ref. 7. The 
functional analytic method used in Ref. 7 still works without 
any significant modification, giving results similar to those 
obtained there. Thus most of the results in this section will be 
given without detailed proofs. 

A. Definition of the model 

The Hilbert space of state vectors for the harmonically 
bound electron is L *(R’). We use the system of units where 
the Planck constant divided by 2~ and the speed of light are 
1, respectively. We denote by q = (q, ,...,qd)dRd the position 
operator of the electron. The electron momentum operator 
is given by 

a -I- 
%d 

= -iv, 

where the differential operators d/i9qj,j = l,...,d, are taken 
in the generalized sense. 

We use the Coulomb gauge in quantizing the free classi- 
cal radiation field in the Fock representation, so that the 
Hilbert space ofstate vectors for the free quantized radiation 
field is the Boson Fock space 

.F EM = ii @fw, 
II=0 

(2.1) 

over the (one-photon) Hilbert space 

W=L2(Rd)~~*~cBL2(Rd), 
d - I times 

(2.2) 

where o T W denotes the n-fold symmetric tensor product of 
Wwithconvention s:‘~W= @. Let a(f), few, be the usu- 
al annihilation operator in YEM (antilinear in f). For 
r = l,... ,d - 1, and $zL,~(IR~), we define f,cW by 
f, = (O,...,f;...,O) (the rth component is equal tofand the 
other components are zero). The mapping:f+ a( f,. ) defines 
an operator-valued distribution on Rd. We denote the distri- 
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bution kernel by a, (k), kERd. The operator-valued distribu- 
tions Q, (k) and a, (k) * satisfy the standard canonical com- 
mutation relations. 

Let o, (t) be a continuously differentiable, strictly 
monotone increasing function on (0, ~0 ) such that 
w,(l)-+co ast-+co and 

u(k) - e”‘(k) 
2 

X(a,(k)*e-‘k*” - a, (k) elkmx), xdtd. (2.11) 

Let p be a real-valued measurable function on IId such 
that its Fourier transform 

W’ (O)=f$o, (f) = 0, 

and define the rotation invariant function 

(2.3) 

w(k) = WI Cd-1 (2.4) 
on Rd, where M>O is a parameter. We take o(k) to be the 
energy of a free photon with momentum k. The standard 
physical choice for w(k) is given by the case w, (t) = t, so 
that w(k) = dw. In this case, Mmeans the “photon 
mass” (usually M = 0). We set 

w. = inf o(k) = w, (M). 
kd 

(2.5) 

The free Hamiltonian of the quantized radiation field is de- 
fined by 

HF = dkw(k)a,(k)*a,(k), (2.6) 

where summation over repeated indices with respect to 
r = l,..., d - 1, is understood. 

The Hilbert space 7 of state vectors for the interacting 
system of the electron and the radiation field is taken to be 
the tensor product of L * ( Rd) and FEM : 

9 = L2(Rd) @FEM. (2.7) 
We denote by Cl0 the Fock vacuum in ,4”,, and define 
F EM.0 to be the subspace of F EM spanned by vectors of the 
form 

a(f, ) *‘-*a(f,)*S1,, a,, f/~W,j= l,..., n,n>l. 

We set 

(2.8) 
where denotes algebraic tensor product. The subspace 
F. is dense in 7. 

A densely defined closed linear operator A (resp. B) in 
L *(Rd) (resp. 9 EM ) can be extended to an operator Y as 
A o I (resp. I@ B), where I denotes identity. For notational 
simplicity, we shall denote the extensions by the same sym- 
bols. 

Let e”‘(k) be an Rd-valued measurable function on Wd 
such that 

k-e”‘(k) = 0, e”‘(k)*e’“‘(k) = S,, 
a.e. keRd, r,s = I,.+., d - 1. (2.9) 

The vectors e”‘(k), r = l,...,d - 1, serve as polarization 
vectors of a photon with momentum k. The time-zero radi- 
ation field A(x) and its conjugate n(x) are defined, respec- 
tively, as an operator-valued distribution of the following 
form: 

A(x) = 
s 

dk ’ -e(“(k)(a,(k)*e-“‘” + a,(k)e’k’“), 
J2’i;;;Tr;;i 

1 ,G(k) = ~ 
(27T)d/2 s 

dxp(x)e-“‘” (2.12) 

exists with w - “*&C * ( Rgd) . We shall use@ as a cutotffunc- 
tion for large photon momenta. The time-zero radiation field 
with cutoff p is then defined by 

A(xp) = p(x --y)A(y)dy 
s 

XiCi(k)*a,(k)*e-‘k’x_t~(k)LI,(k)e’k’x}, 
(2.13) 

which is essentially self-adjoint on Fo. We take the interac- 
tion between the electron and the quantized radiation field to 
be minimal and use the dipole approximation. Thus the total 
Wamiltonian of the model we aregoing to study is defined by 

H= ( l/2mo )(p - eA(O;p))’ + HF + @q”, (2.14) 

where m, > 0 (resp. E > 0, e&8\ (0)) is a parameter denot- 
ing the bare mass of the electron (resp. the spring constant of 
the harmonically bound electron, the elementary charge) 
(cf. Refs. l-3), The free Hamiltonian of the model is ob- 
tained by putting e = 0 in N: 

Ho = (Who )p* + (d2h-t + HF, (2.15) 
which is self-adjoint and non-negative with domain 
m% 1 = mP*) nmq21 nD(H,). 

Proposition 2. I: Suppose that ,G/w,w’/~$~, 2 (R”) . Then 
His self-adjoint, non-negative with domain D(N) = D(H, ) 
and essentially self-adjoint on every core of Ho. 

Proo$ Similar to the proof of Theorem A.2 of Ref. 7 (cf. ‘, 
also Theorem 3.1 in Ref. 14). The idea of the proof is to ( 
apply the Glimm-Jaffe-Nelson commutator theorem [e.g., 
Ref. 20 (Sec. 19.4) and Ref. 21 (Sec. X.5)] with the “test 
operator” Ho, where the following estimates are used: 

‘I’ED(H~~),~= I,..., d - 1. 

[a,(f)#denoteseithera,(f)ora,(f)*.J m 
Remark: We can also show that D(H I’*) = D(Hh/‘). * 

B. Heisenberg operators 

By Proposition 2.1 the total Hamiltonian H generates 
the unitary group {e”“;t&}, which gives the dynamics of 
the quantum system under consideration. The time evolu- 
tion of the dynamical variables Cq,p,A( x) ,n( x) } are defined 
by the Heisenberg operators 

q ( t ) = eirHqe - ;‘“, (2.16) 
p(t) = eitHpe - i’H, (2.17) (2.10) 
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A(r,x) = eitHA(x)edirH, 
n-(t,x) = eirH77(x)e-“H, t~iR. 

We also define 

(2.18) 

(2.19) 

A(t,xp) = = errHA(xp)e-“W. (2.20) 

In the same way as in Ref. 7, one can show that these opera- 
tors are defined on D(HA”) and satisfy the following equa- 
tions of motion on Y0 nD( H g ) (in the sense of operator- 
valued distribution with respect to variable x) : 

(m0 -$+E)Q(f) = -e&Jdxp(x)*(t,x), (2.21) 

( $+a( -iv)* > 
A,(t,x) =ep,,(x) $g,(t), 

p = l,...,d. 

- eA(t,O;p), 

1 A(t,x) = v(t,x). 

(2.22) 

(2.23) 

(2.24) 

Here the time derivatives are taken in the strong sense, 
W( - iv) is the pseudodifferential operator defined by 

1 u( - iv)f(x) = ~ 
( 2n)d’z s 

w(k$(k)e”‘” dk 

and 

p,,(x) = -!- 
( 277qd’* 

dklj(k)d,,(k)e’k’“, 

with 

d,,.(k) =eF’(k)ey’(k) = S,,. - k,k,/lkl*. (2.25) 
Summation over repeated indices with respect to Greek let- 
ters is also understood. 

The equations of motion (2.21)-( 2.24) are exactly solv- 
able, which allows us to represent explicitly the Heisenberg 
operators given by (2.16)-( 2.19). To do that, however, we 
need some technical considerations. We first define a class of 
the cutoff function p. 

DeJinition 2.2: Let p be a real-valued measurable func- 
tion on Rd. We say that p is in Z( iRd) if the Fourier trans- 
form p is a measurable function on !Rd and depends only on 
IkJ with 

P(k) >O, kERd\(0), 
and 

dk ,6(k)* <co 
co(k)*-&, ’ s 

dk dk)NG* < co, 

where w. is defined by (2.5). 
We shall write also asp(k) =p( lkl). We remark that 

p~%“( Rd) is allowed to tend to zero as k-0. The infrared 
behavior of@(k) affects the long-time asymptotics of corre- 
lation functions of the model under consideration (cf. Ref. 
22, see also Sets. III and IV). 

If&Y ( Rd), then p satisfies the assumption of Proposi- 
tion 2.1. For p&Y( lRd), we define a function D(z) of com- 
plex variable z by 

D(z) = E - zm(z), 
with 

(2.26) 

m(z) = m. + (d ;‘je2 Idk b(k)* 

w(k)* -z * 
(2.27) 

The functions m (z) and D( z) are analytic in the complex cut 
plane 

a=,,=C\[w& + co). (2.28) 

We set 

15~ =oim(uz) (2.29) 

and 

m=m(O) =m, + (dd1)e2 IdkH. 
uW2 

(2.30) 

Lemma 2.3: (i) Let w, = 0. Then D(z) has no zeros in 

(ii) Let w. > 0 and E < eO. Then D(z) has a unique zero 
;1(e)%(O,o~) of order 1 [we take /2(e) >O]. Further we 
have 

A(e)*<dm, 
for all EE(O,E~) and 

il(E)z _ e (d- l)e*ll~-*b11~~ 5 2 + o(E3> 

m md 0 m 
(2.31) 

as e-0. 
(iii) Let w. > 0 and E> go. Then D(z) has no zeros in 

c *u- 
(iv) Let w. > 0 and E = Q. Then D(z) has no zeros in 

C,, but, D( CU; ) = 0. 
Proofi An elementary exercise. a 
Remark: The constant m given by (2.30) is a renormal- 

ized mass of the electron. A scattering-theoretical analysis in 
the case E = 0 shows that it should be identified with the 
observed mass of the electron.3 

Let 7: (w,, 00 ) + (0, CO ) be the inverse function of 
0, (J7qiP): 

q(t) =&-‘(t)*-M2, (2.32) 

where w,~ ’ is the inverse function of w, , and define 

i 

cm - ‘lp(?7tm)l’?7c~)d- ‘?7’(J;T), 
K,(x) = x>w;, (2.33) 

0, x<w;. 
In what follows, we assume the following. 

Assumption K (Lipshitz condition): 

IK,(x+h) -KK,(X)I<CIhlQ 
uniformly in XE!R, as h -+O, with some constants C> 0 and 
0 <a < 1 independent of M sufficiently small. 

This assumption is not empty. For example, if 

d>md2,2p), uI (t) = tP (p>O), 
and /j(k) = const k” exp( - ck*) (c>O, n>O:integer), 
then Assumption K is satisfied. A general sufficient condi- 
tion for Assumption K to hold is discussed in Appendix A of 
Ref. 22. 
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Assumption K and the fact K,d, ‘(R) ensure that K, 
is bounded with 

lim KM(x) = 0 
x-02 

and its Hilbert transform 

1, (x) = J- p.v. 
I 

- K,,(Y) 
- dr IT -co x--y 

(2.34) 

exists for all XER, satisfying a Lipshitz condition with the 
samea asK, [e.g., Ref. 23 (Sec. 5.15)]: 

li,(Xfh) ---I,(X)I<C’IhIn (2.35) 

uniformly in XGR, as h -0, with a positive constant C’ inde- 
pendent of M sufficiently small. 

Let dS(8) be the canonical surface measure on the 
(d- I)-sphereSd-’ and vd be the volume of S d - ‘: 

Vd = I 
2&‘2 dS( 0) = ___, 

s* ’ I?(d/2) 
where T(z) is the gamma function. Set 

yd = v,(d - l)e’/d. 

Lemma 2.4: For all XX&, the limits 

m rt (x;M) = slitno m (x & ia) 

exist and are given by 

m f (x&f) = m, - ryd{IM(x) T K,(x)). 
Moreover, 

inf ]m _ (x;M)I>C, 
.X>lO; 

with a positive constant 
small. 

Prooj We can write 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

C independent of M sufficiently 

m(x + is) =mO -ydYdC(&*KM)(x) +i(P&*K,,,)(x)), 
where P6 and Q, are the Poisson and the conjugate Poisson 
kernel, respectively, 

P&(X) = 6/(x2 + b2), Q&(X, =x/(x2 4 69, 
and * denotes convolution. Assumption K allows us to apply 
a general theory of Fourier analysis (e.g., Ref. 23) to obtain 
(2.38). 

To prove (2.39)) we note that 

Im - (x;M) 1” = (m, - TydzM (xl)’ + y2,7?K, (XV. 
Since IM (x) is continuous in x, we have 

lim{m, -~y~i,(x)}=m(~~)>O. 
x-,0:, 

By (2.35) this convergence is uniform in o0 <a,,, where 
a, > 0 is a sufficiently small constant. For 0 coo < ao, we 
have 

m(ui)>m, + (dd1)e2 J b(k)2 
a} CpTJg) 

=A,, 

where 

cot (MO) =a,. 
Hence, for every EE( O,A, ), there exists a positive constant S 
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independent of w. ( < a0 ) such that 

inf {mO 
W&X<W;+& 

- mA.,W~*>(A, - d2, 

which implies that for OGW, < a0 

02eff’+6/m- (x;W1*>(Ao - d2. (2.40) 
0 

Since K,(X) is bounded and KM& ‘(a), it foflows that 
K,E.L~(R) for all p~[l,co). Hence, 1,&P(R) for 
PE( I,ca 1. Using this fact and (2.35), we have 

pg<,‘Lf (xl I-4 
as x+ ~0 [cf. Ref. 23 (Sec. 5.15) 1. Therefore, for every 
cc(O,m, ), there exists a constant R > 0 independent of 
M < M, such that for all x > R 

inf Im _ (x;M) I” > (m, - 6)“. 
X>R 

We have 

(2.41) 

inf fj(7ftJ;;)b inf 
0: + S\xaR 

,W)=C, >O, 
6,<k<W,’ ‘(iK) 

where 

4 = ksL(,Ju; ‘($Ti$)* - M2 > 0, 

with MO taken to be sufficiently small. Further, using 
(2.32), we can show that 

inf ~(J;;)d-‘s’(~) >C (w ) 
o;+&x<R 26 

2 0 

with a constant C, (w, ) > 0 satisfying 

lim C, ( w0 ) > 0. 
a,--0 

Hence, we have 

inf 
m$ f 6~x6 R 

K,(x12>C> 0, 

with a constant Cindependent ofw, sufficiently small. Com- 
bining this estimate with (2.40) and (2.411, we obtain 
(2.39). n 

Using Lemma 2.4 and (2.26)) we see that the limits 

D+ (x) = slirjlo D(x rt 8) 

exist for all X>W~ and are given by 

D+ (x) =E-xm+ (x;M). 

In the case E#Q, we have 

D, (x)20, x>o$. 
Hence, we can define 

(2.42) 

F,(k)= --ie b(k) 
D- (ti(k)2) ’ 

(2.43) 

for which a remarkable integral formula holds. 
Lemma 2.5: Let f(x) be a measurable function on 

[oo,co) such that [f@o(k))[(F,(k)t’ is integrable on iRd 
with respect to d k. Then 
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dWkW)lF, (k) I* 
2 - 

=- 

s 

,.fw - Im D, (x2) - ‘. (2.44) TY, X 

Prooj Let I( f ) be the left-hand side (lhs) of (2.44). By 
the change of variable x = w, (dm), we have 

Of> = yd j-D dx f(x)~(ww77(X)d- ‘v’(x) 
00 ID- (x2)12 * 

By using formulas (2.38) and (2.42), we see that 

yd ~b?w)*rlwd- ‘Ii’(x) 
ID- (x*)1* 

1 
1 

1 1 =- - 
irx D, (x2) D- (x2) I 

=LImD+ (x*)--I. 
7TX 

Hence (2.44) follows. 
In the case where q, > 0 and E < E,, , we introduce 

c, = ~(w,)O(~~ - E) [A(+./ - D’(A(e)*)] -I, 
(2.45) 

where 0(t) is the Heaviside function: 8(t) = 1 for t > 0 and 
8(t) =Ofort<O. 

An important property of F, is given by the following 
lemma. 

Lemma 2.6: Let l #e0 in the case q, > 0. Let g(z) be a 
meromorphic function on CU { co ] and {a, >f= , (N < 00 ) 
be its poles with a,4,\{O,A(~)*}, n = l,...,N. Then 

(2.46) 

where Res(g(z)/zD(z),a,) is the residue of g(z)/zD(z) at 
z = a,,. 

Prooj Similar to the proof of Lemma 3.4 in Ref. 16: one 
first notes that the lhs of (2.46) is written, via (2.44), as 

Then, by a contour integration ofg(z)/zD(z), one evaluates 
this integral, where Lemmas 2.3 and 2.4 are used. n 

Remark: Let 1, (g) be the integral given by the lhs of 
(2.46) and consider the case o0 = 0. Then (2.46) implies 
that, e.g., for g= 1, 

lim1,(1) = ~13. (2.47) 
S-.0 

On the other hand, for all k4ftd \cO), we have 

y; F,(k) = ie[c(k)/w(k)*m _ (co(k)*;O)] -F,(k). 

If w-‘&L2(Rd), then lF0;02 is integrable [use (2.39)]. 
Hence, in this case, (2.47) implies that 

lim1.(1)#~~dk]F,(k)12, 
C-.0 

i.e., the limit e--+0 does not commute with the integral in 
I, ( 1). This suggests that in the integralof a quantity contain- 
ing 1 F, I*, we have to be careful about the interchange between 
the limit E--+ 0 and the integral. The reason for this subtlety of 
the integral 1, (g) with w0 = 0 becomes transparent if we 
write I, (g) as follows: 

I,(g)=l - 
s 

g(x)v(x> 
n- 0 (E - xw(x))2 + x2v(x)2 

dx, (2.48) 

where 

v(x) = yd71.Ko(x), (2.49) 

w(x) = m. - yddo (x). (2.50) 

We see that the right-hand side (rhs) of (2.48) is not an 
integral to which one can immediately apply the dominated 
convergence theorem to interchange the limit e--+0 and the 
integral Jdx. An asymptotic estimate in E for the integral of 
this type will be discussed in Appendix A. 

For h > 0, we define 

Tch’(kk’) =S PV ’ I1v S(k-k’) 

- ie dW*F, (k)b(k’)d,, (k’) 
w(k)* - w(k’)* - ih 

(2.51) 

and 

(Tg’f )(k) = 
s 

T;h,t(k,k’)f(k’)dk’. (2.52) 

In the case where w, > 0 and E < E,, , we also introduce the 
functions 

56,,(k) = iec,~(~)2dp,WjXk) 
W(k)’ -/l(e)’ ’ 

p,v = l,..., d. 

(2.53) 

We shall denote by ( .,a ) the inner product of L 2( Rd). 
Lemma 2.7: The operator T$ is a bounded linear oper- 

ator on L * ( Rd) and the strong limit 

s - ,JunO T+ Tpy (2.54) 

exists. Further the following identities hold: 
(9 

T%d,, Tpv + (c&o, .)qS,, =d,,I, a,y= l,..., d. 

(ii) 

ecr)T a d T* eCS’ + e(FEe~‘;)F,e~’ = SJ, aR /3P PLY v 
r,s = l,..., d - 1. 

(iii) 

Tzfid,, F, = c,c$,~, a,p = l,..., d. 

(iv) 

e:” T,AL = EC F e”’ t EC23 r= l,..., d- 1, a= l,..., d. 

(v) In the case where w0 > 0 and E < eO, we have 

(~pv,~pa 1 = 6, (1 - 41, a,v = l,...,d, 
and 
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e(&bpv 1 = ic& - mo;l(E)2)8F,,, ,u,v = l,..., d. 

(vi) 
[w2,Tpy] = - ie(/jd,,;)w*F,, p,v= l,..., d. 

(vii) 

eT,,$ = is,,,(c - m,w2)F,, p,v= l,..., d. 

Pro# Similar to the proof of Lemma 3.6 in Ref. 7. H 
The smeared time-zero fields are defined by 

A,(f I= I dxA,(x)fW 

+- {a,(@- *“eK’F) * + a, (w - “*eL)ff) ), 

(2.55) 

for f satisfying w - ““f^EL 2( Wd) and 

q(f)= dxQt(x)fW s 

=-$ {a,(w”2ez)j)* - a,(d”ep?f )}, (2.56) 

for f satisfying ,“*&.E 2( lRd), where J denotes the complex 
conjugation operator: 

(Jf l(k) = f(k). (2.57) 
The Fourier transforms 2P and i;, of A, and ITS are defined 
by 

2Jf 1 =A,(h +-Jf, =n-(j-1, (2.58) 

respectively. 
We introduce the following operators: 

b,(f 1 =+ {r?(jh- “*2i:e~‘)q, + i(floY2F,e~)pp 

+ ip(J( Tz,,ey)&*f )) 

+ i;r,(J(T~~el”w-“*f))}, 

r= l,..., d- l,fd,*(Rd), (2.59) 
In the case where w0 > 0 and E < eO, we also define 

/J = f,...,d. (2.60) 

The domain of 6, ( f ) # and of B f include Fe, where A # 
denotes either A or A *. Further, b, ( f ) # and B ,” leave Y0 
invariant satisfying the commutation relations 

[b,(f )h,(s)*] = &.s(f;s),[b,(f ),b,(g)] = 0, 
f;8d,*(Wd), r,s= l,..., d- 1, (2.61) 

p,,q = &, [&,B,] = 0, ,u,v= l,..., d, (2.62) 

on 3,. We also have 

[Kb,(f I] = - b,(wf ), w-“%qfd2(Rd), 
(2.63) 

[H,B,] = -/WB,, ,u = l,..., d, (2.64) 

on Fe nD(Hg ). 
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The main result in this subsection is the following. 
Theorem 2.8: Suppose that in the case o. > 0, E# co. Let 

fEY(Rd) (the Schwartz space of rapidly decreasing C m 
functions on Rd). Then, for-all t&t and ,u = l,...,d, 

A,(t,f) = (l/v”Z)Cb,(~-l’~e”OeI’)T~~~)* 

+ b,(O-L’2eifoelrtT~yj.)} 

- [ l/~~]C(~~~~,,B,e-“‘~)’ 

+ (+,,,.hB $eiA(c)c}, 

QT,, ( t, f ) = (i/v??) {b, (o*‘*e”‘@eF) T,,,? ) * 

- b, (wl/*eirwe~)Tp,,~f )} 

+ i~~~(J~~~~,)B,e-““)’ 

- b#p,,hB w9, 

(2.65) 

(2.66) 

q,(t) = W~)~b,( wl/*eirme;)F) * + b, ( gl/*eitae;)F) ] 

+ c,&@jE{3~e”“” + B,e- ti(rtc], (2.67) 

Pr* (6 

= (ie/fl) {b, (w - ‘/2ei’oeK)1;3 * - b, (a - “2eic”e~)F)) 

+ [iec,/dm] @deli’- Bpe-i”“c}, (2.68) 
on Y,. 

The proof of this theorem is similar to that of Theorem 
3.1 in Ref* 7 and hence is omitted, 

Using Theorem 2.8, we can express a, ( f ) # in terms of 
b,(f)@ andB,#: 

a,.(f)* =b,(T$df )*+b,(J(T?“~)) 

- (@.p,,,f )BZ - @“,,2)B,, (2.69) 
where 

.?Vd =f( - k) (2.70) 
and 
TI;:“’ = ${@ - ~/2e~)~vpe3,,~~2 t 0~/*e3-&fw - 9, 

(2.71) 

f$‘;‘,, = J{A (E) “*m - “* + A(E) - 1’2&2)q5pve~‘. (2.72) 

By direct computations, one can easily prove the follow- 
ing fact. 

Lemma 2.9: For each r,s = l,..., d - 1, T (.Y is a Hil- 
bert-Schmidt operator on L 2( Wd) with the integral kernel 
T(?‘(k k’) , given by 

T?)(k,k’) = e”‘(k)e’“‘(k’) t P 

X 
iew(k)*F,(k)p(k’) 

2&%&?k%w(k) + w(k)) ’ 
(2.73) 

C. Spectra of the Hamiltonian 

We next state results concerning the spectral properties 
of H. 

Lemma 2.10: (i) Let either we = 0 or w. > 0, e > eo. 
Then there exists a unique (up to constant multiples) vector 
Q>,in9’with~~~,)~=1suchthatforallr=l,...,d-l1,and 
fd *w9, 
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b,(f)@, = 0. 
Further Q0 is in the domain of every polynomial of b, ( f ) #, 
r = l,..., d - 1,jZ ‘(Rd). 

(ii) Let o,, > 0 and E < eO. Then, there exists a unique 
(up to constant multiples) vector Y, in y with I/Y,/] = 1 
such that for all r= l,..., d - ly = l,..., d, and fd ‘(Et’), 

b,(f)‘I’,, = 0, B,Y, = 0. 

Further Y, is in the domain of every polynomial of b, ( f )#, 
r= l,..., d- l,fd,‘(Rd) andB,#,p= I,..., d. 

Prooj Similar to the proof of Lemma 5.6 in Ref. 7 and of 
Theorem 4.3 in Ref. 16. n 

Let 

q,+ + i(4m,E) - “4pp, p = l,..., d. (2.74) 

Then we have 

[A,J :] = &., p,v = 1,.-d, 
on C 0” ( Rd). In terms ofA ,“, the harmonic oscillator Hamil- 
tonian 

h, = p2/2m, + (d2)q2 
can be written as 

h, = 
J 

I-A;A, +$ L. 
mQ J mQ 

Let 

7jQ (q) = (fi/%-)% - @+*‘*, 

which is the normalized positive ground state function of h,. 
We denote by a(H) the spectrum of H and set 

E, = inf o(H)>O, (2.75) 
which is the ground state energy of H. 

Theorem 2.11: (i) Let either w0 = 0 or w0 > 0, E> r,. 
Then there exists a unitary transformation U from 9 onto 
yEM satisfying the following conditions: 

(a) U@, = %, 
(b) Ub,(f)U-‘=a,(f),r=l,..., d-l,f4*(Rd), 
(c) UHU-‘=HF+EO. 
(ii) Let w0 > 0 and E < e,, . Then there exists a unitary 

transformation V from 7 onto itself satisfying the following 
conditions: 
(4 

w, = fcQ @no; 
(b) 

?‘b,(f)V-‘=a,(f), VB,V-‘=A,, 

T = l,..., d - 1, ,U = l,..., d, fd *(Rd); 
(cl 

VHF’-’ =/Z(E)A;A, + HF + EO. 

Prooj Similar to the proof of Theorem 3.1 in Ref. 16. 
n 

Theorem 2.11 shows in particular that Q0 (resp. Y, ) is 
the ground state of H in the case where either w0 = 0 or 
~,,>O,e>e,, (resp.w,>Oande<e,,). 

We denote by aP (H) [ resp. a,, (H), a,, (H) ] the point 

(resp. absolutely continuous, singular continuous) spec- 
trum of H. The part (c) of Theorem 2.11 (i), (ii), and the 
well-known fact about the spectral properties of HF and the 
harmonic oscillator imply the following results about the 
spectral properties of H. 

Theorem 2.12: (i) Let either w0 = 0 or w0 > 0, E > eO. 
Then 

dH) ={Eo)U[Eo +a,,o3), a,,(H) = [E, +wg,co), 
up (HI = @oh a,,(H) = 0, 
where the multiplicity of the eigenvalue E0 is 1. 

(ii) Letw,>Oande<eO.Then 

dH) ={E, +n~Wko’J[Eo +uo,oc)), 

aa, (HI = [Eo + uo,m 1, 

ap (HI = @o + nA(d),m=o, a,,(H) = 0, 
where the multiplicity of the eigenvalue E0 is 1. 

Remarks: (i) In the case of Theorem 2.12 (ii), the 
eigenvalue E,, + nil(e) with n) 1 is degenerate with the mul- 
tiplicity equal to the cardinal number of the set 
C(n , ,-7nd) InI + ... + nd = n,n,>O,p = I,..., d}. Further, 
by applying the Weierstrass preparation theorem, we can 
show that A (E) * is analytic in e* in a neighborhood of the 
origin, having the Taylor expansion 

A(#=-&- e(;;dl) 
0 

X dk /;(k)* 
w(k)‘- E/m0 

e* + O(e4), 

for e* sufficiently small. 
(ii) Theorem 2.12 is interesting also from a point of view 

of perturbation theory of embedded eigenvalues. The unper- 
turbed Hamiltonian H, given by (2.15) has infinitely many 
eigenvalues embedded in its continuous spectrum. Theorem 
2.12(i) showsthatinthecasewherew, = Oorw, >O,E>E~, 
all the embedded eigenvalues of Ho, except for the least one, 
disappear under the perturbation H - H,, . This instability of 
embedded eigenvalues is related to the “resonance” of the 
harmonic oscillator atom modeled by H (cf. Refs. 7 and 14). 
On the other hand, Theorem 2.12( ii) tells us that if w,, > 0 
and E < l 0 , then the embedded eigenvalues of H,, persist, 
changing their position in the continuous spectrum of H. 
Thus the stability of the embedded eigenvalues of H, de- 
pends on the strength of the parameters contained in H. This 
kind of phenomenon occurs also in other models (e.g., Ref. 
15). 

D. The vacuum expectation values and the ground state 
energy 

In the last subsection we have seen that the ground state 
(vacuum) of H exists. Hence we can construct the vacuum 
expectation values (VEVs) of the Heisenberg operators giv- 
en by (2.16)-( 2.19). It follows from Theorem 2.8, Lemma 
2.10, (2.61) and (2.62) that all the n-point VEVs are deter- 
mined by the two-point functions. We first consider the two- 
point functions of the electron defined by 
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(q,wq,(%4., = w,qp(m(~w) (2.76) 

(ppwPywhf,c = (f&, (Op, WJ), WK (2.77) 

where CI ( = a, or Y, ) denotes the ground state of H. By 
using (2.67), (2.68), and Lemma 2.10, we obtain the follow- 
ing formulas: 

b&L (+L (s) )M,c 

+/~(~)~:~-i/l(6)(t-s) (2.78) 

<p(& (QP, 0) hl.f.r 

_ ‘; (‘Cd; 1) ,-dk ‘“:::;I’ ,-io(k>(r--4) 

2C2 
+ c e-iA(E)(f-S) 

A(E) 1. 
(2.79) 

Using formula (2.44), we can rewrite (2.78) and (2.79) 
in simpler forms: 

~4Je?,(~)~hf,e 

/z(dc2, 
+2e - iA(r)Sl 

I 
9 

- Nt- s)x 

X2 
ImD+ (x2)-‘dx 

e-“‘““‘-s’ 

(2.80) 

(2.81) 

Hence, the VEVS of the potential and the kinetic energy of 
the electron are given by the following formulas: 

(~q(f)2)M,C=$~~ImD, (x2)-‘dx 

+ [dWdc:]A, (2.82) 

+ 
d&z 

4m,A.(iz) * 
Let v(t) be the velocity of the electron: 

v(t) =y. 

Then, in the same way as above, we have 

(qA~)%wLf,E. 

Dx2e-i(r-s)XImJ)+ (x2)-‘& 

in particular, we obtain 
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(2.83) 

(2.84) 

(2.85) 

(~v(i)2)M~=f%~,2imo, (x2)-‘dx 

+ [dm&d3C: 114. (2.86) 

As is seen from the above formulas, in the case o. > 0 
and e<eo, the two-point functions (qp ( t ) q, > M,,B, 
(PjJ~&Aw and (v,(t)v,),, do not decay as t-t f, CO 
because of the oscillating part exp( - iA( E) t). On the other 
hand, if w0 = 0 or w. > 0, E > eO, then we can show that 
under suitable conditions, they decay with a power-law, re- 
spectively (see Ref. 22). 

Concerning the VEVs of the radiation field, we consider 
only the following one: 

(a,(t,f )*a,(g)),,~:jfl,a,(t,f )“Qs(gH% 
Jl;gEL2(Rd),r,s= l,...,d - l,t&, (2.87) 

where 

a,(t,f) =eirHar(f)e-“? (2.88) 
To represent (a, (t, f ) *a, (g) )M,s explicitly, we introduce 

f,(t,x,ylE (d- l)e2 o(k)3[F,(k)12e-irock) dk 
d s (dk) + x)fdk) +yl 

and 

2e2 * 
s 

de - itw 
=- 

T 0, (w+x)(w+.P) 

xlmD+ (to*) -‘dw, x,y>O (2.89) 

t”* (k) = 6’h,)&eo - ~1 
ec,A(E)3’2p(k) 
A(e) &u(k) ’ 

(2.90) 

(2.91) 

= 
s 

dk(a,(t,k)*a,(k’)),f(k) g(k’), 

f,s-nRd). 
Lemma 2.13: 

(~,(&k)*~,W)~,,, 

= e”)(k)e(“‘(k’)/ w(k)w(k’) P F 
xiii(k)8(k’lf,(t,w(k),w(k’)) 
+ t,h+ (k)$, (k’)e-“““). (2.92) 

Pro08 We have from (2.69) and Lemma 2.10 

(a,(t,f )*uaw,E = ww~) 
+ (g,#(:j,p 1 (qY’,,,I>e- g(r)‘, 

where in the last equality in (2.89), we have used (2.M). 
Since (a, ( t, f ) *a, (g) ) M,E defines a tempered distribution 
on Rd x Rd, we may write symbolically 

c&(&f )*ah4,r 

where 
W(W) = T(l,s)*e-i‘OfT(F). I 

Using (2.73), we can see that the operator WI’,‘) is an inte- 
gral operator (in fact, Hilbert-Schmidt) with the kernel 
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P(k)e”‘(k’) W’*“(kk’) = p t 9 4” 

Further, it follows from (2.72) that 

@i),p (k’) #($ (k) = $ “““““~‘;;;+(;;‘“+ (k) . 
w w 

Thus (2.92) follows. a 
Formula (2.92) gives an explicit representation for the 

VEV of the free Hamiltonian of the radiation field: 

wAf,c = QyJ dktt24k))/%W2 + 1F,+ (W2), 

(2.93) 

where 

f, 0) =f, (0,x,x). 
We are now ready to obtain a formula for the ground 

state energy of H: 
Theorem 2.14: 

l-73 =%& (!$-x’+;)ImD+ (x2)--ldx 

-I- d /4(m,R (e)2 + E)A (E)C2 

+vj-dkCf,(o(k))j%W+ tjl+ W2). 

(2.94) 

Pro08 We have 

E. = (R,Hi-l). 

By (2.23), H can be written as 

H= (m,/2)~(0)~ + (e/2)q2 + HF. 
Then, using (2.82), (2.86), and (2.93), we get (2.94). 4 

Ill. THE NO-BINDING LIMIT AND THE LONG-TIME 
ASYMPTOTICS IN THE GROUND STATE 

In this section we consider the no-binding limit e-+0 of 
the model in terms of the VEVs and the long-time asympto- 
tic behavior of the mean-square displacement of the “free” 
electron in the ground state. 

A. The no-binding limit 

We first note the following fact. 
Lemma 3.1: (i) Let M = 0. Suppose that 

lim K, (x)/xy> 0 (3.1) 
x-0 

with some constant y>O. Then, for each p = l,...,d, and 
4=R, 

~y4,(t)q,(~))o,,I = a- (3.2) 

(ii) Let M>O. Then, for eachp = l,..., d,t,sr3R, 

ypp(t)qJa4f,,l = a* (3.3) 

Proo$(i)Weprove(3.2)onlyinthecaser=t-->O. 
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The case t = s can be more easily treated. For each 
p = l,...,d, we have from (2.78) 

I Glp (Oqp 0) )o,r I 
>(d- 1) 

2d II 
dko(k)lF,(k)j2costi(k)T 

1 7r 
>2fi c 47 9 -f (4 

where 

f,(a) =ys dkw(k)jF,(k)j2. 
o(k)<a 

We can write 

dx dax> 
(E - xw(x))2 + x2v(x)2 ’ 

where v and w are defined by (2.49) and (2.50)) respective- 
ly. Under condition (3.1)) one can show [e.g., Ref. 23 (Sec. 
5.15)] that 

w(x) - m = 0(x?) (x-+0), 

where m is defined by (2.30). Hence, we can apply Proposi- 
tion A in Appendix A to obtain 

ljyf,(a) = CO. 

Thus (3.2) follows. 
(ii) Let 

R,(t) = 
s 

dkw(k)IF,(k)]2e-i”‘k’t. 

Then, by (2.78), we have for each ,Q = l,..., d, 

(qp (alp (hf,f 

(3.4) 
By (2.39) and the asymptotic property of D _ (x) as x -+wg , 
we can show that 

ID(x - i0) 12>C(x2 + l), x>&, 

with a constant C> 0 independent of E > 0 sufficiently small. 
Hence, we have 

w(k) IE; (k) 12e2wW 13(k) j2/Cb(k)4 + 1). (3.5) 
The rhs of this inequality is independent of E sufficiently 
small and integrable with respect to d k. Therefore, by the 
Lebesgue dominated convergence theorem, we obtain 

s e%Xk) I* !!?A Re(r) = dk w(k)3(m _ (w(k)2;M)12 e -iiO(f-S) ’ 
(3.6) 

We have from (2.31) and (2.45) 

A(E)-&z, c:-l/E, (3.7) 
as E -+ 0, so that 

A(& * cu 

as e-+0. Applying this result and (3.6) to the rhs of (3.4)) we 
obtain (3.3). a 

Lemma 3.1 shows that the no-binding limit does not 
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exist for the VEVs of the electron position operator. This 
may be regarded as an indication of nonexistence of the 
ground state in the case E = 0. We remark, however, that the 
two-point functions of the electron velocity have the no- 
binding limits (see subsection C below). 

We next consider the no-binding limit for the correla- 
tion functions of the position displacement operator of the 
electron 

As(t) = s(f) - q. (3.8) 
It follows from (2.67) that 

Aq, (t) = vZ{b, (w~/*~~)F~@“~ sin t&2) * 

- b, ( ,“*eF)Fc e”@‘* sin t&2 ) 

+ mc,(BZeif’(E”2 sin /Z(e)t/2 

-B,e-“~~““*sin/Z(~)t/2)). (3.9) 
Hence, the VEVs of Aq(t) can also be determined by the 
two-point functions 

@q,,WAqvWL,.r = KLAq,W&.,Wf%, (3.10) 

which are explicitly given by 

tAqp (t)Aqv (~1 Lt,c 

Xsin w(k)’ sin w(k)’ 

2 2 
A(e)t . jZ(E)S + /2(Qc-e- iA(E)(f--S)‘2 sin - fj*n - . 

2 2 I 
(3.11) 

Theorem 3.2: Let M>O. Then, for all ,u, 
v= 1 dts&, ,-**, , , 

l,‘m, (Aq~((t)Aq,(S))M.s~(Aq~(t)Aq,,(s))M (3.12) 

exists and is given by 

(Aq, (O&v (s))M 

&a 
P’y 

(d-1)e2 dk 
d s 

, iWd2 
’ w(k)31m - Mk)*;M)I’ e 

- iolk)(t- s) 

Xsin w(k)’ sin o(k)’ , 

2 2 
Proofi We can write 

(3.13) 

(Aq, (t)Aqt.b))M,c = 2S,, I y R, (4s) + f-6 (6s) 
with 

R,(Q) = 
s 

dkw(k)lF,(k)12e-‘“‘k”‘-“’ 

x sin w(k)t sin w(k)’ 

2 2 
and 

jl(e)t . /Z(E)S r,(t,s) = R(e)c~e-i’(‘)(‘-s)‘2 sin-sm -, 
2 2 

Since M > 0, we have 

o(k)t . w(k)s w(k)F,(k)2e-i”‘k”f-“‘sin~s~n- 
2 2 

<Cw(k)g(k)‘, 
for all sufficiently small E with a constant C> 0 

I 
[cf. (3.5)]. 

The rhs of this inequality is integrable. Hence, by the Lebes- 
gue dominated convergence theorem, we obtain 

lim R, (t,s) = e2 
s 

d k 8(k)* 
E-O dW3fm _ (u(k)2;iM)[2 

Xe- iw(k)(f--2) sin @(iIr sin 0(FI’ , 

By (3.7) and the elementary fact that 
sin x--x 

as x -+ 0, we obtain 

lim r, (t,s) = 0. 
r-o 

Thus (3.13 ) follows. a 
Remark: it is not so obvious whether or not formula 

( 3.13 ) holds also for the case M = 0. This problem is related 
to the subtlety of the interchange between the limit e-0 and 
.fd k in integrals of quantities containing IF, 1” (see Remark 
after Lemma 2.6). To avoid this difficulty, we shall define 
the two-point functions of Aq( t) for the case M = 0 as the 
limit M-+0 of those for the case M>O. See Theorem 3.4 
below. 

6. The long-time behavior of the mean-square 
displacement 

Putting 1= s, ,u = Y, and taking the summation over p 
in ( 3.13 ), we obtain an explicit formula for the mean-square 
displacement of the free electron in the ground state: 

(Aq(t)*), = 2(d - 1 )e* 
s 

dk /i(k)’ 
w(k13[m - ko(k)*;M)/* 

(3.14) 

This formula immediately gives the following result. 
Theorem 3.3: Let M> 0. Then 

s:$ @q(t)‘), < co. (3.15) 

Proof;: By (3.14) and (2.39), we have 

(Aq(f)*),CW - lb2 I dk ock,3,m~;;;k,2 w,2 ; 
Gconst 

s 
dkJ(k)*< co. 

Hence (3.15) follows. a 
Theorem 3.3 means that if the photons are massive, the 

electron does not diffuse in the ground state. 
We next consider the case where the photons are mass- 

less, i.e., M= 0. In this case, we want to define the mean- 
square displacement of the electron as Iim,,, (Aq(t)“),. 
We set 
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m- Cc> =m- (x;O) (3.16) Further, for every EE( 0, 1 ), there exist positive constants a 
and and b such that for all t > 0, 

E(k) = ~1 (lkl). (3.17) (Aq(02)<a6fB + 6,. 

Theorem 3.4: For allp,Y = l,..., d  - 1, t,s&, the limit In particular, for all eE( 0,l) , 

lim(Aq,(t)Aq,(s)),~(Aq,(r)Aq,(s)) 
M-O 

exists and is given by the rhs of (3.13) with w(k) and 
m  _ (o( k)‘;M) replaced by E(k) and m  _ (E(k)‘), respec- 
tively. In particular, we have 

lim (Aq(t)2)/t’= 0. 1-m 
(iii) If (2r + d)/3 <p < (2r + d)/2, then 

(Aq(t)*)wC(d,p)S(4 - (2r+ d)/p)t’3P-2r-dd)‘p 

as t+ CO, where 
(Aq(t)‘) = 2(d- l)e2 

I 
dk ,LW2 

JWd31m - (N#)l’ 

X(sin ?)9 (3.18) 

Proofi We  have from the definition of w (k) [see (2.4) ] 

w(k)>E(k) 
and 

lim w(k) = E(k). 
M-0 

By using (2.39) and the elementary inequality lsin x/x( ~1, 
we have 

where C>O is a constant independent of M  sufficiently 
small. The rhs of this inequality is integrable on Rd. Further 
we can show that for all x > 0, 

lim m  _ (x;M) = m  _ (x). 
M-0 

Thus we can apply the Lebesgue dominated convergence 
theorem to the integral on the rhs of (3.13) to obtain the 
desired result. n  

We  note that formula (3.18) can be written as 

(Aq(t)2) =$J-dx sin2’2 Imm, (x2)-’ (3.19) 
0 

[cf. (2/M)]. 
In the case iU= 0, the long-time asymptotics of 

( Aq( t)‘) may depend on the infrared behavior of w, and of 
& We  assume that 

W I (k) --A,kP, w; (k).-pA,kP-’ (3.20) 

and 

#a) --pok r (3.21) 
as k -+O with some constants A, > 0, p. > 0, p > 0, and &R. 
Note that the condition o - ‘w ‘(Rd> implies that 

O<p<r+d/2. 
Theorem 3.5: (i) If 0  <p < (2r + d)/3, then 

(3.22) 

S,“RP (As(r)*) < 00. 

(ii) Ifp = (2r + d)/3, then 

lim (Aq(t)2) = CO. 
t-m 
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C(d,p) = 2dydp;/m2pA gr+ d)/p (3.23) 

and 

S(a) = I 
m  (sinx/2)2, l<a<3 

0 X= 

Prooj We  can write 

(Aq(Q2) = 2dy, 
s 

co dxf(x)g(tx)dx, 
0 

where 

(3.24) 

(3.25) 

f(x) = ??(xld- ‘wwrlw2 
.+ _  (x2) I2 

and 

g(x) = (sin ~/2)~. 

We  have 

f(x) - f6 1 

m2pA F + dvp x(4p - 2r - d)/p 

and 

g(x) -x2/4 
as x -+ 0. Thus we can apply Proposition B in Appendix B to 
the integral (3.25) to obtain the desired results. n 

Let us apply Theorem 3.5 to the standard physical case: 
d = 3, p = 1, r = 0. In this case, the assumption of part (ii) 
is satisfied. Hence, the electron diffuses very slowly. 

Note that under the condition of Theorem 3.5 (iii), the 
order of the divergence of ( Aq ( t) “) as t -+ CO is less than 1. 
Thus the transport of the electron in this case is not “regu- 
lar” (cf. Ref. 4 for the terminology). 

C. The no-binding limit of the VEVs of the electron 
velocity 

In concluding this section, for a comparison, we consid- 
er the no-binding limit of the VEVs of the electron velocity. 
For M> 0, we have from (2.85) 

= a,,(d - l)e2 dk 
2d s 

2 -iio(k)(t--5) ,6(k) e  
xdc)lm _ (4W2;M)12. 

(3.26) 

Hence, in contrast to the case of the VEVs of the electron 
position operator, the VEVs of the electron velocity have the 
no-binding limits. In the same way as in the proof of 
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Theorem 3.4, we can show that for alIp, Y = l,..., d,t,s&, the 
massless limit 

(vp(t)v~(S))o=~lio (V,(mA~))M (3.27) 

exists and is given by 

S,,(d - l)e2 
(qm~,W)o = 2d 

s 
dk 

x b(k)2e-iE(k)(‘-Ss) 

E(k) Im - (E(ld2)12 ’ 

(3.28) 

The Riemann-Lebesgue theorem applied to (3.26) and 
(3.28) implies that for all M>O 

lim (uP (f)U,)M = 0. (3.29) 
Ifl--m 
Remark: Formula (3.29) with M = 0 can be elaborat- 

ed: under (3.20) and (3.21) with some additional condi- 
tions, we have for each p = l,...,d 

(v,(f)~,,)~-const l/t’2’fd-pp)‘p 

as c-+ m. This follows from a general theorem given in Ref. 
22. 

IV. FINITE TEMPERATURE CASES 

In this section we consider the case where the quantum 
system described by the model discussed in Sec. II is at a 
finite temperature. For this purpose we first construct an 
equilibrium (KMS) state of the model. 

A. A KMS state and correlation functions 
We recall a definition of KMS states (e.g., Refs. 24 and 

25). 
Dejkfion 4. I: Let 8l be a C * algebra and {ar, lrGpt be a 

one-parameter group of *-automorphisms of %. A state (.) 
of 8 is said to be a KMS state at the inverse temperature 
p> 0 with respect to {a,),, if there exists a norm-dense *- 
subalgebra 11, in 8 such that for all A,&%,, the mapping 

R3t+ (Aa,( 

can be extended to an analytic function in the strip 
0 < Im t <p which is continuous on the boundary and satis- 
fies 

(Aaz(B))[z=ia= (BA 1. 
Let %,I, be the CCR *-algebra generated by the Weyl 

operators 

W(f,u,v) = exp i 
i 
a(f)* + a(f) 

t/z + u*q + v*p , 
1 

f= (f 1,“‘) fd-,)EW,U,v&id, (4.1) 
and 91 be the C * algebra given by the completion of !?I0 in the 
operator norm topology. For t&, we deflne cz, :8& -t iB( F) 
(the Banach algebra of all bounded linear operators on 9) 
by 

a,(W(f,u,v)) = eicHW(f,u,v)e- ‘“? (4.2) 
Lemma 4.2: The family {cz,),~ is a one-parameter 

group of *-automorphism of Zo. 

= exp - @,(f,u,v), coth(j?&2)L,(f,u,v)) 

+ coth[P~(W21 lkf, (f,U,Y) 12L (4.7) 

and by extending it to all elements in 8, by linearity. 
Theorem 4.3: The linear functional ( *)M,p (fi) is well 

defined and can be uniquely extended to a KMS state of % at 
the inverse temperature ,& with respect to Ca,lER. 

Proof: We prove Theorem 4.3 only in the case M = 0. 
The other cases can be treated similarly. In the case M = 0, 
the second term in {*} on the rhs of (4.7) does not appear. 
Let & be the CCR C * algebra generated by the Weyl opera- 
tors of the free quantized radiation tield 

W,(f) = exp i( lN2){a(f)* + a(f)}, few, 

and -faf3,R be the one-parameter group of Z!lF defined by 

af(W,(f)) =eitHFWF(f)e-? 

It is well known (e.g. Refs. 24 and 25) that the linear func- 
tional (~)~(fi) on ‘Z, given by 

(W,(f)>.(P) =exp{ - 4f.L coth(Pd2)f,)l 
defines a KMS state of 81x, at the inverse temperature p with 
respect to the one-parameter group {aDER. Using Theorem 
2.11 (i), we can easily see that 

U2W-‘=I!& Ua,(A)Cr-‘=ar(UAU-‘) 
and 

Prooj The group property of a, is obvious. The nontri- (A &e(P) = (=+fu -‘)p 

vial part to be proved is the smjectivity of CY,. For each 
r= l,...,d- 1, wedefineL,:WxRdxRd+L2(Rd) by 

d-l 

L, (f,u,v) = c ( qS% -/- JT’““~, 
*= 1 
+ (~*/2u~e(‘) + +a- “*y.efr))Fc (4.3) 

andMP:WXRdXRd+@by 

Mp (f,u,v) = - ($br;‘,p,f,l - (.L4”“,p) 

+ &WC, up + [ &@Gi] up. (4.4) 
Then, by using (2.65)-(2.68), we can write 

WU,u,v) = exp it lN%{b&(f,u,v))* + b&(f,u,v)) 

+ M, v?u,v)~~ + Mfi (f,u,v) q. 
Hence it follows from (2.63) and (2.64) that 

a,wv,u,v)) 

(4.5) 

= exp i( l/v?) {b,(e”“L,. (f,u,v))* + b,(e’*“L, (f,u,v)) 

f M, (f,u,v)BZe”‘“” + M, (f,u,v) B,e- itA(s)}. 
(4.6) 

which, together with (2.59) and (2.60), implies that 
Ran a, C go. This result combined with the group property 
of a, gives the surjectivity of a,. n 

The above lemma implies that a, extends uniquely to a 
one parameter group of *-automorphism of 3’. We denote 
the extension by the same symbol a,. 

For each fl> 0 (the “inverse temperature” ) , we define a 
linear functional ( s)~,< (p) on %:, by 
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These relations imply Theorem 4.3. a 
The generating function for correlation functions of the 

harmonically bound electron is defined by 

ZJ”‘(u, ,...) u,;t ,,..., t,;M&) = (etifq(tl). ..p.‘qy&p). 

By employing (2.67) and the Weyl relations, we can show 
that 2 i”’ has the following form: 

ly’<k<n ’ ’ k ’ k 
1 A (u.,u ;c.,I ) 

(4.8) 

where 

A, (u,v;t,s) = (o”*F~e(‘)w,Sg (t - s,w)w1’2FEe(‘).v) 

+ A(E>c:S,(t - S,;1(E))U’V, 

&j(u) = (f- 1’2F6e(‘)w,SB (0,~)oYZF6e(‘h) 

+ /1(~)c:s~(o,~(~))I~~2, 

with 

S,(tx) = ei’x+eB”-i” 
, 

p-1 
, tdc,xdR\\O). (4.9) 

Hence, Zl”‘(u ,,..., u n, , ,... t,;M,j3) is infinitely many times *t 
continuously differentible in (u, ,...,u, ). We define the II- 
point correlation functions of the harmonically bound elec- 
tron by 

(q,, (fl P?7p”w)M,,m 

s( -i)” 
d”ZI-“‘(U, ,..., u,;t, ,..., n, t http> 

aul/4 --aunpn u,=...=un= i 
(4.10) 

Then one can easily see that the n-point correlation functions 
are determined by the two-point correlation functions given 
by 

(4, (m, (s) hf.6 cm 
= j{(wl’*FEe~),Sp (t - s,w)o”2F,e~)) 

+ Sp,W)@& -d(d)). (4.11) 

As in the case of VEVs, the two-point correlation func- 
tion (qp (t)q,, (s))~,~ (/3) can be rewritten as 

(Q,w4vwL&v 
cosh(P/2-i(t-s))x 

sinh ox/2 

XImD, (x2) --I 

+ A(E)c: cosh(P/2 - i(t - s))A(e) 
2 I sinh,%(e)/2 * 

(4.12) 

In particular, we have 

w)2hf,,(P) = i- 
s 

- 
7T 00 

dxcoth$ImD+ (x2)-’ 

dA(& 
+- coth =. 

2 2 
(4.13) 

Similarly we can define the correlation functions for the 
other Heisenberg operators and prove the following formu- 
las: 

cosW/2 - i(t - s))x ImD 
sinh /3x/2 * 

cx2j -* + A(E)3~: cosh(B/2 - i(t - s))A(e) 
2 sinh PA(e)/2 ’ 

(4.14) 

(v( t)2)M,r (p) = 4 SW dx x2 coth 9 Im D + (x2) - ’ + dA(l)3c’ c&h v, 
0, 

(4.15) 

(P,(r)p,,(~)),+,Jfi) = f$ ( Z(d; ‘je2 j-dk ;“D”)+;;;:;r;l S&-w(k)) + -$ S&-d/Z(d) 
I 

(4.16) 

cash@ /2 - i( t - s))x & cosh(P/2 - i(t-s))A(e) 
x2 sinh fix/2 

Im D, (x2) - ’ + ___ 
2;1(E) sinhj?/Z(e)/2 

(4.17) 

(P(02)M,,(P) = e 
s 

- dxx-2coth$ImD+ (x2)-‘+ 
de%* F coth pjlo ; 

= 00 U(e) 2 

(a,(f,k)*a,(k’)),,(p) = e~‘We,?(k’) 
eiw(k)t 

&k--k’) .-&? 1 
@m(k) - 1 2 ,/w(k)w(k’)(w(k’) -o(k) - 83) 

(4.18) 
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X 
eiG(k’%(k’)2F6(k’)~(k) 

+ 
ei”‘k’to(k)2F,(k),G(k’) 

@wCk’) _ 1 p(k) - 1 1.l 

+ $+ (k)$, (k’) e-itA”“““’ + $- (k)$- (k’) 
@A(C) - 1 

where 

&(r,x,y) == 
d s 

d k e2,(k)3e’B-“)Wck)~FE(k)[2 
b(k) + xbo(k) +~)(e/7”‘~’ - 1) 

2e2 w2eU3 - it) w 
=- 

s 
m dw 

7r 
ImD, (x2)-‘, 

“0 (w+x)(w+Y)(esw-- 1) 

&.,&x,y)--VJdk 
e2ei”‘k)o(k)31F,(k)[2 

w(k)@(k) -x + iO)(w(k) --y - iO)(&“‘k’ - 1) 
2e2 

=- 

s 
m dw w2eiwt 

lr 
ImD, (x2)-‘. 

% w2(w-x+iO)(w-y-iO)($W- 1) 

Remark: Formulas similar to (4.13 ) and (4.15 ) with 
M = 0 have been given in Ref. 12 where a one-dimensional 
oscillator-dipole coupled to a three-dimensional radiation 
field is considered. The formulas obtained in this section 
include d-dimensional extensions of some formulas given in 
Ref. 12. 

B. The no-binding limit 
Proposition 4.4: Let M> 0. Then, for all 

,f?> O,p,v = I,..., d,t,s&, 

f: 44M wq, (s) )M.e (P) = S,,P - ‘. (4.22) 

Proq$ Let 

L,(t) = (d 
d s 

dk w(k) IF,(k) 12S&,~W), 

&(t) = ~.dC:S&R(E)), 
Then, by (4.11)) we can write 

G&w7vwM,Ew) = qJNL,(L-s) +Z,(r-s,l. 
We have from (3.5) 

4k)ft;:(k)[*S&,w(k))< e2w(k)l~(k)i2 
c(w(W4 + 1) 

The rhs of this inequality is independent of E sufficiently 
small and is integrable with respect to d k. Therefore, by the 
Lebesgue dominated convergence theorem, we obtain 

lim L,(t) = e2(di ‘) 
t--O 

x dk 
s 

l/j(k) I’ 
oW31m _ bCk>*;M)I’ 

S,Aw(k)h 

By (3.7) and 

S/y(f,X) -2&3x 
as x+0, we have 
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(4.19) 

(4.20) 

(4.21) 

I 

4(f)-WE) -’ 

as ~40. Thus (4.22) follows. a 
Proposition 4.4 shows that the no-binding limit does not 

exist for the correlation functions of the harmonically bound 
electron. If we take a scaling for the position operator of the 
electron as 

then (4.22) implies that 

ppp (W)4, (w) )M,e (P) = li,,P - ‘. 

But this scaling limit is uninteresting, because it gives con- 
stant correlation functions. 

We next consider the no-binding limit of the correlation 
functions of the displacement operator of the electron. We 
have from (4.11) 

(Acl, WAqv W,,, (8) 

=z+, (~(m1’2Fcsin~,Sfl(~,w) 

x o’/~F sin J?!- Lc 2 > 
+ adc:sB (y Ad) 

Xsin R(E)fsin /2(E)S 
2 

, 
2 I 

(4.23) 

Theorem 4.5: Let M>O. Then, for all 
8> O,~,Y = l,...,d,t,sER, the limit 

~~(Aq,,(t)Aq,(s)),,(8)~(Aq,(t)Aq,(s)),(P) 
(4.24) 

exists and is given by 

(Aq,(Wq,(~)M8) 

= 2sW ( (d -jj1je2 Idk o(k)3,cF;k)‘;M)(’ 
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XS, (y,o(k))sinFsinw(k)S 

+L. 2Pm I (4.25) 

Proofi Similar to the proof of Theorem 3.4. n 
Remark: Note that in the case of finite temperatures, the 

contribution of the quasioscillator mode B, persists in the 
no-binding limit, producing the second term on the rhs of 
(4.25). 

C. The long-time asymptotics of the mean-square 
displacement 

By (4.25), the mean-square displacement of the elec- 
tron at the finite temperature 6 - ’ is given by 

(AsW2M8) 

= 2(d- l)e2 
s 

dk /j&j2 
w(k131m - (w(k)2;M)12 

Xcothy(sinF)2+&t2. (4.26) 

Theorem 4.6: Let M > 0. Then 

(As(t)2)lw(P) - (dG’m)t* 
ast-co. 

(4.27) 

ProoJ The first term on the rhs of (4.26) is bounded 
uniformly in t~llp (cf. the proof of Theorem 3.3). Hence 
(4.27) follows. n 

Theorem 4.6 shows that in the case of finite tempera- 
tures, in contrast to the case of the zero temperature 
(Theorem 3.3), the electron diffuses with an infinite diffu- 
sion constant even in the case where the photons are massive. 

We next consider the case where the photons are mass- 
less. 

Theorem 4.7: For all fi > 0, t@, 

lim (Aq(02),w(P) = (Aq(O*)(B 
M-0 

(4.28) 

exists and is given by 

@q(H2)(P) = Go(t) + (d/b)f*, 
where 

(4.29) 

G,(t) = 2(d- l)e2 
s 

dk ,W>* 
E(k131m _ (E(k)2)12 

XcothF(sinF)‘. (4.30) 

Proof Similar to the proof of Theorem 3.4. n 
We note that GB can be written as 

Go(t) = (Aq(t)2) + f&(t), (4.31) 

where ( Aq( t) ‘) is the mean-square displacement of the elec- 
tron in the ground state [see (3.18) ] and 

Ho(t) 

=4(d- l)e2 
s 

dk l,WG I* 
E(k)31m _ (E(k)2)12(@E’k’ - 1) 

(4.32) 

Lemma 4.8: Assume (3.20) and (3.21). (i) If 
0 <p < (2r + d)/4, then 

supff,(t) < co. bR 
(ii) Ifp = (2r + d)/4, then 

lim H,(t) = CO. 
f-cc 

Further, for every EE( 0,l) , there exist positive constants a 
and b such that 

HP(t) <at’ + 6. 

In particular, for every eE( 0, 1 ), 

lim H,(t)/t’= 0. 

(iii)‘Ifm(2r + d)/4 <p < (2r + d)/2, then 

,Prooj Similar to the proof of Theorem 3.5. n 
Combining Lemma 4.8 and Theorem 3.5, we obtain the 

following results about the asymptotic behavior of 

Theorem 4.9: Assume (3.20) and (3.21). (i) If 
0 <p < (2r + d)/4, then 

asr--+co. 
(ii) Ifp = (2r + d)/4, then for all EE(O,I) 

ast+a. 
(iii) If (2r + d)/4 <p < (2r + d)/3, then 

(Aq(02)(D) -2 t* + 2C(QW(5 - (2r + d)/p) 
B 

x c (4~ - 2r - d)/p + o( 1) 

ast-+m. 
(iv) Ifp = (2r + d)/3, then for all @O,l) 

(Aq(t)‘)(P)-&r’+ 2C(d,pW(5 - (2r + d)/p) 
P 

ast+w. 
(v) If (2r -I- d)/3 <p < (2r + d)/2, then 

(Aq(02) (0) -& t2 + 2C(4pG’(5 - (2r + d)/p) 
P 

ast-+m. 
Theorem 4.9 tells us that the electron diffuses with an 

infinite diffusion constant and the leading order ( = 2) in 
the asymptotic expansion in t of the mean-square displace- 
ment is independent of the space dimension d and on the 
infrared behavior of w, and /j. The coefficient d/Pm of the 
leading term in each of the asymptotic expansions of 
( Aq( t) ‘) (fi) has a physical meaning: We have from (4.18) 
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(~(t)~)~(8)~~~(~(t)~)~,~(P) =md/B (4.33) 

This formula carries over to the case A4 = 0. Thus for all 
M>O and /? > 0 we have 

(Wf)2)M(8) - [ b2~,UWm2]f2 (4.34) 

as t-+ 00. This may be interpreted as showing that, in the . 9 asymptotrc region t- 00, the electron obeys the free motion 
in the sense of the mean value with the renormalized mass m. 
To elaborate this aspect, let us consider the no-binding limit 
of the velocity correlation functions. Let M> 0 first. Then 
we have from (4.14) 

=ii$ ( (d--i)e2 Jdk 

,W#S&,dW 2 
X@(k) Im _ (m(k)2;M)(2 + %  I ’ 

(4.35) 

This formula carries over to the case M  = 0. By the Rie- 
mann-Lebesgue theorem, we have for each 
p = l,..., d,MaO$> 0, 

lim (U,U)U~)~(B) = l/Pm. 
ItI-m 

(4.36) 

Thus, in the finite temperature cases, in contrast to the case 
of the zero temperature (the ground state), the velocity cor- 
relation does not vanish at It 1 = CO. Formula (4.35) also 
tells us that the mean value of the kinetic energy in the ,U 
direction with the renormalized mass m  is given by 

(p) _ $ I m (d4dlk2 

x dk ri(N2 cothPa(k)/;! 
dk) lm _ (ti(k)2;M)12 ’ 

(4.37) 

We note that the first term on the rhs of (4.37) is just equal to 
the mean value of the kinetic energy of one degree in an 
equilibrium ideal gas at the temperature /3 - ‘. The second 
term on the rhs of (4.37) is regarded as the effect of the 
radiation field on the kinetic energy of the electron. 
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APPENDIX A: AN ESTIMATE FOR AN INTEGRAL 

Let 0 < R < 60 be fixed and E > 0. Let u(x) be a contin- 
uous function on [ 0,R ] such that 

U(X) >O, for all x~(0,R ] (AlI 
and 

lim IJ(x)/x”> 0 t-42) 
x-0 

exists with some a > 0. Further let w(x) be a continuous 
function on [O,R] such that 

Iw(x) - II = 0(x=)(x-0). (A3) 
Then, for each E > 0 and A> - 1, we define the integral 

s 

R 

I(E) = 
Jmx) dx. (A41 

0 (E - xw(x))2 + x2u(x)2 
The purpose of this appendix is to give an estimate in E of 
I(E) 

Proposition A: Let v,w be as above. Then, for all suffi- 
ciently small e > 0, 

C,C-‘<I(E)~c2(1 +c-‘-“) (A51 
with constants Cj > 0,j = 1,2, In particular, if - 1 <A< 1, 
then 

limI(e) = 00. 
e-0 

Proo$ Conditions (Al ) and (A2) imply that 

cl ~u(nVx”<c, < co, x~(0,R ] 
with positive constants ci and c, . Hence, we have 

(A61 

- xw(x)y f c:x2(1 + n) 
dx. 

By the change of variable x = et, we obtain 

I(E))C,El,+a-lJ(E), 
with 

R/e 

J(E) = 
s 

tA+a 
di, 

0 (1 - m(Et))2+ C:t2(‘+a)2a 
Let a > 0 be fixed and 

e<R/(l +a). 
Thenwehave[l,l+a]C[O,R/e].Hence 

s 

I-b-a 
J(E) > 

tA+u 
dt 

I (1 -hu(et))2+ C:f2(*+a)EZa 

(A71 

>L(E) (A81 

1-bcr 
L(E) = 1 

(1 - tW(6r))2 + c3P 
di 

withc, =c:(l +a) 2(* + @ . Further, by the change of vari- 
able t = 1 + PS and by using (A3), we see that 

uE)>E-aN(E), (A9) 
where 

N(E) = 
s 

o/P 1 ds 
0 (s + c4 I2 + c3 

with a positive constant c, . Combining (A7)-( A9), we ob- 
tain 

I(E)>C,&W(E). 

s 

0 
O<$ilrp(E) = 

1 

0 (s+c4)2+c3 
ds< + M, 

the first inequality in (A5 ) follows. 
Let cj, j= 1,2, be as in (A6). Then we have, via the 

change of variable x = er, 
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I(E) <c,c - ’ +“Q(E), 
where 

J(t) <at t + b. (B7) 
In particular, 

Taking S > 0 to be sufficiently small and dividing the integral 
interval into two parts (O,S] and (6,R /E] , we can show that 

Q(E,<c, + c&=-~ + c~E-‘~ 

with positive constants ci, j = 3,4,5. Thus the second in- 
equality in (A5) follows. n 

Remark Let W,(x) be the integrand of the integral 
(A4). Then we have for all xe(O,R] 

fy W,(x) = W,(x) = u(x) 
x2- $fJ(x,’ + u(x)2) ’ 

We see that if 1 - CL <: il, then W, is integrable on (O,R] with 
respect to dx. Thus the above proposition shows that for 
1 - CY <R < 1, the limit e-t 0 and the integral in (A4) are not 
interchangeable. 

APPENDIX B: A LIMIT THEOREM FOR AN INTEGRAL 

Letf be a continuous function on (0,~ > such that for 
some R>O 

I 
Rm If(x)(dx< al (Bl) 

and the limit 

lim x’f(x) =fo #O 032) 
x-0 

exists with some A&R. Let g be a bounded continuous func- 
tion on 10, CO > such that 

~ny(xW#O (B3) 

exists with some constant ,Q > 0. For r&, we consider the 
integral 

J(f) = 
s 

-.fwgw)dx, (B4) 
0 

which converges for 

R<p+l. WI 
The purpose of this appendix is to establish an elementary 
theorem concerning the asymptotic property of J(t) as 
t-+03: 

Proposition B: (i) Let il < 1. Then 

syJ(t) I < m - 

(ii) Let R = 1 and assume thatJg>O and 

f 
m t?(x) -dx= 00. 

0 X 

Then 

lim J(t) = CO. 036) 
t-00 

Moreover, for every EE( 0,l ), there exist positive constants a 
and b such that for all t& 

lim J(t)/t’ = 0. 038) 
r-m 

(iii) Let 1 <A <,v + 1. Then 

lim J(t) -&p$l. 
f-m t A-i (B9) 

Proofi Part (i) is obvious. (ii) Let il = 1. Then, by the 
change of variable tx+x, we can write as 

J(t) =L* h,(:)+dx, 

where 

hA (x) = x’j-(x). 

By (B2) and Fatou’s lemma, we have 

lim J(t)>& 
f-c.2 s 

m g(x) -dx= cc,. 
0 X 

Hence (B6) follows. To prove (B7), we write as 

J(t) = K, (0 +&(t), (BlO) 
where 

K, (t) = 
s 

Rf(x)g(tx)dx, K,(t) = 
0 

Let 

C=maxg(x) >O 
x>o 

and define 

g(x) = g(x>/C. 

Then we have O<g(x) < 1, which implies that for 0 < E < 1, 
g(x) <Cg(x)‘. Using this inequality, we see that 

K, (t)<C,tp: (Bll) 

where 

C, = Cwg (=$y.Jrblxpff(x)dx< oo. 

Obviously we have 

K,(t)<C 
s 

mf(x)dx< m, 
R 

(J312) 

which, together with (B 11)) gives (B7). 
(iii) In this case also, we write J(t) as (BlO). By the 

change of variable tx -t x, we have K, (d s c0 -= ta-1 x[O,rR j(x)h, 
0 0 

f i%+-, 

whereXLo,,R I is the characteristic function of the set [O,tR]. 
The integrand converges to 

for all x > 0 as t-r 00 and is dominated by 

(O:ywRlhrl (y)) -@$!-, 
which is integrable on [ 0, CO ) with respect to dx. Thus we 
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can apply the Lebesgue dominated convergence theorem to 
obtain 

cc ydx. 

ForK, (t), we have the estimate (B12) in the present case as 
well. Thus (B9) follows. n 
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