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Noninvertible Bogoliubov transformations and instability of embedded 
eigenvalues 

Asao Arai 
Department of Mathematics, Hokkaido Uniuersity, Sapporo 060, Japan 

(Received 28 August 1990; accepted for publication 23 January 1991) 

A class of noninvertible Bogoliubov transformations in an abstract Boson Fock space is used to 
construct in the Fock space a family of self-adjoint operators N which are quadratic in the 
annihilation and the creation operators and are of the form W = H, + HI with the property 
that the unperturbed part HO may have embedded-eigenvalues unstable under the perturbation 
Ht. Scattering theory associated with the pair (H,,H) is also discussed. In application to 
quantum field theory, the family of the operators H gives a unified description for the 
Hamiltonians of models of a quantum harmonic oscillator coupled to a quantized scalar or 
radiation field. 

I. lNTRODUCTlON 

A Bogoliubov transformation in a Fock space is a trans- 
formation of the annihilation and the creation operators 
which is expressed linearly in terms of them and preserves 
the (anti-) canonical commutation relations (CCR). There 
have been a number of studies on proper Bogoliubov trans- 
formations so far (e.g., Refs. l-3 and references therein). In 
this paper we are concerned with another type of Bogoliubov 
transformations that may be called noninvertible Bogolhbov 
transformations: A Bogoliubov transformation is said to be 
noninvertible ifthere exist no invertible bounded linear oper- 
ators that implement it on the Fock space under considera- 
tion. It seems that attention has not been paid so much to 
noninvertible Bogoliubov transformations or at least they 
have not been fully exploited. In the present paper we con- 
sider a class of noninvertible Bogoliubov transformations in 
connection with a type of singular perturbation of self-ad- 
joint operators acting in Fock space (see below). The class of 
Bogoliubov transformations under study is defined in the 
Boson (symmetric) Fock space Y,(P) over 
P = Y @ -4 (the direct sum of two Hilbert spaces 5Y and 
&), which is identified with Y, (X) 8 Y,(d). We shall 
show that the noninvertible Bogoliubov transformations can 
be used to construct in 9, (%“) a family of self-adjoint oper- 
ators H which are quadratic in the annihilation and the cre- 
ation operators and are of the form H = HO f H, with the 
following properties. 

(i) The “unperturbed” part H, is of the form 
HO = dI-(h) sl+la~dl-‘(l), (1.1) 

where h and I are non-negative self-adjoint operators in $Y 
and -4, respectively, and &Y(A) (resp. I) denotes the sec- 
ond quantization of A (resp. identity). 

(ii) For a real constant E, H - E is unitarily equivalent 
to&(h) actingin.%,( 

To see what the above result implies, consider, e.g., the 
case where a(h), the spectrum of h, is purely continuous 
witho = [w~,co) (w,pO:aconstant) and a(t) ispurely 
discrete. Then we have 

ow(h)) = Colu [wg,Do), +wh)) = Co), 
o(dw)) = ~,(dru)) = f~Jn”,~, 

with E,, >O (E, = 0), where aP ( * ) denotes point spectrum. 

Hence, 

LT(&,) = fE,~~&.Jko,,m ), 
a,(&,) = fE,kL,, 

which mean that each E,, is also an eigenvalue of HO and the 
eigenvalues E,,hq-, are embedded in the continuous spec- 
trum of H, (we call such eigenvalues embedded eigenvai- 
ues). On the other hand, (ii) implies that 

a(H) = {EhJ[E+ wO,co ), a,(H) = {El. 

Thus all the embedded eigenvalues E, >w, turn out to disap 
pear under the perturbation H,, i.e., they are unstable under 
the perturbation (we may regard E,$ < w0 as eigenvalues 
changing to E under the perturbation H, ). In this sense the 
perturbation HI is singular relative to HO. In this way each of 
the noninvertible Bogoliubov transformations under consi- 
deration can have a connection with instability, under a per- 
turbation, of embedded eigenvalues of a self-adjoint operator 
in the Fock space ,F, (Z?). The present abstract theory has 
apphcation to quantum field theory (QFT). In fact, in con- 
crete realizations of (X.M}, the class of H gives a unified 
description for the Hamiltonians of models of a quantum 
harmonic oscillator coupled to a quantized scalar or radi- 
ation field,+* where the unperturbed part of each of those 
Hamiltonians is of the form ( 1.1). The abstract theory de- 
veloped in this paper clarifies the mathematical structure of 
those models, giving us a satisfactory understanding of 
them. 

We should mention that the idea of the present work is 
already implicit in a previous paper (Ref. 8) where an ab- 
stract and unified formulation is given for models of a one- 
dimensional quantum harmonic oscillator coupled to a 
quantized scalar field. The present paper gives, with a gener- 
ality, an extension and a refinement of results in Ref. 8. In 
applications of the present formulation to models mentioned 
above, the harmonic oscillator is not necessarily one dimen- 
sional. 

The outline of the present paper is as follows. Section II 
is a preliminary section and is of review nature. We define 
basic objects in an abstract Boson Fock space and summar- 
izes some fundamental facts. After introducing in Sec. III 
the class of noninvertible Bogoiiubov transformations to be 
considered and discussing some of their properties, we con- 
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struct in Sec. IV a family of self-adjoint operators H with the 
properties described above. Section V is devoted to scatter- 
ing theory associated with the pair (H,,H). In the last sec- 
tion we mention some examples in QFT. 

Some general symbols used in the present paper are ( *, 
*): inner product (linear in *); ll*II: norm of Hilbert space; 
I(A 11: operator norm ofthe operator A; D(A): domain of the 
operator A; B(GY’, ,PZ ) : the space of all bounded linear 
operators from a Hilbert space Z, to a Hilbert space X, ; 
and B(X): = B(P’,Z’). 

II. FUNDAMENTAL FACTS IN AN ABSTRACT BOSON 
FOCK SPACE 

We first recall the definition of some objects in an ab- 
stract Boson Fock space (e.g., Refs. 1; Ref. 9, Sec. 11.4; Ref. 
IO, Sec. X.7). Let jY be a separabIe complex Hilbert space 
and S”(p) = @ :e be the n-fold symmetric tensor prod- 
uct of .%” with So(~) = 6. The Boson (symmetric) Fock 
space <%, (ST) over Z’ is defined by the completed infinite 
direct sum of S “(P) : 

F,(Gv) = 8 ;=p”(R). (2.1) 
We denote by A (I;?, F&Y, the annihilation operator in 

F, (X) (antilinear in F) , Let R = { 1 0 0 , , ,***, 1~9, (Z) be 
the Fock vacuum and let 

s=fi” (A?) = .d?{A(F] >*A(F,)*-**A(F,)*n, 

Sl(F+V, j = l,..., n,n> l}, (2.2) 
where A“(+.-) denotes the subspace algebraically spanned 
by vectors in {-**I. We denote by A(F)# either A(F) or 
A (F) *. The operators A (F) g leave pfin (P) invariant sat- 
isfying the CCR 
[A(F),AA(G)*l = (F’S), [A(F),A(G)l = 0, F,GEx, 

(2.3) 
where [A,B] =AB - BA. 

We next define operators quadratic in A #. Let J be a 
conjugation on Y, i.e., Jis an antilinear isometry on Zwith 
J2 = 1. For F&Y’ and T&3(8’), we define i%%’ and 
%B(.Y) by 

F= JF, (2.4) 
T= JTJ. (2.5) 
We denote by .YZ(jr,,%‘2) the space of Hilbert- 

Schmidt operators from a Hilbert space Z, to a Hilbert 
space Y2. We set 9, (Z) = 4, (P,Z). For every 
KE/, (x), there exist (not necessarily complete) ortho- 
normal sets {J/J,,},“= 1 and {+,,I,“= I in P (Mmay be finite 
or infinite) and positive real numbers {A, I?= , such that 

f A;<co, 
!$=I 

K= i A,($,,-ML, (2.6) 
!I=1 

where, in the case M = CO, the sum in (2.6) converges in 
operator norm (e.g., Ref. 9, Theorems VI. 17 and VI.22). We 
then define for finite positive integers N 

(A *lK,lA*) = 2 &A(&)*AM,)* 

and 

(A IK,lA) = 5 ~,A(~,M@,). 
“Z, 

The following lemma is easily proved. 
Lemma 2.1: For all W&,, (P), the strong limits 

s-~~II(A*IK~IA*)Y=(A*(K~A*)Y 

and 

s-~-m~(AIX;,IA)Y~(AIKIA)Y 

exist. Moreover, the operator (A #IK IA #) defined on 
Yfin (Z’) is closable and 

(A*IKIA*)*=(AIK*IA) on Ffin(%). 
We denote the closure of (A #IR IA *> by the same 

symbol. 
It easily follows from the definition of (A #IK IA #> 

that 
(A #IK JA #) = (A #Iti *IA *). 

Lemma 2.2: Let K , ,..., K,,d2 (Z). Then, for all 
\I/&+-,,, (A?),n)l, and fork;.&Y’,j= l,..., k, k>l, 

‘I’&( (A #IK, (A #) * * * (A “(K, (A #) ) 

and 
(A#IK,IA#)...(A#IK,IA#)Yd)(A(F,)#...A(F,)”). 

Moreover, for all AYEN, (A?) and Fe, 

[A(F)*,(A *IK IA *)I = 0, 

[A(F),@ *lKIA *)I =AU@* (2.7) 
on Ffin (Z), where 

KS =K+??*. (2.8) 
Prooj Cf. Ref. 2. n 
Using Lemma 2.2, we can prove the following lemma. 
Lemma 2.3: Let K,Lti, (A?) and set 
Q>,, = (A *(L (A *)“C& Y = 0,1,2 ,... . 

Then 
(A IK \A )Q+, = 0, (A IK IA )QI = Tr(KL,)@“, 
(A (K(A)@, = YT~(KL,)@,,_, +Y(Y- 1) 

x (A *IL,Kz:IA *)Q,,--2, ~$2, 

where Tr means trace. 
Let C(Z, ,ZZ ) denote the set of densely defined closed 

linear operators from a Hilbert space X, to a Hilbert space 
GY, and set C:(x) = C(A?‘,Z). 

For &G(Z), we denote by dl? (S) the second quantiza- 
tion of S. The special case S = I gives the number operator 
N 

N= aT(l). 
The following estimates are well known: 

llA(F,#Yu((~((F(((((N+ 1)“2*(1, ‘I’EDW”‘~). (2.9) 
Lemma 2.4: Let S&( GY) and define 
5Ss = Z’{A(F,)*...A(F,,,)*fI, 

l2(QzD(S), j= l,..., m,m) I}. It=1 
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Let {e, 1, be a complete orthonormal system (CONS) of8 
with e,ED(S*) for all n. Then, for all YES;,, 

3 - il’-“, 2 Ace, )*A(S*e, )Y = dl?(S)Y. 
tl=I 

Proof: An easy exercise. n 
In the same way as in the proof of Lemma 2.4, we can 

prove the following fact. 
Lemma 2.5: Let r be a Hilbert space and 

S,TK(X,P) such that D(S)nD( T) is dense and 
ST*&(Z). Let {e,i 1, be a CONS of Z with 
e,ED(S)nD(T) for all n. Then, for all <DEZ?~. and 
Y&,,*, 

s-l’_” Qp, i A(Se,,)*A(Te,lY) =(@,dr(ST*)Y). 
tt = I 

We here extend a terminology: We say that an operator 
T is Hilbert-Schmidt if D(T) is dense and the closure is 
Hilbert-Schmidt. Also in this case we write TES, ( +;). 

Lemma 2.6: Let KE/~ (Z) and &G(,Z’) such that 
??*K TcY-, ( 3Y). Then, for all V>l, 
(A *[K /A *) “&zD(dT (S) *) and 
dT(S)*(A *jK IA *}“a 

= v(A *[K$ IA *) (A *flu IA *)“- ‘s1. 
Proof: Use Lemma 2.4. n 
We introduce a subset of 4, (Z). 
Definition 2.7: We say that KE/, (.W) is in the set 

HS, (G?‘) if IlK II < 1 and K = E *. 
Let 
g = f--IF,, D(N”). (2.10) 
LeLma 2.8: Let KEHS, (Z) and YePfin (P). Then 

s- lim i ( - 1)” (A *IK }A *)W 
n--2 v=o 2”Y! 

zexp - 
I 

(A * tK IA *> y 
2 

exists and belongs to ,@ rr . 
Proof: See Refs. 1 and 2. q 
By virtue of Lemma 2.8, for KEHS, ( ??‘), we can define 

a vector R ( K)ELZ m by 

- (A*lKIA*) 0. 
2 1 

(2.11) 

Here, NC, >O is the normalization constant so that 
Ilfi(K>[l = 1. Explicitly N, is given by 

No = {det(l-- K*K)}“4, 
where det (I + A) denotes the determinant of I + A with A 
being trace class (e.g., Refs. 1,2, and 11). 

Finally we derive an equation satisfied by R(K). 
Lemma 2.9: For all FLY and K&S, ( ??), 
(A(F) + A(KF)*)fi(K) = 0 (2.12) 
Prooj Let 

a,,(K) = i ( - 1)” ‘“*E;;*‘v fiR. 
I) = 0 

Then, by (2.7) and the fact K = ??*, we have 
A(FN-.l,,(K) = - A(KF)*sZ,,-, (K). 

Taking thelimit n- CO oftheboth sides, weobtain (2.12). n 

Ill. NONINVERTIBLE BOGOLIUBOV 
TRANSFORMATIONS 

In this section we consider the case where the Hilbert 
space Z is given by the direct sum of two Hilbert spaces X 
and L: 

;rlc”= X63Lk9 (3.1) 
so that we have 

&(-“(“I =.F,(c%“) e.F,(./k). (3.2) 
To avoid notational confusion, we denote by 6( f)&Z 
[resp. a(u), UG&] the annihilation operator in s,(Z) 
[ resp. ,4”, (J?) I. We shall write vectors in Pas f B) u&X, 
UG&‘. Under the identification (3.21, we have 

b(flel=A(f~O), fU’-, (3.3) 
Isa(u) = A(Oe, u), u&. (3.4) 
Let V, WEB ( x 1 and P,QcIEB ( X,-G? 1 satisfying the fol- 

lowing conditions: 
(Cl) w*_w-- I/*v +Q*Q-P*P=I, 
(C.2) W”V- V*w + Q*%- P*o=O, 
(C.3) ww* - FF* = I, 
(C.4) VW” - F7* = 0, 
(C.5) Qw* -m* = 0, 
(C.6) QV* - 7 &‘* = 0, 
(C.7) QP* -p;e* = 0, 
(C.8) the operator 
&QQ*-F,Tj* (3.5) 
is bijective. 

For each fez’“, we define B( f) by 

- 
-i-Ic3a(Qf) +l@a( Pf )*. (3.6) 

Obviously .Ffi, (2%D(B( f ))flD(B( f )*) for all f&Y, 
which implies that B( f )* is densely defined and hence 
B(f) is closable. We denote the closure of B(f) by the 
same symbol. The operator B( f ) * leaves Ffin (P) invar- 
iant, Moreover, conditions (C. 1) and (C.2) imply that 
[B(f MW)*l = (f,s), [B(f ),B(g)l =O, j&S”, 

(3.7) 
on <FE,, (,w’), i.e., B( f)# ‘s satisfy the CCR. Thus (3.6) 
gives a Bogoliubov tranformation of {b ( f ) # 8 I I fGX}. 
This Bogoliubov transformation may be noninvertible as the 
following proposition shows. 

Proposition 3. I: Suppose that 

dimn,,. KerB(f)<m. (3.8) 
Then there exist no invertible bounded linear operators 
T, tiy, ( %r) --+F,% (.-X) such that 

T(b(f 1 eW= B(f 1, fE3?. (3.9) 
Pro08 Suppose that (3.9) holds with Uinvertible and let 
yu(u ,,..., 24,) = U-‘f@a(u, )***.lea(u,)*St, 
u,fuT,j= i,..., n, n>l. 

Since b( f 1 Q I and Is a(u) commute on <Fs,, (P) and 
(b( f 1~31 fin= 0, it follows that for all fE2?, 

(b(f 1 eI)W(u,,...,u,,) =o 

1840 J. Math. Phys., Vol. 32, No. 7, JUIY 1991 Asao Arai 1840 



and hence 
B(f)Y(u , ,...,u, 1 = 0, 

which, however, contradicts (3.8). n 
In what follows, we shall show that under an additional 

condition, (3.8) is true and hence the Bogoliubov transfor- 
mation (3.6) is really noninvertible. 

For &B(x) and &B(;T,&), we define 
S(A,B)dt(3”,~?‘) by 

S(A,B)f = Af@ BA f~;r. (3.10) 
For notational simplicity, we set 

S(A,B) = Js(A,B)J. (3.11) 
It is straightforward to see that (C.l)-(C.7) are equivalent 
to the following conditions: 

St KQ) *St W,Q) - S( KP) *SC VT) = 1, (3.12) 
S( W,Q) *SC V,P) - St V,P) *SC W,Q) = 0, (3.13) 
St W,Q)S( W,Q,* -SC ?‘,P)s( V,P)* = S(Z,R), (3.14) 
S( l’,P)S( W,Q) * - SC W,Q,s( F’,P)* = 0. (3.15) 

Lemma 3.2: The operator S( FV,Q) is bijective. 
Prooj Throughout the proof, we set S( W,Q) = Y. We 

see from (3.12) that 
Y*Y>l (3.16) 

and that Y * Y is bijective, which implies that Ran Y * (the 
range of Y *) equals .r and that Y is one to one. It is well 
knowni that for all densely defined closed linear operators 
S from a Hilbert space to a Hilbert space, 

o(s*s)\{o} = a(ss*)\{o}. 

Hence (3.16) implies that 
o( YY*)\colc [l,co). 

Thus we need only to show that Ker YY* ( = Ker Y*) 
= (0). Let &Ker Y * sothat Y*F= O.Then (3.15) andthe 

injectivity of Y give S( V,P) *F = 0. Putting this into (3.14), 
we get 

S(Z,R)F= 0, 

which, together with (C.8), implies that F= 0. n 
The proof of Lemma 3.2 shows also that 
a(S( W,Q)*SC W,Q)> = o-C% w,Q)SC w,Q)*>c C 1,~ 1. 

(3.17) 
Lemma 3.2 allows us to define 

X = s( F’,P)s( W,Q) - ‘d.%(%‘). (3.18) 
Lemma 3.3: The operator X satisfies 
z’=x* (3.19) 

and 

IIX II < 1. (3.20) 
Proofi Formula (3.19) follows from (3.13) and Lemma 

3.2. We have by (3.12) 
-- 

x*x=z- (YY*)-‘, 
where we put Y = S( W,Q), and hence 

llXFl1’= llFll* - II(YY*) - “2Fl12, FGX. 

On the other hand, we have 
II(YY*)-“*~~l>,cllFII =cllFll, F#. 

withO<c= I](YY*)1’2]]-‘<l [cf. (3.17)].Therefore, 

llXFl12< ( 1 - c2) llFl12, 
which implies that &X I( cd= < 1. Thus (3.20) fol1ows.m 

We now state the main result in this section. 
Theorem 3.4: Suppose that X&, (Z). Then: 
(i) X belongs to HS, (Z?) . 
(ii) Let n(X) be given by (2.11) with K=X. Then 

a(X) is a unique (up to constant multiples) vector Y in 
D(B( f )) such that for all&%“, 

B(f)‘J’ = 0, (3.21) 
and the subspace 

C-B J* ,in = Y{BCf, )***-B(f,)*fiZ(X), 

sR.(X)IJf;X,j= l)..., n,n>l} (3.22) 

is dense in 9, (Z) . 
Prooj Part (i) follows from the assumption and Lemma 

3.3. Note that B( f) can be written as 
B(f) = 4% W,Q)f) + 4% WY)* (3.23) 

on D(N”‘). Hence, by Lemma 3.2, for Y& oo, the equa- 
tions B( f ) \I, = 0,&X, are equivalent to 

{A(F) +A(XF)*}Y = 0. 
Hence, (2.12) gives (3.21) with \v = R(X). 

We next prove the uniqueness of fl (X) and that .F,& is 
dense in F, (A?). We denote by .R,,, the Fock vacuum in 
F,(X). Let yR be the closure of ,Ffi”n. Define 
v:cF,B, +tFfin (3”) by 

cm(X) = a,y, 
u&f, 1 *..*B(f,)*R(X) =b(f,)*...b(f,)*R,,T, 

J;EX,j= l,..., n,n>l, 
and extending it by linearity to .4”̂ ,8, . The operator U is well 
defined and extends uniquely to a unitary operator from yB 
toF,(Xr).ByLemma2.8and(2.9),wehaveZ,B,Cg)m. 
Moreover, using the unitary correspondence between y& 
and Sz,, (X), we can show that every vector in %;“f,, is an 
analytic vector for the symmetric operator 

@B(f) = (l/vV{B(f) t-B(f)*}. 
Let rP (F) be the Segal field operator in .F, (Z) : 

a(F) = (l/v?){A(F) +A(F)*}, 
which is essentially self-adjoint on .-Fe,, (Z); we denote the 
closure by the same symbol. Using (C.3)-(C.7), we have 

b( f, sZ= B( W*f, - B( V*y,*, f&Z’., (3.243 

lea(u) = B(Q*R -‘u) - B(P*R -‘ii)*, UG~. 
(3.25) 

on D(N “2). Hence, @(F) is written as 
Q(F) =aB(T,F-JT2F), FEZ?, 

where Tj&(Z,X), j = 1,2, are defined by 
T, (feu) = W*f-t Q*R -‘u, 

T,(feu) =p*f+P*R -‘u. 
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Thus, for all Fe, every vector in 9:” is an analytic vector 
for @(F) . It turns out that for all F&Y’, exp i+( F> leaves 
F’invariant. Since {exp i@(F) IF@} is irreducible (e.g., 
Ref. 10, Appendix to X.7, Lemma 1 ), it follows that 
FB=Fs(2Y), i.e., 9:” is dense in Y, (p) . Using this 
result, one can easily prove the uniqueness of R (X) . n 

Theorem 3.4 and Proposition 3.1 imply that, if 
XGY’~(Z), then the Bogoliubov transformation (3.6) is 
noninvertible. 

In concluding this section, let us represent the operator 
X explicitly in terms of {P,Q, V, W). 

Lemma 3.5: For all fc% and UE&‘, 

St W,Q) -‘(feu) 
= (1 + V*V+P*P)-‘(W*f+Q*u,. (3.26) 

ProojI- Let TEB(R’,~) be the operator defined by the 
right-hand side of (3.26). Since we already know that 
S( W,Q) is invertible, we need only to show that 

TS( W,Q) = I. 
But this easily follows from (C. 1). n 

We can represent f e u&V as a column vector: 

feg). 

In this representation, every ?M%( Z?) can be uniquely writ- 
ten as 

(3.27) 

with T,,WX), T,,EIE~~W,~“-), T,,dNX,Ll/), 
T,,EB(~&). It is easy to see that Td, (G’Y) if and only if 
each T, is Hilbert-Schmidt. 

Lemma 3.6: Let X be given by (3.18) and put 
z= (l+ v*v+ P*P) --I. (3.28) 

Then 

X= VZW” VZQ* 
PZW* > PZQ* . 

(3.29) 

Proof: By Lemma 3.5, we have for all&.x/ and UG& 
Rfce u) = S( V,P, (ZW*f -t- ZQ*u 

= (VSZ*f+ VZQ*u)&,(PZW*f+PZQ*u), 

which gives (3.29). n 
As a corollary of Lemma 3.6, we have the following. 
Corollary 3.7: The operator X is Hilbert-Schmidt if and 

only if VZW *, VZQ *, PZW*, and PZQ * are Hilbert- 
Schmidt. 

IV. A FAMILY OF SELF-ADJOINT OPERATORS 
The purpose of this section is to show that the (nonin- 

vertible) Bogoliubov transformation (3.6) can be used to 
construct a family of self-adjoint operators H, acting in 

9, (Z), with the properties described in Introduction. The 
idea underlying our method is to findHas an operator “diag- 
onalized” by the Bogoliubov transformation. 

Let Kd, (&,Z), so that it can be expressed as 

K=CA,($,,-14, (the canonical form), 
tl 

where {$,, ) ( resp. (4,)) is an orthonormal set in .M (resp. 
X). As in Sec. II, we can define 

(b*IK/a*) =C;l,b(~n)*~~.169a(~,)*, (4.1) 
n 

(b IK Ia) = C R,b($, 1 el*lea($,p 1. 
n (4.2) 

on Fe,, (C;r). Similarly, for MEcJz2 (5’?,&), we can define 
the operator (a#fM lb “> on Ffin (Z). We have 

(b Iii: la)* = (a*IK *lb *) (4.31 

on ,4;c^,, (JY). The following fact is easily proved. 
Lemma 4.1: Let Kd, (Z’) and K = {Kc) be the ma- 

trix representation of K as in (3.27). Then 

(A #JK IA “> 
= (b#IK,, Ib#)eI+ (b#lK,,fa#) 

+ (a#& 16 #) + f@ (a#lK,, Ia*) 
on Ffin (Z). 

(4.4) 

For a densely defined closable linear operator 
L:d -+X and L ‘:Z --+J (we denote their closure by the 
same symbol, respectively), we define (b *IL /a) and 
@*IL, ‘lb ) by 

(b*IL Ia) = dr(i t), 

(a*lL’lb) = dl$, i) . (4.6) 

In what follows, we assume also 
(C.9) xE.x, (X). 
Let h be a non-negative self-adjoint operator in x such 

that 
Ker h = (01, JhJ = h, 

and the following (C. lo)-( C, 12) are satisfied. 
(C.10) The following operators are all Hilbert- 

Schmidt: 
VhW*,VhQ*,PhW*,PhQ*,WhV*,QhV*,WhP*,QhP* 
,$ WV* h ‘f’zp* 

(C:l 1) The operators 
-- 

WhW*+ VhV* and -- 
QhQ * f PhP * are self-adjoint. 

(C. 12) The operators WhQ* +-FhF* and 
Qh W * + Fhv * are densely defined and closable. 
Conditions (C. lo)-( C. 12) allow us to define 

-- 
H=dT(WhW*+ VhV*)~l+iedI’(QhQ*+~h~*)+ (b*/WhQ*+?%~*la) + (a*lQhW*+&p*lb) 

+ (b*IWhV*(b*)@DI+io(a*lQhP*la*) + (b*lQhV*la*) + (a*lWhP*lb*) -I- (bIVhW*/b)@i 

+ Is (a(PhQ *la) + (b jPh W*[a) + (al VhQ *lb ). (4.7) 
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Condition (C-12) implies that D(hF*) flD(hW*) and 
D(kP*)nD(hQ*) aredenseinXandin&, respectively. 
Hence, the subspace 

Do(H) = -%4(f, ~u,)***.A(f, eu,)*filjj 
d)(hT*)nD(hW*),u,czD(hTi*)nD(hQ*)} 

(4.8) 
is dense in .%,(%‘). It is easy to see that D,(H) CD(H). 
The main result in this section is the following theorem. 

Theorem 4.2: The operator H is essentially self-adjoint 
on DO (H) and 

HZE, (4.9) 
with 

E = - 11 Vh “211;s - I(Ph 1’2~~~s, (4.10) 
where 11. llHs denotes Hilbert-Schmidt norm. Moreover, the 
closure of the operator 

&H-E (4.11) 

is unitarily equivalent to dI (h) acting in 7, ( jY). 
To prove this theorem, we prepare some lemmas. The 

following lemma explains the origin of H. 
Lemma 4.3: Let {e, 1, C D( h “2) be a CONS of z/ and 

define 

H,\ = $ B(h “2e,)*B(h “‘en). 
“=, 

(4.12) 

Then, for all Y,@ED, (HI, 

lim (@,H,Y) = (@,%I’). (4.13) .r- cx 

Pro08 We set T = S( V,P) and Y = S( W,Q). Using 
(3.23) and (2.3), we have 

(Q> H,,t’l’) 7 = S!;’ + Sg’ + .Sc3’ N , 
where 

S $ ) = 
( 

Q>, 2 {A ( Yh ‘12en ) *A ( Yh “2en ) 
n-1 

+ A (Th “%n ) *A (Th “2F?n ) )Y) , 

s,y= Q 
( ,.$, {A(Yh “2e,, ) *A (Th “2Zn ) * 

+ A( Yh “‘en )A(??h “2F,, )}q) , 

S $’ = C ll’?‘h “2en II*. 
n=I 

By Lemma 2.5, we see that 

lim Slyl)= (@,{dI-( YhY*) + dI-(ThT*)}Y). .v- x 
Moreover, we have 

lim .S’$’ = (@((A *JYhT*IA*) + (A IThY*IA))W), 
.\ - * 

lim S$’ = -E. s- r 

On the other hand, it is straightforward to see that 
-- 

Cdl-( YhY*) + dI-(ThT*) + (A *IThY*(A *) 
-- 

+ (A I YhT*IA )}‘I! = H’l’. (4.14) 
Thus (4.13) follows. n 

Lemma 4.4: The operator sis symmetric and non-nega- 
tive. Moreover, the commutation relations 

[&W31 = -B(W), f&(h), (4.15) 
hold on DO (H) . 

Prooj The non-negativity (hence symmetricity ) of fi 
follows from that of HN and Lemma 4.3. We have for all 
Y,-Q, (HI 

=-- 
( 

@, 2 (J,h “2e,)B(h “‘e,)\I! 
n=l > 

+ - @,B(hf)W 
as N-, CO, which, together with Lemma 4.3, implies 
(4.15). n 

Lemma 4.5: Let R(X) be as in Theorem 3.4. Then, 
fl(X)ED(H) and 

h(X) = 0. (4.16) 
Proo$ Set T = S( V,P), Y = S( W,Q). Using Lemmas 

2.3, 2.6, and (4.14), we have 
-- 

&-k(X) ={(A*IThY*IY*) + (A*IX?hy*XIA*) 
-- 

- (A *lXYhY*IA *) - (A *lXThT*IA *) 

- Tr(Y*hT*X) + IITh “*ll&&(X). 

Note that 
-- -- 

Tr( ThY*X) = Tr( ThT*) = IITh “‘ll~,, 
-- -- -- -- 

XYhY* = Thy*, XYhT*X= ThT*X, 

and 
-- 

(A *IThT*XjA *) = (A *lXThT*IA *), 

since x = X *. Thus (4.16) follows. n 
Proof of Theorem 4.2: We have already proved (4.9) 

(Lemma 4.4). Let .7,8,, FB, and U be as in the proof of 
Theorem 3.4. Define 

Let *ED,(H) andAED(h),j= l,..., n.Then, by (4.16) and 
(4.15), we have 

0 = (h-uXLB(f, 1.-.B(f,)W 

= - 
( 

a(X), i B(f, )...B(hjJ)*..B(f,)‘l’ 
j= I > 

+ (fi((X),B(f, )-*.B( f,,LY), 
which implies that B( f, ) *.*.B(f,)*fl(X)&(L *) and 

L*B(.f-, 1 *...B(f,)*sZ(X) 

= j$ B(f, )**..B(hJ;)****B(f,)*NX). 

Hence, we obtain 
UL*U-‘=dT(h) (4.17) 
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on the subspace 
D&W)) = -2%<f, I**-*b(f,)*fi,,, 

fL&ED(hLj= l,...,n,n>l). 
Since Do (dT (h )) is a core of dI’( h ) and L * is closed, it fol- 
lows that L * is self-adjoint. By a general theorem, L ** equals 
z, the closure of L. Thusz is self-adjoint, i.e., L is essentially 
self-adjoint. The unitary equivalence of z to dT(h) follows 
from (4.17). n 

It is obvious that H can be rewritten as H = H, + H, 
with H, given by ( 1.1). Thus we have accomplished the 
main purpose of the present paper. 

V. SCATTERING THEORY 
In this section we discuss scattering theory associated 

with the pair (H,,H), where H,, is given by (1.11. 
Lemma 5. I: For allfzD( h - I’*) and YED( H ‘j2), 

jlB(f)‘J’ll<flh - ““fIl@“~lt, (5.1) 

IIB(f~*‘W4lh - ““flllt~““~II + lIfIlll’W (5.2) 
Proof: Since B( f ) *B( f ) 20, HN is monotone increas- 

ing in N. Hence, it follows from (4.13) that for all n, 
I(B(h r’2en)Y[~2gI~~t’2Y~~2, Y&,(H). 

Taking e, = h - “‘f/l(h - “‘f }I( fd)(h - I”)), we oktain 
(5.1) with YEQ, (H). Since Do,(H) is also a core of H I’*, 
this resuIt extends to all YED( H “*), Inequality (5.2) fol- 
lows from (3.7), (5.1), and a limiting argument. n 

Lemma 5.2: For all f&(h - “2) TtD(h) and 
‘I’,@.NH), 

(H@,B(f ,‘U - (B(f )*WW = - W,B(hf 1’0 
(5.3) 

Prooj For all Y,@zD, (H), (5.3) follows from (4.15). 
Using (5.1) and the fact that D,, (H) is a core of H, (5.3) 
with Y,@ED,, (N) extends to all \I/,@&( H). n 

Lemma 5.3: For all f&( h - “*) and Yd)( 2 ‘12), 
eirHB( f )ebrrHY = B(eihf )Y. (5.4) 

Proof: Let {e(A)) be the spectral family of h and 
%’ = t-J;=, Ran e[ l/n,n 1. 

For Y,@@(H) and&g, we define 
F(t) = (e - “‘%,B( f )e - ““Y). 

Then, using Lemma 5.2, we can show that F is infinitely 
many times differentiable in t and 

d”F(t) 
-= (e-“H<P,B((ih)“f)e-‘r”Y), r~>l. 

dt ” 
Noting that 

2 Ifh”-‘?a py<* 
I?=0 n. 1 

and using ( 5.1), we see that 

N (%B((ih)YP’) t,, F(t) = ,gz “ix0 fZ! 
= (@,B(e”hf)Y). 

Thus (5.4) with Y&(H) and fE%’ follows. Once this is 

proved, a limiting argument allows us to obtain the desired 
result. n 

En what follows, in addition to (C.l )-(C,12), we as- 
sume the following two conditions. 

(C.13) ForR=O,- 1/2,h’V*iscompact. 
(C. 14) There exists an operator [h, W * ] w defined on a 

dense domain D, (h) CD(h) such that for allAgtio (h), 

ChftW*g, - (WY&z) = (f;[kW*l,g) 
and 

s 
m llh”[h,W*],e-ir”flldt<M), A=O,-L, 

<e;ntroduce 
2 

Z. ={fti~,(h)flD,(h)nD(h -“*)[W*erfhft 

V*e”hfzD( h - ‘/‘I for all t&t}, (5.5) 

where P,, (h) is the subspace of absolute continuity with 
respect to h. 

For teI[g and fez,, we define 

b,(f) =e’tHb(e-“hf)~3e-“H. (5.6) 

By virtue of Qmmas 5.1, 5.3, and (3.24), 6, ( f) is well 
defined on D(H I”) and 

b,(f) =B(ei’hW*e-“hf) -B(eifhV*e”T)* (5.7) 

on D(h I”). We want to show that b, ( f) converges as 
t--r & W. By (C.14), wecandefine 

tr 
T,f= W*f+i 

s 
errh [h, W*jlce- “hfdt, f&o(h), 

0 
(5.8) 

where the integral is taken as a r-vaIued strong integral. 
Theorem 5,4: For all YED( H “2) and fE%, , the strong 

limits 

s- lim b,(f)Y=b, (f)Y (5.9) 
I- i 32 

exist and are explicitly given by 
b, (f)Y==B(T,f)Y. (5.10) 

Proo$ Let feX, and Yd)(fj t’2). By (C.13) and an 
application of Lemma 2 in Ref. 13 (p. 24), we have 

s - lim h “e”“V*eifhf = 0, 
Ill-CC 

/z = 0, - 1, 

which, combined with (5.2), imply that 

,y - Em B(eithV*eirhJ”)*\V = 0. (5.11) 
lf!-+r; 

Let 
TJ= eirh w +e - i”J: 

Then, differentiating the function (g,Tf) (g&&(h)) in t 
first and then integrating the derivative from 0 to t, we obtain 

I 
’ Tf= W*f t i e’sh[h,W*],e-“hfds. 

0 

By (C.14), we see that 

s- lim h - lf2TJ-= h - ‘/2T+ f 
t- + x’ 
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and hence, by (5.1), for these models is given by the following choice of {X,.,&]: 

s - lim B(Tf)Y = B(T,f)q, f- * c.2 
which, together with (5.7) and (5.11), give (5.9) and 
(5.10). n 

Physically the operators b, ( f) correspond to the 
annihilation operators of the asymptotic free fields in regard 
to the degrees of freedom associated with the Hilbert space 
3,(2-). 

Let 

3 -+ = Y-t& Cf, )*+**b, (f,)*sZ(X), 
R(X)I&Yo,j= l,..., n,n>l}. 

We define the “S-matrix” ST- -+Y+ by 

Sb- Cf,) **--be. (f,)*sZ(X) 
=b+ C.6) **-*b+ (f,)*i-l(X). 

The S-matrix elements are defined by 
s,, (.fl,...,L&?, ,-,g, 1 

=U- Cf,) ****be. (f,)*fi(X), 
Sb- (g, 1 *--*b- (g,, )*WX)). 
One easily sees that 

snm = LS”, 
and S,,, can be written as a sum of n products ofS,, which is 
given by 

S,, (J;g) = (f,T* T+g). 

VI. EXAMPLES 

In this section we briefly mention some QFT examples 
to which the abstract theory in the preceding sections is ap- 
plicable. 

A. Models of a one-dimensional quantum harmonic 
oscillator coupled to a quantized scalar field 

Let 
5-v=LZ(Wd), d=Q=, 

so that 
3y’= L2(Wd) @a= 

and 
c%,(X) =F,(L2(!Rd))c3L2(R), 

In this framework we can construct explicitly two classes of 
operators {P,Q, I’, W,h} satisfying (C. 1 )-( C. 14) and show 
that the corresponding operator N provides the Hamilto- 
nians of various models of a one-dimensional quantum har- 
monic oscillator coupled to a quantized scalar field over the 
d-dimensional space Wd (e.g., Refs. 4, 5, 7, 8, and 14). See 
Ref. 8 for the details. 

6. Models of a harmonically bound electron interacting 
with a quantized radiation field 

These models have been discussed from various points 
of view (e.g., Refs. 6, 15-21). The mathematical framework 

z=Lm), 
d - 1 times 

efz = cd, 

where we assume that the electron moves in Rd and the radi- 
ation field is over Rd (d>,2). The Coulomb gauge is used for 
the radiation field. In Ref. 21, the present author discussed 
one of such models whose Hamiltonian is given by 

L = (1/2m, HP - e-Up))’ + HF + gq2, 
where m, > 0 (resp. E > 0, e&\{O}) is a parameter denot- 
ing the bare mass of the electron (resp. the spring constant, 
the elementary charge), q = (4, ,***,qd &Rd,p 
= ( - ia/aq, ,..., - i6’/dqd), A(p) is the time-zero radi- 

ation field smeared with a suitable functionp on Bd, and HF 
is the free Hamiltonian of the radiation field. By an explicit 
construction, we can show that there exists a quintuple 
{P,Q, V, W,h} giving this model. This can be done using re- 
sults in Ref. 21. 

We can also consider another Hamiltonian 

L’= $p2++2+H&P.A(p), 
0 m 

where m is a renormalized mass of the electron defined by 

[b: the Fourier transform ofp, w(k) : one free photon energy 
with momentum k] This Hamiltonian is obtained by drop- 
ping A2 term in the Hamiltonian L given above and renorma- 
lizing the electron mass in the way just indicated (cf. Refs. 
16,17,22, and 23). The mass renormalization makes L ’ non- 
negative. This model is also described in the framework in 
Sets. III and IV. 
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