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An asymptotic analysis and its application to the non relativistic limit of the 
Pauli-Fierz and a spin-boson model 

Asao Arai 
Department of Mathematics, Hokkaido University, Sapporo 060, Japan 

(Received 23 February 1990; accepted for publication 20 June 1990) 

An abstract asymptotic theory of a family of self-adjoint operators {HK}K>O acting in the 
tensor product of two Hilbert spaces is presented and it is applied to the nonrelativistic limit of 
the Pauli-Fierz model in quantum electrodynamics and of a spin-boson model. It is proven 
that the resolvent of HK converges strongly as K-+ 00 and the limit is a pseudoresolvent, which 
defines an "effective operator" of HK at K;::;; 00. As corollaries of this result, some limit 
theorems for HK are obtained, including a theorem on spectral concentration. An asymptotic 
estimate of the infimum ofthe spectrum (the ground state energy) of HK is also given. The 
application of the abstract theory to the above models yields some new rigorous results for 
them. 

I. INTRODUCTION 

This paper consists of two parts: one is concerned with 
an abstract asymptotic theory of a family of self-adjoint op
erators and the other presents its application to the nonrela
tivistic limit of the Pauli-Fierz l

-
9 and a spin-boson 

model. 10-15 

The Pauli-Fierz model is a model in quantum electro
dynamics and describes a nonrelativistic one-electron atom 
coupled to a quantized radiation field. It is known that the 
model is a realistic one in the sense that in a nonrelativistic 
region, it explains well some physical phenomena such as the 
Lamb shift, although the explanations are usually done by 
using formal perturbation calculations to which rigorous 
mathematical basis has not yet been given. Only a few math
ematically rigorous results have been obtained for the mod
el.4

•
5

•
7

•
9 The spin-boson model we consider describes a two

level atom coupled to a quantized Bose field and can be 
regarded as a simplified version of the Pauli-Fierz model. 8 

The nonrelativistic limit we study on these models is a scal
ing limit of the speed oflight at the same time as the coupling 
constant of the models gets a scale transformation, which, as 
far as we know, has not been discussed in the literature. 

To treat the problem of the nonrelativistic limit of the 
Pauli-Fierz and the spin-boson model in a unified way, we 
first present in Sec. II an abstract asymptotic theory of a 
family of self-adjoint operators {H K} K > 0 acting in the tensor 
product of two Hilbert spaces. The self-adjoint operator HK 

is an abstract version of operators unitarily equivalent to 
Hamiltonians of some models of an atom coupled to a quan
tized radiation field, including the Pauli-Fierz and the spin
boson model. We prove that the resolvent of HK converges 
strongly as K-+ 00 and the limit is a pseudoresolvent, which 
defines an "effective" operator of HK at K;::;; 00. Introducing a 
concept of "partial expectation" of operators, we represent 
the effective operator more explicitly. In applications, par
tial expectations can be used also to describe "fluctuations" 
caused by a quantized radiation field on an atom (see Sec. 
III). Further, we obtain an asymptotic estimate of the infi
mum ofthe spectrum (the ground state energy) of H

K
• The 

abstract theory presented here is closely related to asympto-

tic theories given in Refs. 16-18. But our class of HK is differ
ent from the operators considered there in the scaling order 
with respect to K. There may be different asymptotic theories 
depending on the scaling order of K and the form of the rel
evant operators. We also discuss the spectral concentration 
ofHK • 

In Sec. III we discuss the Pauli-Fierz model, which, as 
mentioned above, describes a one-electron atom coupled to a 
quantized radiation field. For a mathematical generality, we 
consider the case where the one-electron atom is placed in 
the d-dimensional space (d-;;.2). The total Hamiltonian of 
the model is given by a self-adjoint operator H{e,e) with 
parameters c > 0 and eelR\ {o} denoting the speed of light 
and the elementary charge (the coupling constant in this 
model), respectively. The scaled Hamiltonian is defined by 
H{K) = H(e{K),e{K» with e(K) = Ke and e(K) = ,(312 e. 

The nonrelativistic limit we study is taken in the sense of the 
scaling limit K-+ 00. Since le{K) 1-+ 00 as K-+ 00, the nonrela
tivistic limit is a scaling limit of the speed of light at the same 
time as the magnitude of the coupling constant becomes infi
nite. We show that H{K) is unitarily equivalent to an opera
tor lI(K), which is of the form of HK discussed in Sec. II. 
Applying the abstract theory in Sec. II to II (K), we find that 
the effective operator of lI(K) is a Schrodinger operator 
HA,eff' In the case d = 3, the potential operator ofHA•eff coin
cides with the effective potential that Welton3 proposed to 
calculate some observable effects of the quantized radiation 
field such as the Lamb shift. In Ref. 3 the effective potential 
was derived by physical arguments. We derive it as a scaling 
limit in the sense described above, starting from the total 
Hamiltonian H{K). This does not only justify rigorously the 
effective potential of Welton but also clarifies a mathemat
ical meaning of it, in other words, in what sense the effective 
potential is "effective." Further, we show that the ground 
state energy of the model is nondecreasing as a function of K 

and obtain an estimate ofthe ground state energy, which, to 
our knowledge, has not been given so far in the literature. We 
also prove that the spectrum of H(K) is asymptotically con
centrated on the spectrum of H A•eff "locally" as K-+ 00. 

In Sec. IV we consider the spin-boson model. The non
relativistic limit of this model is also a scaling limit of the 
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speed of light at the same time as the magnitude of the cou
pling constant becomes infinite, but the scaling order of the 
coupling constant is different from that of the Pauli-Fierz 
model. We show that the total Hamiltonian of the model is 
unitarily equivalent to an operator H(K) of the form of HK in 
Sec. II. We derive the effective operator of H(K). Moreover, 
we show that the ground state energy is nondecreasing in the 
scaling parameter K and obtain an estimate of the ground 
state energy, which siightly improves that given by Davies. 10 

We also give a meaning to the transition probability between 
the two degenerate ground states of the model without the 
atom part (cf. Ref. 11). Finally, we prove the existence of a 
"local" spectral concentration of the total Hamiltonian. 

In the last section some remarks are given. We conclude 
the present paper with an Appendix, where we prove some 
limit theorems related to the strong convergence of resol
vents in which the limiting operator is a pseudoresolvent. 

II. AN ABSTRACT ASYMPTOTIC THEORY 

In this section we present an abstract asymptotic theory 
for a class of self-adjoint operators. The theory developed 
below may be formulated in a more abstract setting using a 
Banach space as in Ref. 16 and for a more general class of 
operators. In the present paper, however, we take a Hilbert 
space formulation and restrict our consideration to a class of 
self-adjoint operators, which allows us to obtain more con
crete and stronger results in some respects. 

In what follows, we use the following notation: (',' );Y' 

and li'ILy denote the inner product and the norm of the 
Hilbert space Y, respectively. If there is no danger of confu
sion, then we omit the subscript Y of them. The domain 
(resp. range) of an operator T is denoted by D( T) (resp. 
Ran T). For bounded operators T, we denote by IITII the 
operator norm. By I we denote identity. 

Let Yand JY be two Hilbert spaces and 

2"=Y®JY. (2.1) 

Let A and B be non-negative self-adjoint operators in Yand 
JY, respectively. We assume that 

Ker B #{O}. (2.2) 

Let {CK } K> 0 be a family of symmetric operators in 2" satis
fying the following conditions. 

(i) For all K>O, D(A®I)CD(CK) and 
C

K 
(A ®I + A) - 1 is bounded for all A >0 with 

lim IICK(A®I+A)-IIi=O, 
A_ 00 

where the convergence is uniform in K;;'Ko for some Ko > O. 
(ii) For all A > 0, C

K 
(A ® I + A) - 1 is strongly contin

uous inK>O. 
(iii) There exists a symmetric operator C in 2" such 

that D(A ® I) CD( C) and for all A > 0, 

s-lim CK(A ®I +A) -I = C(A ®I +A) - 1, 

where s-lim means strong limit. 
For each K> 0, we define 

HO,K =A ®I +KI®B. (2.3) 

The above property (i) of CK implies that for every E> 0, 
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there exists a constant Ao = Ao (E,Ko ) > 0, independent of 
K;;'Ko, such that for all A;;'Ao, 

IICK'I'II<EIi(A®I+A)'I'II, 'l'ED(A®I). (2.4) 

Since I ® B is non-negative and commutes with A ® I, it fol
lows that for A;;'Ao, 

IICK'I'II <Ell (HO,K +A)'I'Ii, 
'l'ED(HO,K) =D(A®I)nD(l®B)==DA,B' (2.5) 

Hence, CK with K;;'Ko is infinitesimally small with respect to 
HO,K' Therefore, by the Kato-Rellich theorem (e.g., Refs. 19 
and 20), the operator 

HK = HO,K + CK (2.6) 

with K;;'Ko is self-adjoint on D A,B and essentially self-adjoint 
on every core of HO,K' Further, HK is bounded from below 
with 

(2.7) 

where O<E< 1 and A;;'Ao(E,Ko )' The ground state energy 
EK of HK is defined by 

EK =infu(HK ), (2.8) 

where u(T) denotes the spectrum of operator T. By (2.7), 
EK is bounded from below uniformly in K>Ko: 

Eo == inf EK > - 00. (2.9) 

Our aim is to consider the limit K ..... 00 of HK and to give 
an asymptotic estimate of EK for large K. 

Let Po be the orthogonal projection from JY onto 
Ker B. Then it follows from property (iii) ofCK and (2.4) 
that (l ® Po )C(l ® Po) is infinitesimally small with respect 
to A ® I. Hence, by the Kato-Rellich theorem again, the op
erator 

(2.10) 

is self-adjoint on D(A ® I) and bounded from below. It is 
easy to see that the resolvent of H 00 commutes with I ® Po, 
Hence, H 00 is reduced by Ran I ® Po = Y ® Ker B. We de
fine 

(2.11 ) 

The first of the main results in this section is the following. 
Theorem 2.1: For all zeC with 1m z#O or for z < 0 with 

Izl sufficiently large, (HK - z) - 1 is strongly continuous in 
K;;iKo and 

(2.12) 

Further, 

(2.13 ) 

Proof: Let A > 0 be sufficiently large so that 
-AEp(HK)np(Hoo )np(HO,K) for all K;;'Ko, wherep(T) 

denotes the resolvent set of T. Iterating the second resolvent 
formula with respect to the pair (HK,Ho,K)' we have 

N 

(H
K 
+ A) -I = L ( - 1)"(HO,K + A) -IT= + RN(K), 

"=0 
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where 

TK = CK (HO,K +..i) -I, 

and 

RN(K) = (-1)N+I(H" +..i)-IT~+I. 

It follows from (2.5) that 

IIRN(K) I! < (Eo +..i)-I?+I. 

Hence, taking E < 1, we see that for ..i > 0 sufficiently large 
00 

(HK+..i)-I= I (-I)"(Ho,K+..i)-IT; (2.14) 
"=0 

is norm convergent uniformly in K';;;.Ko. It is easy to see that 

s-lim (HO,K +..i) -I = (A ®I +..i) - 'I ®Po' 
K- 00 

Further, by property (iii) of C", we have 

By the uniform convergence of the series on the right-hand 
side (rhs) of (2. 14), we can interchange the limit K -+ 00 and 
the summation :I n to obtain 

00 

s-lim(HK +..i)-I = L (-l)"(A®I +..i)-I 
K-oo n=O 

X{C(A ®I +..i) -I}"(/®PO)' 
(2.15 ) 

where 

C= (/®Po)C(/®Po ), 

and we have used the fact that I ® Po is a projection. The rhs 
of (2.15) is equal to 

(Hoo +..i) -I(/®PO)' 

Thus (2.12) withz= -..i follows. Once (2,12) is proved 
for some z = - ..iElRnp(HK) np(H 00 ), it can be extended 
to the case 1m z:j:O by mimicking a standard argument for 
resolvents (e.g., the proof of Theorem VIII.19 in Ref. 21). 
The strong continuity of (H" - z) - 1 in K follows similarly, 
Inequality (2,13) follows from an application of Theorem 
A.l in the Appendix. • 

Theorems 2.1 can be generalized by the following 
theorem. 

Theorem 2.2: Denote by Coo (lR) the space of continuous 
functions on lR vanishing at 00. Then, for all FEC 00 (lR), 

Proof: This follows from Theorem 2.1 and an applica-
tion of Theorem A.1 in the Appendix. • 

We next consider the asymptotic behavior of the ground 
state energy EK • Concerning this problem, we have been able 
to obtain a result only in the case where C" and C are bound
ed. Let 

Hoo (K) =A®I+ (/®PO)CK(/®PO) (2.16) 

and 

(2.17) 

Lemma 2.3: Let C" and C be bounded. Then, for all 
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IEoo - Eoo (K) I<IICK - C II· 

In particular, if II C" - C 11-0 as K -+ 00, then 

lim Eoo (K) = Eoo' 

Proof: For IIIED(A ® Po) with 1111111 = 1, we have 

1(1II,Hoo (K)III) - (III,Hoo III)I<IIC" - CII, 

(2.18) 

which, combined with the variational principle, gives 
(2.18). • 

An estimate of the ground state energy E" is given by the 
following theorem. 

Theorem 2.4: Let CK and C be bounded. Suppose that 
B ~ (KerB)l';;;.b with some constant b>O. Then, for all 
K>(Eoo (K) + IIC"II)!b, 

Eoo (K) -IIC"II17K(1 + ~1 + 17~) -1<E,,<E oo (K), 
(2.19) 

where 

17K =21IC"II/[bK- E oo (K) -IIC"II]· 

In particular, if liCK - C 11-0 as K-+ 00, then, 

lim EK =Eoo' 

Proof: We have 

fF = fFI $ fF2' 

where 

fFI = fft" ® Ker B, fF 2 = fft" ® (Ker B)l. 

(2,20) 

Let Pj (j = 1, 2) be the orthogonal projection from fF onto 
fFj' It is easy to see that 

PI =I®Po, P2 =I®(/-Po)' 

We can write 

H" =Hoo (K) + KI®B(/ - Po) 

+ PI C"P2 + P2 CKPI + P2 CK P2 • 

For all IIIEfFI nDA,B with 1111111 = 1, we have 

(III,H" III) = (III,Hoo (K)III). 

Hence, it follows from the variational principle that 

E,,«III,H 00 (K) III), 

which implies the second inequality of (2.19), [Note that 
DA.B is a core ofHoo (K).] 

To prove the first inequality of (2.19), we write IIIEDA •B 

with 1\11111 = 1 as 

111=111) +1112' 

with IIIjEfFj (j = 1,2). Then, using the Schwarz inequality 
and the fact that A is non-negative andB ~ (Ker B)l';;;.b>O, 
we have 

(III,HK 1II)';;;.Eoo (K) 11111) W + (bK - IIC" IDI\'l121\2 

-2I1 CKIIII III IIIII'l1211· 

Since 
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it follows that 

EK>E", (K) - sup A(X), 
O<x<1 

where 

A(X) = (bK-E", (K) -IICKII)x2+2I1CKllx~l-x2 

- (bK -IICKII- E", (K». 

It is easy to show that the inequality 

ax2 + /3x~1 - X2 - a<!( - a + ~a2 + /3 2
) 

holds for all a > 0, /3>0 and O<x< 1. Applying this inequali
ty with a=bK-E", (K) -IICKII>O and /3=2I1CK II, we 
obtain the first inequality of (2.19). Formula (2.20) follows 
from (2.19), Lemma 2.3, and the fact that 7JK-+O 
(K-+ (0). • 

Remark' As the above proof shows, the second inequali
ty of (2.19) holds also for the case where CK and C are not 
bounded. 

In order to write H", in a more explicit way, we intro
duce a concept of "partial expectation" for linear operators. 
For SEB( Sf?) (the space of all bounded linear operators on 
Sf?) and f ,gE%, we define the sesquilinear form qf,g ( . , . ) on 
~X~by 

qf,g (u,v) = (u ®f,S(v®g»!l'" u,~, 

which is bounded with 

Iqf,g(u,v)I<IISlIlIfllllgllllullllvll· 

Therefore, by the Riesz lemma, there exists a unique 
Ef,g (S)EB(~) such that 

(u®f,S(v®g»!l" = (u,Ef,g(S)V)K 

and 

IIEf,g (S) II < II fllllgllliS II· 

We also define Et<S)EB(~) by 

Ef(S) = Ej,f(S), 

Wecal1the operator Ef,g (S) [resp. Ef(S)] the partial expec
tation of Swith respect to {f,g} (resp.j). Note that, in the 
caseS=L®MwithLEB(~) andMEB(%), we have 

EJ.g(L®M) = (f,Mg)KL. 

Some elementary facts of Ef,g (S) are summarized in the fol
lowing proposition, whose proof is left to the reader. 

Proposition 2.5: (i) For all f,g,hE%, a,/3Ee, and 
SEB(Sf?), 

Eh.af+pg(S) = aEhJ(S) + /3Eh.g(S). 

(ii) For allf,gE%, a,/3Ee, and S,TEB( Sf?), 

Ef,g (as + /3n = aEf,g (S) + /3Ef,g (n. 
(iii) For allf,gE% and SEB( Sf?), 

Ef,g(S)* = EgJ(S*). 

The following continuity properties of the map 
:S -+ EJ.g (S) can also be easily proved. 

Proposition 2.6: Let S,SnEB( Sf?), n> 1, and f,gE%. 
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Then: 
(i) If Sn -+S(n-+ (0) in operator norm, then 

Ef,g (Sn) -+Ef,g (S)(n -+ 00 ) in operator norm. 
(ii) If Sn -+S(n-+ (0) strongly, then Ef,g (Sn) 

-+Ef,g (S)(n-+ (0) strongly. 
(iii) If Sn -+S(n -+ 00 ) weakly, then Ef,g (Sn) 

-+Ef,g(S)(n-+ (0) weakly. 
Lemma 2. 7: Let PEB( %) be an orthogonal projection 

with dim Ran P= n < 00. Let {.Ij}j= 1 be an orthonormal 
basis of Ran P. Then, for all SEB( Sf?), 

n 

(l®P)S(l®P) = L EIpI.(S) ®Pkj' 
j,k= 1 

where PkjEB(%) is defined by 

Pkj"= (fk/)K.Ij· 

(2.21) 

(2.22) 

In particular, if n = 1 and Ran P = {ala laEe} with 
lifo II = 1, then 

(l ® P)S(l ® P) = Efo (S) ® P. 

Proof' Let u,~ andf,gE%. Then we have 

(u ®f,(l ®P)S(l ®P)v®gtcr 
n 

= L (fJ;)K(fk,g)K(U®.Ij,S(v®fk»!l" 
j,k= 1 

n 

= L (f,Pkjg) K(u,EIpI. (S)V)K 
j,k= 1 

=(u®f,{.± Elplk(S)®Pkj}v®g) . 
j,k= 1 !l" 

(2.23) 

Thus (2.21) follows. • 
We next define the partial expectation for unbounded 

operators. For this purpose, we introduce a class of linear 
operators in Sf? 

Definition 2.8: We say that a densely defined linear oper
ator S in Sf? is in E ( Sf?) if and only if there exist subspaces 
Dy(S) andDK (S) densein~ and %, respectively, such 
that 

DK(S) ;DK(S)CD(S), 
A 

where ® denotes algebraic tensor product. 
Let SElE ( Sf?). Then, for all fE%, gED K (S), and 

VEDy (S), the conjugate linear functional 

L(u) = (u ®f,S(v®g»x, u~, 

on ~ is bounded with 

IL(u)I<llfIIIlS(v®g)lllIull· 

Therefore, by the Riesz lemma, there exists a unique vector 
EJ.g (S)~ such that 

L(u) = (u,Ef,g(S)v)y 

and 

IIEf,g(S)vll<lIfIlIlS(v®g)lI· 

The map :v-+Ef,g (S)~ is linear. Hence, Ef,g (S) gives a 
densely defined linear operator in ~ with 
D(Ef,g(S» = DK(S). We remark thatEf,g (S) may depend 
on the choice of the pair of the subspaces DK(S) and 
D K (S). A criterion for the closability of Ef,g (S) is given by 
the following proposition. 

Proposition 2.9: Let SEE(Sf?). Suppose that S* is in 
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E(2"). Then, for alljEDy (S*),geDy (S), Ef,g(S) is clo
sable and 

Eg,f(S*) CEf,g (S)*. 

Proof It is straightforward to see that for all 
uED,K'(S*), VEiJ,K'(S),JEDy (S*), andgeD.~ (S), 

(u,Ef,g(S)v)y = (Eg,f(S*)u,v),K', 

which implies the desired result. • 
Lemma 2.7 is translated into the present case as follows. 
Lemma 2.10: Let P and {.Ij}J= I be as in Lemma 2.7. 

Suppose that SEE( 2") with Ran PCD.~ (S). Then, the 
same conclusion as in Lemma 2.7 holds for S. 

The above lemma and (2.10) immediately give the fol
lowing result. 

Proposition 2.11: Suppose that dim Ker B = n < 00 and 
Cis in E(2") with Dy (C) ::JKer B. Let {Jj}J= I be an or
thonormal basis of Ker B. Then, 

n 

H"" =A ®I + L Efpfk (C) ® (Po hj' 
j.k= I 

In particular, ifKer B = {alo laEC} with 1110 11= 1, then 

H"" =Heff®PO +A®(l-Po), 

where 

Heff = A + Efo (C). (2.24) 

The following fact easily follows from Theorems 2.1, 
2.2, and (2.24). 

Theorem 2.12: Let C be as in Proposition 2.11 and 
Ker B = {alo laEC} with 1110 II = 1. Then: (i) Let ZEC be as 
in Theorem 2.1. Then 

s-lim (HK - z) -I = (Heff - z) -I ®Po' 

(ii) For all FEC"" (R), 

s-lim F(HK) =F(Heff ) ®Po' 

Under the assumption of Theorem 2.12, the self-adjoint 
operator Heff may be regarded as an "effective" operator, in 
the asymptotic region K::::: 00, of H K restricted to the subspace 
K®KerB. 

We next consider the relation between the spectrum of 
HK and of H eff . 

Theorem 2.13: Under the assumption of Theorem 2.12, 
we have: 

(i) Ifa,hER, a<h, and (a,b) nu(HK ) = 0 for all large 
K, then (a,b) nu(Heff ) = o. 

(ii) Let {E A (H K ) } and {E A (Heff ) } be the spectral fam
ily of HK and of H eff , respectively. Let a,hER, a < b, and 
a,bff.Upp (Heff ), whereupp (Heff ) denotes the pure point spec
trum of H eff . Then, 

s-lim E(a.b) (HK) = E(a.b) (Heff ) ® Po· 

Proof: This follows from Theorem 2.12 and an applica-
tion of Theorem A.2 in the Appendix. • 

Let A I be a symmetric operator in K such that A + A I 
has a discrete spectrum. We may write HK as 

HK = Ho,K +H/(K), 
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where 

Ho,K = (A + A I ) ® I + KI ® B 

and 

HI(K) = CK -AI ®l. 

If the spectrum of B is of the form [0,00 ), then all the eigen
values of Ho,K are embedded in the continuous spectrum of 
li. and hence H gt'ves an example for perturbation prob-O,K K 

lem of embedded eigenvalues. In general, embedded eigen
values may be unstable under perturbations, i.e., they may 
disappear under perturbations (e.g., Refs. 6, 9, and 22); HK 
may have no eigenvalues more than the ground state energy. 
On the other hand, the effective operator Heff may be regard
ed as the unperturbed operator of H K in the sense of Theorem 
2.12 and its eigenvalues may be discrete (see Secs. III and 
IV). It is well known that one of the concepts to handle such 
a situation in perturbation problems is spectral concentration 
(e.g., Chap. VIII, Sec. 5 in Ref. 20 and Sec. XII.5 in Ref. 22). 
We recall the following definition. 

Definition: Let Tn be a family of self-adjoint operators 
and E A ( Tn ) be the spectral family of Tn. Let {An}: = I and 
A be subsets ofR. We say that the part o/the spectrum o/Tn 
in A is asymptotically concentrated on An as n -+ 00 if and 
only if 

s-lim EAnAc (Tn) = 0, 
n- 00 " 

where A~ = R - An. 
Theorem 2.14: Let C and Ker B be as in Theorem 2.12. 

Let R > 0 and A be the union of a finite number of mutually 
disjoint, bounded open intervals of R such that 
[ - R,R ] nu(Heff ) CA. Then, the part of the spectrum of 
HK in [- R,R] is asymptotically concentrated on A as 
K-+ 00. 

Proof We write 

A = Uj= I (aj,bj ). 

It suffices to consider the case where 
a l < - R <bl <a2 <b2 '" <an <R <bn. Then we have 

AC(R) == [ - R,R ] nAC = Uj':ll [bj,aj+ I]' 

For allj = 1, ... ,n - 1, the interval [hj,aj + I ] is included in 
the resolvent set p(Heff ). Hence, for each j - 1, ... ,n - 1, 
there exist constants a; and b; such that 

[bj,aj + I] C (b ;,a;+ I) C~,<Heff) and b ;,a;+ I ff.u(Heff )· 
Hence, by Theorem 2.13 (11), we have 

E .. (HK)-+E(b" ) (Heff ) ®Po =0, (bl'aJ+I) l'aJ+1 

strongly as K-+ 00. Since 

AC(R) C Uj,:/(b ;,a;+ I) 

and hence 
n-\ 

EAc(R) (HK)<. L E(b'a' ) (HK), 
j= 1 l' J+ t 

we obtain 

E AC(R) (HK ) -+0, 

strongly as K-+ 00. Thus the desired result follows. • 
Remark: The above result is weaker than the standard 

result on spectral concentration (e.g., Chap. VIII, Sec. 5, 
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Theorem 5.1 in Ref. 20). This is due to the fact that the 
strong resolvent convergence of HK is different from the usu
al strong resolvent convergence where the limiting operator 
is also a resolvent. Theorem 2.14 may be interpreted as a 
local spectral concentration of HK on the spectrum of H eff • 

III. THE PAULI-FIERZ MODEL 

In this section we apply the abstract theory in the last 
section to the Pauli-Fierz model to study its nonrelativistic 
limit. 

A. Definition of the model and some fundamental facts 

The model describes a quantum system of a one-electron 
atom coupled to a quantized radiation field 1-4 (cf. also Refs. 
5-9). For a mathematical generality, we assume that the 
one-electron atom is placed in the d-dimensional space Rd 
(d>2). We shall denote by fz (resp. m, c) the Planck con
stant divided by 21T (resp. the electronic mass, the speed of 
light), regarding them as positive parameters. In what fol
lows, the differential operators a /axj , j = 1, ... , d, 
x = (XI ,,,,,Xd )ERd, are taken in the generalized sense. We 
set 

p = ( - ifz ~ , ... , - ifz~) . 
aXI aXd 

(3.1 ) 

We take the potential V(x) of the atom to be a real-valued 
measurable function on Rd which satisfies: 

(V-I) D(p2) CD( V) and for all A > 0, V(p2 + A) - I is 
bounded with 

lim II V(p2 + A) -III = o. 
A_ 00 

(V-2) For all t> 0 and xERd, 

r e-tIX-YI2!V(y)ldy< 00. 

JRd 
Condition (V -1) implies that V is infinitesimally small 

with respect to p2 and hence the Hamiltonian of the atom 

HA = (l/2m)p2 + V (3.2) 

is self-adjoint on D(p2) and bounded from below. 
Remark: If V is a Phillips perturbation of p2, then V 

satisfies (V -1) (see Refs. 23 and 24). It was proved in Ref. 23 
that if 

VEL q(Rd) + L 00 (Rd ), 

withq> d /2 and q>2, then Vis a Phillips perturbation ofp2. 
In particular, it follows that the Coulomb potential in the 
case d = 3 satisfies (V-l) and (V-2). 

We use the Coulomb gauge in quantizing the radiation 
field. The Hilbert space of state vectors for the quantized 
radiation field is then defined by the boson Fock space: 

Y EM = EB:=o®~W 

over the Hilbert space 

W=L 2 (Rd
) EB'" EBL 2(Rd

), , ) -d-l times 

(3.3 ) 

(3.4) 

where ® ~ W denotes the n-fold symmetric tensor product of 
Wwithconvention ®;=oW=C. We denote by a(F), FEW, 
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the annihilation operator in Y EM' For r = 1, ... , d - 1 and 
fEL 2(JRd), we define frEW by /,. = (0, ... /, ... ,0) (the rth 
component is equal to f and the other components are zero). 
The map if-a ( /,.) defines an operator-valued distribution 
on JRd. We denote the distribution kernel by a r (k), r = 1, ... , 
d - 1, kERd. Then the following canonical commutation re
lations hold in the sense of operator-valued distribution: 

[ar(k),aq(k')] = [ar(k)*,aq(k')*] =0, 

[ar(k),aq(k')*] ={)rq{)(k-k'), r,q= 1, ... ,d-1. 

Let er (k) be an JRd-valued measurable function on Rd such 
that 

k'er (k) = 0, er (k) 'eq (k) = {)rq, 

a.e.kERd, r,q = 1, ... ,d - 1. 

The vectors er (k), r = 1, ... ,d - 1, serve as polarization vec-
tors of "photon." 

The free Hamiltonian of the quantized radiation field is 
defined by 

d-If 
HF=fzc r~1 dk(J)(k)ar(k)*ar(k). (3.5) 

Here, (J)(k) is a non-negative measurable function on ad 
with (J)EL ~oc (Rd) which depends only on Ik I. The physical 
choice for (J)(k) is given by (J)(k) = Ik I. 

The Hilbert space Y of state vectors for the interacting 
system of the atom and the radiation field is taken to be the 
tensor product of L 2(Rd) and Y EM: 

Y =L 2(Rd
) ®YEM' (3.6) 

To define the interaction between the atom and the radiation 
field as an operator in Y, we have to introduce a cutoff for 
photon momenta: Letp(x) be a real distribution on JRd such 
that its Fourier transform 

p(k)= 1 fdXp(X)e-ikx 
(21T)d/2 

(3.7) 

is a measurable function and depends only on Ik I with 

f
dk I,O(k) 12 < 00, fdk Ip(k)1

2 
< 00. (3.8) 

(J)(k)3 (J)(k) 

Then we define the time-zero radiation field with cutoff p by 

d-I f Jk 
A (x;p) = L dk er(k) 

r= I ~2(J)(k) 

X {jJ(k)*ar (k)*e- ikx + p(k)ar (k)eikx}. 
(3.9) 

The total Hamiltonian of the coupled system of the 
atom and the radiation field with the full minimal interac
tion reads: 

(3.10) 

where eER'\ {O} is a coupling parameter denoting the ele
mentary charge. In the present paper, however, we take as 
the total Hamiltonian of the coupled system a version of H 
simplified in the following way: (i) We use the dipole ap
proximation, i.e., we replace A (x;p) by A (O;p); (ii) We ne
glect the term A (x;p )2. 

Further, we take the mass renormalization of the elec
tron into account, i.e., we introduce the "bare mass" mo of 
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the electron by 

_1_=~+ (d -1) (...!!...-)2 f dk Ip(k)iZ , 
mo m d me W(k)2 

(3.11 ) 

and define the "renormalized" atom Hamiltonian H ':' by 

H";n = ( 1I2mo)p2 + V. (3.12) 

Thus the total Hamiltonian of our model is defined by 

H(e,e) = H";n®I + I®HF + HI' 

where 

HI = - (elme)p®A(O;p). 

For K> 0, we introduce 

e(K) = Ke, e(K) = ,r/2e, 

(3.13 ) 

which are regarded as a scaled speed of light and a scaled 
elementary charge, respectively. Then we define the scaled 
Hamiltonian H(K) by 

H(K) =H(c(K),e(K» 

= ( __ I_p2 + v) ®I + KI®HF + KHI, 
2m(K) 

where m(K) is defined by 

_1_ = J.-. + K (d - 1) (...!!...-)2 f dk Ip(k) 12 
m(K) m d me w(k)2 

(3.14 ) 

We want to consider the scaling limit K ..... 00 of the model 
in terms of H(K). Obviously e(K),le(K) I ..... 00 as K ..... 00. In 
this sense, the scaling limit K ..... 00 inH(K) corresponds to the 
nonrelativistic limit at the same time as the magnitude of the 
coupling charge becomes infinite. Note also that the "scaled 
bare mass" m(K) -0 as K-+ 00. 

Before stating the main results on the scaling limit, we 
give some known facts. We denote by 0 the Fock vacuum in 
Y EM : 

0= {1,0,0, ... }. (3.15) 

Let Y EM,O be the dense subspace in Y EM spanned by vec
tors of the form 

a(FI )*"'a(Fn)*O, 0, FjEW, j= 1, ... ,n, n>l 

and 

(3.16 ) 

where Y (lRd
) is the Schwartz test function space of rapidly 

decreasing COO-functions on Rd and COO (JRd) denotes the 
space of COO-functions on JRd with compact support. Then 
the subspace 

Yo = Yo (JRd) ®YEM,O 

is dense in Y. 
Let 

T = i...!!...- dil f dk 1 p 
me r= I w(k)J2Iicw(k) 

'er(k){p(k)*ar(k)* - p(k)ar(k)}. 

(3.17) 

(3.18 ) 

Then we can show that Yo is a set of analytic vectors of T 
and hence Tis essentially self-adjoint on it.s We denote the 
unique self-adjoint extension of T ~ Yo by the same symbol. 
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Let 

C( V) = eiT( V®I)e- iT. (3.19) 

Since exp( - tp2®I) commutes with eXp(Un(AER) and 
exp(iAn is unitary, it follows from (V-l) that C( V) is in
finitesimally small with respect to p2 ® I with 

lim lie( V) (p2®I + A) - III = 0, 
A~ 00 

(3.20) 

which implies that C( V) is infinitesimally small with respect 
to (p2®I)/2m +KI®HF with 

lim IIC( V) [(l/2m)p2®I + KI®HF +A ] - III = 0 
A- 00 

uniformly in K. Therefore, the operator 

lI(K) = (1I2m)p2®I + KI®HF + C( V) 

is self-adjoint on 

Do = D(p2 ®I) nD(l®HF ) 

and bounded from below. We have 

lI(K) >inf u(HA ). 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

This follows from the non-negativity of H F and the fact that 
p2 ® I commutes with exp( ± in. 

A fundamental fact concerning our model H(K) is the 
following lemma. 

Lemma 3.1: The unitary operator eiT maps Do onto Dr; 
and for all K> 0, 

eiTH(K)e - iT = lI(K) 

on Do. In particular, H(K) is self-adjoint on Do and bounded 
from below with 

H(K»inf u(HA ). 

Proof: See Ref. 5 (cf. also Ref. 4). 
Proposition 3.2: Let 

E(K) = inf u(H(K». 

Then, E(K) is nondecreasing in K. 

• 
(3.25 ) 

Proof: Since HF is non-negative, we have from (3.22) 

lI(K) >lI(K'), 

for all K> K' > O. By Lemma 3.1, we have 

E(K) = inf u(lI(K». 

Hence, E(K»E(K'), for K>K'>O. • 
B. Convergence of the Hamiltonian, effective potential, 
and an estimate of the ground state energy 

Lemma 3.3: The operator C( V) is in E(Y) (see 
Definition 2.8) with DL2(R d ) (C( V» = D(p2) and 
D.7EM (C( V» = D(HF ). Further, the partial expectation 
En (C( V» of C( V) with respect to 0 is given by 

En (C( V» = Veff on D(p2), (3.26) 

where Veff is the multiplication operator associaed with the 
function 

Veff(x) = (21TC(p»-dl2 f dye- 1x - Y1 '12C(P)V(y), 

(3.27) 
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with 

C(p) = (d-1) (~)2e2 Jdk Ip(k)1 2 

2d me 'i1c li)(k)3 

Proof: By Lemma 3.1 and condition (V-1), 
D(p2) ®D(HF) CDo cD(C( V». Hence, C( V) is in lE(Y). 
To prove (3.26), we first consider the case where VeY(Rd ). 

Then it follows that for allf,geL 2(Rd), 

(f,En(C( V»g) L2 

= 1 J ds V(s) (j® O,eisx<Dg®O)y, 
(21T)d/2 

where 

x(D =iTx®Ie- iT. (3.28 ) 

Let 

X =i~ fI 
me \J 2e 

d-I J e (k) 
X ~ , {p(k)*a,(k)* - p(k)a,(k)}. ,f'l li)(k) 3/2 

Then, it is not so difficult to see that 

eiTD(x,., ®I) = D(x,., ®I + I®X,.,), 

x(D,.,=x,.,®I+I®X,." J.L=I, ... ,d. 

Hence, we have 

(j® O,eisX(ng ® 0).7 = (f,eiSXg) L2 (0,eiSXO).7 EM' 

By the standard Fock space calculus, we find 

(O,eiSXO)y = e- lsI2c(P)/2. 
EM 

Thus (3.26) follows. 
We next consider the case where V is bounded, but, not 

in Y (Rd). In this case, we approximate V by a sequence 
{Vn}n CY(Rd

) in the sense of strong convergence in 
L 2(Rd). Then, by Proposition 2.6 (ii), we have 

En(C( Vn »-En(C( V»(n- 00) 

strongly. On the other hand, we have 

(Vn )elf (x) - Velf (x)(n- 00 ), 

for all xeRd. Thus we obtain (3.26). 
Finally, let V satisfy (V -1) and (V -2). Denoting by X n 

the characteristic function of [O,n], neN, we define 

Vn (x) = Xn (Ixl) Vex). 

Then Vn is bounded and hence (3.26) holds with V replaced 
by Vn • It is easy to see that for all \IIeDo, 

C( Vn ) \11- C( V) \II 

strongly. Hence, for alljeC 0' (Rd) and g in D(p2), 

(f,En(C( Vn »g) - (f,En(C( V»g). (3.29) 

It follows from condition (V-2) that I V I elf is a continuous 
function on Rd. Hence, by using the dominated convergence 
theorem, we have 

(f,( Vn )elfg)- (f,Velfg), 

which, combined with (3.29), gives 

(f,En(C( V»g) = (f,Velfg)· 

Thus (3.26) follows. 
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• 

By (3.26) and the fact that C( V) is infinitesimally small 
with respect to p2 ® I, it follows that Velf is infinitesimally 
small with respect to p 2/2m. Hence, 

HA,.1f = (l/2m)p2 + Velf (3.30) 

is self-adjoint on D(p2) and bounded from below. Let 

EA,.1f = inf u(HA,elf)' (3.31) 

We denote by Po the orthogonal projection from Y EM onto 
the Fock vacuum sector {aOlaeC}. 

Theorem 3.4: For all zeC with 1m z:;!:O or zeR with 
z < min{inf u(HA), inf u(HA,.1f )}, 

s-lim(H(K) - Z)-I = e-iT{(HA,elf - z) -I ®Po}eiT. 
K_ 00 

(3.32) 

Proof: By Lemma 3.1, we need only to consider the scal
ing limit K- 00 of (lI(K) - z) - 1 • Note that lI(K) is just of 
the form of the operator HK considered in Theorem 2.1 with 
the following identifications: 

7t" = L 2(Rd
), % = Y EM' 

A = p2/2m, B = H F, C
K 

= C = C( V). (3.33) 
We have Ker HF = {aOlaeC}. Hence we obtain from 
Theorem 2.12(i) 

s-Iim(lI(K) - z) - 1 

= (p2/2m + En(C( V» - z) -I ®Po, 

which, together with (3.26), gives (3.32). • 
Remarks: (i) In the case d = 3, Velf coincides with the 

effective potential given by Welton, 3 who derived it by phys
ical arguments to calculate some observable effects of the 
quantized radiation field such as the Lamb shift. Theorem 
3.4 shows that the effective potential can be derived as a 
scaling limit of the total Hamiltonian H(K). This does not 
only justify rigorously the effective potential but also clari
fies a mathematical meaning of it. 

(ii) As (3.27) shows, the effective potential Velf is a 
Gaussian transformation of the original potential V. The 
functional C(p) of p, which characterizes the Gaussian 
transformation, has a mathematical meaning: let x( D be 
defined by (3.28). Then it follows from the proof of Lemma 
3.3 that 

En [(x(T) -x®1)2] = C(p)I. (3.34) 

Hence, C(p) can be identified with the partial expectation of 
the square of Ax:=x( D - x ® I with respect to the Fock 
vacuum O. In Ref. 3, Ax was regarded as a fluctuation in 
position of a free electron and C(p) was interpreted as the 
mean-square fluctuation in position of a free electron. In this 
sense, (3.34) suggests that mean fluctuations of observables 
under the action of a quantized radiation field may be formu
lated in terms of the notion of partial expectation. 

Theorem 3.5: Suppose that V is bounded and 

inf li) (k) >li)o, (3.35 ) 
/CElRd 

with a constant li)o > O. Then, for all 
K> (EA,elf + 11V1I)/'i1cli)o, 

EA,elf -II VllvK ( 1 + ~1 + V;) -1<,E(K)<,EA,elf' 
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where 

V K =211VII/(m-WOK-EA,elf -IIVII)· 
In particular, 

lim E(K) = EA,elf' 
K_ 00 

Proof' Since V is bounded in the present case, we have 

IIC( V)II = IIVII· 
Under condition (3.35), H F ~ (Ker H F )l;;.m-WO' Hence, an 
application of Theorem 2.4 to the present case with the iden
tifications (3.33) and b = m-wo yields the desired result. • 

C. Spectral concentration 

In the physical case w(k) = Ik I, all the eigenvalues of 
the unperturbed Hamiltonian HA ® I + KI ® H F are embed
ded in its continuous spectrum. Hence, as already remarked 
in Sec. II, they may be unstable under the perturbation 
KH] + (the self-energy term), i.e., they may disappear un
der the perturbation (for an example, see Ref. 6). On the 
other hand, eigenvalues of HA.elf may be discrete. The con· 
cept of spectral concentration may be helpful to handle such 
a situation in perturbation problems. We have the following 
result on the spectral concentration of H(K). 

Theorem 3.6: Let R > 0 and A be the union of a finite 
number of mutually disjoint, bounded open intervals of R 
such that [ - R,R ] nO'(HA,elf) CA. Then, the part of the 
spectrum of H(K) in [ - R,R] is asymptotically concentrat
edon A aSK ..... 00. 

Proof: Let E;.(H(K» be the spectral family of H(K). 
Then, by Lemma 3.1, 

exp(iT)E,;. (H(K) )exp( - iT) =:E,;. (lI(K» 

is the spectral family of lI(K) By Theorems 3.4 and 2.14, we 
have 

EAC(R) (lI(K» ..... o 
strongly as K ..... 00. Hence, 

EAC(R) (H(K» ..... O 

strongly as K ..... 00. 

IV. THE SPIN-BOSON MODEL 

• 
The spin-boson model we are going to discuss describes 

a two-level atom coupled to a quantized Bose field (a simpli
fied version ofa quantized radiation field) (e.g., Ref. 13 for a 
review and Refs. 10-12, 14, and 15 for some rigorous re
suits). We denote by fl > 0 the half of the gap of the two 
energy levels of the unperturbed atom. The total Hamilto
nian of the model is given as follows: 

H =H(e,A) 

= I ® Hb + flO', ® I + 0'3 

® J dk{A(k)*a(k)* + A(k)a(k)} - Eo (e,A). 

(4.1 ) 

Here, the Hilbert space in which H acts is 

Y = C2 ® Y B(L 2(Rd » = Y B(L 2(Rd » $ Y B(L 2(Rd », 
(4.2) 
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where Y B(L 2(Rd» denotes the boson Fock space over 
L 2 (Rd )(d;;'1). The 2X2 matrices 0', and 0'3 are the stan
dard Pauli matrices and a(k) is the operator-valued distri
bution kernel of the boson annihilation operator acting in 
Y B(L 2(Rd ». The operator Hb is the free boson Hamilto
nian: 

Hb = e J dk w(k)a(k)*a(k), (4.3) 

where w(k) is a non-negative measurable function on Rd 
with weL foe (Rd

). We assume that A(k) is a measurable 
function on Rd satisfying the following conditions: 

J
dk IA(kW< 00, Jdk IA(k)1

2 

< 00. (4.4) 
W(k)2 

The functional Eo (e,).):). ..... C is defined by 

Eo (e,).) = - ~Jdk IA(k)1
2 

, (4.5) 
e w(k) 

which physically means the ground state energy of the bo
sonic Hamiltonian 

Hb(e,A) =I®Hb + 0'3 

® J dk{A(k)*a(k)* +A(k)a(k)}. 

We have set Ii = 1. 
It is known (or easy to see by applying the Kato-Rellich 

theorem) that His self-adjoint with D(H) = D(l®Hb) and 
bounded from below. 

For K> 0, we set 

H(s) = H(Ke,KA), (4.6) 

which is the scaled Hamiltonian we are going to study in the 
asymptotic region K-::::; 00. The operators 

T ± = ± i ~ J dk _1_ {A(k)*a(k)* - A(k)a(k)} 
e w(k) 

(4.7) 

are self-adjoint in Y B' Hence, we can define the unitary 
operators 

U ± = eiT
± 

onYB • Set 

(4.8) 

(4.9) 

which is unitary on Y. The following fact is easily proved. 
Lemma 4.1: For all K> 0, 

lI(K) =: U -'H(K)U = KI®Hb + W, (4.10) 

where 

W=fl(U~+ U~_). (4.11 ) 

Let 

E(K) = inf a(H(K». ( 4.12) 
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Proposition 4.2: The ground state energy E(K) is nonde
creasing in K> 0 and 

inf E(K)" - p,. 
1(>0 

Proof: By (4.10), we have 

lICK) "li(K'), 

for all K> K' > O. Since we have 

E(K) = inf a(li(K», 

(4.13) 

the nondecreasingness of E(K) follows. Note that W> - p" 

which, combined with (4.10) and the non-negativity of H b' 

gives (4.13). • 
Lemma 4.1 shows that H(K) is unitarily equivalentto an 

operator of the form of HI( discussed in Sec. II. Hence, we 
can apply the main theorems in Sec. II to the present case. 
Let us compute the partial expectation of W with respect to 
the vectors in Ker Hb first. We have Ker Hb = {aOlaEC}, 
where ° is the Fock vacuum in.Y B(L 2(Rd ». 

Lemma 4.3: Let 

F(c,A.) =exp(- ~fdk IA(k)1
2
). 

2 W(k)2 
(4.14 ) 

Then, 

Proof: By computing the inner product 
(u ® 0, W(v ® 0» for 

U = (ZI ,Z2 ),v = (WI 'W2 ) EC2
, 

we see that 

( 
0 (0,U

0

2
- 0») . 

En(W)=P, (0,U 2+O) 

It is straightforward to show that 

(0,U 2
± 0) = F(c,A.). 

Thus (4.15) follows. 
Theorem 4.4: For all ZEC,\ [ - p" 00 ), 

• 
s-lim(H(K) - Z)-I = U(p.F(C,A.)CTI - Z)-I ®Po U -I. 

"-co 
( 4.16) 

Proof: We need only to use (4.10) and apply Theorem 
2.12 with the following identifications: 

Jf'=C2
, %=.YB (L 2(Rd », 

A=O, B=Hb , C,,=C=W, (4.17) 

[Note thatp,F(c,A.)CTI " - p,F(C,A)> - p,.] • 
The estimate (4.13) ofthe ground state energy E(K) is 

improved as follows. 
Theorem 4.5: Suppose that w(k) satisfies (3.35). Then, 

for all K>p,(l - F(c,A.»/cwo, we have 

- p,F(C,A) - p,d" (1 + ~ 1 + d; ) - I<E(K) < - p,F(C,A) , 
( 4.18) 

where 

dl( = 2p,/ [CWoK - p,{1 - F(C,A»]. 

Proof: Under condition (3.35), Hb t (Ker Hb ).l"cwo· 
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Further, we have 

IIWII =p" infCT(p.F(c,A.)CTI ) = -p,F(c,A.). 

Hence, applying Theorem 2.4 with the identifications 
(4.17), we obtain (4.18). • 

Remarks: (i) The ground state ofthe model H(K) with 
p, = 0 is twofold degenerate. We note that F( c,A.) 2 is equal to 
the transition probability between the two ground states at 
zero temperature and in the case K = 1 (cf. Ref. 11). 

(ii) Inequality (4.18) gives a nonperturbative estimate 
of the ground state energy of H(K) with respect to both pa
rameters p, and A and slightly improves the estimate given by 
Davies. to 

As for the spectral concentration of H(K), we have the 
following result. 

Theorem 4.6: Let R > 0 and E> O. Then, the part of the 
spectrum of H(K) in [ - R,R] is asymptotically concentrat
edon 

(- p,F(C,A) - E, - p,F(c,A.) + E) 

U(p.F(c,A.) - E,p,F(c,A.) + E) 

aSK-+oo. 

Proof: We first note that the spectrum of the effective 
operator p,F(C,A.)CTI is equal to {± p,F(c,A.)}. Then, in the 
same way as in the proof of Theorem 3.6, we obtain the 
desired result. • 

v. CONCLUDING REMARKS 

In this paper we have developed an abstract asymptotic 
theory of a family of self-adjoint operators, which allows us 
to study in a unified way the nonrelativistic limit of the 
Pauli-Fierz and a spin-boson model. We have obtained some 
new rigorous results for the models, including an asymptotic 
estimate of their ground state energy and the existence of 
"local" spectral concentration. 

Our method can be applied to other quantum field mod
els whose Hamiltonians can be transformed by unitary 
transformations ("dressing transformations") to operators 
of the form of HI( discussed in Sec. II. 

In the present paper we have considered only the case 
where the quantum system under consideration is at zero 
temperature. In the case of finite temperature, we have to 
reformulate the asymptotic theory in Sec. II in terms of cor
relation functions of a KMS state associated with HI(' 

The following topics may be worth being studied as a 
continuation of the present work. 

(i) Extension of the abstract theory in Sec. II to the case 
where the operator CI( is more singular and/or the scaling 
order of CI( in K is different. 

(ii) The nonrelativistic limit of the Pauli-Fierz model 
(3.13) without the dipole approximation. In this case, a for
mal perturbation calculation suggests that we should have 
an effective potential different from Vetr given by (3.27) (cf. 
Ref. 3). 

(iii) The nonrelativistic limit of the model whose Ham
iltonian is given by (3.10). In the case ofthe dipole approxi
mation, we may use the results in Ref. 7. 
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APPENDIX: SOME LIMIT THEOREMS 

In Sec. II we encounter a strong convergence of resol
vent that is different from the usual strong resolvent conver
gence in that the limiting operator is not the resolvent of an 
operator. In this Appendix we present some limit theorems 
related to such a strong resolvent convergence, which are 
variants of the standard limit theorems of the usual strong 
resolvent convergence (e.g., Refs. 20 and 21). We first con
sider a general case. 

Theorem A.I: Let Tn' nEN, and Tbe self-adjoint opera
tors in a Hilbert space K, and Q be an orthogonal projection 
on K. Suppose that Q commutes with the resolvent of T and 
for all ZEC \ JR, 

s-lim(Tn -z) -I = (T-z)-IQ. (Al) 
$- co 

Then, for all FECco (JR) (the space of continuous functions 
on JR vanishing at (0), F( T) commutes with Q and 

s-lim F( Tn) = F( T)Q. (A2) 
n_ co 

Further, if Tn is bounded from below uniformly in n, then T 
is bounded from below and 

(A3) 
n- co 

where 

En = inf u(Tn), E = inf u(T ~ Ran Q). 

Remark: The commutativity of the resolvent of T with 
Q implies that T is reduced by Ran Q, so that T ~ Ran Q is 
also self-adjoint. 

Proof: The proof of (A2) can be done in the same way as 
in the proof of Theorem VIII.20(a) in Ref. 21. The point 
that we are careful about in the present case is that the limit
ing operator (T - z) - IQ is not a resolvent. We can show 
that for all polynomials P = P(x,y) in two variables x, y: 

P( (Tn + i) - I, (Tn - i) - I) --+ p( ( T + i) - 1, ( T - i) - I)Q 

strongly as n --+ 00, where we have used the assumption that 
Q is an orthogonal projection commuting with the resolvent 
of T. We then see that (A2) follows from a slight modifica
tion of the proof of Theorem VII1.20(a) in Ref. 21. 

If Tn is bounded from below uniformly in n, then a stan
dard method shows that Tis bounded from below and (AI) 
holds for Z<Zo =min{infn En,E}. We fix a real number 
A < Zo' Then, a standard formula on the strong convergence 
of bounded linear operators gives 

II(T-A) -IQII< lim II(Tn -A) -III. 
n_ co 

Note that 

II (T - A) - IQ II = II (T ~ Ran Q - A) - III. 

Thus (A3) follows. • 
We next consider operators in the Hilbert space fr giv

en by (2.1). 
Theorem A.2: Let Tn' nEN, be self-adjoint operators in 

fr and S be a self-adjoint operator in K. Suppose that for 
all ZEC\JR, 

s-lim (Tn - z) - I = (S _ z) - I ® P 
n- co 
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with an orthogonal projection P on %. Denote by EA (Tn) 
and EA (S) the spectral family of Tn and S, respectively. 
Then: (i) If a,hER, a < b, and (a,b) n u( Tn ) = 0 for all n, 
then (a,b) nu(S) = O. (ii) If a,hER, a < b, and a,lx;upp (S) 
(the pure point spectrum of S), then 
E(a,b) (Tn) --+E(a,b) (S) ® P strongly as n --+ 00. 

Proof: The proof of part (i) is similar to that of Theorem 
VIII.24(a) in Ref. 21; we need only to note that 

II(S-z) -III = II(S-z) -I®PII· 

To prove part (ii), we note that Theorem A.1 applied to 
the present case gives 

F( Tn) --+F(S) ® P 

strongly for all FEC co (JR). Then the method of the proof of 
Theorem VIII.24(b) in Ref. 21 works and the desired result 
follows. • 

Remark: Under the assumption of Theorem A.2 and the 
condition that P :j:./, {u( Tn)} nEN cannot be bounded in n. 
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