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Abstract

We show the blow-up of strong solution of viscous heat-conducting flow when the
initial density is compactly supported. This is an extension of Z. Xin’s result[5] to
the case of positive heat conduction coefficient but we do not need any information
for the time decay of total pressure nor the lower bound of the entropy. We control
the lower bound of second moment by total energy and obtain the exact relationship
between the size of support of initial density and the existence time. We also provide
a sufficient condition for the blow-up in case that the initial density is positive but
has a decay at infinity.
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1 Introduction

In this paper, we consider the following equations for a compressible fluid in

pt + div (pu) =0, (1)
(pu)y + div(pu @ u) + Lu + Vp =0, (2)
(pe): + div(peu) — kAG + pdivu = Q(Vu), (3)

where

Lu=—pAu— A+ p)Vdive, and Q(Vu)= g|Vu + Viu? + A(divu)?.

Here p = p(z,t), v = (u1,--- ,uy), 0, p and e denote the density, velocity,
absolute temperature, pressure and specific internal energy per unit mass,
respectively. Viu is the transpose of Vu. If we denote the total energy per
unit mass £ by E = $|u* + ¢, then the energy equation (3) can be rewritten
by

(pE)¢ + div (pE + up) = —Lu - u + Q(Vu). (4)

The viscosity coefficient 1 and A are assumed to be constant satisfying pu >
0, A+ %u > 0 from the physical point of view. We also denote by x > 0 the
coefficient of heat conduction.

If u =)X=r =0, then we call the equations as compressible Euler equations
for gas, On the other hand, if 4 > 0 and A+ %,u > 0, then we call the equations
as compressible Navier-Stokes equations. In particular, we call the equations
as heat-conducting compressible Navier-Stokes equations if g > 0, A+ % w>0
and x > 0. A polytropic gas is a gas satisfying the following state of equations:

p/p=RY, e=ch and p/p=Aexp(S/c,)p (5)

where R > 0 is the gas constant, A a positive constant of absolute value, v > 1
the ratio of specific heats, ¢, = 7—131 the specific heat at constant volume and
S the entropy.

The blow-up of smooth solutions of compressible Euler equations has been
studied by several mathematicians. In 1985[4], T. C. Sideris showed that the
life span T of the C! solution of the compressible Euler equations is finite
when the initial data is constant outside a bounded set and the initial flow
velocity is sufficiently large (super-sonic) in some region. In 1998[5], Z. Xin
showed, in a different way from [4], the blow-up result for the compressible
Euler equations, when the initial density and initial velocity have compact



supports. In the paper, he also showed the blow-up of smooth solution for
the compressible Navier-Stokes equations for polytropic gas with zero heat
conduction (that is, kK = 0), when the initial density has compact support. His
theorem was derived independently of the size of data, but his point of view
cannot be applied for k > 0, since in his argument the estimation for the lower
bound of entropy or time decay of total pressure is strongly necessary, which
seems hard to be obtained for the case k > 0.

As for the positive result, one may refer to [1]. In the paper [1], the authors
showed the local existence of the unique strong solutions of the compressible
Navier-Stokes equations (1)-(3) with n = 3, x > 0 and nonnegative density.
In particular, they obtained for x > 0 that there exists a finite time 7, > 0
such that for some 3 < ¢ <6

peC(0,T.]; H "W, p, € C([0,T.]; L* N L9), ©)
(u,e) € O([0,T.]; Hy N H?), (us,e;) € L*(0,T,; Hy).

In this paper, we extend the Xin’s blow-up result to the heat-conducting com-
pressible Navier-Stokes equations, that is, for the case x > 0 in view of the

regularity (6) and hence we provide a sufficient condition for the local result
of [1].

Before stating our main theorem, we introduce some notations. We denote by
Br = Bgr(0) the ball in R™ of radius R centered at the origin. We will use
several physical quantities:

m(t) = /]R” p(x,t)dr (total mass),

M(t) = /Rn p(x,t)|z|*dr  (second moment),

At) = /Rn p(x, t)yu(z,t) - xdr (radial component of momentum),
E(t) = /Rn p(x, t)E(x,t)dr (total energy)

P(t) = /R p(z,t)dx (total pressure).

n

We always assume that m(0), M (0), |A(0)|,£(0) < oo and m(0) > 0, £(0) > 0.
For the proof of blow-up, we have only to prove the following theorem.

Theorem 1 We assume p > 0, )\+%u>0, 1<n<3andk >0. Let vy > 1
and T > 0. Suppose that (p,u,e) is a solution to the cauchy problem (1), (2)
and (3) with initial data (pg,ug, €9) such that for some ¢ > max(2,n)

peC(0, T H nWh9),  p, € C([0,T]; L* N L7), ")
(u,e) € O([0,T); Hy N H?), (ug,e;) € L.



Furthermore, assume that the initial density poy is compactly supported in a
ball Bg,. Then we have

A(0) . €(0) 1o
+2 ( T + min(2,n(y — 1))WT . (8)

The restriction of dimension can be removed by an appropriate choice of
Sobolev spaces guaranteeing the continuity of the solution. For example, we
can take C*([0,T]; H*) for k > 2+ [%] as in [5].

Let T™ be the life span of the solution (p, u, €). Then since m(0) and £(0) are
strictly positive, the theorem above implies that 7™ should be finite for v > 1.
It also shows the exact relationship between the size of support and the life
span. For example, the range of life span can be extended as the initial support
of density become larger. Hence, from the relation, one can expect the global
existence of smooth solution of compressible Navier-Stokes equations in case
that the initial density is positive but has a decay at infinity in the sense of
M(0) < 0o. However even in this case, we show that there is no global solution
with u having a little bit fast decay as time goes on as follows:

Theorem 2 Suppose that (p, u, €) is the solution of (1), (2),(3) satisfying (7),
and initial density po is not compactly supported but its second momentum is
finite (M(0) < 00). Then there is no global solution of regularity (7) with
T = oo such that

< L (9
Lo

~—

lim sup u(z,t) - x

t—00 H1 —+ ‘.1"2

In view of the parabolic scaling au(az,a?t), it is expected for the global
solution with the density away from zero that

‘ (1+1)
1+ |z
where the constant ¢ can be chosen to be strictly smaller than 1 under a
smallness assumption for initial data, rewriting the equation (1)-(3) with
(a,€) = (11:|3t3‘u, lﬁi‘e) and using the usual energy estimate for (,€) and
elliptic regularity as in [3]. However Theorem 2 shows that even though the
bound (9) seems to be reasonable for a density away from zero, the global
existence satisfying (9) is impossible for the initial density having a decay at
infinity in the sense of M (0) < oo, no matter how small the data is.

u(z,t) <c

LOO

lim sup

t—o0

Y

Our proof is based on more elementary argument like integration by parts,
energy estimate and Gronwall’s inequality than in [5]. The key idea is to
control the lower bound of the second moment of solution by the evolution of



total energy £ via the total radial component of momentum A. The control
of second moment by total energy enables us not to rely on the lower bound
of entropy nor on the time decay of the total pressure P. The argument can
easily give another proof for the compressible Euler equations and also for the
Korteweg type compressible fluid of non-isothermal case if the initial density
is compactly supported (see [2] for the later). We leave the details of proof for
the later two cases to the readers.

2 Proof of Theorem 1

Since we consider the case of compactly supported initial density, we can
assume that there is a positive constant Ry so that supppy C Bpg,. We let
(p,u,e) be a solution to the Cauchy problem (1), (2) and (3) satisfying the
regularity (7). We denote by X (a,t) the particle trajectory starting at o when
t =0, that is,

d
%X(a’t) = u(X(a,t),t) and X(a,0) = o

Since by Sobolev embedding, u € C(R" x [0,T]) for 1 < n < 3, X is unique
and differentiable. We set ©(0) = supppy and

Q) ={z = X(a,t)|a € Q(0)}.

From the transport equation (1), one can easily show that suppp(z,t) = Q(t)
and hence from the equation of state (5) that

p(x,t) =0(x,t) =0 if xe€ Q)"
Therefore, from the equation (2) and (3), we observe that

Lu=0 and Q(Vu)=0 ae. in Q)"

The following lemma is a revisit of Z. Xin’s in [5].

Lemma 3 We assume p > 0, A + %u > 0 and k > 0. Suppose that (p,u,e)
satisfying the reqularity (7), is the solution of (1), (2) and (3). Then

u(r,t) =0 in x € By,

for some Bpyy containing §U(t). Moreover, we can take R(t) = Ry for all
0<t<T.

Proof. 'We observe that



Q(Vu) =2pu zn:(&-ui)Q + A(divu)? + p Zn:(@-uj)z + 24 Z(ain>(ajUi).

i=1 i#j i>j

Assume A < 0. Then

O+ 1> By + 2005 (Do) (D)

i=1 i#j i>j

(aluz)z + /LZ((?Z'U]' + 8jul-)2.

(>

NE

Q(Vu) > (21 + nA)

-
Il

NE

=(2p+nA)

@
I
—

Assume A > 0. Then

Q(Vu) > 203 B + 1> (0ot + 203 (Do) (D)

i=1 i#j i>j
i=1 1>]

Therefore, both of the cases imply that

Ogu;(z,t)
Oiuj(x,t) + Oju(x,t)

0 .
a.e. in By
0

for all 4, j = 1,--- ,n. This again implies V?u(z,t) = 0 a.e. in Bf,). Thus Vu
is constant except for a measure zero set. But since u € H} and continuous
in R™ (this comes from the regularity (7)), we conclude that u = 0 in Bg,.
That is, u(X(a,t),t) = 0 if @ € Bg,. Thus we observe that

t
X(a,t) = a+/ u(X(a,s),s)ds =, if ae€Bg.
0
This implies that we can choose R(t) = Ry for 0<¢t<T. O

From now on, we assume that €)(t) = suppp(-,t) is contained in a ball Bp.
Multiplying |z|* to (1) and integrating it over R™, we get the identity

th(t) = 2A(1). (10)

If we take inner product by x to (2) and integrate it over R™, then we also get

the identity
d

SA) = /Rnp|u\2dx+np(t). (11)



Integrating (1) and (4) over R”, we finally get the identity

d d

—m(t) =0, —&(t)=0. 12
Sm(t) =0, E() (12)
The integration by parts applied for deriving the above identities can be jus-

tified by the regularity (7).

Integrating (10), (11) and (12) over [0, t], respectively, we obtain the following
identities:

M(t) = M(0) + Q/Ot A(s) ds, (13)
As) = A(0) + /O/R plul*(z, 7) dxdr + n/o P(r) dr, (14)
m(t) = m(0), E(t) = £(0) (15)

Using the definition of E, we have from (14) and (15)

Als) = A(0) + 2 /0 CE(0)dr + <n - 21) /0 " P(r) dr. (16)

fy J—
Now we first assume (n — %) > 0. Then by (16) we obtain
A(s) > A(0) +2£(0)s. (17)
Substituting (17) into (13), we get
M(t) > M(0) + 2A(0)t + 2£(0)t*. (18)

Secondly, we consider the case v € (1,1 + %) By the equation of state p =
(v — 1)pe and the identity (14), we have

As) = A(0) + 28(0)s — (2 — n(y — 1)) /O ) / pe dzdr. (19)

It follows from (15) and the definition of E that [ pedz < £(0). Substituting
this into (19), we have

A(s) > A(0) + n(y — 1)€(0)s. (20)
and hence from (13) and (20), we have

M(t) > M(0) + 2A(0)t + n(y — 1)E(0)¢*. (21)



On the other hand, since Q(t) C Bpg), from the mass conservation (15) we
can estimate the upper bound of the second moment as follows:

M(t):/Q(t) o, 8)|z[2 do = /|x|<R(t) o, )|z do
< (R(t))*m(t) = (R(t))*m(0). (22)

Thus from (18) and (22), we conclude that
m(0)R(t)* > M(0) + 2A(0)t + 2£(0)¢
for v > 14 2, and from (21) and (22) that
m(0)R(t)*> > M(0) + 2A(0)t + n(y — 1)£(0)¢
for1<~y<1+2.

Since the solution has strong regularity (7) in the time interval [0, 7], noting
from Lemma 3 that R(t) = Ry for t € [0,T], we get the inequality (8).

3 Proof of Theorem 2

Suppose that there is a global solution (p, u, ) satisfying (9). Then there exist
constants tg > 0 and ¢ < 1 such that for all ¢ > ¢,

u(z,t) - x

c
< -. 23
1+ |z|? —t (23)

Lo
Let M(t) = [ p(1 + |z|?) dz. Then it follows from (10) and (23) that

M(t
< 9. M®)
Lo t

(i]\?(t) < 2M(t)

u(z,t) -z
1+ |zf?

for all ¢ > t,. Integrating this over [t, t], we have

N(t) < M(to) +2¢ [ Ms)

to S

By Gronwall’s inequality, we finally have

M (t) < M (to) exp (2¢log(t /ty)) = Mt é?)tzc _mO) %CM to) o (o)




From (18), (20) and (24), it follows that

m(0) + M (to)

2
tge i

M(0) + 24(0)t + n(y — DE(O)E <

for all t > ty. Thus the last inequality yields the contradiction to the hypothesis
¢ < 1. This completes the proof of theorem.
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