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Existence of infinitely many zero-energy states in a model of supersymmetric 
quantum mechanics 

Asao Arai 
Department of Mathematics, Hokkaido University, Sapporo 060, Japan 

(Received 9 September 1988; accepted for publication 21 December 1988) 

The general framework of the N = 2 Wess-Zumino holomorphic supersymmetric quantum 
mechanics with polynomial superpotentials is extended to the case of non polynomial 
superpotentials V(z) (ZEC) in a mathematically rigorous way. It is also proved that there exist 
no fermionic zero-energy states. Under some conditions for V, the operator domain of the 
supercharges and the supersymmetric Hamiltonian are identified. As an example, the model 
with V(z) = Aeaz (AEC\ {OJ, a> 0) is analyzed in view of index theory. The following 
remarkable result is proved: There exist infinitely many bosonic zero-energy states which are 
localized in the momentum space dual to the 1m Z direction. The results are applied to two 
models in atomic and nuclear physics. 

I. INTRODUCTION 

In Ref. 1, Jaffe et al. considered two models of super­
symmetric quantum mechanics (SSQM), which are the 
quantum mechanics versions of the two-dimensional, N = 1 
and N = 2 Wess-Zumino quantum field models; they also 
computed the Witten index (=the number of bosonic zero­
energy states minus the number of fermionic zero-energy 
states) in each model. In particular, it was proved that in the 
N = 2 Wess-Zumino SSQM with an arbitrary polynomial 
superpotential V(z) (ZEC), there exist no fermionic zero­
energy states (the "vanishing theorem") and the Witten in­
dex I w is equal to the number of bosonic zero-energy states, 
with 

Iw = deg V-I. (1.1 ) 

In this paper, we consider the N = 2 Wess-Zumino 
SSQM with nonpolynomial holomorphic superpotentials 
and try to extend the results for the case of the polynomial 
potentials considered in Ref. 1. This is at least mathematical­
ly interesting: Formula ( 1.1) shows that the Witten index is 
determined by the order of singularity of the superpotential 
at Z = 00 and suggests formally that the Witten index is infi­
nite in the case of nonpolynomial holomorphic superpoten­
tials, for they have the essential singularity at Z = 00. Note, 
also, that a non polynomial entire function is the limit of a 
sequence {Vn (z) }:= I of polynomials with deg Vn = n. 

In Sec. II, we describe in a mathematically rigorous way 
a fundamental framework for the Wess-Zumino hoi om or­
phic SSQM with not necessarily polynomial superpotentials. 
We shall show that some results in Ref. 1 can be extended. 
For example, the "vanishing theorem" holds also in the pres­
ent case (Proposition 2.5). In Sec. III, we consider the case 
with V(z) = Aeaz (AEC\ {OJ, a> 0) and prove by identify­
ing the space of the bosonic zero-energy states exactly that 
there exist infinitely many bosonic zero-energy states. Thus 
as far as this special model is concerned, the result justifies 
the above formal argument. It is noted that every bosonic 
zero-energy state is localized in the momentum space dual to 
the 1m Z direction. In Sec. IV, we apply the result in Sec. III 
to two models in atomic and nuclear physics: One is a model 
of a nonrelativistic spin-! particle in an external SU (2) 
gauge field and the other is a model of a nonrelativistic nu-

cleon in a pion field. These models were discussed in Ref. 1 in 
order to give physical interpretation to the Wess-Zumino 
holomorphic SSQM. In each model, the potential is two­
dimensional and periodic in one direction (e.g., the y direc­
tion). It is shown that each model has infinitely many zero­
energy states which are localized in the momentum space 
dual to the y direction. 

II. WESS-ZUMINO SSQM WITH GENERAL 
HOLOMORPHIC SUPER POTENTIALS 

In this section we recapitulate the definition of the 
N = 2 Wess-Zumino holomorphic SSQM I (cf., also, Refs. 2 
and 3) and extend some mathematical results obtained in the 
case of polynomial potentials I to the case of general holo­
morphic potentials. 

The Hilbert space JY' of state vectors for the model is 
given by 

JY'=LZ(]R2;C4
). (2.1) 

In order to define the supercharges, we introduce 4 X 4 ma­
trices tPI and tPz by 

.1. _~( 0 
'f'1-

2 1- (Tl 
1+ (T3) 

o ' 

where (Tj,j = 1,2,3 are the Pauli matrices 

(2.2) 

(TI=(~ ~), (Tz=e ~i), (T3=(~ ~J (2.3) 

and I is the 2 X 2 identity matrix. The matrices tPl and tP2 
satisfy the anticommutation relations 

{tPj,tPt} = Djk , (2.4) 

{tPj,tPk} = 0, j,k = 1,2, (2.5) 

where {A,B}=AB + BA. 
Let V(z) be a holomorphic function on C (not necessar­

ily polynomial) and consider the operators 

QI = i(tP2a + tPfa) + i{tPl(JV) - tPf(aV)*}' (2.6) 

Qz = tP2a - tPfa + tPl (aV) + tPf(aV) * , (2.7) 

where a = a / az and a = a / az* [the operators Qj given by 
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(2.6) and (2.7) are different from those in Ref. 1]. We shall 
use the usual identification of C with ]Rz through the corre­
spondencez = x + iyEC~(X,Y)E]Rz. Then QI and Qz can be 
considered as operators acting in JY given by (2.1). We put 

(2.8) 

Proposition 2.1: The operators QI and Qz are essentially 
self-adjoint on D. Further, every power of QI (respectively, 
Qz) is essentially self-adjoint on D. 

Remark: In the case of polynomial potentials V, Propo­
sition 2.1 was proved for Q I and Q ~ (Ref. 1). 

Proof It is obvious that Qj is symmetric on D. We write 
it as 

QI= -iL 

on D, where 

with 

A I = - ~(f{!z + f{!!), A2 = (i12)( f{!! - f{!z) , 

B(x,y) = f{!1'(JV(z»)* - f{!1 JV(z) . 

The operator L is of the form of the first-order differential 
operators considered in Ref. 4 because A j;j = 1,2; and Bare 
COO 4 X 4 matrix-valued functions. Note that A I and A z are 
constant matrices. Hence the "velocity of propagation" 
(Ref. 4) associated to L is constant. Then a direct applica­
tion of Ref. 4, Theorem 2.2 gives the desired result on QI' 
The proof for the case of Q2 is quite similar. 0 

Remark: Note that {Aj,Ak} = ojkI2,j,k = 1,2. Hence 
QI is a Dirac-type operator. The same holds for Qz. 

We shall denote the closure of Qj r D by Qj. Then we 
have the following lemma. 

Lemma 2.2: 

Q~ = Q~. (2.9) 

Proof' Direct computations give 

Q~'II = Q~'II 
for all'll in D. Then. Proposition 2.1 implies (2.9). 0 

We define the non-negative self-adjoint operator Hby 

H=Q~ = Q~ . (2.10) 

Then we have 

H 1
/
z

= IQII = IQ21 
and hence, in particular, 

- - I/Z D(QI) = D(Qz) = D(H ), 

(2.11 ) 

(2.12 ) 

where D(A) denotes the operator domain of operator A. 
Lemma 2. 3: Each Qj maps D into itself and the anticom­

mutation relation 

{QI,Q2}'II = 0, 'liED (2.13) 

holds. Further, we have 

(QI'II,Q2<1» + (Q2'11,QI<I» =0, <I> ,'IIED(H 1/2) • (2.14) 

Proof' Equation (2.13) follows from direct computa­
tions. Bya limiting argument using Proposition 2.1, one can 
extend (2.13) in the form of (2.14). 0 
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Let 

(2.15 ) 

Lemma 2. 4: For eachj = 1,2, N F maps D( Qj ) into itself 
and the anticommutation relations 

{NF,Q)'II = 0, 'IIED(Qj)' j = 1,2 

hold. 

(2.16 ) 

Proof We first prove (2.16) for'll in D. Then, a limiting 
argument using Proposition 2.1 gives the desired result. 0 

The Hilbert space JY given by (2.1) has the following 
orthogonal decomposition: 

JY = JY + a>JY _ , (2.17) 

with 

(2.18 ) 

(2.19) 

Obviously, we have 

NF'II ± = ± 'II ±' 'II ± EJY ± (2.20) 

In summary, we have proved that the quadruple 
{JY, {QI,Q2} ,H,N F} is a SSQTwith N =2 supersymmetry in 
the sense of Ref 5 (cf., also, Ref. 6); the operators QI and Q2 
are the self-adjoint supercharges, H is the supersymmetric 
Hamiltonian, and N F is the fermion number operator. The 
closed subspace JY + (respectively, JY _) is the Hilbert 
space consisting of bosonic (respectively, fermionic) states. 

On the domain D, H is explicitly given as 

H= -Ja-f{!1'f{!2(J2V)*-f{!!f{!IJ2V+IJVI2. (2.21) 

By a general fact of a SSQT, H is reduced by JY ± ; we shall 
denote the reduced part of H to JY ± by H ± . We have 

H -H (0 -i(J2V») 
+ - - + i(J2V)* 0 (2.22) 

and 

(2.23) 

on D, where we identify JY ± with L 2(]R2;C2 ). 

We now proceed to the index problem. The Witten in­
dex I w is defined by the number of bosonic zero-energy 
states minus the number offermionic zero-energy states3

: 

Iw=n+-n_, 

with 

(2.24) 

n ± = dim Ker H ± (2.25) 

By Lemma 2.4 and (2.20), for eachj = 1,2 there exists a 
unique closed linear operator Qj + :JY + ..... JY _ such that 

(2.26) 

I t follows from (2.10) that 
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which imply that 

n+=dimKerQj+' n_=dimKerQj+, j=I,2. 
C2.28) 

Hence we obtain 

Iw = dim Ker Qj+ - dim Ker Qj+ 

==index Qj+' j = 1,2. C2.29) 

Remark: The arguments leading to C2.26)-C2.29) ap­
ply to every SSQT and the results are well known. 

Proposition 2.5 C Vanishing theorem): There exist no fer­
mionic zero-energy states: 

C2.30) 

Remark: This result of C2.30) has been established in 
the case where VCz) is a polynomial (Ref. 1, Proposition 6). 
In the case where V is not necessarily a polynomial, it may 
happen that H _ is not closed on DCJa) nDC IJV 12) and 
hence that H _ n = 0 is not equivalent to - Jan = 0 and 
IJV 12n = 0, as in the case of polynomial potentials V. 

Proof." The operator h == - Ja + IJV 12 is a two-dimen­
sional Schrodinger operator with a non-negative potential. 
By Proposition 2.1, C~ (]R2) is a core for h. Thus we can 
apply Lemma A 1 in the Appendix to obtain the desired re­
~ D 

We next consider conditions for a vector to be in Ker 
H+ = Ker Qj+ [see C2.25), (2.27), and C2.28)]. 

Formulas (2.28) and (2.29) show that as far as the in­
dex problem is concerned, it is sufficient to consider one of 
Qj,j = 1,2. Henceforth we write 

Q=QI' Q+ =QI+ . C2.31) 

Lemma 2.6: Suppose that D(Q+) = DCJ) nDC IJVI)· 
Then the following hold. 

(i) Every vector C J,g) in Ker Q + satisfies 

(-Ja+ IJVI 2)/+ CJ 2 V)(JV)- l al=0, C2.32) 

C - Ja + IJVI 2)g + (J 2 V)*CJV)*-1 Jg = 0 C2.33) 

in the generalized sense. 
Cii) Let IEL 2(]R2) be a vector satisfying (2.32) in the 

generalized sense. Then C J,g) is in Ker Q + if and only if I is 
in DCJ) nDC IJVI) and (JV) -I alis in L 2(]R2), with 

g=i(JV)-lal. (2.34) 

Ciii) Let gEL 2C]R2) be a vector satisfying C2.33) in the 
generalized sense. Then C J,g) is in Ker Q + if and only if g is 
inDCJ)nDCIJVI) and (JV)*-I JgisinL 2C]R2), with 

1= - i(JV)*-1 Jg. C2.35) 

Remark: Lemma 2.6 is an elaborate and extended ver­
sion of Ref. 1, Lemma 8. 

Proof." (i) By C2.2), C2.3), C2.6), and the assumption 
D(Q+) =DCJ)nDCIJVI), we have 

_(-i(JV)* J) 
Q+ - a i Jv. C2.36) 

on D( Q + ). Hence every vector (J,g) is in Ker Q + if and 
only if C J,g) is in D( Q +) and satisfies 

Jg-i(JV)*I=O C2.37) 
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al + iCJV)g = 0 . C2.38) 

Equation C2.37) and the condition/EDCa) imply that a Jg 
exists as an L Iloe function with 

a Jg - i(J2V)*1 - i(JV)*JI= o. C2.39) 

It follows from C2.37) and (2.38) that 

1= -iCJV)*-IJg, al= -iCJV)g. 

Substituting these relations into C2.39), we obtain (2.33). 
Similarly, using C2.38), we can show that (2.32) holds. 

Cii) The part "only if" is obvious by (2.38). To prove 
the part "if," we first note that (2.34) gives C2.38). Hence it 
follows that CJV)g is in L 2(]R2) [i.e., gED(aV)] and 

Jal + i(J 2 V)g + iCJV)Jg = 0 . (2.40) 

Using C2.32) and C2.38) to rewrite C2.40), we obtain C2.37). 
In particular, we have gEDCJ). Thus we have proved that 
(J,g) is in DCJ) nDC IJV I) and satisfies C2.37) and (2.38). 
Therefore C J,g) is in Ker Q +. 

(iii) Similar to the proof of C ii ) . D 
Finally, we consider conditions under which the as­

sumption D(Q+) = D(J) nD(JV) in Lemma 2.6 holds. 
Lemma 2. 7: Suppose that there exists a constant r> 0 

such that for all ZEC satisfying IJ 2 VCz) I ;;'r, the estimate 

IJ 2 VCz) 1

2 <aIJVCz) 14 + b (2.41) 

holds with the constants 0 < a < 1 and b;;.O. Then 
DCH _) = DCJa) nDC IJV 12) and C2.23) holds as an opera­
tor equality. 

Proof." Let I be in CO' (]R2;C2). Then we have 

IIH _/112 = IIJa/l1 2 + II CJV)2/\1 2 

- 2 Re(JaJ,IJVI 2f) . 
Via integration by parts, one can see that 

2 ReCJaJ,IJVI 2f) = II (J2V)/11 2 

-IICJI)(JV)112 -\lcaf)CJV)\l2. 

Hence we obtain 

IIH_/112;;.IIJa/I1 2 + II(JV) 2/11 2 -\l(J 2V)/11 2 . 

Using C 2.41 ), we can show that 

IICJ
2

V)/11 2<aIICJV) 2/11 2 + (r + b)11/11 2 . 

Therefore, we obtain the estimate 

IIJa/l1
2 + (1- a)IICJV)

2f11 2
<IIHJI1 2 + Cr + b)\l/11 2 . 

C2.42) 

Since CO' (]R2;C2) is a core for H _ C Proposition 2.1 ), (2.42) 
extends to all I in DCH _), showing at the same time that 
DCH_)CDCJa)nDCIJVI 2

). Since H_ is self-adjoint, we 
conclu~ that DCH_) =DCJa)nD(IJVI 2

) and H_ 
= - JJ+ IJVI 2

• D 
Remark: In the case of polynomial potentials V, it is 

easy to see that C 2.41) holds, where a can be made arbitrarily 
small if r is taken sufficiently large. 

Lemma 2.8: Suppose that there exists r> 0 such that 
C 2.41) _holds with 0 < a <! and b;;.O. Then DCH + ) 

= DCJJ) nDC IJV 12) and C2.22) holds as an operator equa­
lity. 

Proof." Let 
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(
0 - i(Oa

2
V)) 

HI = i(a 2V)* 

and I be in D(H_). Then by Lemma 2.7 and the above 
assumption, we have D(H _) CD(H[) and 

IIHIII1
2<all(aV) 2/11 2 + (r + b) 11/112 . 

Using (2.42) extended to IElJ(H_), we obtain 

IIHIII12<_a_IIHJI12 + r + b 11/112. 
I-a I-a 

Since 0 <a <!, we have 0 <al( 1 - a) < 1. Therefore, by a 
standard theorem (the Kato-Rellich theorem) (see, e.g., 
Ref. 7, Chap. V, Theorem 4.3 and Ref. 8, Theorem X.12), 
H+ =H_ +H] [see (2.22)] isself-adjointonD(H_). 0 

Remark: Polynomial potentials V satisfy the assump­
tion of Lemma 2.8. 

Lemma 2.9: Under the same assumption as in Lemma 
2.8, wehaveD(Q+) =D(a)nD(aV). 

Proof By Lemma 2.8 and its proof, the operators aa and 
I a V 12 are relatively bounded with respect to H + and hence, 
by a standard theorem (see e.g., Ref. 7, Chap. VI, Theorem 
1.38 and Ref. 8, Theorem X.18), relatively form bounded 
with respect to H +. Therefore, in particular, it follows that 
D(a) nD(aV) -::JD(H 1:2) = D(Q+). Define the operators 

and 

L+ = ( - i~V)* i:V) 

L = (iar:.. - -a 
-a ) 

-i(aV)* 

on D(a) nD(aV). Then the above result shows that 

Q+ CL+ . (2.43) 

Obviously, the operator 

L==.( 0 L_) 
L+ 0 

is a symmetric extension of Q ~ D. Hence we obtain Q = I 

since Q = Q ~ D is self-adjoint. On the other hand, we have 

L=(;+ I
o
-). 

By the uniqueness of Q+, we obtain Q+ = I+ and Q"'t­
= I_. Hence, by (2.43), we have Q+ = L+ = L+. There­

fore, L+ is closed on D(a) nD(aV) and equal to Q+. 0 

III. THE MODEL WITH A SUPERPOTENTIAL OF THE 
EXPONENTIAL TYPE 

In this section, we consider the model with the potential 

V(z)=A.euz, ZEC, (3.1) 

where A.EC'\ {O} and a> O. Then H + takes the form 

l 0 -oA.e
UZ

) H = - aa + IA. 1
2a 2e2u 

Rez + ia2 
+ *eaz* 

(3.2) 

on D [see (2.22)], for we have 

aV(z) = A.ae''', a 2 V(z) = A.a2euz . (3.3 ) 

For a measurable function u on [0,2a], we define the 
functions/u andfu on R2 by 
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lu(x,y) = fU u(p)euX!2Wo.la_pl/u(41A.leUX)eiPYdp, 

(3.4 ) 

fu(x,y) =-i-e-U(X+iY)(~+iaa)lu(x,y), (3.5) 
2A.a ax y 

provided that the right-hand sides are meaningful, where 
Wk,m (.) is the Whittaker function (see e.g., Ref. 9, Chap. 
XVI). Let 

Da = {uEL 2(R) Isupp uC (0,a/2) U (a/2,a)}. (3.6) 

We shall prove the following proposition. 
Proposition 3.1: Let H+ be given by (3.2). Then every 

vector in Ker H+ is of the form (luJu) or(fu )*,f~), with 
some u satisfying the condition supp u C [O,a] and 

Ker H + -::J{( luJu) luElJu}U{( fu )*,f~)luElJu} . (3.7) 

In particular, H + has infinitely many zero-energy states: 

n+ = 00 . (3.8) 
Remarks: (i) The above result shows that in the present 

model, supersymmetry is unbroken with infinitely degener­
ate vacua. 

(ii) It should be noticed that the Fourier transform 
fu (x,p) [respectively, fu (x,p)] of lu (x,y) [respectively, 
fu (x,y)] with respect to y has compact support inpER. This 
means physically that every zero-energy state of H + is strict­
ly localized in the momentum space dual to the y direction. 

(iii) Let 

VN(z) = A. f (az)n 
n=O n! 

and let Q (N) and H<:') be Q and H+ with V = VN, respec­
tively. Then by Ref. 1, Proposition 9 [see (1.1)], we have 
n + (N) ==. dim Ker Q <:') = dim Ker H <:') = N - 1. On the 
other hand, it is easy to see that Q (N) and H (:) converge Q 
and H + in the strong resolvent sense as N -+ 00. Formula 
(3.8) may be regarded as n+ = 00 = limN _ '" n+ (N). 

(iv) The corresponding model in the N = 1 Wess-Zu­
mino SSQM (the Witten model2

,3) is given by the Hamilto­
nian 

H = (H + 0) H = _ ~ + A. 2a2e2ux + A.a2eux , o H_' ± dx2 -

where a, A.ER '\ {a}. This model was discussed in Ref. 10 and 
it can be shown that Ker H ± = {O}.ll This result also 
shows an essential difference between the N = 1 and N = 2 
Wess-Zumino SSQM's. 

Lemma 3.2: For all r> 0 and all ZEC with la 2V(z) I>r, 
the estimate 

la 2 V(z) 1< (a2Ir) laV(z) 12 (3.9) 

holds. 
Proof An elementary exercise. 0 
Lemma 3.3: The operator H + is self-adjoint on 

D(aa)nD(laVI 2) andD(Q+) =D(a)nD(aV). 
Proof By taking r sufficiently large in (3.9), the as­

sumption of Lemma 2.8 is satisfied. Thus Lemmas 2.8 and 
2.9 give the desired results. 0 

The following lemma is derived from Lemma 2.6 (i) 
and (3.3). 
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Lemma 3.4: Every vector (f,g) in Ker Q + satisfies 

( -~-~+2a~ ax2 ay2 ax 

+ 2ia ~ + 41A 12a2e2ax)/(x,y) = 0, (3.10) 

( -~-~+2a~ ax2 ay2 ax 

- 2ia.!!... + 41A 12a2e2ax)g(x,y) = 0, (3.11) 
ay 

where we put z = x + iy. 
Lemma 3.5: Let aER, b> 0, c> 0, and EEC be constants. 
(i) IfRe E<;O, then 

- - + 2a - + ce2bx I(x) = EI(x) ( 
d2 d ) 
dx2 dx 

(3.12 ) 

has no solutions Ii=0 with IED(d 2/dx2) nD(e2bx ) 
CL 2(R). 

(ii) Suppose that 

0<;IRe~a2-EI <a, ReE>O 

and 2~a2 - E /b is not an integer. 
Then every nonzero solution IEL 2(R) to Eq. (3.12) is 

given by 

ji( x) = Ke(a- bl2)xW (2 'cebx/b) (3.13) O.Ja'-Elb ve.; , 
with a constant KEC\ {O}, where Wk,m (z) is the Whittaker 
function (see e.g., Ref. 9, Chap. XVI). 

Proof (i) Via the elliptic regularity, every solution I to 
Eq. (3.12) is Coo, Let IED(d 2/dx2) nD(e2bx ) be a nonzero 
solution to Eq. (3.12), Taking the inner product of I with 
(3.12) inL 2 (R), we obtain 

111'112 + 2a(I',J) + clle
bx

/I1
2 

= E 11/112. 

Since (I',J) is pure imaginary, it follows that Re E> 0, 
Thus the desired result follows. 

(ii) Let IEL 2(R) be a nonzero solution to Eq. (3.12) 
and define 

v(t) = t (b- 2a)/2b 1(1!2b log(b 2t 2 /4c») , t> 0 . 

Then we have 

II/II~ =~ roo t2(a-b)/blv(t)12dt<00 
b Jo 

and v satisfies the Whittaker equation 

d 2 {I 1 - (a2 
- E) / b 2 } 

dt 2V (t) + - 4' + 4 t 2 v(t) = 0 . 

(3.14 ) 

(3.15 ) 

(3.16 ) 

Since 2~ a2 - E /b is not an integer by assumption, the con­
fluent hypergeometric functions MO../er-=--Elb (t) and 
M o, _ Ja' :'::£Ib (t) (see, e.g., Ref. 9, Chap. XVI) formafunda­
mental system of solutions to (3.16); every solution to 
(3.16) is given by a linear combination of these functions. By 
taking the asymptotic property of M o,!" (t) as t--O and t-- 00 

into account, we see that possible solutions to (3.16) with 
condition (3.15) are scalar multiples of the Whittaker func­
tion WO"/cT=-Elb (t), with 

0<;IRe~a2 - E I <a. (3.17 ) 

Condition (3.17) comes from the integrability condition of 
t2(a-b)/blv(t)12 near t=O. On the contrary, if we define 

1168 J, Math, Phys" Vol. 3D, No, 5, May 1989 

I(x) by relation (3.14) with v(t) = WO.Jer:=Elb (t) under 
condition (3.15), then I isinL 2(R) (I i=0) and satisfies Eq. 
(3.12). D 

Lemma 3.6: (i) Every solution IED(aa) nD(e2ax ) to 
Eq. (3.10) has the form (3.4). 

(ii) For all uEDa , the function lu given by (3.4) is a 
solution to Eq. (3.10) with/uED(aa) nD(e2ax ). 

Remark: The sets of the solutionsgofEq. (3.11) consist 
of the complex conjugates of the solutions I to (3.10), 

Proof (i) If I is inD(aa) nD(e2ax ), then Eq. (3.10) is 
equivalent to 

( 
a2 a ) h h 

- -2 + 2a - + 41A 12a2e2ax I(x,p) = E(p)/(x,p) , 
ax ax 

(3.18 ) 

with 

E(p)=p(2a-p), pER, (3.19) 

where/(x,p) is the Fourier transform of/(x,y) with respect 
toy: 

/(x,p) = _1_ Je - iPYI(x,y)dy . 
{21T 

Via Lemma 3.5 (i), Eq. (3.18) has no nonzero solutions 
/(-,p)ED(d 2/dx2) nD(e2ax ) if E(p) <;0. Hence/( ',p) = 0 
for allp,*(0,2a). 

Let E(p) > 0, i.e., 0 <p < 2a. Then by Lemma 3.5 (ii), 
everysolution/(',p)EL 2 (R) toEq. (3.18) is given by 

/(x,p) = u(p)eaX12WO,la_pl/a(4IA leax ) =/u(x,p) , 

where u is a function on the set S={PERIO <p < 2a,p i= a/ 
2,a,~a}. Thus the desired result follows. 

(ii) Let uED a' We need only show that lu is in 
D(aa) nD(e2ax ): We write it aslu = f By the asymptotics 
of the Whittaker function Wo,!" (t) at t = 9 and t =h + 00 

(see, e.g., Ref. 9, Chap. XVI), we see that/and e2axI(x,p) 
are in L 2 (R2

). By using the recursion relation 

zWb,m (z) = (z/2) WO,m (z) - W1,m (z) , 

we can show that 

a h a h h 

-/(x,p) = - I(x,p) + 21A laeaxI(x,p) 
ax 2 

- au(p)eax12 W 1,la_pl/a (41A leax ). (3.20) 

Each term on the rhs of (3.20) is in L 2(R2) and hence 
a/(x,p)/ax is in L 2(R2). By virtue of (3.18), this implies 
that a 2/(x,p)/ax2 isinL 2(R2). We can also seethatp2/(x,p) 
is inL 2(R2). Thus the function I isinD(aa) nD(e2ax ). D 

Lemma 3. 7: Letlu be given by (3.4) with uEDa , Then 
/u isinD(a)nD(eaX ) ande-axa/u isinL 2 (R2

). ) 

Proof By the proof of Lemma 3.6 we have lu 
ED(a7h nD(e2ax ). Since D(aa) nD(e2ax ) CD(a) 
nD(eax ), we obtainluED(a) nD(eax ). 

Let 

h(x,y) =e-ax(alu)(x,y). 

Then we have 

h 1 (ah h) h(x,p) =_e- ax -Iu(x,p) -p/u(x,p) . 
2 ax 
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By using (3.20), we obtain 

2h(x,p) = R(x,p) + 21;llafu (x,p) , 

where 

R(x,p) = u(p)r aX/2{(aI2 - p) WO,la_pl/a (41;lleax
) 

-aW\,la_pl/a(41;lleax )}. (3.21) 

Sincefu is in L 2 (R2), we need only show that the function R 
is in L 2(R2). It is easy to see that for every cER, 

L dp 1"0 dxIR(x,p) 12 < 00 • 

By the asymptotics of Wk,m (z) at z = 0 and by virtue of the 
condition supp u C (0,aI2) U (aI2,a), we see that 

x- - 00 

and hence 

R(x,p) _ U(P)w2(p)e(U-1a -pl)x, 
x--- - 00 

with the continuous functions w \ and W 2 on the support of u. 
Therefore, we have 

L dp J~ 00 dxIR(x,p) 12 < 00 • 

Thus we obtain REL 2 (R2). D 
Pro%/Proposition 3.1: Via Lemma 3.6, the set ofsolu­

tions to Eq. (3.10) in D(aii) nD(e2ax ) consist of just func­
tions of the form/u given by (3.4). If/u andfu given by (3.4) 
and (3.5), respectively, are in L 2(R2), then R (. ,p) defined 
by (3.21) must be inL 2(R) for a.e.pE[0,2a]. We can show 
that if a.;;p.;;2a, thenR(' ,p) is not inL 2(R) (cf. theproofof 
Lemma 3.7). Hence we have supp uC [O,a]. Then the first 
assertion follows from Lemma 2.6(ii) and (iii) and the re­
mark after Lemma 3.6. 

Via Lemma 3.7, every /u with uEDa satisfies the as­
sumption of Lemma 2.6(ii). Therefore, for every uEDa, the 
pair (/uJu), with fu given by (3.5), is in Ker Q+ 
= Ker H+. Via Lemma 2.6(iii) and the remark after 

Lemma 3.6, we also have (fu)*J!)EKer H+ for every 
uED a' Thus we obtain (3.7). We have dim D a = 00 and, if 
the vectors U\'OO"U n EDa are linearly independent, then so are 
the vectors (/UIJul ),oo',(/UnJun)' Thus (3.8) follows. D 

IV. APPLICATION 

In this section, we apply the result in Sec. III to models 
in atomic and nuclear physics, which were discussed in Ref. 
1. 

A. Nonrelativistic spin-l particle in an external SU(2) 
gauge field 

Let 7 a , a = 1,2,3 be the generators of the SU(2) group. 
An external SU(2) gauge field A(x) = (A\(x), A 2(x), 
A 3(x»), x = (x\,X2,X3)ER3 is given as Aj(x) 

=~! ~ \ A j(X)7a , j = 1,2,3, where we take A j to be real 
valued. Then the Hamiltonian of a nonrelativistic spin-! par­
ticle with mass 1 coupled minimally to the gauge field is 
given by 
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HA =!( -iV-gA)2_!crB, (4.1) 

where gER'\ {o} is a coupling constant, V = (a lax\,a I 

aX2,alax3), 0'= (0'\,0'2,0'3)' and Bj =g(curlA)j 

+ w~tm ~ \ Ejkm [Ak.A m ] (where Ejkm is the Kronecker 
antisymmetric symbol). 

We consider the following situation. 
(a): (i) A\ = A2 = 0, (ii) A ~ = 0, (iii) A l (x) and 

A ~ (x) depend only on x\ and x 2, and (iv) V3 = 0, where 
condition (iv) means that we consider only state vectors 
independent of X3 and identify them with elements in 
L 2(R2;C4

). Let Vbe a holomorphic function on C andHbe 
given by (2.21). Then it was shown in Ref. I that under 
condition (a), with A l - iA ~ = 2 av Ig,HA can be written 
as 

(4.2) 

with a rearrangement of components. 
Proposition 4.1: Suppose that condition (a) is satisfied. 

Let 
A ~ (x \,x2) = (2a;l /g)eUX, cos aX2 , (4.3) 

A ~ (x I'X2) = - (2a;l /g)eax, sin aX2 , (4.4) 

with a> Oand;lER'\ {O}. Then HA has infinitely many zero­
energy states 'I' in L 2(R2;~):HA 'I' = O. Further, the Four­
ier transform W(xl,p) of every 'I'(x\,x2) with respect to X2 

has compact support in pER. 
Proof: By (4.3) and (4.4), we have 

A 1_ 'A 2 _ 2 av 
3 I 3 - -, 

g 

with V(z) = ;leuz (z = x I + ix2). Thus by (4.2) and Propo­
sition 3.1, we obtain the desired result. D 

Remark: The gauge field given by (4.3) and (4.4) is 
periodic in the X 2 direction. This may be an origin of the 
existence of infinitely many zero-energy states and the local­
ization of the states in the momentum space dual to the X 2 

direction. 

B. Nonrelativistic nucleon in an external pion field 

The Hamiltonian of a nonrelativistic nucleon in an ex­
ternal pion field ¢J(x) = (¢J\ (X),¢J2(X),¢J3(X»), xER3 is given 
by 

H", = - ~V2 + !gO"V(7'¢J(X») + !g2¢J(X)2. (4.5) 

(See Ref. 1.) Suppose that the following condition is satis­
fied. 

Condition (¢J ): (i) ¢J3 = 0, (ii) ¢J \ and ¢J2 depend only on 
x\ and x 2, and (iii) V3 = O. 

Then it was shown in Ref. 1 that 
H", = 2H, (4.6) 

with ¢J\ - i¢J2 = - 2i av /g . 
Proposition 4.2: Suppose that condition (¢J) is satisfied. 

Let 
¢JI (x\,xz) = (2Aa/g)eax, sin ax2 , 

¢J2(X\,X2) = (2;la/g)eax , cos ax2 , 

with a>O and ;lER'\{O}. Then, H", has infinitely many 
zero-energy states ~ in L 2(R2;C4

) :H", <t> = O. Further, the 
Fourier transform <t>(x\,p) of every <t>(x \,x2) with respect to 
X 2 has compact support in PER. 

Proof: Similar to the proof of Proposition 4.1. D 
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APPENDIX: KERNEL OF A SCHRODINGER OPERATOR 

Let d be an arbitrarily fixed positive integer. Let U be a 
real-valued measurable function on Rd and .:l be the d-di­
mensional Laplacian: .:l=~f=lJ2/JXJ, x=(x" ... ,xd ) 

ERd. We consider the Schrodinger operator 

Hs = -.:l + U (Al) 

acting in L 2(Rd
). 

Lemma AI: Suppose that C6 (Rd
) CDC U) and 0'>0. 

Let H s be the closure of H siC 6 (R2
). Then we have 

Ker Hs = {a} . (A2) 
Remark: (i) It is obvious that under the condition 

C6 (Rd
) CDC U), H s I C6 (Rd

) is closable and symmetric. 
(ii) The domain D(H s) is not necessarily equal to 

D(.:l)nD(U). This is the reason why we need a limiting 
argument to prove (A2) (see below) . 

Proof Let JEKer Hs :Hs J = O. Then we can take a se-

quence {In}CC6 (Rd
) such that In':"l and Hsfn':" 

O(n-+ (0): It follows from the latter that 
d 

L IID./nlf + IlU i/ :rnIl2-+0, 
j= 1 

where Dj = J /JxF Hence we have D./n ':"O,j = l, ... ,d, and 
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U 1/21n ':"0. Since Dj , j = 1, ... ,d, are closed, it follows that 

IED(Dj ),j = 1, ... ,d, and 

D./= 0, j = 1, ... ,d, 

which, together with JEL 2(Rd
), imply thatJ = O. D 
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