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Representation-theoreti ¢ aspects of two-dimensional

MAY 1998

guantu m system s in singula r vecto r potentials : Canonical
commutatio n relations , quantu m algebras, and reduction

to lattic e quantu m systems

Asao Arai®
Departmen of Mathematics Hokkaicb University, Sappoo 060, Japan

(Receivel 23 Jure 1997, acceptd for publication 13 Januay 1998

Sorme representation-theoretaspect of a two-dimensionhquantun systen of a
chargel particle in a vecta potentid A, which may be singula on an infinite
discree subse D of R? are investigatedFor eat vecta v in ase V(D) CRA{0},
the projectian P,, of the physicd momentun operate P:=p— aA to the direction of
v is defina by P,=v-P as an operato acting in L2(R?), wher p=(—iD,,
—iDY[(xy)e R?] with D, (resp, Dy) being the generalize partid differential

operato in the variabk x (resp, y) anda € R is a parameter denoting the charge of

the particle It is proven tha P,, is essentialf self-adjoirt ard an explicit formulais

derived for the strongy continuows one-parameteunitary group {e'™}, _r gener-
ated by the self-adjoirt operato P, (the closue of P,), i.e., the magnett translation
to the direction of the vecta v. The magnett translatiors along curvesin RAD are
als consideredConjugatey to P, ard P,, [we V(D)], a self-adjoint multiplica-
tion operato Q, ,, is introduced which is a linear combinatio of the position
operatos x and y, sud that if A is flat on RA\D, then Wﬁw3={Qv,w,Qw,v,
P,,Py} gives arepresentatio of the canonich commutatio relatiors (CCR) with
two degres of freedom Propertis of the representationzrﬁW are analyzed In
particular a necessar ard sufficiert condition for wﬁw to be unitarily equivalent
(or inequivalent to the Schralinge representatio of CCR is establishedThe case
where 7T€’W is inequivalen to the Schralinge representatio correspond to the
Aharonov—Bohm effect Quantum algebra€ structure [quantun plare and the
quantun grow Uq(sl,)] associaté with the pair {P,,P,} are also discussed.
Moreover for evey A in aclas of vecta potentiab having singularities on the
infinite lattice L (w, @) ' ={Mw;+ Nnw,|m,ne Z} [the ca® D=L (w;,®,)], where
, € R? and w, € R? are linearly independentit is shown tha the magnett trans-
lations €'"“j, j=1,2, with A replacel by a modifiel vecta potentid are reducel by
the Hilbert spa@ |(L (e, ,®,)) identified with a closel subspae of L?(R?). This
result which may be regarde as one of the mog importart novd resuls of the
presem paper establishe a connectim of continuows quantun systens in vector
potentia to lattice ones © 199 American Institute of Physics.
[S0022-24888)02805-9

I. INTRODUCTION

This article is a continuatio of the previous articles > concernig gaug theoy (quantum
mechanis of a particle interactirg with an externd gaug potentia) on a nonsimpy connected
spae in two dimensionsin sud a gauge theory, a representatio of the canonich commutation
relatiors (CCR) with two degres of freedan is realized by the position ard the physicd momen-
tum operatos if the gauge potentia is flat. The nonsimpy connectednesof the bas spae is
essentihfor this representatio to be nontrivial, i.e., not necessanjl be equivalen to the Schro
dinge representatio of CCR with two degres of freedom The unitatly equivalene or inequiva-
lence of the representatio to the Schralinge representatiois completey characterizé in terms
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of the locd Wilson loops An interestirg featue to be noted hereis tha the celebratd Aharono/—
Bohm effecf may be mathematical well understod as the representatio inequivalen to the
Schralinge one Sone physica implicatiors of the inequivalem representatio in the Abelian
ca® (the cae of quantun mechanis of a chargel particle in an externa vecta potentia) are
discussd in terns of the Dirac—Weyl operato (Ref. 2). Moreover it is shown that in the case
where the vecta potentia is given in terms of the Weierstras Zeta function with singularities at
zZ=mo;+inw,, mneZ (w;>0, j=1,2), the inequivalen representatio induces representations
of quantum planes (rotation algebrag and the quantum growp U,(sl,) with [g|=1, ge C (Ref 5).

In this pape we further pursie representation-theoretaspecs of a two-dimensionbAbelian
gauge theory in which the vecta potentia may have singularities on an infinite set of pointsin R?
ard show by bringing sorre new aspect to light that suc a gauge theoy may hawe richer and
deepe structuresWe first demonstrag by an explicit constructia that associate with the posi-
tion and the physicd momentun operatorsthere exists a wide class of inequivalemn representa-
tions of CCR tha includes those given in Refs 1 and 5. The bast idea of the constructim is to
conside projectiors of the position and the physicd momentun operatos to directiors of vectors
in R?. As in the previots simple case discussd in Refs 1 ard 5, thee new discovere repre-
sentatios of CCR give new representatiosiof quantun planes and U(sl,) if the singularities of
the vecta potentid form an infinite lattice.

Anotha new aspet of the presen article is concernd with magnett translations These
objecs can be defined in both continuows and lattice quantum systens in externd magnett fields.
Magnett translatiors in the forme systens in uniform magnett fields have beea discussd in
sone detal (e.g, Refs 7-10), but, it seens that investigatios of magnett translatios in the case
of nonunifom magnett fields are missirg in the literature In this pape we defing in the con-
tinuous quantum system unde considerationmagnett (paralle) translatiors as the strongl con-
tinuous one-parameteunitaly groups generatd by the projectal physicd momentun operators
ard study their properties.

On the othe hand magnett translatiors on lattice quantun systens hawe been extensively
discussd in connectim with modek of the Hofstadte type (e.g, Refs 11-13 ard references
therein. Lattice modek are usualy definel by ad hoc procedurs from continuos quantum
systens (e.g, “tight-binding approximation” or othe analogies From a unified point of view,
this situatia is obviousl unsatisfactorylt would be naturd and interestirg to investigae if there
exiss ary internd (non-ad ho¢ reducticn mechanim by which a lattice quantum systen “dy-
namically” emerge from a continuos quantum system In this pape we shov tha suct a
mechanis exists We regad this resut as one of the mog importart new resuls of the present
paper.

We now descrite the outline of the presemnarticle in more detail Asalread mentionel above,
we conside a continuows quantum systen of a chargel particle with chargea e R\{0} moving in
the Euclidean plare R? unde the influence of a perpendiculamagnett field B. We denoe by

A(r)=(Ay(r),Ax(r), r=(x,y)eR? (1.2
the vecta potentid of the magnett field (up to gauge transformationy so that
B=D,A,—D,A;, (1.2

where D, ard D, are the generalizd (distributiona) partid differentid operatos in the variables
x ard y, respectively.
Let

D={a,=(an1,@n2) }nen (1.3

be a sé of points in R? sud tha a,+a, if n#m ard the set {anjtn=1 (j=1.2) has no accumu-
lation point in R. Then

M:=R2D (1.9

is an open se of R%. We assune tha A is continuos on M. But A may be singula on D ard B
may be adistribution on R? with suppot in D. Excep for sorme generaaspectsit is essentifor
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the theoly presentd below to be nontrivid that A has singularitiesin D. The Hilbert spae of state
vectos of the quantum systen unde consideratia can be taken to be L%(R?).
The operators,

pl::_li- p2::_iDya (1.5

acting in L%(R?) with doman D(p;)={¥eL?R?|D,¥eL?R?} and D(p,)={V¥
eL?(R?)|D,¥ eL%(R?)} are self-adjoint where for an operato T, we denok by D(T) its
domain The physicd momentun operato (the velocity operato up to a constah multiple)
P=(P,,P,) is given by

acting in L%(R?) with D(P;)=D(p;)ND(A)).
For eah vecta v=(v4,v,) e R\{0}, we define

2
Py=v-P=2, v;P;. (1.7
=1

We cal it the projection of the physicd momentm operata (or simply the projected physical
momentm operatoy to the direction of v. The operato P; is a speci& ca of P, :

Pi=Pe, =12, (1.8
with
e,:=(10), e=(01). (1.9
We introduce asubse of vectos R?. Let
vOW:=0v,W,—v,W;, V,weR2 (1.10

Definition 1.1 We say that ve R2{0} isin the se V(D) if the sequene {v[a,};_, has no
accumulatio point.

By the assumptia for D statel above e € V(D), j=1,2.

In Sec Il we prove the essentibself-adjointnes of P, with ve V(D) ard clarify the spectral
properties of the self-adjoirt operato P,, (the closue of P,) (Theorens 2.4 ard 2.5).

The essentibself-adjointnes of P,, allows one to defire the continuows magnett translations
to the direction of v as the elemens of the strongly continuows one-parameteunitary group,

THt)=e'™, teR, (1.12)

generatd by P,. We prowve tha there exist no nontrivid finite-dimensionhsubspacgof L2(R?)
left invariart by T2\(t) (Propositia 2.6).

Sectin II1 isdevoteal to a bast analyss of of the continuos magnett translationsWe derive
an explicit formula for Tﬁ(t) (Theoren 3.2) and using it, we compue commutatio relatiors of
T2(s) and TA(t) [s,te R,we V(D)] (Theoren 3.3).

In Sec IV we define magnett translatiors along curvesin M and investigae their properties.

Sectio V is devotal to analyss of representatiamof CCR appearig in the quantum system
unde considerationWe first introdue multiplication operatos given as linea combinatiors of
the position operators,

41 =X, Q=Y. (112
Namely, for vectos v,we V(D) linearly independentwe define

_ qOw
v ow

(1.13

Copyright ©2001. All Rights Reserved.
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where g:=(qy,d)-

We denoke by CK(M) the se of k times continuousy differentiabk functions on M ard by
C‘S(M) the se of functiors in C¥(M) with boundel suppot in M.

We say that A with A e CY(M) (j=1,2 isflat on M if B(r)=0 for all re M. The flatness
of A on M physicaly mears the magnett field B is concentratd on the discree sd D in the
distribution sense.

We shaw that if Aje C'(M), then

78 ={L2(R?),C3(M),Quu»Quiv Py, Pul (1.14

is a representatio of the CCR with two degres of freedam if ard only if A isflat on M (for the
terminology on the representatio theory of CCR, we refer to Ref. 5, Sec 1). We analyz prop-
erties of this representationWe see tha resuls similar to those of simple cassin Refs 1 and 5
hold in the preseh ca® too, generalizig them.

In Sect VI we give sone remarks on quantun algebra¢ structure [representationof quan-
tum planes ard U4(sl;)] associate with the representation-rﬁw.

In the lag section we conside the problem of reductio of the continuows quantun system
unde consideratia to a lattice one For this purpose we fix arbitrarily two linearly independent
vectors,

0= (011,012), 0= (wy,0) €R?, (1.19
sut that w;0w,>0 and take as D an infinite lattice,
L(wy,0,)={Q /mneZ}, (1.1
where
Qnn=Mw+nNw,. (1.17

The Hilbert spa@ of stak vectoss of a quantun systen on the lattice L (w;,®,) is taken to be

|2(L(w1,w2))1= ¢:{¢(Qm,n)}m,ne2v 'ﬂ(ﬂm,n)ec’ m,neZ,

> |¢(ﬂm,n>|2<oo]. (1.18

mneZ

This Hilbert spa@ can be regarde as aclosal subspae of L?(R?) in a natura way. Indeed let
Snn be the interior doman of the parallelogran determine by the four vectos Q.1 ,— Qpm p,
Qoiini1— Lmstns CLons1— Cmnys @t 1n+1— Cmn+1 @andxn, o be the characterist function
of Snn- Then eat elementy e 1%(L (e, ,,)) can be regarde as an elemen of L%(R?) by the
correspondence

Y= EZ Qe n) Xmn € LA(R?),

m,ne

so that unde this correspondengé?(L (ew;,®,)) can be identified with the closel subspace,

v= E ‘Pm,nXm,nv‘Pm,necv §:Z|\Pm,n|2<oc , (119

wq,0
172 mneZ mne

L2 (Rz)::qu e L3(R?)

consisting of elemens in L2(R?) beirg constah on eadh Smn- It is eay to see that
eV(L(wy,»,)), j=1,2 If the unitaly operators,

Th,=Th, (D), (=12, (1.20
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leawe Li,l,wz(Rz) invariant then they are reducel by qul,wz(Rz) and their restrictin to
Lfol’wz(RZ) gives a sd& of magnett translatiors on aquantun systen on the lattice L (o, @,). In

tha case modek of the Hofstadte type on L(w;,w,) are obtainal as internd or “dynamical”
reductiors of modek on the continuows spa@ R?\L (w;,w,). Thus the problem is to determine
the class of vecta potentias A sud tha T’_jwj leave Lﬁ,l’wz(Rz) invariant At first sight such

vecta potentiak may seen not to exist, excep for somre physicaly trivial casesThis is certainly
true as long as one consides regular vecta potentias on R?. But, if the vecta potentid is
allowed to be singula on the lattice L (w4, @), then the situation changs drastically Indeed in
that case we can show tha ther exists a methal of constructiiy vecta potentias A for which
T’iwj leave qulﬁwz(Rz) invariant Roughly speakingthe methal is as follows. Let

C!)j:wjl+i(1)j2, j:1,2, (12])

be the complex numbes correspondig to w; € R?, j=1,2i:=—1). We take ameromorphic
function f(z) on C with poles at

Qpn=Moi+nw,, mneZ, (1.22

suc tha df(z)/dz is an elliptic function with periodsw; , j=1,2 and defire avecta potentid A
by

AN =%f(z), A)r)=MRf(z), r=(x,y)eR? z=x+iy. (1.23

We show tha T’.*_P o, themselve may nat leawe L;l ]wz(Rz) invariant but there exist a correspon-

den@ A—A of the vecta potentid such that T’;wj do leawe L, ,, (R invariant.

Unfortunatey we hawe been unabk to solve the problem of determinirg all the vecta poten-
tials A such tha T@wj (j=1,2) leaw Lfnl’wz(Rz) invariant We leawe this problem for future
study.

We remak that in the same way asin Refs 3 ard 4, the resuls presentd in Secs 11—V can
be extendd in a naturd way to the cas of non-Abelian gauge theories If ary significart aspects
are discoveré in the non-Abelian case then we shal repot them in a separag paper.

Il. BASIC PROPERTIES OF THE PROJECTED PHYSICAL MOMENTUM OPERATORS

A. The physica | momentu m operator

The mathematichanalyss of the physicd momentun operate P in the preseh cas can be
mack quite similarly to tha in the ca® wher D is a finite discree se (Ref 1). But, for the
readers conveniene as well as for later referencewe briefly descrile sonme bast properties of
P;, j=1, 2. We introduee two sets:

My={(x,y) e R%|xeR,y#ay,,neN}, 2.1
Moi={(x,y) e R®x#ay,neN,yeR}, (2.2

which, by the assumd propery of D, are open set of R?. Let

X

y
Ul(X,y):: efiaJ’OAl(X',y)dX" Uz(x,y):: efiaJ’OAz(X,y')dy’_ (23)

Then U;e C(M;), j=1,2 Since the Lebesge measue of the se {(x,y)|xeR, y=an,, neN}
(resp, {(x,y)|yeR, x=a,;, ne N}) iszerg U, (resp, U,) defines aunique multiplication unitary
operato on L2(R?), which we denoe by the sane symbd U, (resp, U,).

In wha follows, we assune the following.

Hypothess (A),: For a non-negatie intege K, A, eCK(M), j=1,2.

Propositim 2.1: The operata P;(j=1,2) is essential self-adjoirt on CE(MJ-) and the op-
eratar equations

Copyright ©2001. All Rights Reserved.
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Pi=U;'pU;, =12 2.4

hold.

Proof. The unitary operato U; mays CO(M ) to itself bijectively and for all ¥ e CO(M ),
P¥=U; pJU W, j=1,2 Sine pJ is essentlay self-adjoirt on Ck(M i), it follows tha P; is
essent|au self-adjoirt on CO(M ) ard (2.4) is obtained. |

We denoe by o(P;) [resp.,0.d P;), dp(Pj), os{Pj)] the spectrun (resp, absolutey con-
tinuous point, singula continuow spectrum of P; .

Propositim 2.1 (the unitary equivalene of P; to p;) ard the well-known spectra propery of
p; imply the following.

Propositian 2.2 For j=1,2,

o(P)=0ad PP=R, oy(P)=0e(P)=0. (2.9
B. The projecte d physica | momentu m operators
Let V(D) be as in Definition 1.1 For ve V(D), we define
L(a,;v)={a,+sv|seR}, (2.6
which is the straight line passitg throuch the point a, with the direction of v. Then
M(D):=RAU;_; L(a,:V), 2.7

is an open se of R?.
It is well known that the angula momentun operator,

L'=qg1p>—02P1, (2.8

is essential} self-adjoirt on CE;’(RZ) (e.g, Ref. 14, Sec 3). We denot its closue by the same
symbd L. Then for all #e R and¥ e L?(R?), we have

() (r)=P(R(Or), aereR? (2.9
where
__(cosa —sina)
ROO=\sino coso 2.19

is the rotation matrix in R?.
We write v=(v,v5) € V(D) in the polar coordinaé as

vi=v C0Sf,, v,=v sSiné,, v=|v, 0<6,<2m. (2.11)
The function

Av(r):=—V'A(FZ( 6)1) (2.12
isin CY(R(— 6,)M,(D)). We define
Pi(V)'=pi—aA,. (213

Propositian 2.3 The operata P4(V) is essentialy self-adjoint on CE(R(— 0, )M, (D)).

Proof We neda only to apply Propositim 2.1 with A; and a, replacel by A, and
R(—6,)a,, respectively. |

The following theoren is ageneralizatia of Propositio 2.1.

Theorem 2.4 Let ve V(D). Then P, is essentialf self-adjoirt on C‘S(MV(D)) and the op-
erata equation
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e0Lp e 1=y P (v), (2.14

holds
Proof. Let

P=(pP1,P2)- (2.15

Then it is eay to see that for all fe R,

e pe '""=R(A)p, on CH(R?). (2.19
Hence

e'®btv.pe "t=yp;, on CZ(R?). (2.17)
It is eay to see that

e "W-CK(R(— 6,)M(D))=Cl(M (D)) (2.18
and

ety.AeiWt=pA,, on CHR(—6,)M(D)).

Hence

eWLpe i%l=pPy(v), on CK(R(—6,)M(D)). (219

It follows from Propositim 2.3 (2.18 ard (2.19, tha P, is essentiall self-adjoirt on

C'S(MV(D)). This resut implies tha (2.19 can be extendé to the operato equatian (2.14. W
Remak 2.1 If D is a finite discree set then P, is essential} self-adjoint for all v

e R2\{0}. -
By (2.14 ard Proposition 2.2, we obtan the following resut on the spectré propery of P, .
Theorem 2.5 For all ve V(D),

o(P)=0adP) =R, oy(P)=0(P,)=0. (2.20

C. Nonexistenc e of nontrivia | finite-dimensiona | subspace s left invarian t by
continuou s magneti c translations

Let Té(t) be definad asin (1.11). The following fact is importart in considerig the algebra
generatd by the magnett translatiors T{,*j(t), j=1,..n (neN, v;eV(D)).

Propositian 2.6: Let t e R\{0} and ve V(D). Then there exig no nontrivia finite dimensional
subspace of L?(R?) that are left invariant by T/(t).

Proof Suppos tha there exiss a finite-dimensionhsubspae .7 # {0} of L%(R?) that is left
invariart by T5(t). Then T/ (t) is reduce by .7%. Since T/(t) is unitaly and .77 is finite dimen-
sional the reducel part Té(t)[.%’ has an eigenvale \ o with |\o| = 1. Thisis als an eigenvale of
Tﬁ(t) on L%(R?). It follows from the spectra theoren of self-adjoirt operatos tha P, has an
eigenvale of the form (arg \o+2mng)/t (nge Z). But this contradics the fact that o,(P,) =
(Theoren 2.5). Thus we obtai the desiral result. |

[lI. CONTINUOUS MAGNETIC TRANSLATIONS GENERATED BY THE PROJECTED
PHYSICAL MOMENTUM OPERATORS

A. Explici t representations

Let
py=Vv-p, VeR? (3.

Then we hawe for all te R ard ¥ € L?(R?),

Copyright ©2001. All Rights Reserved.
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(P (r)=W(v+tv), ae reR> (3.2
Let Té(t) be definal by (1.11). Propositim 2.1 implies that, for all te R,
TAD)=ePi=U; ePU;=U ey, j=12 (3.3

For two vectos a,b e R?, we denoe by ng(r) -dr thelineintegrd of A over the straigh line
from ato b.
Using (3.3 ard (3.2), we can obtan an explicit formula for T’gj(t).

Theorem 3.1 For all teR, and ¥ e L?(R?),
) +te ., , ) +te ,, P
(TaOW)(r)=e el A g (r 4 te) =g el AT (@Paw)(r), ae. r. (34)
Theoren 3.1 can be extende to the cas of the magnett translatim T2(t) with any vector

ve V(D).
Theorem 3.2 Let ve V(D). Then for all te R and ¥ e L2(R?),

(TAW)(r)=e et A g (4 ty) =g ialt” AT (giPup) (1) ae. 1. (3.5)

Proof. By Theoran 2.4, we have for all te R,

TC(t):efiﬁvLeitvpl(v)ei BVL. (36)
Let ¥ e L?(R?) ard s& R(— 6,)r=(x(v),y(v)). Then we have by (3.4),
TAOW)(r)=e 1 AKX g (r L tyR(6,)e), ae. T.

Noting tha vR(6,)e,=Vv and

r+tv

X(Vv)+tv 1
f Av(x’,y(v))dx’=tf v-A(r+)\tv)d7\=f A(r')-dr’,
X(V) 0 r

we obtan (3.5). |
Remak 3.1: We have for all te R\{0} ard ve V(D),
tP,= P, 37
which implies that
ToO=TH(D). (3.9

Thus as for the magnett translatiors generatd by E\, it is sufficiert to conside the unitary
operator,

TV=To(D). (3.9
B. Commutatio n relations
Let v,we V(D) sud tha v and w are linearly independentard set
Cr(v,w)={r+Av[0sA<1}le{r+v+Aw|OsA<1}o{r+(1—N)v+w0s\<1}
ofr+(1—N)w|0sA<1}, (3.10

which is the closal curve startirg and endirg at the point r, forming the circumferene of the
parallelogran with verticesr, r+v, r+v-+w, r+w. We introduce

My w(D):=RAU_ [L(ay;v)U(L(ay;v) —w)UL(ay;w)U(L(a;w)—v)].  (3.1D)
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Note that if r e M, (D), then C,(v,w) does nat interset D. We define

@Qw(r)zf A(r')-dr’, reM,,(D), (3.12
C(v,w)

which physically mears the magnett flux passig through the interior domah of C,(v,w). Since
the Lebesge measue of RZ\MV'W( D) is zerg the function QDQW defines a unique multiplication
self-adjoirt operato on L2(R?). We denoe it by the sane symbol.

Theorem 3.3 Let v and w be as above Then

TATA=exp(—i a®h,) TATA, (3.13

Proof Using Theoren 3.2, we have for all ¥ e L>(R?) ard a.er,

r+v+w

(TC\TC\V\P)(r)=e‘i“f;+v“(’/)'dr'e‘i“fr+v AD)-dr' g (¢ vt w), (3.14

from which (3.13 easiy follows. |

Remak 3.2 Formuh (3.13 is ageneralizatia of a formula establishd in Ref. 1 [see (2.1) in
Ref. 1, which correspond to the ca® where v=¢;, w=e,, and A may be singula on a finite
discree se of points].

IV. MAGNETIC TRANSLATIONS ALONG CURVES

In this secti;n we conside magnett translatiors along curves in M. Throughot this section
we assune that

V(D)=R2{0}, 4.1

so that, for evely vecta ve R?\{0}, the projectel physica momentun operate P, can be defined
as a self-adjoint operator.

An exampe of such D isgiven by D={Q, /meZ,ne[—M,M']NZ}, wher Q,, , isgiven
by (1.17 and M,M’" e N.

Let C be a continuows curve in M with parametrizatio C={u(s)|se[a,b]}(—x<a<b
<x). Let {sgp,51,...,5,} be a partition of [a,b] (a=sy<5:<---<5,_1<S,=b) sud that
MaX—1  n(Sk—Sk-1)—0(n—) ard Au:=u(sy) —u(sx—1), k=1,..n. Then we define

U(C)=s—lim e 'Paue Pay,_,...e”Pau, (4.2

n—oo

if the right-hard side (rhs) exists where s-lim mears strorg limit. It follows tha U(C) is unitary.
We cal U(C) the magnett translation along the curve C.
We introduce

d(C):= fCA(r)-dr, 4.3

the line integrd of A alorg the curve C. For r e R? we defire acurve C, by

C,=C+r—u(b). (4.9

We denoe by F(C) the multiplication operate by the function r— e'*®(C0:

(F(CO)P)(r)=e'“®Cowp(r), TelL*R?, a.e reR? 4.5

Remak 4.1 In the cag where A has singularities on D, the functiont r—®(C,) is originally
defina only on RAU,.n{a,+u(b)—u(s)|se[a,b]}. But the Lebesge measue of the set
Unenfantu(b)—u(s)|se[a,b]} is zerq so tha €' *®(¢0) defines a unique multiplication unitary
operato on L2(R?).

Theorem 4.1 The rhs of (4.2) exiss and
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U(C)=F(C)ePuarub), (4.6
Proof. Let
Un(C)=e Paue Pau, 1 g 1Pau,
By applyirg (3.5 repeatedlywe have for all ¥ e L2(R?),
(Un(C)®)(r) =€l 2P (elPua-uonpr)(r), ae. T,
with
=AUy 1~ AUy p—--—Au

n r
A(r’)-dr’+f A(r'")-dr’.

r—Au,

¥

r—Aug—Aug— - —Auy

Hence

f2|<un<cw><r>—<F<C>ei5u(a>—u<b>qf)<r>|2dr=fzlei““’n“)—e‘““”lzlwr—u(b)
R R
+u(a))|?dr.

It is eay to see that, for all re RAU,_nfa,+u(b)—u(s)|se[a,b]}, lim,_.. ®,(r)=d(C,),
and

|e'a®n() — gl a®(Co|1 2|\ (r —u(b) + u(a))|><4|¥ (r—u(b) + u(a))|?

Hence by the Lebesge dominatel convergene theorem we have
lim f 2|ei‘1‘l’n(”— €' *®Co|2| ¥ (r —u(b)+u(a))|?dr=0.
n—w JR

Hene (4.6) follows. |
Remak 4.2 (1) Suppos tha C is continuousy differentiable Then we can show that U(C)
is the produd integrd of the operator-valué function s— —iP g,s)/qs ON the intervd [a,b] (for
the produd integral see Ref. 15).
(2) By (4.6), we have for all ¥ € L?(R?),

U(C)P)(r)=e'“®*COp(r+u(a)—u(b)), ae r. 4.7

Let E=M X C be the trivial vecta bundle with bas spae M, fibre C, ard structue group U(1)
(the one-dimensioriaunitary group, and V,=C be the fibre at the point r e M. Then the rhs of
(4.7) geometricaly mears the parallé transpot of the vecta W (r+u(a) —u(b)) €V ya)- u(p) t0
the point r along the curve C, with the connectim one-fom —iA:=(—i)(A;dx+A,dy) (see,
e.g, Ref. 16).

As a corollaly of Theoren 4.1, we obtain the following.

Theorem 4.2 (i) We have

U(C)* =e "Pua-ublF(C)* (4.8

=slim ePaueiPau, . .ePau, 4.9

n—o

(i) Let C4 and C, be any continuows curvesin M sudh that the termind point of C; coincides
with the initial point of C,, so that the compositim C,°C, isalso acontinuots curve who initial
(resp, terminal) point is that of C; (resp, that of C,). Then

U(C1)U(C,)=U(C1°Cy). (4.10
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Proof. (i) Equation (4.8) follows from taking the adjoirt of (4.6). In general if unitary
operatos V,,V on a Hilbert spae satisf s-lim,_.. V,=V, then s-lim,_,.. V}=V*. Applying
this fact, we obtain (4.9).

(i) This easily follows from applying formula (4.6). ]

Let a<t<b and

C(t)={u(s)|se[a,t]}. (4.11

Then the corresponderet— U (C(t)) gives an operator-valué function from [a,b] into the se of
unitatly operatos on L?(R?). We wart to derive adifferentid equatio for U(C(t)).

For a Hilbert spa@ .77, we denot by B(.%) the se of boundel linear operatos on .77.

Lemna 4.3 Let .77 be aHilbert space and V and W be B(.7)-valual functiors on [a,b].
Assune the following (i) and (ii): (i) V is strongly continuows on .7; (ii) there exig subspace
and 7, of .7 sud that V and W are strongly differentiabk on &; and &,, respectively and
W(t) Z,C &, for all te[a,b]. Then the B(7%)-valuad function t—V(t)W(t) is strongly differ-
entiabk on & and, for all e &5,

dv(t) dw(t)

d
aV(t)W(t)l/lITW(t)lﬁ-FV(t) T ¥, tela,b], (4.12

where dV(t)/dt [resp, dW(t)/dt] denotes the strong derivative of V(t) [resp, W(t)] on &,
(resp, &).

Proof. Let X(t)=V(t)W(t) and ¢y &,. Then we haw for all te(a,b) and ec R with |¢
sufficiently small,

X(t+e)—X(t)  dv(t) dw(t)
. — g WO V() —g— v
W(t+e)—W(t)  dW(t dw(t
—V(t+e) ( Gi ()¢— di)¢+[V(t+e)—V(t)] di)
V(t+e)—V(t) dVv(t)
+ - I ]W(t)z,b.

By the strorg continuity of V and the principle of uniform boundednesswe have

SURc[ap) V(1) <. Using this fact and the assumd properties of V ard W, we obtan the

desiral result. ]
Let

Mc=RAU,n{ay+u(t)—u(s)|s,te[a,b]}. (4.13
Theorem 4.4 Let C be continuousy differentiable Suppos that M. is an open se& and

Hypothess (A), holds Then the operator-value function U(C(-))* on[a,b] is strongly differ-
entiabe on C3(M¢) with

d
mU(C(t))*\lfin(C(t))*Pdu(t),dt\lf, te[a,b], ¥eCHMc). (4.14

Proof (Outline): Let V(t)=e*‘p_tl<a>—u(t) and W(t)=F(C(t))*. Then we hawe U(C(t))*
=V(t)W(t). It is not so difficult to shawv tha V is strongy continuows on L%(R?) ard strongly
differentiabk on C3(R?) with

av(y -
T W=iV(t)paunyat¥, ¥ eCy(R)

(cf. the prodf of Theoren 4.1). Let ¥ e Cé(MC). Then
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ot du(s)
(W(t)\If)(r)=exp(—|aLA(u(s)—u(t)+r)- ds ds)\l’(r).

It follows from this formula and the preseth assumptia for A that W(t)C(l)(MC)CC(l)(M c) and
W(t) is strongy differentiabk on C3(M¢) with

(dW(t) ¥ |(r) exp(—laf A(u(s)—u(t)+r)- Ld )(—iadu(t) -A(r)

dt
+Ia.k21 J( ) (3,A)(U(s)— u(t)+r) (S) ds)‘lf(r),
], K= a
whered,'=dldx, d,'=adldy. On the other hand, we have
: o[t du(s)
(Ipdu<t>/dtW(t)‘If)(r)=exp( —IaLA(u(s)—u(t)H)- as dS)
—ia ;1 du’( ) (3;A0 (u(s)—u(t)+r) duds) ds)qf(r)
j,k= a
+ (W(1) PauctyratP)(r).
By applying Lemnma 4.3, we obtain (4.14). ]

Remak 4.3 (1) It follows from Theoren 4.4 that
d . 1 2/ P2
a(\If,U(C(t))CID)zz(|Pdu(t),dt‘lf,U(C(t))<D)2, VY eCy(Mc), ®elL(R?), (4.15

whete (-,-), denots the inner produd of L?(R?). But, in the cae wher A has singularities on
D, it seens difficult to find adeng subspae 7 on which U(C(t)) is strongy differentiabk and
sud tha U(C(t))JC D(Pdu(t)/dt)

(2) If A is differentiabk on the whole spa@ R?, then U(C(t)) is strongy differentiabk on
C3(R?), with

dU(C()W/dt=iP gy U(C(1))V, WeCHR?).

V. REPRESENTATIONS OF CCR

In this section we show that associaté with the projectal physicd momentun operators,
ther exig representatiomof the CCR with two degres of freedan and give acomplet charac-
terization on the unitaly equivalene or inequivalene of the representatiasito the Schralinger
representatio of the CCR with two degres of freedom The inequivalen representatiamcorre-
spord to the Aharonov—Bohm effed (Ref. 6). The resuls of this sectia include generalizatios of
thos of the previows works (Refs 1 ard 5).

Let Q, w[v,we V(D)] be the self-adjoirt multiplication operate given by (1.13. It is eay to
seethat if Aje CY(M), j=1,2 thenthe s {Q,, y ,Qw.v,Py,Py} of self-adjoirt operatos has the
following commutatum propertiesfor all ¥ e CO(M)

[Quuw PI¥=i¥, [Quy.Pul¥=iV, (5.
[Quuw.Pul¥=0, [Quy.P,J¥=0, (5.2
[Quw:Qun ¥ =0, (5.3
[P,,Py]¥ =ia(vOw)BY. (5.4)
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Remak 5.1 Let G4 be the algeba generatd by elemens Q;, II;, Fj, j=1,...d, with
identity 1, obeyirg the commutatio relations

[Q;,Q=0, [Qj. I ]=idyl, [II; I ]=iFy, [Fik.,QJ=0, j.klI=1,..d.

Thes relatiors hawe an origin in a quantum theoly of a chargel particle in an externa electro-
magnett field on RY, where Q; and II; are realized as the position and the physicd momentum
operatorsand may be regarde as an extensim or a deformatiao of the CCR with d degres of

freedom A specid clas of representatiamof Gy is discussd in Ref. 14 in connectimm with

exacty solvabk models Relatiors (5.1)—(5.4) shawv that if A isin C*(M), then the operators
Quw: Quv, Py, ard P, restrictel to the subspae Cy(M) give arepresentatio of G, with the

correspondence

Q1—>QV,W1 QZ_)QW’VI H]__> Pv, H2—> PW, F12—>0((VDW)B.

It would be interestirg to classify Hilbert spa@ representatianof the algeba G .

The following fact easiy follows from (5.1)—(5.4).

Propositian 5.1 Assune Hypothess (A);. Then the set rrﬁw given by (1.14) is arepresen-
tation of the CCR with two degrea of freedan if and only if A isflat on M.

We denot by .77 (D) the se of vecta potentia A tha satisfy Hypothess (A) ; and flat on M.

The following exampe shows tha the se .7 (D) is large to sone extent.

Exampk 5.1 Let a,=a,;+ia»,eC (neN) be the complex numbe correspondig to the
vecta a, ard D:={a,},_,. Without loss of generality we can assure tha |a,|<|a,|<|as]

<--- . By the assumptia for D, we hawe a,—» asn—». Let
Cna Cn,2 Cn'kn
Pn(2)= + +ooi bk —,
e (z—ay)k

wherek,eNandc,;eC (j=1,...k,) arearbitrarily given constantsThen by the Mittag—Leffler
theorem ther exists a meromorpht function f(z) on C havirg the following properties (i) f is
holomorphe on C\D; (i) the principd patt of f at z=a, isgiven by P,(z). Let A=(A;,A,) with
A;, j=1,2 given by (1.23. Then A;e C*(M). Moreovey the Caucly—Riemam equatim for f
implies tha A isflat on M ard divergence-free:

A1+ dyA,=0, on M. (5.5

Hene A e.7(D). |
The speci& case,

o &, = 1L7(R?),CH(M).{a; ,P}_s} [Ae7(D)],
of the abowe representatio of CCR with D being a finite discret sd has bea analyzel in detail
(Refs 1, 2, ard 17). Similar analyse can be mack in the presemn generh case.
We first conside irreducibility of the representatiomﬁW with A e.7(D). For this purpose,
we introdue two kinds of commutants.
A weg commutan of the representatiom-rﬁW may be definal by
(mhw) ={TeBLAR?)|(TSV,®),=(TV,SP),, for al ¥,dcCiM) and
S= QV,WIQW,VlPV'IPW}' (56)
We set
Uyw(t)=e""% teR. (5.7

Anothe commutan is associate with the operato algeba generatd by
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78w =1Uyn(1), Uy (1), TH(1), Ta(D |t e R}, (5.9
ie.,
(775, ={TeB(LAR?)|TW=WT, for al We 7} }. (5.9
It is eay to see that
(70w C(mow) (5.10

Theorem 5.2 Let Ae.7(D). Then (77\, W’ —(7//AW) =Cl, where | denots the identity
operata on L?(R?).

Proof. Since v and w are linearly independentq; (resp, P;) can be written as alinear
combinatio of Q,,, and Q,,, (resp, P, and P,,). Hence we ha\e (’7TV W' —(we %) On the
othe hand in quite the same way as in the prodf of Theoren 3.8 of Ref 17, we can shav that
(7, e) =Cl. Thisresut and (5.10 imply (77,,)' =Cl. [ |

We next conside commutatio properties of the operatos in %”QW. Using Theoren 3.2, we
can show that for all A satisfyirg Hypothess (A),

UV,W(t)UW,V(S):UW,V(S)UV,W(t)! (5-1:])
Uy w(DTA(S) =Ta(S)Uyu(t), Uy o D)THS)=TH(S)Uy (1), (5.12
Uy w(DTH(S) = STA(S)U, (1), Uy () TA(S) =€ STR(S) Uy, (1), (5.13

A commutatim relation betwea T4 (s) ard T4(t) is given by (3.13, with v and w replace by sv
ard tw, respectively.

Definition 5.3 We sey that the magnett flux is locally quantize (with respet to the pair
{v,w}) if the function <I>sv tw ON Mg, (D) is 27Z/ a valued for alls,t e R.

Remak 5.2 It is eay to see that if A, e CY(M), j=1,2 ard the magnett flux is locally
quantizedthen A isflat on M.

Theorem 5.4 For all s,teR, the sd %/'QW of unitary operatoss satisfies the Wey relations
with two degree of freedam if and only if the magnett flux is locally quantized

Proof: It follows from Theoren 3.3 and (3.8) tha T/ (s) and T4(t) commuefor all s,t e R if
ard only if the magnett flux is locally quantized This fact and (5.12)—(5.13 imply the desired
assertion. ]

In the reg of this section we conside only the case A .7 (D); hencewv w isarepresentation
of the CCR with two degres of freedom.

Theorens 5.2 and 5.4 togethe with the von Neumam uniquenes theoren on the Wey form
of CCR®19 gjve the following result.

Theorem 5.5 The representatlonnv w 1S unitarily equivalen to the Schralinge representa-
tion {q;, p]}J , if and only if the magnett flux is locally quantlzed

Remak 5.3 As in the ca® of the specid representatlom discussd in the previous

papes (Refs 1, 2, and 5), the ca® where the representatlor’wr\,]W |s inequivalen to the Schro
dinge representatiarwhich, by Theoren 5.4, occuisif and only if the magnett flux is nat locally
guantized physicaly correspond to the Aharonov—Bohm effed [see (3.13 and Remak 4.2(2)].

The function (DQW can be explicitly representedss is shown below. By the assumptia for D,
we have

&= inf |a,—ay|>0. (5.149

m#n

It follows from the flatnes of A ard the Greens theoren that for all e (0,6), the line integral,

Ya(8n)= fr_an A(r)-dr, (5.15
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along the circle { e(cos6,sin 6)+a,|0< <27} is independent ot. It is easy to see that

<I>6,W(r>=an DEW s(VOW) ya(@,), TreM, (D), (5.16

where D,(v,w) is the interior domah of the curve C,(v,w) and sgn¢\)=1 (resp, —1) for A>0
(resp, A<0). Thus we obtan the following result.

Propositian 5.6: The magnett flux is locally quantizel if and only if ys(a,) € 272/« for all
neN.

This proposition and Theoren 5.4 imply the following theorem.

Theorem 5.7. The representa’tionzrﬁW is unitarily equivalen to the Schralinge representa-
tion {q; ,pj}jz:1 if and only if ya(a,) €272/« for all neN.

Exampé 5.2 Let A be the vecta potentid given in Exampk 5.1 Then

Ya(@n) =2mRce, ;.

Hence if Ren, 16 Z/a for somenge N, then wQW is unitarily inequivalen to the Schralinger
representatio {q; ,pj}jz=l. Thus there exig lots of inequivalem representationof CCR. |
In concludirg this section we make aremak on the unitary inequivalene betweea the two

representationsTQW and 7 [A'e.7Z(D) and v',w’ eV(D) are linearly independerjt We

v W/

introdue a 2X 2 matrix:

1 VW, —Wivp  Wi0p—UgW)
K(v,w,v' W)= —— , , , e (5.17
VIEW" L vowy—Wavy  Waui—voWi
It is eay to see tha K(v,w,v’,w’) is bijective, with
det K "w)= vEw 51
(Vw,V' W)= = (5.18
K(v,w,v' w)K(v' w' v,w)=I. (5.19

Proposition 5.8 Suppos that Trﬁw is unitarily equivalen to Wé,”w, . Then for all s,teR,
exp(—i a®l, ( (K(V,W,v' W) =exp(—iadh, . (1), ae reR? (5.20

Proof. To make explicit the dependene of P, on A, we write E\,= E\,(A). By the present
assumptionthere exiss a unitary operate U on L?(R?), sud that

UQv,wuil:Qv’,w’ ) UQW,vuilew’,v’ ) (5-21)
UP(A)U 1=P,(A"), UP,(AU =P, (A"). (5.22

By Theoren 3.3 and (5.22), togethe with functiond calculws of self-adjoirt operatorswe hawe for
all s;teR,

exp(—iaUdh U™ =exp(—iadl, ). (5.23

It is eay to shawv that
A1=01QvwTW1Quwy, (5.249
A2=02QuwtTW2Qu,y- (5.29

The relatiors ard (5.21) imply that
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Uqu t=K(v,w,v',w')q. (5.26

Hence by functiond calculus the self-adjoirt operato UCD{,*SWU ! is equa to the multiplication
operato by the function <I>tv sw(K(v,w,v',w")r). This faat ard (5.23 imply (5.20. |
Remak 5.4: (1) There exig mary triples {v,w,A} ard {v’ ,w' A }, where A A’ €.7(D), such
that (5.20 does nat hold. Hence there exig¢ mary palrs{q-rvw, } of representationtha are
unitarily inequivalen to ead other.
(2) Inthe caz v=V', w=w', we have

K(v,w,v,w)=1, (5.2

so tha (5.20 becomes
exp(—iadh, . (r)=exp(—ia®h (), ae. reR% (5.28

VI. QUANTUM ALGEBRAIC STRUCTURES

In this section we discus quantum algebrat structure associaté with continuos magnetic
translatiors {T Jvev(p) - We first introdue aspecia class of vecta potentials.

Definition 6.1: We s& tha avecta potentid A isin %, (D) if the function <I> wisequato
aconstanon M, (D).

Exampk 6.1 Constam magnett fields Let Boe R be a constah and

Boy Bgx
A== Ar)=—3-

Then B(r) =By, i.e, the magnett field is uniformly constantHence by the Greens theorem we
have

O (1) =(VOW)By, reM,,(D).

Thus Ae . 7,,(D). |
Exampk 6.2 Vecta potentiak singula on an infinite lattice. Let L (w4 ,®,) be the infinite

lattice given by (1.16 ard conside the cae D=L (w;, ;) ard v=w;, Ww=w,. Let O, , be as

in (1.22 ard f(z) be a meromorpht function on C with the following properties (i) f is holo-

morphic on C\{Q, nfmncz; (i) the principd pat of f a z=Q, , is of the form

Chon Con”

+ +-
Z_Qm,n (Z_Qm,n) (Z Qm n)kmn

Pm,n(z) =

where Ky, ,eN,c,cp, ') are constans (c is independenof m, n). The existene of suc afunction
f is ensuré by the Mlttag—Leferr theoren (see Exampk 5.1). As in Exampk 5.1, we defire a
vecta potentid A=(A;,A;) by (1.23. Then Ae 7(L(w;,w,)) with A; being infinitely many
times differentiabk on the open set,

M =RAL(w;,w,). (6.1
Asin Exampk 5.2, we have
Ya(Qpn)=27Re, mneZ. (6.2

For all reMwlvwz(L(wl,wZ)), D,(w;,w,) contairs only one point in {Qy, nfmnez. Hence,
noting tha sgniw;0w,) =1, we have from (5.16 ard (6.2),
®h  (r)=27MNc. (6.3

1,0,

ThUS AE.,/%wl’wz(L(wl,wg)). |
We denoe by .7, ,, o the algeba generatd by T/ ard T4,
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Let Ae %, (D). Then by definition (IJV wisaconstanon M, (D). We denoe the constant
by C . By Theoren 3.3 we have

TATA=e 1*ChuTATA, (6.4

Hene 7, \, A iS arepresentatio on L?(R?) of a rotation algeba (e.g, Ref. 20, Chap VI) or the

guantun plare with the deformatiam parameteq=e‘iac€,w (Ref. 21).
Propositicn 6.2 There exig no nontrivial finite-dimensionksubspacs of L?(R?) left invari-
ant by .7, wa-
Proof. This follows from Propositian 2.6. |
Propositon 6.3: Let Ae.#,,(D) and A’e.%,,(D). Suppose that C,

—CCIW, ¢2mwZla. ThenZ, , o and 2y + o are unitarily inequivalent
Proof Suppos tha ther exiss aunitaly operato U on L2(R2) such tha UTAU - 1=T%

v/

A/
UToU =T, . By (6,.4) and the fact tha CJ, ard CV,’W, are constants we hawe exp
(—iaC),) =exp(iaC), ), which is equivalen to that CJ',,— C,,, € 2wZ/a. Thus, the desired
assertio follows. ]
Exampk 6.3 Let A be the vecta potentid given in Exampk 6.2 Then by (6.3), we have
TA TA — —27r|a9RCTA TA (65)

W) Wy wy wl

Henc we hawe aone-parametefamily ./2;'= 7., , a of representatioson L?(R?)] of rotation
algebra (quantun planes. It follows from Proposmm 6.3 that if R(c—c') &€ Z/ @, then the two
representatios).”2. ard .72, are unitarily inequivalen to eat other. Thus associate with singu-
lar magnett fields concentraté on L(w;,®,), there exig infinitely mary representationon
L?(R?) of rotation algebra inequivalen to eat other. [ ]

Remak 6.1 The sane consideratia as abowe applies to the algeba .72y, » generatd by
(TA)* ard (T )*, which is arepresentatlm of a rotation algebra We can alo conside the
algebm generatd by T4, T4, (T2)* ard (T4)*, which is a *-subalgeba of B(L?(R?)).

As is shown in Ref. 5, for ary representatio of a quantum plare where the generatcs are
represente as bijections one can construt a representatio of the quantun group Uy(sl;). We
can apply this methal to the presen case to constructfrom.7, ,, A , representatiosiof U,(sl,) on

L2(R?) withq=e"~ 1aCh o gq=e ~iaClu/2 ard analyz them in quite the sane way as in Ref. 5.
Here we only mentin a bast featue of thos representationghey hawe no weight vectors and
hene no nontrivid finite-dimensionhreductiors (cf. Propositio 6.2). Note tha this makes abig
differenee from the ca= of representatiasof U(sl,) constructd in terms of discree magnetic
translatiors on a lattice (Ref. 12), whete finite-dimensionkrepresentatiasiof U,(sl,) appea (cf.
alo Ref. 13).

VIl. REDUCTION TO LATTICE QUANTUM SYSTEMS

In this section we focus our attention on the cae D=L (w;,®,) and conside the problem of
reductian of the continuows magnett translations,

T, ::T/;j . j=12, (7.
to the closal subspae szl’wz(Rz), which is given by (1.19 and naturaly identified with the
Hilbert spae 12 (L(w;,®,)).

A. General aspects

We denot by Qﬁ) (resp, $ﬁ)) the open se betwee the straigh lines {nw,+sw;|se R}
(resp, {mw;+sm,|se R}) and {(n+1)w,+ sw;|se R} (resp, {(M+1)w;+sw,|se R}).
Let

P(r)= Jrr+ij(r’)-dr’, j=1,2. (7.2
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_ Definition 7.1 We say that A isintheclas 7 (j=1,2) if, foreahine Z, d)JA is constamhon
S, i.e, ther exiss a constan ¢;(n) € R, suc that

$r(r=cin), res), nez (7.3

Remak 7.1 It is eay to see that if Ae 7, then the function r— A(r)-w; is periodic on
Unez S9 with period w; . But the convere is nat true.

Propositia 7.2 For ead j=1,2 T; and T; * leawe Lfolywz(RZ) invariant if and only if A
€.
Proof. By Theoren 3.2, we have for all ¥ e L?(R?),

(T)(r)=e 1 *4 O (ePew)(r), ae. res).

Note that e*Pe; leawe Lfv o (R?) invariant Hence T; leaves Lil,wz(Rz) invariart if and only if
$1(r) is constabon Sy, ,=S"N S for all m,ne Z. Sine S} is connectd and ¢/ is continu-
ous on Sﬁ” , it follows that d)f(r) is constamon S, , for all m,ne Z if ard only if it is constant

on S for all ne Z. Thus we obtai the desiral result. ]
St
We set

T=71N%5. (7.4

As a corollaly of Propositim 7.2, we hawe the following.

Theorem 7.3 The four unitary operatos Ty, T; %, T ad T, * leawe L, (R?) invariart if
and only if Ae 7.

By this theorem if Ae 7, then Ty, T; %, T, and T, * are reducel by L, , (R?), ad the
restrictions

T=TIL2 o (RD), T, %=T/YL2 ,(RY), =12, (7.9

w,,0, ] w,,0,

induce magnett translatiors on the lattice L (w;, ;) with (fl',-)*1=1{j’j. But, if the® reduced
magnett translatiors hawe the trivial holonomyi.e., T;T,T, 1T2‘1= I, then they are uninteresting.
Thus we nedl to find conditiors for the magnett translatiors to hawe anontrivid holonomy The
following proposition gives anecessar condition for that.

Propositin 7.4 Let Ae ¢. Suppos that A; and A, are continuos on R?. Then T,T,
:Tle.

Proof. By the conditin Ae ¢, we have for all re S, ,,
DY 0, (N =B1(N) + B2(r + @1) — 1 + @y) — p5(r) =cy(N) +co(M+1) —cy(n+1) —cx(m).
Since A; is continuots on R?, sois ¢JA. This implies tha c;(n)=c;(n+1) forall neZ and j
=1,2 Hene qnf},ywz:o. By this fact and Theoren 3.3 we obtan the desirel result. |

Propositim 7.4 shows that in the cag A € £, for the magnett translatiors 'i'j 'T'J_l ji=1,2to
hawe a nontrivid holonomy it is necessar for A to hawe singularities in L (@, ®,).

We nex show that for a given vecta potentid A satisfyirg certan properties we can
construt an elemen in .

Definition 7.5 We sa tha A is in D(w;,w,) if there exid red sequence{vj(n)}ncz, ]
=1,2, and real-value continuos functiors F; on U,.,SJ, sud that

1 .
¢f‘(r)+f Fi(r+sw)ds=vi(n), res’, j=12. (7.6)
0
It is obviows that ¥ CD(w,,w,) [note tha evey elemen A e 7 satisfies (7.6) with F;j=0,
j=1.2.
The matrix

Copyright ©2001. All Rights Reserved.



2494 J. Math. Phys., Vol. 39, No. 5, May 1998 Asao Arai

We ( W11 w12> 7.7

W21 W22

is regular sincew,; and w, are linearly independent.
Propositin 7.6: Suppos that A e D(w,,w,) and let v;(n), F; be as in Definition 7.5. Let

F=(F1,F2), (7.9
A=A+WIF, (7.9

Then Ae 7 with
¢,~Z(r)=vj(n), res), j=12 (7.10

Proof. We have for all re S’
; A ! 1
&j'(1)= ¢ (r)+fo W™ F(r + sw)) - w;ds.

Since'(W™h) w;=¢;, we have W™ 'F(r +se;) - ;= F(r + se;). Hence (7.10 follows. [ ]
Remak 7.2 The modified vecta potentid A isnat necessani flat on M, even if A isflat on
M_. Seethe next section.

B. Constructio n of a subset of ¢ from quasiperiodi c functions

Definition 7.7: Let f(z) be a holomorphe function on C\{Q, n}m nez With possibe poles at
z=Qmn, MneZ. We sy tha f isin the class # if ther exig constantst;'=¢;,+i§,€C, |
=1,2 sud that

f(z+w)=1(2)+§, =12, zeC{Qnntmncz- (7.1

Remak 7.3 Evely function f € £ is a primitive function of an elliptic function with periods
o, j=1,2 The constant{; on the rhs of (7.11) is given by, e.g.,

Let feZ and A;, j=1,2 be definad from f by (1.23. Set A=(A,,A;). Then the Caucly—
Riemam equatia implies that A is flat on M| and

&XA]_"' &yA2=O, on ML' (712
Let ¢ beasin (7.11) and
§=(§1.¢2), &=(§2.61), =12 (7.13
Propositin 7.8 For all ne Z, there exig constang c;(n), j=1,2 sud that
(r)=r-&+ci(n), res). (7.14

Proof. Let w; be asin (1.21) and §;'=argw;. Let R(6) be defined by2.10 and let
9;(N=AR(0)r)-e;, ¢(r)= ¢JA(R(6'J')r)-

Then we have

1
¢,»’(r>=fo g,(r +sw))ds,
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where w| =|w;|e;. On the connectd doman R(—6)S), g;(- +se/), and ¢ are infinitely
mary times differentiabke with

1 .
(9X¢>J.'(r)=f 9xgj(r+sew/)ds, VER(—GJ)ng”_
0
It is eay to see that
! ,1 d f

Hence

dvd!(r)=
)b] (1) o
On the othe hand we have by (7.11) ard (1.23),
Ar+e)—A(r)=§, reM. (7.15
Thus we obtain
wi-& ,
ax¢;(r)=ﬁ, reUncz R(—6)S). (7.16
i

By the flatnes of A on M| ard (7.12, we can shaw that

Hence in the sane way as above we obtain

dydj(N=—"—"", reUn, R(—6)s). (7.17)

|wj|

It follows from (7.16) ard (7.17) tha there exigt constarg ¢;(n), j=1,2 ne Z, sud that

¢f(r)=[R(0,-)(Tiu—.j§|jl, a;Jw—fo r+c¢i(n), resy.
The rhs of this equatia is equa to the rhs of (7.14). |
Theorem 7.9 Let
hj(r):=(%—r)-g;, reR2, j=1,2, h=(hyh,), (7.18
and
A=A+Wlh. (7.19
Then A isin # with
#rn=cin), res), j=12, nez. (7.20
Moreover
(T'E,j)(r)=e_i“°1(”)\lf(r+wj), resd), j=1,2, nez. (7.2
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Proof. By Propositio 7.8, (7.6) holds with F;=h; andv;(n) =c;(n). Hence by Proposition
7.6, the desiral assertio follows. Formuh (7.21) follows from (3.5) ard (7.20. [ |

Theoren 7.9 establishe the existene of a mappirg from # to a subseé of Z~ by the corre-
spondene f—A defina by (7.19.

It is interestiry to see when A is flat on M.

Lemna 7.1Q The vecta potentid A given by (7.19 isflat on M, if and only if

§lrap=£& 0. (7.22
Proof. The magnett field,
B(r)=D,A,~D,A;, (7.23
of the vecta potentiad Ais constantwith

§ 0~ & o,

E(r): deE W , reM.. (7.249

Thus the desirel assertio follows. |
We note the following fact.
Lemna 7.11 Let r¢ be the residie of f at z=(Q, ,. Then r; is independenof m,ne Z and
obeys the relation

§1w2—§2w1=277irf. (725)

Proof Let a=(m—3)w;+(n— 3w, ard Cnn be the contou formed by the edges of the cell
whos cornes are a,a+ w;,a+w;+ w,,a+w,, wher the orientation of C, , is taken to be
anticlockwise Then we have

atwg a+wy
27-rirf=J f(z)dz=f {f(z)—f(z+w2)}dz—J {f(2)—f(z+ wq)}dz

m,n a
=—§w1t 07,

wherr we hawe usel the quasiperiodiciy (7.11) of f. Thus (7.25 is obtained. _ [ |

The following proposition gives acomplet characterizatio on the flatnes of A in ternms of
only f. _

Propositian 7.12 The vecta potentid A given by (7.19 is flat on M if and only if Pr;
=0.

Proof. We note that

§1-w2—§£-w1=‘l(§1w2—§2w1).

By Lemma 7.11, the rhs is equa to 27r93r;. From this fact and Lemma 7.1Q the desiral result
follows. _ u

Remak 7.4 Let f e & and Rr;=0. Then by Propositimm 7.12 A is flat on M . We have
DY, w,=27Rr;=0 and

A =AW o,

@1,07 ®1,03 @y
Hence in this case the representation&’j,l'w2 and 77’2,1 , of CCR are unitarily equivalet to the
Schralinge representatio ard the algebra L%?wlywzyA ard '%?wlva& are commutative Thus for
fe Z, the ca® PRry;=0 is uninterestig and only the ca® where A is nat flat on M| may be
interesting.
Exampeé 7.1 Conside the cae where f(z) is the Weierstras Zeta function;

5 O

Copyright ©2001. All Rights Reserved.



J. Math. Phys., Vol. 39, No. 5, May 1998 Asao Arai 2497

(@=lD=5+ 3 = S (7.26
2)={(2)'== _
Z  (mn)ez20} Z=OQmn Qmn Qﬁq’n
It is well known (e.g, Ref. 22, Chap XX, pp. 20-41) that

{(z+w)=U2)+27;, j=12, (7.27
where

Hence,{ e £. Sincer ,=1, Lemma 7.11 implies that, in the presen caseK isnot flat on M . By
Lemma 7.11 we have

N1W2— 201 =1,

(This is awell-known formula e.g, Ref. 22, Chap XX, 20-411, pp. 446—447) Hence

! ! —
MW~ 1 W =T

Thus in the preseth example,

~ 2m
B(T)ZMIJEO, reM,.

C. Derivatio n of Hamiltonian s of the Hofstadte r type from continuou s systems

It is well known tha some transpot phenomea in two-dimensionhsolids can be modelal in
patt by Hamiltoniars of the Hofstadte type, which are usually defined on two-dimensionhinfinite
lattices (e.g, Ref. 13). It may be interestimy to investigae if Hamiltoniars of the Hofstadte type
can be obtainal as reductiors of self-adjoirt Hamiltoniars of continuows quantum systens whose
Hilbert space of stake vectos are equa to L?(R?). For tha purpose we introdue a family
{HA(t)};.r Of boundel self-adjoirt operators,

HAM) =T (0 +uTo, (0 + e[ Th (D7+T5 (D2 +ATS (D T4 (D)
+rTo (DT4, (0% +9T5 (D*Th () +he, (7.29

where u,€,\,v,y are complex parameters and h.c. means the Hermitian conjugate. The operator
HA(t) is a continuows versian of Hamiltoniars of the Hofstadte type By Theoren 7.3 if A
e 7, then

HA=HA) =T+ uTo+ e(To+T5) +\T, To+ v T, T5 + 9T To+ hec, (7.30

is reduce by LfdlmZ(Rz)zlz(L(wl,wz)) and its reducel pat yields a Hamiltonian of the Hofs-

tadte type on the lattice L (wq,@,). This shows that in the cage Ae 7, it is possibé to obtain
Hamiltoniars of the Hofstatde type on L (e, ,®,) as reductiors of Hamiltoniars of the type HA.
By Theorem 7.9, ther exists awide class of vecta potentias A that give this kind of reductian for
the Hamiltonian H”. We also remak tha the reductiomn of HA with Ae 7 to the subspace
12(L ey, ®,)) makes it possibe to identify the spectrum of H” in patt by analyzirg the specta of
Hamiltoniars of the Hofstadte type on the lattice L (w; ,@,) tha may hawe interestiny structures
sudh as fractd ones (Ref. 13).
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