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ON CLASSICAL SOLUTIONS OF THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH NONNEGATIVE INITIAL

DENSITIES

YONGGEUN CHO AND HYUNSEOK KIM

Abstract. We study the Navier-Stokes equations for compressible barotropic
fluids in a bounded or unbounded domain Ω of R3. We first prove the local
existence of solutions (ρ, u) in C([0, T∗]; (ρ∞+ H3(Ω))× (D1

0 ∩D3)(Ω)) under
the assumption that the data satisfies a natural compatibility condition. Then
deriving the smoothing effect of the velocity u in t > 0, we conclude that (ρ, u)
is a classical solution in (0, T∗∗)× Ω for some T∗∗ ∈ (0, T∗]. For these results,
the initial density needs not be bounded below away from zero and may vanish
in an open subset (vacuum) of Ω.

1. Introduction

The motion of a viscous compressible barotropic fluid in a domain Ω of R3 can
be described by the Naiver-Stokes equations

ρt + div(ρu) = 0 in (0, T )× Ω, (1.1)

(ρu)t + div(ρu⊗ u) + Lu +∇p = ρf in (0, T )× Ω, (1.2)

Lu = −µ∆u− (λ + µ)∇div u, p = p(ρ) (1.3)

and the initial and boundary conditions

(ρ, u)|t=0 = (ρ0, u0) in Ω, u = 0 on (0, T )× ∂Ω, (1.4)

ρ(t, x) → ρ∞, u(t, x) → 0 as |x| → ∞, (t, x) ∈ (0, T )× Ω. (1.5)

Here we denote by ρ, p and u the unknown density, pressure and velocity fields of
the fluid, respectively. f denotes a given external force and the constants µ, λ are
the viscosity coefficients. We assume that the pressure p = p(ρ) is a smooth function
of the density ρ and the viscosity coefficients µ and λ satisfy the natural physical
restrictions µ > 0 and 3λ + 2µ ≥ 0 so that L = −µ∆ − (λ + µ)∇div is a strongly
elliptic operator. Moreover, (0, T )×Ω is the time-space domain for the evolution of
the fluid, where T is a finite positive number and Ω is either a bounded domain in
R3 with smooth boundary or a usual unbounded domain such as the whole space
R3, the half space R2 × R+ and an exterior domain with smooth boundary. Of
course, if Ω is a bounded domain (or the whole space), then the condition (1.5) at
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2 YONGGEUN CHO AND HYUNSEOK KIM

infinity (or the boundary condition in (1.4) respectively) is unnecessary and should
be neglected.

In this paper, we study the initial boundary value problem (simply IBVP) (1.1)-
(1.5) with nonnegative initial densities.

Under the crucial assumption that the initial density ρ0 is bounded below away
from zero, the first existence results for the IBVP (1.1)-(1.5) were obtained by Nash
[20], Itaya [13] and Tani [24]. They applied a fixed point argument or the method of
successive approximations in Hölder spaces to prove the local (in time) existence of
classical solutions even for more general heat-conducting fluid models. Then using
delicate energy methods in Sobolev spaces, Matsumura and Nishida showed in their
pioneering papers [18, 19] that the classical solutions exist globally in time provided
that the data are small in some sense. See also the papers [6, 12, 23, 27, 28, 29] for
some further local or global results in case of positive densities.

On the other hand, the existence of weak or strong solutions has been proved
in rather recent works even for the general case of nonnegative initial densities. In
fundamental works [16, 17], Lions developed an existence theory of global (in time)
weak solutions to the IBVP (1.1)-(1.5). Then Lions’ theory has been improved by
several authors to deduce more general results; see [7, 8, 9, 10, 14, 15] for details.
The very recent papers [2, 3, 4] by Choe and the authors are devoted to establishing
some local existence results on strong solutions. Among other things, we showed
in [2, 3] (see also the paper [21] by Salvi and Straškraba) that if the initial data ρ0,
u0 satisfy the regularity condition

ρ0 − ρ∞ ∈ H2, ρ∞ ∈ R+, ρ0 ≥ 0 in Ω, u0 ∈ D1
0 ∩D2 (1.6)

and the compatibility condition

Lu0 +∇p(ρ0) = ρ
1
2
0 g1 in Ω for some g1 ∈ L2, (1.7)

then there exist a small time T∗ ∈ (0, T ) and a unique strong solution (ρ, u) to the
IBVP (1.1)-(1.5) such that

ρ− ρ∞ ∈ C([0, T∗]; H2), u ∈ C([0, T∗]; D1
0 ∩D2) ∩ L2(0, T∗; D3),

ρt ∈ C([0, T∗];H1), ut ∈ L2(0, T∗; D1
0) and

√
ρut ∈ L∞(0, T∗; L2).

(1.8)

Throughout this paper, we adopt the following simplified notations for the stan-
dard homogeneous and inhomogeneous Sobolev spaces.

Lr = Lr(Ω), Dk, r = {v ∈ L1
loc(Ω) : |v|Dk,r < ∞},

W k, r = Lr ∩Dk, r,Hk = W k, 2, Dk = Dk, 2,

D1
0 = {v ∈ L6(Ω) : |v|D1

0
< ∞ and v = 0 on ∂Ω},

H1
0 = L2 ∩D1

0, |v|Dk,r = |∇kv|Lr and |v|D1
0

= |∇v|L2 .

Then it follows from the classical Sobolev embedding results that

|v|L6 ≤ C|v|D1
0
, |v|L∞ ≤ C|v|W 1,4 and |v|L∞ ≤ C|v|D1

0∩D2 .
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Hereafter we use the obvious notation

| · |X∩Y = | · |X + | · |Y for (semi-)normed spaces X, Y

and C denotes a generic positive constant depending only on the fixed constants
µ, λ, T and the norms of p = p(·) and f . We also denote by H−1 the dual space
of H1

0 with < ·, · > being the dual paring of H−1 and H1
0 . A detailed study of

homogeneous Sobolev spaces may be found in Galdi’s book [11].
The main purpose of this paper is to prove the local existence of classical so-

lutions to the IBVP (1.1)-(1.5) with nonnegative initial densities. First we prove
the existence of solutions in C([0, T∗]; (ρ∞ + H3) × (D1

0 ∩ D3)) under a stronger
compatibility condition than (1.7) on the data.

Theorem 1.1. Assume that

ρ0 − ρ∞ ∈ H3, ρ∞ ∈ R+, ρ0 ≥ 0 in Ω, u0 ∈ D1
0 ∩D3,

f ∈ L2(0, T ; H2), ft ∈ L2(0, T ; L2) and p = p(·) ∈ C3(R+).
(1.9)

Assume further that the data ρ0, u0, f satisfy the compatibility condition

Lu0 +∇p(ρ0) = ρ0 (f(0) + g2) for some g2 ∈ D1
0 with

√
ρ0 g2 ∈ L2. (1.10)

Then there exist a small time T∗ ∈ (0, T ) and a unique strong solution (ρ, u) to the
IBVP (1.1)-(1.5) such that

ρ− ρ∞ ∈ C([0, T∗];H3), u ∈ C([0, T∗];D1
0 ∩D3) ∩ L2(0, T∗; D4),

ut ∈ L∞(0, T∗;D1
0) ∩ L2(0, T∗;D2) and

√
ρut ∈ L∞(0, T∗;L2).

(1.11)

Remark 1.2. From the continuity equation (1.1), it follows immediately that

ρt ∈ C([0, T∗];H2) and ρtt ∈ L∞(0, T∗;L2) ∩ L2(0, T∗;H1).

Note that the hypotheses of Theorem 1.1 imply (1.6) and (1.7) with g1 =√
ρ
0
(f(0) + g2) ∈ L2. Hence the existence of a unique local solution (ρ, u) with

the regularity (1.8) was already proved in [2, 3] and our new theorem shows that
(ρ, u) has some additional regularity if the data satisfy a stronger compatibility
condition (1.10). It is easy to show that (1.10) is also necessary for the existence
of solutions with the regularity (1.11). In fact, let (ρ, u) be a solution to the
IBVP (1.1)-(1.5) with the regularity (1.11). Then since ut ∈ L∞(0, T∗; D1

0) and√
ρut ∈ L∞(0, T∗; L2), there is a sequence {tk}, tk → 0, such that ut(tk) ⇀ g in D1

0

for some g ∈ D1
0 with

√
ρ(0)g ∈ L2. Hence letting t = tk → 0 in the momentum

equation (1.2), we readily obtain

Lu(0) +∇p(ρ(0)) = ρ(0)(f(0)− u(0) · ∇u(0)− g),

which implies then that

Lu(0) +∇p(ρ(0)) = ρ(0)(f(0) + g2),
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where g2 = −u(0) · ∇u(0) − g. Noting that ρ(0) = ρ0, u(0) = u0, g2 ∈ D1
0 and√

ρ(0)g2 ∈ L2, we conclude that the compatibility condition (1.10) is necessary for
the existence of solutions with the regularity (1.11).

In case that ρ0 has a positive lower bound and u0 has the additional integrability
condition u0 ∈ L2, Theorem 1.1 can be proved applying the method of successive
approximations or a fixed point argument as in [1, 13, 18, 24, 29]. Our proof of
the theorem is based on the method of successive approximations, whose general
strategy may be described as follows. First we consider a linearized problem for the
IBVP (1.1)-(1.5) and solve it successively to construct a sequence of approximate
solutions. Then we derive some uniform bounds for approximate solutions and
finally prove the convergence of the sequence to a solution to the original nonlinear
problem. A detailed proof of Theorem 1.1 following this strategy is provided in
Section 4.

Next, we prove the existence of classical solutions to the IBVP (1.1)-(1.5). Let
(ρ, u) be a solution to (1.1)-(1.5) satisfying the regularity in Theorem 1.1. Then in
view of the Sobolev embedding results, we have

(ρ, u) ∈ C([0, T∗];C1(Ω)) and ρt ∈ C([0, T∗]× Ω), (1.12)

which implies that (ρ, u) satisfies (1.1), (1.3), (1.4) and (1.5) in a classical sense.
But in order to conclude that (1.2) is satisfied in a classical sense, we need to prove
further regularity of u. In case that ρ0 is bounded below away from zero, that is,
δ = infΩ ρ0 > 0, it follows from (1.12) that ρ ≥ 1

2δ > 0 on [0, T∗∗] × Ω for some
T∗∗ ∈ (0, T∗] and the momentum equation (1.2) can be rewritten as

ut + ρ−1Lu = f − u · ∇u− ρ−1∇p(ρ)

in (0, T∗∗) × Ω. Hence by virtue of the smoothing effect of solutions of parabolic
equations, we deduce that (∇2u, ut) ∈ C((0, T∗∗] × Ω) and (ρ, u) is a classical
solution of (1.2) in (0, T∗∗)×Ω. For details, see Lemma 2.4 in the next section and
the paper [18] by Matsumura and Nishida. However the smoothing effect of the
velocity u in t > 0 is not obvious for the general case of nonnegative initial densities
because (1.2) is no more parabolic in the region where the density vanishes.

Nevertheless, using the same method as in the proof of Theorem 1.1, we can
prove the following result.

Theorem 1.3. In addition to (1.9) and (1.10), we assume that

t
1
2 f ∈ L∞(0, T ; H2), t

1
2 ft ∈ L∞(0, T ; L2), t

1
2 ftt ∈ L2(0, T ;H−1),

tft ∈ L∞(0, T ; H1), tftt ∈ L2(0, T ;L2), (1.13)

t
3
2 ftt ∈ L∞(0, T ;L2) and t

3
2 fttt ∈ L2(0, T ; H−1).
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Then there exist a small time T∗ ∈ (0, T ) and a unique strong solution (ρ, u) to the
IBVP (1.1)-(1.5) such that

ρ− ρ∞ ∈ C([0, T∗]; H3), u ∈ C([0, T∗]; D1
0 ∩D3) ∩ L2(0, T∗; D4),

ut ∈ L∞(0, T∗;D1
0) ∩ L2(0, T∗; D2),

√
ρutt ∈ L2(0, T∗; L2);

t
1
2 u ∈ L∞(0, T∗; D4), t

1
2 ut ∈ L∞(0, T∗; D2), t

1
2 utt ∈ L2(0, T∗; D1

0),

t
1
2
√

ρutt ∈ L∞(0, T∗;L2); tut ∈ L∞(0, T∗;D3), (1.14)

tutt ∈ L∞(0, T∗; D1
0) ∩ L2(0, T∗;D2), t

√
ρuttt ∈ L2(0, T∗;L2);

t
3
2 utt ∈ L∞(0, T∗; D2), t

3
2 uttt ∈ L2(0, T∗; D1

0), t
3
2
√

ρuttt ∈ L∞(0, T∗;L2).

Let (ρ, u) be a solution of the compressible Navier-Stokes equations (1.1)-(1.3)
with the regularity (1.14). Then it is easy to show that (ρ, u) is indeed a classical
solution of (1.1)-(1.3) in (0, T∗]× Ω. First, using the standard embedding results

L2(0, T∗; H1) ∩W 1,2(0, T∗; H−1) ↪→ C([0, T∗];L2)

and
L∞(0, T∗; H1) ∩W 1,2(0, T∗; H−1) ↪→ C([0, T∗];Lq)

for any 2 ≤ q < 6, we deduce from (1.13) and (1.14) that

t
1
2 f ∈ C([0, T∗];W 1,4) and tut ∈ C([0, T∗];D1

0 ∩D2).

On the other hand, by virtue of the continuity equation (1.1), we can rewrite the
momentum equation (1.2) as

ρut + ρu · ∇u + Lu +∇p(ρ) = ρf in (0, T∗)× Ω,

which implies that for each t ∈ (0, T∗], u = u(t) ∈ D1
0 ∩ D3 is a solution of the

elliptic system

Lu = ρ(f − ut − u · ∇u)−∇p(ρ) ≡ F in Ω.

Note that tF ∈ C([0, T∗];W 1,4). Hence it follows from the elliptic regularity result
in [3] that

t∇2u ∈ C([0, T∗];W 1,4).

Therefore, in view of the Sobolev embedding results, we conclude that

(ut, ∇2u) ∈ C((0, T∗]× Ω)

and so (ρ, u) is a classical solution of (1.1)-(1.3) in (0, T∗]× Ω.
We have considered the Navier-Stokes equations (1.1)-(1.3) for general barotropic

compressible fluids including isentropic fluids as an important special class. An
isentropic viscous compressible fluid is governed by the Navier-Stokes equations
(1.1)-(1.3) with the density-pressure law p = p(·) given by

p = Aργ for some constants A > 0, γ > 1. (1.15)

Note that (1.15) defines a C3-function on R+ if and only if γ = 2 or γ ≥ 3. Hence
Theorem 1.1 and Theorem 1.3 can be used to deduce the corresponding existence
results for the isentropic equations (1.1)-(1.3) and (1.15) only in case when γ = 2
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or γ ≥ 3. But in some physical situations, the case 1 < γ < 2 is most important:
for instance, γ = 5

3 in case of monatomic gases like Helium and Neon. The final
goal of the paper is to prove the existence of classical solutions of the isentropic
compressible Navier-Stokes equations (1.1)-(1.3) and (1.15) for general γ > 1.

Theorem 1.4. Assume that the data ρ0, u0, f satisfy the regularity condition

(ρ0 − ρ∞, p0 − p∞) ∈ H3, ρ∞ ∈ R+, ρ0 ≥ 0 in Ω,

u0 ∈ D1
0 ∩D3, f ∈ L2(0, T ;H2) and ft ∈ L2(0, T ;L2)

and the compatibility condition

Lu0 +∇p0 = ρ0 (f(0) + g2) for some g2 ∈ D1
0 with

√
ρ0 g2 ∈ L2,

where
p0 = Aργ

0 and p∞ = A(ρ∞)γ .

Then there exist a small time T∗ ∈ (0, T ) and a unique strong solution (ρ, p, u) to
the IBVP (1.1)-(1.5) and (1.15) such that

(ρ− ρ∞, p− p∞) ∈ C([0, T∗];H3), u ∈ C([0, T∗];D1
0 ∩D3) ∩ L2(0, T∗; D4),

ut ∈ L∞(0, T∗; D1
0) ∩ L2(0, T∗; D2) and

√
ρut ∈ L∞(0, T∗; L2).

Moreover, if the external force f satisfies the additional regularity (1.13), then the
velocity u satisfies (1.14) with T∗ replaced by some T∗∗ ∈ (0, T∗] and so (ρ, p, u) is
a classical solution of (1.1)-(1.3) and (1.15) in (0, T∗∗)× Ω.

If γ = 2 or γ ≥ 3, then Theorem 1.4 is just a reformulation of Theorem 1.1 and
Theorem 1.3 because

ρ− ρ∞ ∈ C([0, T∗];H3) implies that p− p∞ ∈ C([0, T∗];H3). (1.16)

But (1.16) fails to hold for general γ > 1 and in fact, one major difficulty in proving
Theorem 1.4 is to show that p − p∞ ∈ C([0, T∗];H3). Our proof relies heavily on
the observation that since ρ satisfies (1.1) and (1.4), the pressure p = Aργ is a
solution to the linear hyperbolic problem

pt + u · ∇p + γp divu = 0 in (0, T )× Ω and p|t=0 = p0 in Ω,

provided that u is regarded as a known vector field. Hence assuming that u is
sufficiently regular, we can deduce from a standard regularity theory of hyperbolic
equations that if p0 − p∞ ∈ H3, then p− p∞ ∈ C([0, T∗];H3). A detailed proof of
Theorem 1.4 is given in the final section.

The main results in this paper are Theorem 1.3 and Theorem 1.4 which are both
local existence results on classical solutions. It is then a fundamental question to
ask whether the solutions exist globally in time. A negative answer was obtained
by Xin [30] for the case that the spatial domain Ω is the whole space R3. He
showed that there is no global classical solution to the Cauchy problem for the
isentropic compressible Navier-Stokes equations with compactly supported initial
density and velocity. On the other hand, Choe and the second author [5] obtained
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a global existence result on radially symmetric strong solutions of the isentropic
compressible Navier-Stokes equations in bounded and unbounded annular domains.
Hence it is very likely that the methods in this paper and [5] can be combined to
prove the global existence of radially symmetric classical solutions with nonnegative
densities. This issue will be studied in a separated paper.

The rest of this paper is organized as follows. Section 2 is devoted to a study of
a linearized problem. We provide some existence and regularity results for a linear
transport equation and a linear parabolic system. In Section 3, we derive some
a priori estimates for solutions to the linearized problem. Applying the method
of successive approximations based on these estimates, we prove Theorem 1.1 in
Section 4. Finally, the proofs of Theorem 1.3 and Theorem 1.4 are given in Section
5 and Section 6, respectively.

2. Existence and regularity on solutions of linear equations

In this section, we obtain some existence and regularity results on solutions of
a linear transport equation and a linear parabolic system, which are necessary to
prove all the main theorems in the paper.

2.1. A linear transport equation. First, we consider the following linear hyper-
bolic problem

ρt + v · ∇ρ + ρ divv = 0 in (0, T )× Ω and ρ(0) = ρ0 in Ω, (2.1)

where v is a known vector field in (0, T )× Ω such that

v ∈ C([0, T ]; D1
0 ∩Dm) ∩ L2(0, T ; Dm+1) for some integer m ≥ 2.

Following the arguments in [2], we prove

Lemma 2.1. Assume that ρ0 − ρ∞ ∈ Hm, ρ∞ ∈ R+ and ρ0 ≥ 0 in Ω. Then
(i) there exists a unique solution ρ to the problem (2.1) such that

ρ− ρ∞ ∈ C([0, T ];Hm) and ρt ∈ C([0, T ]; Hm−1),

(ii) the solution ρ satisfies the following estimate

|ρ(t)− ρ∞|Hm ≤ (|ρ0 − ρ∞|Hm + ρ∞) exp
(

C

∫ t

0

|v(s)|D1
0∩Dm+1 ds

)

for 0 ≤ t ≤ T and finally,
(iii) the solution ρ is represented by the formula

ρ(t, x) = ρ0(U(0, t, x) ) exp
[
−

∫ t

0

div v(s, U(s, t, x) ) ds

]
, (2.2)

where U ∈ C([0, T ]× [0, T ]× Ω) is the solution to the initial value problem
{

∂
∂tU(t, s, x) = v(t, U(t, s, x) ), 0 ≤ t ≤ T,

U(s, s, x) = x, 0 ≤ s ≤ T, x ∈ Ω.
(2.3)
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Proof. To begin with, we construct sequences {ρk
0} and {vk} of more regular scalar

and vector fields such that

ρk
0 − ρ∞ ∈ Hm ∩ Cm+1(Ω),

vk ∈ L2(0, T ;D1
0 ∩Dm+1) ∩ Cm+1([0, T ]× Ω), (2.4)

|ρk
0 − ρ0|Hm + |vk − v|L2(0,T ;D1

0∩Dm+1) → 0 as k →∞.

For this purpose, we first recall that Hm+3 and L2(0, T ;Hm+2) are dense in Hm and
L2(0, T ;Hm), respectively. Then since ρ0− ρ∞ ∈ Hm and g = ∇v ∈ L2(0, T ; Hm),
there exist sequences {ρk

0} in ρ∞ + Hm+3 and {gk} in L2(0, T ; Hm+2) such that
ρk
0 − ρ∞ → ρ0 − ρ∞ in Hm and gk → g in L2(0, T ; Hm) as k →∞.

For a.e. t ∈ (0, T ), let wk = wk(t) ∈ D1
0 be the unique weak solution to the

elliptic boundary value problem

∆wk = div gk in Ω and wk = 0 on ∂Ω.

It is obvious that wk ∈ L2(0, T ;D1
0) and |wk(t)− v(t)|D1

0
≤ |gk(t)− g(t)|L2 for a.e.

t ∈ (0, T ). Then by virtue of the elliptic regularity result in [3], we deduce that
wk ∈ L2(0, T ; D1

0 ∩Dm+3) and

|wk(t)− v(t)|D1
0∩Dm+1 ≤ C

(
|divgk(t)− divg(t)|Hm−1 + |wk(t)− v(t)|D1

0

)

≤ C|gk(t)− g(t)|Hm

for a.e. t ∈ (0, T ). Hence it follows that wk → v in L2(0, T ; D1
0 ∩Dm+1) as k →∞.

Therefore, recalling that C∞([0, T ];D1
0 ∩Dm+3) is dense in L2(0, T ; D1

0 ∩Dm+3),
we conclude that there exists a sequence {vk} in C∞([0, T ];D1

0 ∩Dm+3) such that
vk → v in L2(0, T ; D1

0 ∩ Dm+1) as k → ∞. In view of the Sobolev embedding
results

Hm+3 ↪→ Cm+1(Ω) and D1
0 ∩Dm+3 ↪→ Cm+1(Ω),

we complete the proof of (2.4). To treat the case of unbounded domains, we also
need a cut-off procedure. Assuming that Ω is an unbounded domain such as the
whole space, the half space and an exterior domain, we choose a sufficiently large
integer R0 > 1 so that

R3 \ Ω ⊂ BR0/2 if R3 \ Ω ⊂⊂ R3,

where for each R > 0, BR denotes the open ball of radius R centered at the origin:
BR = {x ∈ R3 : |x| < R}. Then taking a cut-off function ϕ ∈ C∞c (B1) such that
ϕ = 1 in B1/2, we define ρR

0 and vR by

ρR
0 (x) = ρ∞ + ϕ(x/R) (ρ0(x)− ρ∞) and vR(t, x) = ϕ(x/R)v(t, x)

for (t, x) ∈ [0, T ] × Ω and R > R0. Note that ρR
0 = ρ∞ and vR = 0 in (0, T ) ×

(Ω \ ΩR), where ΩR = Ω ∩BR. Moreover, it is easy to show that

|ρR
0 − ρ0|Hm + |vR − v|L2(0,T ;D1

0∩Dm+1) → 0 as R →∞.
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Hence applying this cut-off technique to ρk
0 and vk for each k ≥ 1, we may assume

without loss of generality that if Ω is an unbounded domain, then

ρk
0(x) = ρ∞ and vk(t, x) = 0 for t ∈ [0, T ], x ∈ Ω \ ΩRk

, (2.5)

where {Rk} is a sequence such that R0 < R1 < R2 < · · · and Rk →∞.
Now we consider the following regularized problem

ρt + vk · ∇ρ + ρ divvk = 0 in (0, T )× Ω and ρ(0) = ρk
0 in Ω (2.6)

for each k ≥ 1. Then since ρk
0 ∈ Cm+1(Ω), vk ∈ Cm+1([0, T ] × Ω) and vk = 0

on [0, T ] × ∂Ω, it follows from the standard hyperbolic theory that there exists a
unique solution ρk ∈ Cm+1([0, T ]×Ω) to the problem (2.6) and the solution ρk can
be represented by

ρk(t, x) = ρk
0(Uk(0, t, x)) exp

[
−

∫ t

0

div vk(s, Uk(s, t, x)) ds

]
, (2.7)

where Uk ∈ Cm+1([0, T ]× [0, T ]× Ω) is the solution to the initial value problem
{

∂
∂tU

k(t, s, x) = vk(t, Uk(t, s, x) ), 0 ≤ t ≤ T,
Uk(s, s, x) = x, 0 ≤ s ≤ T, x ∈ Ω.

(2.8)

It should be noted from (2.5) that if Ω is an unbounded domain, then

Uk(t, s, x) = x and ρk(t, x) = ρ∞ for t, s ∈ [0, T ], x ∈ Ω \ ΩRk
.

We will prove that the sequence {ρk} converges to a solution of the original
problem. To show this, we first observe that

|Uk(t, s, x)− U l(t, s, x)|

≤
∫ t

s

∣∣vk(τ, Uk(τ, s, x) )− vl(τ, U l(τ, s, x) )
∣∣ dτ

≤
∫ t

s

|vk(τ)− vl(τ)|L∞ dτ +
∫ t

s

|∇vl(τ)|L∞ |Uk(τ, s, x)− U l(τ, s, x)| dτ.

Then in view of Gronwall’s inequality, we have

|Uk(t, s, x)− U l(t, s, x)|

≤
(∫ T

0

|vk(τ)− vl(τ)|L∞ dτ

)
exp

(∫ T

0

|∇vl(τ)|L∞ dτ

)

≤ C

(∫ T

0

|vk(τ)− vl(τ)|D1
0∩D2 dτ

)
exp

(
C

∫ T

0

|vl(τ)|D1
0∩D3 dτ

)

for each s, t ∈ [0, T ] and x ∈ Ω, and thus

|Uk − U l|C([0,T ]×[0,T ]×Ω) → 0 as k, l →∞. (2.9)

Hence it follows from the well-known embedding result H2 ↪→ C0, 1
2 that

∫ T

0

∣∣div v(s, Uk(s, t, x))− div v(s, U l(s, t, x))
∣∣ ds

≤ C

∫ T

0

|∇v(s)|H2

∣∣Uk(s, t, x)− U l(s, t, x)
∣∣ 1
2 ds → 0 as k, l →∞
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uniformly in (t, x) ∈ [0, T ]× Ω. Therefore, observing that
∫ t

0

∣∣div vk(s, Uk(s, t, x))− div vl(s, U l(s, t, x))
∣∣ ds

≤
∫ T

0

(|div vk(s)− div v(s)|L∞ + |div vl(s)− div v(s)|L∞
)

ds

+
∫ T

0

∣∣div v(s, Uk(s, t, x))− div v(s, U l(s, t, x))
∣∣ ds,

we deduce from (2.7) that

|ρk − ρl|C([0,T ]×Ω) → 0 as k, l →∞.

This proves the existence of a limit ρ in C([0, T ]× Ω) such that

ρk → ρ in C([0, T ]× Ω) as k →∞. (2.10)

It is easy to show that ρ is a weak solution to the original problem (2.1).
To prove the higher regularity of ρ, we derive uniform estimates for ρk in higher

norms. Multiplying the equation in (2.6) with ρ = ρk by ρk − ρ∞ and integrating
over Ω, we have

d

dt

∫
|ρk − ρ∞|2 dx ≤ C

∫
|div vk| (|ρk − ρ∞|+ ρ∞

) |ρ− ρ∞| dx

and thus
d

dt
|ρk − ρ∞|2L2 ≤ C|∇vk|L∞ |ρk − ρ∞|2L2 + Cρ∞|ρk − ρ∞|L2 |∇vk|L2 . (2.11)

Let α be a multi-index with 1 ≤ |α| = α1 + α2 + α3 ≤ m. Then taking the
differential operator Dα to (2.6), we have

(Dαρk)t + vk · ∇(Dαρk)

= vk · ∇(Dαρk)−Dα(vk · ∇ρk)−Dα(ρk div vk) ≡ F k
α .

Multiplying this by Dαρ and integrating over Ω, we obtain
d

dt

∫
|Dαρk|2 dx ≤ C

∫ ( |div vk||Dαρk|2 + |F k
α ||Dαρk| ) dx

and thus
d

dt
|Dαρk|2L2 ≤ C

( |div vk|L∞ |Dαρk|2L2 + |F k
α |L2 |Dαρk|L2

)
. (2.12)

But since

|vk · ∇(Dαρk)−Dα(vk · ∇ρk)| ≤ C

|α|∑

l=1

∣∣∣∇|α|+1−lvk
∣∣∣
∣∣∇lρk

∣∣ ,

it follows from Hölder and Sobolev inequalities that

sup
1≤|α|≤m

|vk · ∇(Dαρk)−Dα(vk · ∇ρk)|L2 ≤ C|vk|D1
0∩Dm+1 |∇ρk|Hm−1 .

A similar calculation also shows that

sup
1≤|α|≤m

|Dα(ρk div vk)|L2 ≤ C|vk|D1
0∩Dm+1

(|∇ρk|Hm−1 + |ρk|L∞
)
.
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Hence from (2.11) and (2.12), it follows that

d

dt
|ρk − ρ∞|2Hm ≤ C|vk|D1

0∩Dm+1 |ρk − ρ∞|2Hm + Cρ∞|vk|D1
0∩Dm+1 |ρk − ρ∞|Hm .

Therefore, in view of Gronwall’s inequality, we conclude that

|ρk(t)− ρ∞|Hm ≤
(
|ρk

0 − ρ∞|Hm + Cρ∞
∫ t

0

|vk(s)|D1
0∩Dm+1 ds

)

× exp
(

C

∫ t

0

|vk(s)|D1
0∩Dm+1 ds

)
(2.13)

for each t ∈ [0, T ]. As a consequence of (2.10) and (2.13), we deduce that

ρk − ρ∞ ∗
⇀ ρ− ρ∞ in L∞(0, T ; Hm) as k →∞.

Moreover since ρt = −div (ρv) ∈ L∞(0, T ; Hm−1), it follows from a classical embed-
ding result (see [26] for instance) that ρ− ρ∞ ∈ C([0, T ];Hm−1) ∩ C([0, T ];Hm −
weak). To prove the strong time-continuity of ρ − ρ∞ in Hm, we observe that for
each fixed t ∈ [0, T ], ρk(t)− ρ∞ → ρ(t)− ρ∞ weakly in Hm. Hence from (2.13), it
follows immediately that

|ρ(t)− ρ∞|Hm ≤
(
|ρ0 − ρ∞|Hm + Cρ∞

∫ t

0

|v(s)|D1
0∩Dm+1 ds

)

× exp
(

C

∫ t

0

|v(s)|D1
0∩Dm+1 ds

)
(2.14)

for each t ∈ [0, T ]. In particular, we have

lim sup
t→+0

|ρ(t)− ρ∞|Hm ≤ |ρ0 − ρ∞|Hm ,

which implies that ρ− ρ∞ is right-continuous in Hm at t = 0. Since the equation
in (2.1) is invariant under the reflections and translations in time, we conclude that
ρ− ρ∞ ∈ C([0, T ];Hm). It also follows from (2.1) that ρt ∈ C([0, T ];Hm−1). It is
easy to prove the uniqueness of solutions in this regularity class. This completes
the proof of (i). The estimate in (ii) follows immediately from (2.14). Hence it
remains to show (iii). By virtue of the regularity of v, we can prove the uniqueness
of a solution U in C([0, T ] × [0, T ] × Ω) to the problem (2.3), whose existence is
guaranteed by (2.8) and (2.9). Finally, from (2.7), (2.9) and (2.10), we obtain the
representation formula (2.2) for the solution ρ. ¤

2.2. A linear parabolic system. Next, let Ω be a bounded domain in R3 with
smooth boundary, and we consider the following linear parabolic problem





ρut + Lu = F in (0, T )× Ω,

u(0) = u0 in Ω, u = 0 on (0, T )× ∂Ω,
(2.15)

where ρ is a known scalar field in (0, T )× Ω such that

ρ ∈ C([0, T ];H3), ρt ∈ C([0, T ];H2) and ρ ≥ δ on [0, T ]× Ω (2.16)
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for some constant δ > 0. Recall that L = −µ∆− (λ + µ)∇div is a strongly elliptic
operator (see [3] for instance). Then applying a standard method such as a semi-
discrete Galerkin method or the method of continuity, we can prove the following
existence and regularity results on solutions to the linear parabolic problem (2.15).
See also the papers [27, 28, 29] for similar results.

Lemma 2.2. (i) Assume that u0 ∈ H1
0 and F ∈ L2(0, T ; L2). Then there exists a

unique strong solution u to the problem (2.15) such that

u ∈ C([0, T ];H1
0 ) ∩ L2(0, T ;H2) and ut ∈ L2(0, T ;L2).

(ii) If u0 ∈ H1
0 ∩H2, F ∈ L∞(0, T ;L2) and Ft ∈ L2(0, T ; H−1), then the solution

u satisfies

u ∈ L∞(0, T ; H2), ut ∈ L2(0, T ;H1
0 ) and utt ∈ L2(0, T ;H−1).

(iii) Finally, if u0 ∈ H1
0 ∩H3, F ∈ L∞(0, T ; H1), Ft ∈ L2(0, T ;L2) and ut(0) =

ρ(0)−1 (F (0)− Lu0) ∈ H1
0 , then the solution u also satisfies

u ∈ L∞(0, T ; H3), ut ∈ L2(0, T ; H2) and utt ∈ L2(0, T ; L2).

Remark 2.3. Let u be the solution obtained in the result (iii) of Lemma 2.2. Then
by virtue of a standard embedding result, we have

u ∈ C([0, T ]; H2) and ut ∈ C([0, T ]; H1
0 ).

Moreover, it follows from an elliptic regularity result that if F ∈ L2(0, T ; H2) in
addition, then u also satisfies

u ∈ L2(0, T ; H4) and so u ∈ C([0, T ]; H3).

Standard arguments based on Lemma 2.2 enable us to prove the smoothing effect
of the solution u for positive time t > 0, provided that ρ and F are sufficiently
regular in t > 0. Throughout this paper, we denote

Lr
loc((0, T ]; X) =

⋂
τ>0

Lr(τ, T ;X)

for 1 ≤ r ≤ ∞ and a Banach space X.

Lemma 2.4. Let u0 ∈ H1
0 and F ∈ L2(0, T ;L2). Assume in addition to (2.16)

that

ρtt ∈ L∞loc((0, T ];L2), ρttt ∈ L2
loc((0, T ];H−1), F ∈ L∞loc((0, T ];H2),

Ft ∈ L∞loc((0, T ]; H1), Ftt ∈ L∞loc((0, T ]; L2) and Fttt ∈ L2
loc((0, T ]; H−1).

Then there exists a unique solution u to the problem (2.15) such that

u ∈ C([0, T ];H1
0 ) ∩ L2(0, T ; H2), ut ∈ L2(0, T ; L2);

u ∈ L∞loc((0, T ];H4), ut ∈ L∞loc((0, T ]; H1
0 ∩H3), utt ∈ L∞loc((0, T ];H1

0 ∩H2),

uttt ∈ L∞loc((0, T ];L2) ∩ L2
loc((0, T ];H1

0 ) and utttt ∈ L2
loc((0, T ]; H−1).
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Proof. The result (i) of Lemma 2.2 guarantees the existence of a unique solution u

with the regularity

u ∈ C([0, T ];H1
0 ) ∩ L2(0, T ; H2) and ut ∈ L2(0, T ; L2).

We prove the additional regularity of u using a standard iterative argument (see
[25] for instance). Let t0 be a fixed small time in (0, T ).

(a) Since u ∈ L2(0, T ;H1
0 ∩ H2), we can choose a time t1 in (0, t0) such that

u(t1) ∈ H1
0 ∩ H2. Then the result (ii) yields that u ∈ L∞(t1, T ;H1

0 ∩ H2) and
ut ∈ L2(t1, T ;H1

0 ). Moreover, since F ∈ L2(t1, T ; H1), it follows from the elliptic
regularity result that u ∈ L2(t1, T ; H3).

(b) There is a time t2 ∈ (t1, t0) such that u(t2) ∈ H1
0 ∩H3 and ut(t2) ∈ H1

0 . In
view of the result (iii), we deduce that

u ∈ L∞(t2, T ; H3), ut ∈ L2(t2, T ; H2) and utt ∈ L2(t2, T ];L2).

(c) There is a time t3 ∈ (t2, t0) such that ut(t3) ∈ H1
0 ∩H2. Note that w = ut is

the unique solution to the problem
{

ρwt + Lw = G in (t3, T )× Ω,
w(t3) = ut(t3) in Ω, w = 0 on (t3, T )× ∂Ω,

(2.17)

where G = Ft−ρtut. Note that G ∈ L2(t3, T ;H1) and Gt ∈ L2(t3, T ; H−1). Hence
it follows from the result (ii) that

w ∈ L∞(t3, T ;H2), wt ∈ L2(t3, T ;H1
0 ) and wtt ∈ L2(t3, T ; H−1).

Moreover, using the elliptic regularity result again, we deduce that

u ∈ L∞(t3, T ; H4) and w ∈ L2(t3, T ;H3).

(d) There is t4 ∈ (t3, t0) such that w(t4) ∈ H1
0 ∩H3 and wt(t4) ∈ H1

0 . Note that
G = Ft − ρtw ∈ L∞(t4, T ; H1) and Gt ∈ L2(t4, T ;L2). Hence it follows from (iii)
that

w ∈ L∞(t4, T ; H3), wt ∈ L2(t4, T ; H2) and wtt ∈ L2(t4, T ; L2).

(e) There is a time t5 ∈ (t4, t0) such that wt(t5) ∈ H1
0 ∩ H2 and v = wt is the

unique solution to the problem
{

ρvt + Lv = H in (t5, T )× Ω,
w(t5) = ut(t5) in Ω, w = 0 on (t5, T )× ∂Ω,

(2.18)

where H = Gt− ρtwt. Since H ∈ L∞(t5, T ; L2) and Ht ∈ L2(t5, T ;H−1), it follows
from (ii) that

v ∈ L∞(t5, T ; H2), vt ∈ L2(t5, T ; H1
0 ) and vtt ∈ L2(t5, T ; H−1).

Observing that 0 < t1 < t2 < t3 < t4 < t5 < t0 and t0 can be chosen to be
arbitrarily small, we complete the proof of Lemma 2.4. ¤
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3. A priori estimates for the linearized problem

To prove Theorem 1.1, we consider the following linearized problem

ρt + div (ρv) = 0 in (0, T )× Ω, (3.1)

ρut + Lu +∇p = ρ(f − v · ∇v) in (0, T )× Ω, (3.2)

(ρ, u)|t=0 = (ρ0, u0) in Ω, u = 0 on (0, T )× ∂Ω, (3.3)

ρ(t, x) → ρ∞, u(t, x) → 0 as |x| → ∞, (t, x) ∈ (0, T )× Ω, (3.4)

where v is a known vector field in (0, T )× Ω such that

v ∈ C([0, T ];D1
0 ∩D3) ∩ L2(0, T ; D4), vt ∈ L∞(0, T ; D1

0) ∩ L2(0, T ; D2). (3.5)

Recall again that Lu = −µ∆u− (λ + µ)∇divu and p = p(ρ).
First, from the lemmas in Section 2, we obtain an existence result for positive

initial densities.

Lemma 3.1. Let Ω be a bounded domain in R3 with smooth boundary. In addition
to (1.9) and (3.5), we assume that ρ0 ≥ δ in Ω for some constant δ > 0 and
f(0)−v(0) ·∇v(0)−ρ−1

0 (Lu0 +∇p(ρ0)) ∈ H1
0 . Then there exists a unique solution

(ρ, u) to the linearized problem (3.1), (3.2) and (3.3) such that

ρ ∈ C([0, T ]; H3), ρt ∈ C([0, T ];H2),

u ∈ C([0, T ];H1
0 ∩H3) ∩ L2(0, T ; H4),

ut ∈ C([0, T ];H1
0 ) ∩ L2(0, T ; H2), (3.6)

utt ∈ L2(0, T ; L2) and ρ ≥ δ on [0, T ]× Ω

for some constant δ > 0.

Proof. The existence and regularity of a unique solution ρ to the linear hyperbolic
problem (3.1) and (3.3) were already proved in Lemma 2.1. To prove the remaining
part of the lemma, let us define F by F = −∇p(ρ) + ρ(f − v · ∇v). Then by virtue
of (1.9), (3.5) and the regularity of ρ, we can easily show that F ∈ L2(0, T ;H2)
and Ft ∈ L2(0, T ;L2). Moreover since ρ−1

0 (F (0)− Lu0) ∈ H1
0 , Lemma 2.2 and

Remark 2.3 allow us to deduce the existence and regularity of a unique solution u

to the linear parabolic problem (3.2) and (3.3). This completes the proof of Lemma
3.1. ¤

Assume that ρ0, u0, v, f , p = p(·) and Ω satisfy the hypotheses of Lemma 3.1.
Then it follows from Lemma 3.1 that there exists a unique strong solution (ρ, u) to
the linear problem (3.1), (3.2) and (3.3) satisfying the regularity (3.6). The purpose
of this section is to derive some local (in time) a priori estimates for (ρ, u) which
are independent of the lower bound δ of ρ0 and size of the domain Ω. Let us choose
a constant c0 > 1 so that

1 + ρ∞ + |ρ0 − ρ∞|H3 + |u0|D1
0

+ |√ρ0 g2|L2 + |g2|D1
0

< c0,
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where g2 = ρ−1
0 (Lu0 +∇p(ρ0))− f(0) = −v(0) · ∇v(0)− ut(0), and assume that

|v(0)|D1
0∩D3 ≤ 1 + c1,

sup
0≤t≤T∗

|v(t)|D1
0

+
∫ T∗

0

|v(t)|2D2 dt ≤ 1 + c2,

sup
0≤t≤T∗

|v(t)|D2 +
∫ T∗

0

(
|vt(t)|2D1

0
+ |v(t)|2D3

)
dt ≤ 1 + c3, (3.7)

ess sup
0<t<T∗

(
|vt(t)|D1

0
+ |v(t)|D3

)
+

∫ T∗

0

(|vt(t)|2D2 + |v(t)|2D4

)
dt ≤ 1 + c4

for some time T∗ ∈ (0, T ) and constants ci’s with 1 < c0 ≤ c1 ≤ c2 ≤ c3 ≤ c4. The
constants ci’s, 1 ≤ i ≤ 4, and T∗ will be determined later and depend only on c0

and the parameters of C. Throughout this and next two sections, we denote by C

a generic positive constant depending only on the fixed constants µ, λ, T , |p|C3(R+)

and the norm of f . Moreover, M = M(·) denotes an increasing continuous function
from [1,∞) to [1,∞) which is independent of δ and the size of Ω.

Lemma 3.2.

|ρ(t)|L∞ + |ρ(t)− ρ∞|H3 ≤ Cc0, |p(t)− p∞|H3 ≤ M(c0), |ρt(t)|H1 ≤ Cc2
3,

|pt(t)|H1 ≤ M(c0)c2
3,

∫ t

0

|ρtt(s)|2L2 ds ≤ Cc8
3,

∫ t

0

|ptt(s)|2L2 ds ≤ M(c0)c8
3,

|ρt(t)|H2 ≤ Cc2
4, |pt(t)|H2 ≤ M(c0)c2

4 and inf
Ω

ρ(t) ≥ C−1δ

for 0 ≤ t ≤ min(T∗, T1), where T1 = (1 + c4)−1 and p∞ = p(ρ∞).

Proof. From Lemma 2.1, we recall that

|ρ(t)− ρ∞|H3 ≤ (|ρ0 − ρ∞|H3 + ρ∞) exp
(

C

∫ t

0

|v(s)|D1
0∩D4 ds

)

and

inf
Ω

ρ(t) ≥
(
inf
Ω

ρ0

)
exp

(
−C

∫ t

0

|v(s)|D1
0∩D4 ds

)

for 0 ≤ t ≤ T . Hence observing that

∫ t

0

|v(s)|D1
0∩D4 ds ≤ t

1
2

(∫ t

0

|v(s)|2D1
0∩D4 ds

) 1
2

≤ C(1 + c4)t + C((1 + c4)t)
1
2 ,

we obtain the desired estimate for ρ. Then the esimates for ρt, ρtt, p, pt and ptt

follow immediately from the quations ρt = −div(ρv) and p = p(ρ). ¤

Lemma 3.3.

|u(t)|2D1
0

+
∫ t

0

|u(s)|2D2 ds ≤ M(c0)

for 0 ≤ t ≤ min(T∗, T2), where T2 = (1 + c4)−4 < T1.
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Proof. Multiplying the equation (3.2) by ut and integrating over Ω, we obtain∫
ρ|ut|2 dx +

1
2

d

dt

∫
µ|∇u|2 + (λ + µ)(divu)2 dx

= −
∫
∇p · ut dx +

∫
ρ(f − v · ∇v) · ut dx. (3.8)

Using Lemma 3.2 together with (3.7), we can estimate the second term of the right
hand side in (3.8) as follows:∫

ρ(f − v · ∇v) · ut dx ≤ |ρ|
1
2
L∞ |f − v · ∇v|L2 |√ρut|L2

≤ C|ρ|L∞
(
|f |2L2 + |v|4D1

0∩D2

)
+

1
2
|√ρut|2L2

≤ Cc0c
4
3 +

1
2
|√ρut|2L2 .

To estimate the first term, we observe that

−
∫
∇p · ut dx =

∫
(p− p∞) divut dx

=
d

dt

∫
(p− p∞) divu dx−

∫
pt divu dx,

∫
(p− p∞) divu dx ≤ C|p(ρ)− p∞|2L2 +

µ

4
|∇u|2L2 ≤ M(c0) +

µ

4
|∇u|2L2

and
−

∫
pt divu dx ≤ |pt|2L2 + |∇u|2L2 ≤ M(c0)c4

3 + |∇u|2L2 .

Hence integrating (3.8) in time over (0, t), we have
∫ t

0

|√ρut(s)|2L2 ds + |∇u(t)|2L2

≤ M(c0)
(
1 + |∇u0|2L2

)
+ M(c0)c4

3t + C

∫ t

0

|∇u(s)|2L2 ds

for 0 ≤ t ≤ min(T∗, T1). Therefore, in view of Gronwall’s inequality, we conclude
that ∫ t

0

|√ρut(s)|2L2 ds + |∇u(t)|2L2 ≤ M(c0) for 0 ≤ t ≤ min(T∗, T2),

where T2 = (1+c3)−4 < T1. Moreover, since for each t ∈ (0, T ), u = u(t) ∈ D1
0∩D2

is a solution of the elliptic system

Lu = −∇p + ρ(f − v · ∇v)− ρut in Ω,

it follows from the elliptic regularity result in [3] that

|u|D2 ≤ C
(
| − ∇p + ρ(f − v · ∇v)− ρut|L2 + |u|D1

0

)

≤ M(c0)
(
1 + c2

3 + |√ρut|L2

)

and thus ∫ t

0

|u(s)|2D2 ds ≤ M(c0) for 0 ≤ t ≤ min(T∗, T2).

This completes the proof of Lemma 3.3. ¤



CLASSICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES EQUATIONS 17

Lemma 3.4.

|√ρut(t)|2L2 + |u(t)|2D2 +
∫ t

0

(
|ut(s)|2D1

0
+ |u(s)|2D3

)
ds ≤ M(c1)c

3
2
2 c

1
2
3

for 0 ≤ t ≤ min(T∗, T3), where T3 = (1 + c4)−9 < T2.

Proof. We differentiate (3.2) with respect to t and have

ρutt + Lut +∇pt = ρ(f − v · ∇v)t + ρt(f − v · ∇v − ut). (3.9)

Multiplying this by ut and integrating over Ω, we obtain

1
2

d

dt

∫
ρ|ut|2 dx +

∫
µ|∇ut|2 + (λ + µ)(divut)2 dx

=
∫ (

−∇pt + ρ(f − v · ∇v)t + ρt(f − v · ∇v − 1
2
ut)

)
· ut dx. (3.10)

To estimate each term in the right hand side of (3.10), we follow the arguments
in [2, 3, 4]; we first apply the standard inequalities such as Hölder, Sobolev and
Young’s inequalities and then use Lemma 3.2.

−
∫
∇pt · ut dx =

∫
pt div ut dx ≤ C|pt|2L2 +

µ

8
|∇ut|2L2 ≤ M(c0)c4

3 +
µ

8
|∇ut|2L2 ,

∫
ρft · ut dx ≤ |ft|L2 |ρ|

1
2
L∞ |

√
ρut|L2 ≤ |ft|2L2 + Cc0|√ρut|2L2 ,

−
∫

ρ(v · ∇v)t · ut dx ≤ C|ρ|
1
2
L∞ |vt|D1

0
|v|D1

0
|√ρut|L3

≤ C|ρ|
3
4
L∞ |vt|D1

0
|v|D1

0
|√ρut|

1
2
L2 |∇ut|

1
2
L2

≤ η−2C|ρ|3L∞ |v|4D1
0
|√ρut|2L2 + η|vt|2D1

0
+

µ

8
|∇ut|2L2

≤ η−2Cc7
2|
√

ρut|2L2 + η|vt|2D1
0

+
µ

8
|∇ut|2L2 ,

∫
ρt(f − v · ∇v) · ut dx ≤ C|ρt|H1

(
|f |L2 + |v|2D1

0∩D2

)
|∇ut|L2

≤ Cc4
3

(|f |2L2 + c4
3

)
+

µ

8
|∇ut|2L2

≤ Cc8
3 +

µ

8
|∇ut|2L2

and finally

−
∫

ρt

(
1
2
|ut|2

)
dx =

∫
div(ρv)

(
1
2
|ut|2

)
dx

≤
∫

ρ|v||ut||∇ut| dx ≤ C|ρ|
3
4
L∞ |v|D1

0
|√ρut|

1
2
L2 |∇ut|

3
2
L2

≤ Cc7
2|
√

ρut|2L2 +
µ

8
|∇ut|2L2 .
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Here η ∈ (0, 1) is a small number. Substituting these estimates into (3.10) and
taking η = (1 + c3)−1, we have

d

dt

∫
ρ|ut|2 dx + µ

∫
|∇ut|2 dx

≤ M(c0)
(|ft|2L2 + c8

3

)
+ Cc9

3|
√

ρut|2L2 + (1 + c3)−1|vt|2D1
0

(3.11)

for 0 ≤ t ≤ min(T∗, T2). On the other hand, since

ut ∈ C([0, T ]; H1
0 ) and ut(0) = −v(0) · ∇v(0)− g2,

it follows that

|√ρut(0)|L2 + |ut(0)|D1
0
≤ Cc3

1. (3.12)

Hence integrating (3.11) over (0, t), we also have

|√ρut(t)|2L2 +
∫ t

0

|∇ut(s)|2L2 ds ≤ M(c1)
(
1 + c8

3t
)

+ Cc9
3

∫ t

0

|√ρut(s)|2L2 ds.

Therefore, in view of Gronwall’s inequality, we conclude that

|√ρut(t)|2L2 +
∫ t

0

|ut(s)|2D1
0
ds ≤ M(c1) for 0 ≤ t ≤ min(T∗, T3),

where T3 = (1+c4)−9 < T2. Moreover, since for each t ∈ (0, T ), u = u(t) ∈ D1
0∩D3

is a solution of the elliptic system

Lu = −∇p + ρ(f − v · ∇v)− ρut in Ω,

it follows from the elliptic regularity result in [3] that

|u(t)|D2 ≤ M(c1) (1 + |v · ∇v|L2)

≤ M(c1)
(
1 + |v|

3
2
D1

0
|v|

1
2
D1

0∩D2

)
≤ M(c1)c

3
2
2 c

1
2
3

and
∫ t

0

|u(s)|2D3 ds ≤ M(c1)
∫ t

0

(
1 + |v(s)|4D1

0∩D2 + |ut(s)|2D1
0

)
ds ≤ M(c1)

for 0 ≤ t ≤ min(T∗, T3). This completes the proof of Lemma 3.4. ¤

Lemma 3.5.

|ut(t)|2D1
0

+ |u(t)|2D3 +
∫ t

0

(|√ρutt(s)|2L2 + |ut(s)|2D2 + |u(s)|2D4

)
ds ≤ M(c1)c12

3

for 0 ≤ t ≤ min(T∗, T3).

Proof. Multiplying (3.9) by utt and integrating over Ω, we have
∫

ρ|utt|2 dx +
1
2

d

dt

∫
µ|∇ut|2 + (λ + µ)(divut)2 dx

=
∫

(−∇pt + ρ(f − v · ∇v)t + ρt(f − v · ∇v − ut)) · utt dx. (3.13)



CLASSICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES EQUATIONS 19

We can estimate the first two terms in the right hand side of (3.13) as follows:

−
∫
∇pt · utt dx =

∫
ptdivutt dx =

d

dt

∫
ptdivut dx−

∫
pttdivut dx

≤ d

dt

∫
ptdivut dx + |ptt|2L2 + |∇ut|2L2

and
∫

ρ(f − v · ∇v)t · utt dx ≤ C|ρ|
1
2
L∞

(
|ft|L2 + |v|D1

0∩D2 |vt|D1
0

)
|√ρutt|L2

≤ Cc0

(
|ft|2L2 + c2

3|vt|2D1
0

)
+

1
2
|√ρutt|2L2 .

To estimate the last term, we observe that
∫

ρt (f − v · ∇v) · utt dx

=
d

dt

∫
ρt (f − v · ∇v) · ut dx−

∫
ρtt (f − v · ∇v) · ut dx

−
∫

ρt (f − v · ∇v)t · ut dx

and

−
∫

ρtut · utt dx = − d

dt

∫
ρt

(
1
2
|ut|2

)
dx +

∫
ρtt

(
1
2
|ut|2

)
dx.

Then by virtue of Lemma 3.2, we obtain

−
∫

ρtt (f − v · ∇v) · ut dx ≤ C|ρtt|L2

(
|f |H1 + |v|2D1

0∩D2

)
|∇ut|L2

≤ Cc4
3|ρtt|2L2 + |∇ut|2L2 ,

−
∫

ρt (f − v · ∇v)t · ut dx ≤ C|ρt|L3

(
|ft|L2 + |v|D1

0∩D2 |vt|D1
0

)
|∇ut|L2

≤ Cc4
3

(
|ft|2L2 + c2

3|vt|2D1
0

)
+ |∇ut|2L2

and
∫

ρtt

(
1
2
|ut|2

)
dx = −

∫
div(ρtv + ρvt)

(
1
2
|ut|2

)
dx

≤
∫

(|ρt||v|+ ρ|vt|) |ut||∇ut| dx

≤ Cc3
3|∇ut|2L2 + Cc

3
4
0 |vt|D1

0
|√ρut|

1
2
L2 |∇ut|

3
2
L2

≤ Cc3
3|∇ut|2L2 + (1 + c3)−1|vt|2D1

0
|√ρut|L2 |∇ut|L2

≤ Cc3
3|ut|2D1

0
+ (1 + c3)−1|vt|2D1

0

(|√ρut|2L2 + |∇ut|2L2

)
.
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Substituting all the above estimates into (3.13), we have∫
ρ|utt|2 dx +

d

dt

∫
µ|∇ut|2 + (λ + µ)(divut)2 dx

≤ d

dt

∫ (
2ptdivut + 2ρt(f − v · ∇v) · ut − ρt|ut|2

)
dx

+C
(
|ptt|2L2 + c4

3|ρtt|2L2 + c4
3|ft|2L2 + c6

3|vt|2D1
0

+ c3
3|ut|2D1

0

)
(3.14)

+|vt|2D1
0
|√ρut|2L2 + (1 + c3)−1|vt|2D1

0
|∇ut|2L2

for 0 ≤ t ≤ min(T∗, T3). Now let us define a function Λ by

Λ(t) =
∫ (

µ|∇ut|2 + (λ + µ)(divut)2
)
(t) dx

−
∫ (

2ptdivut + 2ρt(f − v · ∇v) · ut − ρt|ut|2
)
(t) dx.

Then it follows from Lemma 3.2, Lemma 3.4 and (3.12) that

|Λ| ≤ C
(
|∇ut|2L2 + |pt|2L2 + |ρt|2L3 |f − v · ∇v|2L2 + |ρ|3L∞ |v|4D1

0
|√ρut|2L2

)

≤ C|∇ut|2L2 + M(c1)c8
3,

Λ ≥ C−1|∇ut|2L2 −M(c1)c8
3 and |Λ(0)| ≤ M(c1)c8

3.

Hence integrating (3.14) over (0, t) and using Lemma 3.2 and Lemma 3.4, we deduce
that ∫ t

0

|√ρutt(s)|2L2 ds + |∇ut(t)|2L2

≤ M(c1)c12
3 +

∫ t

0

C(1 + c3)−1|vt|2D1
0
|∇ut(s)|2L2 ds

for 0 ≤ t ≤ min(T∗, T3). Therefore, in view of Gronwall’s inequality, we conclude
that ∫ t

0

|√ρutt(s)|2L2 ds + |ut(t)|2D1
0
≤ M(c1)c12

3

for 0 ≤ t ≤ min(T∗, T3). Moreover, since Lu = −∇p + ρ(f − v · ∇v − ut) in Ω, it
follows from the elliptic regularity result that

∫ t

0

|ut(s)|2D2 ds + |u(t)|2D3 ≤ M(c1)c12
3 for 0 ≤ t ≤ min(T∗, T3).

This completes the proof of Lemma 3.5. ¤

From Lemma 3.2–Lemma 3.5, it follows that

|u(t)|D1
0

+
∫ t

0

|u(s)|2D2 ds ≤ M(c1),

|u(t)|D2 +
∫ t

0

(
|ut(s)|2D1

0
+ |u(s)|2D3

)
ds ≤ M(c1)c

3
2
2 c

1
2
3 ,

|ut(t)|D1
0

+ |u(t)|D3 +
∫ t

0

(|ut(s)|2D2 + |u(s)|2D4

)
ds ≤ M(c1)c12

3 ,

|ρ(t)− ρ∞|H3 + |ρt(t)|H2 + |√ρut(t)|L2 ≤ M(c1)c12
3
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for 0 ≤ t ≤ min(T∗, T3). Here M = M(·) is a fixed increasing continuous function
on [1,∞) which depends only on the parameters of C. Therefore, defining the
constants ci’s and T∗ by

c1 = M(c0), c2 = M(c1), c3 = c5
2, c4 = c2c

12
3 (3.15)

and
T∗ = min(T, T3) with T3 = (1 + c4)−9, (3.16)

we conclude that

sup
0≤t≤T∗

|u(t)|D1
0

+
∫ T∗

0

|u(t)|2D2 dt ≤ c2,

sup
0≤t≤T∗

|u(t)|D2 +
∫ T∗

0

(
|ut(t)|2D1

0
+ |u(t)|2D3

)
dt ≤ c3,

ess sup
0≤t≤T∗

(
|ut(t)|D1

0
+ |u(t)|D3

)
+

∫ T∗

0

(|ut(t)|2D2 + |u(t)|2D4

)
dt ≤ c4,

ess sup
0≤t≤T∗

(|ρ(t)− ρ∞|H3 + |ρt(t)|H2 + |√ρut(t)|L2) ≤ c4.

(3.17)

4. Proof of Theorem 1.1

Let (ρ0, u0, f) be a given data satisfying the hypotheses of Theorem 1.1. To
prove the existence, we construct a sequence {(ρk, uk)}k≥1 of approximate so-
lutions solving the linearized problem (3.1)–(3.4) successively. First, let F ∈
C([0,∞); H1) ∩ L2(0,∞; H2) be the solution of the heat equation Ft − ∆F = 0
in (0,∞)×Ω with F (0) = −∇p(ρ0)+ρ0(f(0)+g2) ∈ H1. Then since u0 ∈ D1

0 ∩D3

and F (0) − Lu0 = 0 ∈ D1
0, we can easily show that there exists a unique solu-

tion w = u0 ∈ C([0,∞); D1
0 ∩D3) ∩ L2(0,∞; D4) to the following linear parabolic

problem

wt + Lw = F in (0,∞)× Ω and w(0) = u0 in Ω.

It is also easy to show that

sup
0≤t≤1

(
|u0(t)|D1

0∩D3 + |u0
t (t)|D1

0

)
+

∫ 1

0

(|u0
t (t)|2D2 + |u0(t)|2D4

)
dt

≤ C
(
1 + |F (0)|2H1 + |u0|2D1

0∩D3

)
. (4.1)

Let us define c0 by

c0 = 2 + ρ∞ + |ρ0 − ρ∞|H3 + |u0|D1
0

+ |√ρ0 g2|L2 + |g2|D1
0
,

and we choose the positive constants c1, c2, c3, c4 and T∗ as in (3.15) and (3.16),
which are dependent only on c0 and the parameters of C. Then since u0 ∈ D1

0 ∩D3

is a solution to the elliptic system

Lu0 = F (0) = −∇p(ρ0) + ρ0(f(0) + g2) in Ω

and
|F (0)|H1 = | − ∇p(ρ0) + ρ0(f(0) + g2)|H1 ≤ M(c0), (4.2)
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it follows from the elliptic regularity result in [3] that

|u0|D1
0∩D3 ≤ C

(
|F (0)|H1 + |u0|D1

0

)
≤ M(c0). (4.3)

By virtue of (3.15), (4.1), (4.2) and (4.3), we may assume without loss of generality
that

sup
0≤t≤T∗

(|u0(t)|D1
0∩D3 + |u0

t (t)|D1
0
) +

∫ T∗

0

(|u0
t (t)|2D2 + |u0(t)|2D4

)
dt ≤ c1. (4.4)

The construction of the sequence {(ρk, uk)}k≥1 is based on the following key
lemma to the proof of Theorem 1.1.

Lemma 4.1. Let v be a vector field satisfying the regularity (3.5) with T replaced
by T∗. Assume further that v satisfies the following estimate

|v(0)|D1
0∩D3 ≤ c1,

sup
0≤t≤T∗

|v(t)|D1
0

+
∫ T∗

0

|v(t)|2D2 dt ≤ c2,

sup
0≤t≤T∗

|v(t)|D2 +
∫ T∗

0

(
|vt(t)|2D1

0
+ |v(t)|2D3

)
dt ≤ c3, (4.5)

ess sup
0≤t≤T∗

(
|vt(t)|D1

0
+ |v(t)|D3

)
+

∫ T∗

0

(|vt(t)|2D2 + |v(t)|2D4

)
dt ≤ c4.

Then there exists a unique solution (ρ, u) to the linearized problem (3.1)–(3.4) sat-
isfying the estimate (3.17) as well as the regularity

ρ− ρ∞ ∈ C([0, T∗]; H3), u ∈ C([0, T∗]; D1
0 ∩D3) ∩ L2(0, T∗; D4),

ut ∈ L∞(0, T∗; D1
0) ∩ L2(0, T∗;D2) and

√
ρut ∈ L∞(0, T∗; L2). (4.6)

Proof. Let R0 > 1 be a sufficiently large number so that

Ω ⊂ BR0/2 if Ω ⊂⊂ R3; R3 \ Ω ⊂ BR0/2 if R3 \ Ω ⊂⊂ R3,

and we define

ϕR(x) = ϕ (x/R) , gR
2 (x) = ϕR(x)g2(x),

vR(t, x) = ϕR(x)v(t, x) and fR(t, x) = ϕR(x)f(t, x)

for (t, x) ∈ [0, T∗] × Ω, where ϕ ∈ C∞c (B1) is a smooth cut-off function such that
ϕ = 1 in B1/2. Note that if Ω ⊂⊂ R3, then gR

2 = g2, vR = v and fR = f for each
R > R0 and otherwise, they are supported in ΩR or [0, T∗]×ΩR, where ΩR = Ω∩BR
1.

For each R > R0, let uR
0 ∈ H1

0 (ΩR)∩H3(ΩR) be a unique solution to the elliptic
boundary value problem

LuR
0 = FR

0 in ΩR and uR
0 = 0 on ∂ΩR, (4.7)

1If Ω is the half space R2 × R+, then the non-smooth domain ΩR should be replaced by a

smooth domain Ω̃R such that ΩR ⊂ Ω̃R ⊂ Ω2R.
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where
FR

0 = −∇p(ρR
0 ) + ρR

0

(
fR(0) + gR

2

)
and ρR

0 = ρ0 + R−3.

Then we extend uR
0 to Ω by defining zero outside ΩR. We will show that

uR
0 → u0 in D1

0(Ω) as R →∞. (4.8)

To do this, we first observe that

Lu0 = −∇p(ρ0) + ρ0 (f(0) + g2) ≡ F0 in Ω. (4.9)

From (4.7) and (4.9), it follows that L
(
uR

0 − u0

)
= FR

0 − F0 in ΩR. Hence noting
that uR

0 ∈ H1
0 (ΩR), we obtain∫

ΩR

µ|∇uR
0 |2 + (λ + µ)(divuR

0 )2 dx

=
∫

ΩR

µ∇u0 : ∇uR
0 + (λ + µ) divu0 divuR

0 dx +
∫

ΩR

(FR
0 − F0) · uR

0 dx. (4.10)

The second term of the right hand side in (4.10) is bounded by∫

ΩR

(FR
0 − F0) · uR

0 dx ≤
∫

ΩR

|p(ρR
0 )− p(ρ0)||∇uR

0 | dx

+R−3

∫

ΩR

(|f(0)|+ |g2|) |uR
0 | dx

+
∫

ΩR

ρ0

(
ϕR − 1

)
(f(0) + g2) · uR

0 dx,

while ∫

ΩR

|p(ρR
0 )− p(ρ0)||∇uR

0 | dx ≤ R−
3
2 M(c0)|∇uR

0 |L2 ,

R−3

∫

ΩR

(|f(0)|+ |g2|) |uR
0 | dx ≤ CR−1

(
|f(0)|H1 + |g2|D1

0

)
|∇uR

0 |L2

and ∫

ΩR

ρ0

(
ϕR − 1

)
(f(0) + g2) · uR

0 dx

=
∫

ΩR

(
ϕR − 1

)
(Lu0 +∇p(ρ0)) · uR

0 dx

≤ C

∫

ΩR

(|∇ϕR||uR
0 |+ |ϕR − 1||∇uR

0 |
)
(|∇u0|+ |p(ρ0)− p(ρ∞)|) dx

≤ M(c0)
(
|∇u0|L2(Ω\ΩR/2) + |ρ0 − ρ∞|L2(Ω\ΩR/2)

)
|∇uR

0 |L2 .

Hence from (4.10), it follows that

|uR
0 |D1

0(Ω) ≤ C|u0|D1
0(Ω) + o(1) and

∫

Ω

(FR
0 − F0) · uR

0 dx = o(1) (4.11)

where o(1) denotes a function of R which tends to zero as R → ∞. This means
that there exists a sequence {Rj}, Rj → ∞, such that {uRj

0 } converges weakly
in D1

0(Ω) to a limit u∞0 . It is easy to show that Lu∞0 = Lu0 in D−1(Ω), where
D−1(Ω) denotes the dual space of D1

0(Ω). Hence it follows that u∞0 = u0 in Ω and
{uRj

0 } converges weakly in D1
0(Ω) to u0. Then by virtue of (4.10) and (4.11), we
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deduce that {uRj

0 } converges strongly to u0 in D1
0(Ω). Since the above argument

also shows that every subsequence of {uR
0 } has a subsequence converging in D1

0(Ω)
to the same limit u0, we conclude that the whole sequence {uR

0 } converges to u0 in
D1

0(Ω) as R →∞, which proves (4.8).
We are now ready to prove Lemma 4.1. To prove the existence, we consider the

following initial boundary value problem

ρt + div (ρvR) = 0 in (0, T∗)× ΩR, (4.12)

ρut + Lu +∇p(ρ) = ρ(fR − vR · ∇vR) in (0, T∗)× ΩR, (4.13)

(ρ, u)|t=0 = (ρR
0 , uR

0 ) in ΩR and u = 0 on (0, T∗)× ∂ΩR. (4.14)

Since ρR
0 ≥ R−3 > 0 in ΩR, it follows from Lemma 3.1 that for each R > R0, there

exists a unique strong solution (ρ, u) = (ρR, uR) to the problem (4.12), (4.13) and
(4.14). It is easy to show that

|vR − v|C([0,T∗];D1
0∩D3) + |(vR)t − vt|L∞(0,T∗;D1

0)∩L2(0,T∗;D2) → 0

and |√ρ
R
0 gR

2 −
√

ρ0g2|L2 + |gR
2 − g2|D1

0
→ 0 as R →∞.

Combining this, (4.5) and (4.8), we deduce that there exists a large number R1 > R0

such that for all R > R1, vR satisfies the estimate (3.7) with the spatial domain
being ΩR and

1 + (ρ∞ + R−3) + |ρR
0 − (ρ∞ + R−3)|H3(ΩR)

+|uR
0 |D1

0(ΩR) + |
√

ρR
0 gR

2 |L2(ΩR) + |gR
2 |D1

0(ΩR) < c0.

Therefore, from the results in Section 3, we conclude that for each R > R1, the
solution (ρR, uR) satisfies the estimate (3.17) with the domain being ΩR. We extend
(ρR, uR) by defining zero outside ΩR. Then by virtue of the uniform estimate (3.17)
on R, we deduce that there exists a sequence {Rj}, Rj →∞, such that {(ρRj , uRj )}
converges in a weak or weak-∗ sense to a limit (ρ, u). Moreover, since (ρ, u) also
satisfies (3.17) with the domain being ΩR for each R > R1, it follows that

ρ− ρ∞ ∈ L∞(0, T∗; H3), u ∈ L∞(0, T∗;D1
0 ∩D3) ∩ L2(0, T∗;D4),

ut ∈ L∞(0, T∗; D1
0) ∩ L2(0, T∗;D2) and

√
ρut ∈ L∞(0, T∗; L2).

(4.15)

We will show that (ρ, u) is a solution to the original problem (3.1)-(3.4). It is
obvious that (ρ, u) satisfies the boundary conditions in (3.3) and (3.4). Let R > R1

be a fixed large number. Then since for all sufficiently large j, (ρRj , uRj ) satisfies
the uniform estimate (3.17) with the domain being ΩR, it follows from a standard
compactness result (see [22] for instance) that a subsequence of {(ρRj , uRj )} con-
verges to (ρ, u) in C([0, T∗];H1(ΩR)). Using this result together with (4.8), we
can show that (ρ, u) satisfies the equations (3.1) and (3.2) in (0, T∗) × ΩR and
(ρ(0), u(0)) = (ρ0, u0) in ΩR. Since R can be arbitrarily large, we have proved
the existence of a solution (ρ, u) to the original problem (3.1)-(3.4) satisfying the
regularity (4.15). The uniqueness of solutions with this regularity is easily proved.
Hence it remains to prove the time-continuity of the solution (ρ, u). First, from a
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classical embedding result, we deduce that u ∈ C([0, T∗];D1
0 ∩D3). Then the time-

continuity of ρ follows immediately from Lemma 2.1. This completes the proof of
Lemma 4.1. ¤

We turn to the proof of Theorem 1.1. We first observe that by virtue of (4.4),
the vector field v = u0 satisfies the hypotheses of Lemma 4.1. Hence it follows
from Lemma 4.1 that there exists a unique strong solution (ρ, u) = (ρ1, u1) to the
linearized problem (3.1)–(3.4) with v = u0, which satisfies the regularity estimate
(3.17). Then an obvious inductive argument allows us to construct approximate
solutions (ρk, uk) for all k ≥ 1: assuming that uk−1 was defined for k ≥ 1, let
(ρk, uk) be the unique solution to the problem (3.1)–(3.4) with v = uk−1. Then
since uk(0) = u0 for each k ≥ 0, it follows from Lemma 4.1 that there exists a
constant C̃ > 1 such that

sup
0≤t≤T∗

(
|ρk(t)− ρ∞|H3 + |ρt(t)|H2 + |uk(t)|D1

0∩D3

)
≤ C̃,

ess sup
0≤t≤T∗

(
|uk

t (t)|D1
0

+ |√ρ
k
uk

t (t)|L2

)
+

∫ T∗

0

(|uk
t (t)|2D2 + |u(t)|2D4

)
dt ≤ C̃

(4.16)

for all k ≥ 1. Throughout the proof, we denote by C̃ a generic positive constant
depending only on c0 and the parameters of C, but independent of k.

From now on, we show that the full sequence {(ρk, uk)} of approximate solutions
converges to a solution to the original problem (1.1)-(1.5) in a strong sense. To do
this, let us define

ρ k+1 = ρk+1 − ρk, u k+1 = uk+1 − uk and pk = p(ρk).

Then from the equation (3.1), we derive

ρ k+1
t + div ( ρ k+1uk) + div (ρku k) = 0. (4.17)

Multiplying this by ρ k+1 and integrating over Ω, we obtain

d

dt

∫
|ρ k+1|2 dx

≤ C

∫
|∇uk||ρ k+1|2 + ( |∇ρk||u k|+ ρk|∇u k| )|ρ k+1| dx

≤ C|∇uk|L∞ |ρ k+1|2L2 + C
(|∇ρk|H1 + |ρk|L∞

) |∇u k|L2 |ρ k+1|L2 .

Hence it follows from the uniform bound (4.16) that

d

dt
|ρ k+1|2L2 ≤ η−1C̃|ρ k+1|2L2 + η|∇u k|L2 (4.18)

for 0 ≤ t ≤ T∗, where η ∈ (0, 1) is a small number.
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In case that ρ∞ = 0, we need an estimate for |ρ k+1|
L

3
2

in addition to (4.18).

Multiplying (4.17) by sgn(ρ k+1)|ρ k+1| 12 and integrating over Ω, we get

d

dt

∫
|ρ k+1| 32 dx

≤ C

∫
|∇uk||ρ k+1| 32 + ( |∇ρk||u k|+ ρk|∇u k| )|ρ k+1| 12 dx

≤ C|∇uk|L∞ |ρ k+1|
3
2

L
3
2

+ C|ρk|H1 |∇u k|L2 |ρ k+1|
1
2

L
3
2
.

Hence multiplying this by |ρ k+1|
1
2

L
3
2

and using (4.16), we have

d

dt
|ρ k+1|2

L
3
2
≤ η−1C̃|ρ k+1|2

L
3
2

+ η|∇u k|2L2 (4.19)

for 0 ≤ t ≤ T∗.
Next from the equation (3.2), we derive

ρk+1 u k+1
t + ρk+1 uk · ∇u k+1 + Lu k+1 +∇(pk+1 − pk)

= ρ k+1(f − uk
t − uk−1 · ∇uk−1)

+ρk+1
(
uk · ∇u k+1 − u k · ∇uk − uk−1 · ∇u k

)
.

Multiplying this by u k+1, integrating over Ω and using the equation (3.1) with
(ρ, v) = (ρk+1, uk), we obtain

1
2

d

dt

∫
ρk+1|u k+1|2 dx + µ

∫
|∇u k+1|2 dx

≤ C

∫
|ρ k+1| |uk

t ||u k+1| dx + C

∫
|pk+1 − pk||∇u k+1| dx

+C

∫
|ρ k+1| |f − uk−1 · ∇uk−1||u k+1| dx (4.20)

+C

∫
ρk+1

(|uk||∇u k+1|+ |u k| |∇uk|+ |uk−1||∇u k|) |u k+1| dx.

Using the uniform bound (4.16), we can estimate the last three integrals of the
right hand side in (4.20) as follows:

C

∫
|pk+1 − pk||∇u k+1| dx ≤ C̃|ρ k+1|2L2 +

µ

10
|∇u k+1|2L2 ,

C

∫
|ρ k+1| |f − uk−1 · ∇uk−1||u k+1| dx

≤ C|ρ k+1|L2 |f − uk−1 · ∇uk−1|H1 |∇u k+1|L2

≤ C̃|ρ k+1|2L2 +
µ

10
|∇u k+1|2L2 ,

C

∫
ρk+1|uk||∇u k+1||u k+1| dx ≤ C̃|

√
ρk+1 u k+1 |2L2 +

µ

10
|∇u k+1|2L2
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and

C

∫
ρk+1

( |u k| |∇uk|+ |uk−1||∇u k|) |u k+1| dx

≤ C|ρk+1|
1
2
L∞

(
|uk|D1

0∩D2 + |uk−1|D1
0∩D2

)
|
√

ρk+1 u k+1 |L2 |∇u k|L2

≤ η−1C̃|
√

ρk+1 u k+1 |2L2 + η|∇u k|2L2 .

For the case that ρ∞ = 0 or Ω ⊂⊂ R3, the first integral is readily bounded by

C|ρ k+1|
L

3
2
|uk

t |D1
0
|∇u k+1|L2 ≤ C̃|ρ k+1|2

L
3
2

+
µ

10
|∇u k+1|2L2 .

For the remaining case, we assume that Ω is an unbounded domain and ρ∞ > 0.
Then since ρ0 − ρ∞ ∈ H2 and H2 ↪→ C0, where C0 is the space of all continuous
functions on Ω vanishing at infinity, we can choose a sufficiently large number R > 1
(of course, independent of k) so that

3
4
ρ∞ ≤ ρ0(x) ≤ 5

4
ρ∞ for x ∈ Ω \BR/2. (4.21)

On the other hand, it follows from Lemma 2.1 that

ρk+1(t, x)

= ρ0(Uk+1(0, t, x)) exp
[
−

∫ t

0

div uk(s, Uk+1(s, t, x) ) ds

]
, (4.22)

where Uk+1 = Uk+1(t, s, x) is the solution to the initial value problem
{

∂
∂tU

k+1(t, s, x) = uk(t, Uk+1(t, s, x) ), 0 ≤ t ≤ T∗,
Uk+1(s, s, x) = x, 0 ≤ s ≤ T∗, x ∈ Ω.

In view of (4.16), we deduce that
∫ t

0

∣∣divuk(s, Uk+1(s, t, x) )
∣∣ ds ≤

∫ t

0

|∇uk|L∞ ds ≤ C̃t ≤ ln 2

and
∣∣Uk+1(0, t, x)− x

∣∣ =
∣∣Uk+1(0, t, x)− Uk+1(t, t, x)

∣∣

≤
∫ t

0

∣∣uk(τ, Uk+1(τ, t, x))
∣∣ dτ ≤ C̃t ≤ R

2

for all (t, x) in [0, T1]×Ω, where T1 is a small positive time in (0, T∗) which depends
only on T∗, R and the parameters of C̃. In particular, note that if 0 ≤ t ≤ T1 and
x ∈ Ω\BR, then Uk+1(0, t, x) ∈ Ω\BR/2. Hence it follows immediately from (4.21)
and (4.22) that

3
8
ρ∞ ≤ ρk+1(t, x) ≤ 5

2
ρ∞ for (t, x) ∈ [0, T1]× (Ω \BR). (4.23)

Using this result, we can estimate the first integral in the right hand of (4.20) as
follows:

C

∫

Ω∩BR

|ρ k+1| |uk
t ||u k+1| dx ≤ C|ρ k+1|L2 |uk

t |D1
0
|∇u k+1|L2

≤ C̃|ρ k+1|2L2 +
µ

10
|∇u k+1|2L2
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and

C

∫

Ω\BR

|ρ k+1| |uk
t ||u k+1| dx ≤ C√

ρ∞

∫
|ρ k+1| |√ρ

k
uk

t ||u k+1| dx

≤ C̃|ρ k+1|2L2 +
µ

10
|∇u k+1|2L2 .

Therefore, substituting all the estimates into (4.20), we deduce that

d

dt
|
√

ρk+1 u k+1 (t)|2L2 + µ|∇u k+1(t)|2L2

≤ η−1C̃ϕk+1(t) + 2η|∇u k(t)|2L2 (4.24)

for 0 ≤ t ≤ T1, where

ϕk+1(t) =

{
|
√

ρk+1 u k+1(t)|2L2 + |ρ k+1(t)|2L2 , if ρ∞ > 0
|
√

ρk+1 u k+1(t)|2L2 + |ρ k+1(t)|2
L

3
2 ∩L2

, otherwise.

By virtue of (4.18), (4.19) and (4.24), we deduce that

d

dt
ϕk+1(t) + µ ψk+1(t) ≤ η−1C̃ϕk+1(t) + 4ηψk(t) (4.25)

for 0 ≤ t ≤ T1, where ψk+1(t) = |∇u k+1(t)|2L2 . Note that ϕk+1(0) = 0. Hence
integrating (4.25) over (0, t), we have

ϕk+1(t) + µ

∫ t

0

ψk+1(s) ds ≤ 4η

∫ t

0

ψk(s) ds + η−1C̃

∫ t

0

ϕk+1(s) ds,

which implies, in view of of Gronwall’s inequality, that

ϕk+1(t) +
∫ t

0

ψk+1(s) ds ≤ ηC̃ exp(η−1C̃t)
(∫ t

0

ψk(s) ds

)
. (4.26)

Choosing η > 0 and then T2 > 0 so small that

ηC̃ ≤ 1
4
, T2 < T1 and exp(η−1C̃T2) < 2,

we deduce from (4.26) that

∞∑

k=1

(
sup

0≤t≤T2

ϕk+1(t) +
∫ T2

0

ψk+1(t) dt

)
≤ C̃

∫ T2

0

ψ1(t) dt < ∞.

Therefore, we conclude that the sequence {(ρk, uk)} converges in a strong sense
to a limit (ρ, u) satisfying the regularity estimate (4.16) with T∗ replaced by T2.
Adapting the proof of Lemma 4.1, we can show that (ρ, u) is a solution to the
original IBVP(1.1)-(1.5) with T replaced by T2. This completes the proof of the
existence. The proof of the uniqueness is similar to (indeed easier than) the proof of
the convergence and so omitted. We have completed the proof of Theorem 1.1. ¤
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5. Proof of Theorem 1.3

To prove Theorem 1.3, we follow basically the same methods as in the proof of
Theorem 1.1. Hence we consider the linearized problem (3.1)–(3.4) with a known
vector field v such that

v ∈ C([0, T ];D1
0 ∩D3) ∩ L2(0, T ;D4), vt ∈ L∞(0, T ; D1

0) ∩ L2(0, T ;D2),

t
1
2 v ∈ L∞(0, T ;D4), t

1
2 vt ∈ L∞(0, T ; D1

0 ∩D2), t
1
2 vtt ∈ L2(0, T ;D1

0),

tvt ∈ L∞(0, T ; D1
0 ∩D3), tvtt ∈ L∞(0, T ; D1

0) ∩ L2(0, T ;D2), (5.1)

t
3
2 vtt ∈ L∞(0, T ; D1

0 ∩D2) and t
3
2 vttt ∈ L2(0, T ;D1

0).

For positive initial densities and bounded domains, we have the following existence
and regularity results for the linearized problem.

Lemma 5.1. Let Ω be a bounded domain in R3 with smooth boundary. Assume
that ρ0, u0, f, v and p = p(·) satisfy the condition (5.1) as well as the hypotheses of
Theorem 1.3. If in addition, ρ0 ≥ δ in Ω for some constant δ > 0, then there exists
a unique solution (ρ, u) to the linearized problem (3.1), (3.2) and (3.3) such that

ρ ∈ C([0, T ];H3), ρt ∈ C([0, T ];H2), ρtt ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1),

ρtt ∈ L∞loc((0, T ];H1), ρttt ∈ L2
loc((0, T ];L2),

u ∈ C([0, T ]; H1
0 ∩H3) ∩ L2(0, T ;H4), ut ∈ C([0, T ]; H1

0 ) ∩ L2(0, T ; H2),

utt ∈ L2(0, T ;L2), u ∈ L∞loc((0, T ];H4), ut ∈ L∞loc((0, T ]; H3),

utt ∈ L∞loc((0, T ];H1
0 ∩H2), uttt ∈ L∞loc((0, T ];L2) ∩ L2

loc((0, T ]; H1
0 ),

utttt ∈ L2
loc((0, T ]; H−1) and ρ ≥ C−1δ on [0, T ]× Ω.

Proof. The existence of a unique solution ρ ∈ C([0, T ];H3) to the linear hyperbolic
problem (3.1) and (3.3) was already proved in Lemma 2.1. Then the remaining
regularity of ρ can be derived easily from (3.1) and (5.1).

Next, if we define F by F = −∇p(ρ) + ρ(f − v · ∇v), then

F ∈ L2(0, T ;H2), Ft ∈ L2(0, T ;L2); F ∈ L∞loc((0, T ]; H2),

Ft ∈ L∞loc((0, T ];H1), Ftt ∈ L∞loc((0, T ]; L2) and Fttt ∈ L2
loc((0, T ];H−1).

Moreover, we observe that ρ−1
0 (F (0)− Lu0) = −v(0) · ∇v(0) − g2 ∈ H1

0 . Hence
Lemma 2.2, Remark 2.3 and Lemma 2.4 allow us to deduce the existence and
regularity of a unique solution u to the linear parabolic problem (3.2) and (3.3).
This completes the proof of Lemma 5.1. ¤

Let (ρ, u) be a solution to the linearized problem (3.1), (3.2) and (3.3) with the
data ρ0, u0, f, v and p = p(·) satisfying the hypotheses of Lemma 5.1. We will prove
some local a priori estimates for (ρ, u) which are independent of the lower bound δ

of ρ0 and the size of the domain Ω.
Let us choose a constant c0 > 1 so that

1 + ρ∞ + |ρ0 − ρ∞|H3 + |u0|D1
0

+ |√ρ0 g2|L2 + |g2|D1
0

< c0.
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Note that g2 = ρ−1
0 (Lu0 +∇p(ρ0)) − f(0) = −v(0) · ∇v(0) − ut(0). Moreover, we

assume that

|v(0)|D1
0∩D3 ≤ 1 + c1,

sup
0≤t≤T∗

|v(t)|D1
0

+
∫ T∗

0

|v(t)|2D2 dt ≤ 1 + c2,

sup
0≤t≤T∗

|v(t)|D2 +
∫ T∗

0

(
|vt(t)|2D1

0
+ |v(t)|2D3

)
ds ≤ 1 + c3,

ess sup
0≤t≤T∗

(
|vt(t)|D1

0
+ |v(t)|D3

)
+

∫ T∗

0

(|vt(t)|2D2 + |v(t)|2D4

)
dt ≤ 1 + c4,

ess sup
0≤t≤T∗

(
t

1
2 |vt(t)|D2 + t

1
2 |v(t)|D4

)
+

∫ T∗

0

t|vtt(t)|2D1
0
dt ≤ 1 + c5,

ess sup
0≤t≤T∗

(
t|vtt(t)|D1

0
+ t|vt(t)|D3

)
+

∫ T∗

0

t2|vtt(t)|2D2 dt ≤ 1 + c6,

ess sup
0≤t≤T∗

(
t

3
2 |vtt(t)|D2

)
+

∫ T∗

0

t3|vttt(t)|2D1
0
dt ≤ 1 + c6.

(5.2)

for some time T∗ ∈ (0, T ) and constants ci’s with 1 < c0 ≤ c1 ≤ c2 ≤ c3 ≤ c4 ≤
c5 ≤ c6, which depend only on c0 and the parameters of C.

Adapting the proofs of Lemma 3.2-Lemma 3.5, we can prove

Lemma 5.2.

|ρ(t)|L∞ + |ρ(t)− ρ∞|H3 ≤ Cc0, |p(t)− p∞|H3 ≤ M(c0),

|ρt(t)|H1 ≤ Cc2
3, |pt(t)|H1 ≤ M(c0)c2

3,

∫ t

0

|ρtt(s)|2L2 ds ≤ Cc8
3,

∫ t

0

|ptt(s)|2L2 ds ≤ M(c0)c8
3, |ρt(t)|H2 ≤ Cc2

4, |pt(t)|H2 ≤ M(c0)c2
4,

|ρtt(t)|L2 ≤ Cc4
4, |ptt(t)|L2 ≤ M(c0)c4

4,

∫ t

0

|ρtt(s)|2H1 ds ≤ Cc8
4,

∫ t

0

|ptt(s)|2H1 ds ≤ M(c0)c8
4,

∫ t

0

s|ρttt(s)|2L2 ds ≤ Cc12
5 ,

∫ t

0

s|pttt(s)|2L2 ds ≤ M(c0)c12
5 and inf

Ω
ρ(t) ≥ C−1δ

for 0 ≤ t ≤ min(T∗, T1), where T1 = (1 + c4)−1 and p∞ = p(ρ∞).

Lemma 5.3.

|u(t)|2D1
0

+
∫ t

0

|u(s)|2D2 ds ≤ M(c0)

for 0 ≤ t ≤ min(T∗, T2), where T2 = (1 + c4)−4 < T1.
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Lemma 5.4.

|√ρut(t)|2L2 + |u(t)|2D2 +
∫ t

0

(|ut(s)|2D1
0

+ |u(s)|2D3) ds ≤ M(c1)c
3
2
2 c

1
2
3 ,

|ut(t)|2D1
0

+ |u(t)|2D3 +
∫ t

0

(|√ρutt(s)|2L2 + |ut(s)|2D2 + |u(s)|2D4) ds ≤ M(c1)c12
3

for 0 ≤ t ≤ min(T∗, T3), where T3 = (1 + c4)−9 < T2.

Using the same methods as in the proof of Lemma 5.4, we can derive estimates
for higher regularity in positive time.

Lemma 5.5.

t|√ρutt(t)|2L2 + t|ut(t)|2D2 + t|u(t)|2D4 +
∫ t

0

s|utt(s)|2D1
0
ds ≤ M(c1)c12

4

for 0 ≤ t ≤ min(T∗, T4), where T4 = (1 + c5)−9 ≤ T3.

Proof. We differentiate (3.9) with respect to t again and derive

ρuttt + Lutt = −∇ptt + ρ (f − v · ∇v)tt + 2ρt (f − v · ∇v − ut)t

+ρtt (f − v · ∇v − ut) . (5.3)

Multiplying this by utt and integrating over Ω, we have

1
2

d

dt

∫
ρ|utt|2 dx +

∫
µ|∇utt|2 + (λ + µ)(divutt)2 dx

=
∫

pttdivutt dx +
∫

ρ (f − v · ∇v)tt · utt dx

+2
∫

ρt (f − v · ∇v)t · utt dx +
∫

ρtt (f − v · ∇v) · utt dx (5.4)

−3
2

∫
ρt|utt|2 dx−

∫
ρttut · utt dx.

Following the same arguments as in the derivation of (3.11) from (3.10), we can
estimate each term of the right hand side of (5.4) as follows:

∫
pttdivutt dx ≤ C|ptt|2L2 +

µ

12
|∇utt|2L2 ,

∫
ρftt · utt dx ≤ |ftt|H−1 |ρutt|H1

0
≤ Cc2

0|ftt|2H−1 + |√ρutt|2L2 +
µ

12
|∇utt|2L2 ,

−
∫

ρ (v · ∇v)tt · utt dx ≤ C|ρ|
1
2
L∞

(
|v|D1

0∩D2 |vtt|D1
0

+ |vt|D1
0
|vt|D1

0∩D2

)
|√ρutt|L2

≤ η−1Cc3
3|
√

ρutt|2L2 + η|vtt|2D1
0

+ c2
4|vt|2D1

0∩D2 ,

2
∫

ρt (f − v · ∇v)t · utt dx ≤ C|ρt|L3

(
|ft|L2 + |v|D1

0∩D2 |vt|D1
0

)
|∇utt|L2

≤ Cc4
3

(|ft|2L2 + c4
4

)
+

µ

12
|∇utt|2L2 ,
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∫
ρtt (f − v · ∇v) · utt dx ≤ C|ρtt|L2

(
|f |H1 + |v|2D1

0∩D2

)
|∇utt|L2

≤ Cc4
3|ρtt|2L2 +

µ

12
|∇utt|2L2 ,

−3
2

∫
ρt|utt|2 dx =

3
2

∫
div(ρv)|utt|2 dx

≤ 3
∫

ρ|v||utt||∇utt| dx ≤ Cc3
3|
√

ρutt|2L2 +
µ

12
|∇utt|2L2

and finally

−
∫

ρttut · utt dx

≤
∫

(|ρt||v|+ ρ|vt|) (|ut||∇utt|+ |∇ut||utt|) dx

≤ C|ρt|L3 |v|D1
0∩D2 |ut|D1

0
|∇utt|L2 + C|ρ|

3
4
L∞ |vt|D1

0
|ut|

1
2
D1

0
|√ρut|

1
2
L2 |∇utt|L2

+ C|ρ|
3
4
L∞ |vt|D1

0
|ut|D1

0
|√ρutt|

1
2
L2 |∇utt|

1
2
L2

≤ C|ρt|2L3 |v|2D1
0∩D2 |ut|2D1

0
+ C|ρ|

3
2
L∞ |vt|2D1

0
|ut|D1

0
|√ρut|L2

+ C|ρ|
3
2
L∞ |vt|2D1

0
|ut|2D1

0
+ C|√ρutt|2L2 +

µ

12
|∇utt|2L2

≤ Cc7
4|ut|2D1

0
+ |√ρut|2L2 + C|√ρutt|2L2 +

µ

12
|∇utt|2L2 .

Substituting all the estimates into (5.4) and taking η = (1 + c5)−1, we have

d

dt

∫
ρ|utt|2 dx + µ

∫
|∇utt|2 dx

≤ C
(
c2
0|ftt|2H−1 + c4

3|ft|2L2 + c8
4 + |ptt|2L2 + c4

3|ρtt|2L2 + c2
4|vt|2D1

0∩D2

)
(5.5)

+C
(
c7
4|ut|2D1

0
+ |√ρut|2L2

)
+ (1 + c5)−1|vtt|2D1

0
+ Cc4

5|
√

ρutt|2L2

for 0 ≤ t ≤ min(T∗, T3). From Lemma 5.2 and Lemma 5.4, we observe that

t
1
2 |ftt(t)|H−1 ∈ L2(0, T ), t

1
2 |vtt(t)|D1

0
∈ L2(0, T∗)

and all the remaining terms in the right hand side of (5.5) are integrable in (0, min(T∗, T3)).
Hence multiplying (5.5) by t and integrating over (τ, t), we obtain

t|√ρutt(t)|2L2 + µ

∫ t

τ

t|∇utt(t)|2L2 dt

≤ M(c1)c12
4 + τ |√ρutt(τ)|2L2 +

∫ t

τ

Cc4
5t|
√

ρutt(t)|2L2 dt

for 0 < τ ≤ t ≤ min(T∗, T3). By virtue of Gronwall’s inequality, we deduce that

t|√ρutt(t)|2L2 +
∫ t

τ

s|∇utt(s)|2L2 ds ≤ M(c1)
(
c12
4 + τ |√ρutt(τ)|2L2

)
(5.6)

for 0 < τ ≤ t ≤ min(T∗, T4), where T4 = (1 + c5)−9 ≤ T3. On the other hand, since√
ρutt ∈ L2(0, T ; L2), it follows (see also Remark 5 in [1]) that there is a sequence



CLASSICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES EQUATIONS 33

{τk} of positive times such that

τk → 0 and τk|√ρutt(τk)|2L2 → 0 as k →∞.

Therefore, letting τ = τk → 0 in (5.6), we conclude that

t|√ρutt(t)|2L2 +
∫ t

0

s|utt(s)|2D1
0
ds ≤ M(c1)c12

4

for 0 < t ≤ min(T∗, T4). Moreover, since

Lu = −∇p + ρ(f − v · ∇v − ut)

and

Lut = −∇pt + ρ(f − v · ∇v − ut)t + ρt(f − v · ∇v − ut),

it follows from the elliptic regularity result that

t|ut(t)|2D2 + t|u(t)|2D4 ≤ M(c1)c12
4 for 0 ≤ t ≤ min(T∗, T4).

This completes the proof of Lemma 5.5. ¤

Lemma 5.6.

t2|utt(t)|2D1
0

+ t2|ut(t)|2D3 +
∫ t

0

s2
(|√ρuttt(s)|2L2 + |utt(s)|2D2

)
ds ≤ M(c1)c17

5

for 0 ≤ t ≤ min(T∗, T4).

Proof. Multiplying (5.3) by uttt and integrating over Ω, we have
∫

ρ|uttt|2 dx +
1
2

d

dt

∫
µ|∇utt|2 + (λ + µ)(divutt)2 dx

=
∫

(−∇ptt + ρ (f − v · ∇v)tt) · uttt dx

+
∫

2ρt (f − v · ∇v − ut)t · uttt dx (5.7)

+
∫

ρtt (f − v · ∇v − ut) · uttt dx.

We easily estimate the first term of the right hand side in (5.7) as follows.

−
∫
∇ptt · uttt dx =

d

dt

∫
pttdivutt dx−

∫
ptttdivutt dx

≤ d

dt

∫
pttdivutt dx + |pttt|2L2 + |utt|2D1

0

and ∫
ρ(f − v · ∇v)tt · uttt dx

≤ C|ρ|
1
2
L∞ |(f − v · ∇v)tt|L2 |√ρuttt|L2

≤ C|ρ|
1
2
L∞(|ftt|L2 + |v|D1

0∩D2 |vtt|D1
0

+ |vt|D1
0
|vt|D1

0∩D2)|√ρuttt|L2

≤ Cc3
4

(
|ftt|2L2 + |vtt|2D1

0
+ |vt|2D1

0∩D2

)
+

1
2
|√ρuttt|2L2 .
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To estimate the second term, we observe that

∫
ρt (f − v · ∇v)t · uttt dx

=
d

dt

∫
ρt (f − v · ∇v)t · utt dx−

∫
ρtt (f − v · ∇v)t · utt dx

−
∫

ρt (f − v · ∇v)tt · utt dx

and

−
∫

ρtutt · uttt dx = − d

dt

∫
ρt

(
1
2
|utt|2

)
dx +

∫
ρtt

(
1
2
|utt|2

)
dx.

But in view of Lemma 5.2, we obtain

−
∫

ρtt (f − v · ∇v)t · utt dx ≤ C|ρtt|L2

(
|ft|H1 + |v|D1

0∩D2 |vt|D1
0∩D2

)
|utt|D1

0

≤ Cc5
4

(
|ft|2H1 + |vt|2D1

0∩D2 + |utt|2D1
0

)
,

−
∫

ρt (f − v · ∇v)tt · utt dx ≤ C|ρt|L3 | (f − v · ∇v)tt |L2 |utt|D1
0

≤ Cc4
4

(
|ftt|2L2 + |vtt|2D1

0
+ |vt|2D1

0∩D2 + |utt|2D1
0

)

and

∫
ρtt

(
1
2
|utt|2

)
dx = −

∫
div((ρv)t)

(
1
2
|utt|2

)
dx

≤
∫

(|ρt||v|+ ρ|vt|) |utt||∇utt| dx

≤ Cc3
3|utt|2D1

0
+ C|vt|2D1

0∩D2 |√ρutt|2L2 .

Similarly, we can estimate the last term as follows.

∫
ρtt (f − v · ∇v) · uttt dx

=
d

dt

∫
ρtt (f − v · ∇v) · utt dx−

∫
(ρtt (f − v · ∇v))t · utt dx

≤ d

dt

∫
ρtt (f − v · ∇v) · utt dx

+Cc5
4

(
|ρttt|2L2 + |ft|2H1 + |vt|2D1

0∩D2 + |utt|2D1
0

)
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and

−
∫

ρttut · uttt dx

= − d

dt

∫
ρttut · utt dx +

∫
(ρtttut + ρttutt) · utt dx

= − d

dt

∫
ρttut · utt dx−

∫
div((ρv)tt)ut · utt dx +

∫
ρtt|utt|2 dx

≤ − d

dt

∫
ρttut · utt dx + Cc5

4

(
|ut|2D1

0∩D2 + |utt|2D1
0

)

+C
(
|vt|2D1

0∩D2 + |vtt|2D1
0

)(
|√ρut|2L2 + |ut|2D1

0
+ |√ρutt|2L2

)
.

Substituting all the above estimates into (5.7), we have

1
2

∫
ρ|uttt|2 dx +

1
2

d

dt

∫
µ|∇utt|2 + (λ + µ)(divutt)2 dx

≤ d

dt
Λ1 + Cc5

4

(|pttt|2L2 + |ρttt|2L2 + |ftt|2L2 + |ft|2H1

)

+Cc5
4

(
|vtt|2D1

0
+ |vt|2D1

0∩D2 + |ut|2D1
0∩D2 + |utt|2D1

0

)

+C
(
|vt|2D1

0∩D2 + |vtt|2D1
0

) (
|√ρut|2L2 + |ut|2D1

0
+ |√ρutt|2L2

)

for 0 ≤ t ≤ min(T∗, T4), where

Λ1(t) =
∫

(pttdivutt + 2ρt(f − v · ∇v)t · utt + ρtt(f − v · ∇v) · utt) (t) dx

−
∫ (

ρt|utt|2 + ρttut. · utt

)
(t) dx.

Hence if we multiply this by t2 and integrate over (τ, t), then by virtue of the
previous lemmas, we deduce that

1
2

∫ t

τ

t2|√ρuttt(t)|2L2 dt +
µ

2
t
2|∇utt(t)|2L2

≤ M(c1)c17
5 + Cτ2|∇utt(τ)|2L2 +

∣∣∣t2Λ1(t)
∣∣∣ (5.8)

+
∣∣τ2Λ1(τ)

∣∣ + C

∫ t

τ

t|Λ1(t)| dt

for 0 < τ ≤ t ≤ min(T∗, T4). It is easy to show that

|Λ1(t)| ≤ t−1M(c1)c14
4 +

µ

4
|∇utt(t)|2L2 for 0 ≤ t ≤ min(T∗, T4).

Therefore, recalling that
∫ t

0

s|∇utt(s)|2L2 ds ≤ M(c1)c12
4 for 0 ≤ t ≤ min(T∗, T4)

and

τ2
k |∇utt(τk)|2L2 → 0 for some sequence {τk} with τk → 0,
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we conclude from (5.8) that
∫ t

0

s2|√ρuttt(s)|2L2 ds + t2|∇utt(t)|2L2 ≤ M(c1)c17
5

for 0 ≤ t ≤ min(T∗, T4). Then in view of the elliptic regularity result, we complete
the proof of Lemma 5.6. ¤

Lemma 5.7.

t3|√ρuttt(t)|2L2 + t3|utt(t)|2D2 +
∫ t

0

s3|uttt(s)|2D1
0
ds ≤ M(c1)c22

5

for 0 ≤ t ≤ min(T∗, T5), where T5 = (1 + c6)−9 ≤ T4.

Proof. Differentiating (5.3) with respect to t again, we derive

ρutttt + Luttt = −∇pttt + ρ (f − v · ∇v)ttt + 3ρt (f − v · ∇v − ut)tt

+3ρtt (f − v · ∇v − ut)t + ρttt (f − v · ∇v − ut) . (5.9)

Multiplying this by uttt and integrating over Ω, we have
1
2

d

dt

∫
ρ|uttt|2 dx +

∫
µ|∇uttt|2 + (λ + µ)(divuttt)2 dx

=
∫

(ptttdivuttt + ρ (f − v · ∇v)ttt · utt) dx

+3
∫

ρt (f − v · ∇v)tt · uttt dx− 5
2

∫
ρt|uttt|2 dx (5.10)

+3
∫

ρtt (f − v · ∇v)t · uttt dx− 3
∫

ρttutt · uttt dx

+
∫

ρttt (f − v · ∇v) · uttt dx−
∫

ρtttut · uttt dx.

Using Lemma 5.2 and Lemma 5.4 , we can estimate each term of the right hand
side of (5.10) as follows:∫

ptttdivuttt dx ≤ C|pttt|2L2 +
µ

16
|∇uttt|2L2 ,

∫
ρfttt·uttt dx ≤ |fttt|H−1 |ρuttt|D1

0
≤ Cc2

0|fttt|2H−1+|√ρuttt|2L2+
µ

16
|∇uttt|2L2 ,

−
∫

ρ (v · ∇v)ttt · uttt dx

≤ C|ρ|
1
2
L∞

(
|v|D1

0∩D2 |vttt|D1
0

+ |vt|D1
0∩D2 |vtt|D1

0

)
|√ρuttt|L2

≤ η−1Cc3
3|
√

ρuttt|2L2 + η|vttt|2D1
0

+ |vt|2D1
0∩D2 |vtt|2D1

0
,

3
∫

ρt (f − v · ∇v)tt · uttt dx

≤ C|ρt|L3

(
|ftt|L2 + |v|D1

0∩D2 |vtt|D1
0

+ |vt|D1
0
|vt|D1

0∩D2

)
|∇uttt|L2

≤ Cc6
4

(
|ftt|2L2 + |vtt|2D1

0
+ |vt|D1

0∩D2

)
+

µ

16
|∇utt|2L2 ,
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−5
2

∫
ρt|uttt|2 dx =

5
2

∫
div(ρv)|uttt|2 dx ≤ C

∫
ρ|v||uttt||∇uttt| dx

≤ Cc3
3|
√

ρuttt|2L2 +
µ

16
|∇uttt|2L2 ,

3
∫

ρtt (f − v · ∇v)t · uttt dx

≤ C|ρtt|L2

(
|ft|H1 + |v|D1

0∩D2 |vt|D1
0∩D2

)
|∇uttt|L2

≤ Cc10
4

(
|ft|2H1 + |vt|2D1

0∩D2

)
+

µ

16
|∇utt|2L2 ,

−3
∫

ρttutt · uttt dx

≤ C

∫
(|ρt||v|+ ρ|vt|) (|utt||∇uttt|+ |∇utt||uttt|) dx

≤ C|ρt|L3 |v|D1
0∩D2 |utt|D1

0
|∇uttt|L2 + C|ρ|

3
4
L∞ |vt|D1

0
|utt|

1
2
D1

0
|√ρutt|

1
2
L2 |∇uttt|L2

+C|ρ|
3
4
L∞ |vt|D1

0
|utt|D1

0
|√ρuttt|

1
2
L2 |∇uttt|

1
2
L2

≤ Cc7
4|utt|2D1

0
+ |√ρutt|2L2 + C|√ρuttt|2L2 +

µ

16
|∇uttt|2L2 ,

∫
ρttt (f − v · ∇v) · uttt dx ≤ C|ρttt|L2

(
|f |H1 + |v|2D1

0∩D2

)
|∇uttt|L2

≤ Cc4
3|ρttt|2L2 +

µ

16
|∇uttt|2L2

and finally

−
∫

ρtttut · uttt dx

≤ C

∫
(|ρtt||v|+ |ρt||vt|+ ρ|vtt|) (|ut||∇uttt|+ |∇ut||uttt|) dx

≤ C
(
|ρtt|L2 |v|D1

0∩D2 + |ρt|H1 |vt|D1
0

)
|ut|D1

0∩D2 |∇uttt|L2

+C|ρ|
3
4
L∞ |vtt|D1

0
|√ρut|

1
2
L2 |ut|

1
2
D1

0
|∇uttt|L2

+C|ρ|
3
4
L∞ |vtt|D1

0
|ut|D1

0
|√ρuttt|

1
2
L2 |∇uttt|

1
2
L2

≤ Cc10
4 |ut|2D1

0∩D2 + M(c1)c10
3 |vtt|2D1

0
+ C|√ρuttt|2L2 +

µ

16
|∇uttt|2L2 .

Substituting all the estimates into (5.10) and choosing η = (1 + c6)−1, we have

d

dt

∫
ρ|uttt|2 dx + µ

∫
|∇uttt|2 dx

≤ Cc10
4

(|pttt|2L2 + |ρttt|2L2 + |fttt|2H−1 + |ftt|2L2 + |ft|2H1

)

+M(c1)c10
4

(
|vt|2D1

0∩D2 + |vtt|2D1
0

+ |vt|2D1
0∩D2 |vtt|2D1

0

)
+ (1 + c6)−1|vttt|2D1

0

+Cc10
4

(
|utt|2D1

0
+ |ut|2D1

0∩D2 + |√ρutt|2L2

)
+ Cc4

6|
√

ρuttt|2L2
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for 0 ≤ t ≤ min(T∗, T4). Hence multiplying this by t3, integrating over (0, t) and
using Lemma 5.2-Lemma 5.5, we deduce that

t
3|√ρuttt(t)|2L2 +

∫ t

0

t3|uttt(t)|2D1
0
dt

≤ M(c1)c22
5 +

∫ t

0

Cc4
6t

3|√ρuttt(t)|2L2 dt

for 0 ≤ t ≤ min(T∗, T4). Therefore, in view of Gronwall’s inequality, we conclude
that

t|√ρuttt(t)|2L2 +
∫ t

0

s3|uttt(s)|2D1
0
ds ≤ M(c1)c22

5

for 0 ≤ t ≤ min(T∗, T5), where T5 = (1 + c6)−9 ≤ T4. Then by virtue of the elliptic
regularity result, we complete the proof of Lemma 5.7. ¤

Combining all the previous lemmas, we obtain

|u(t)|D1
0

+
∫ t

0

|u(s)|2D2 ds ≤ M(c1),

|u(t)|D2 +
∫ t

0

(
|ut(s)|2D1

0
+ |u(s)|2D3

)
ds ≤ M(c1)c

3
2
2 c

1
2
3 ,

|ut(t)|D1
0

+ |u(t)|D3 +
∫ t

0

(|ut(s)|2D2 + |u(s)|2D4

)
ds ≤ M(c1)c12

3 ,

t
1
2 |ut(t)|D2 + t

1
2 |u(t)|D4 +

∫ t

0

s|utt(s)|2D1
0
ds ≤ M(c1)c12

4 ,

t|utt(t)|D1
0

+ t|ut(t)|D3 +
∫ t

0

s2|utt(t)|2D2 dt ≤ M(c1)c22
5 ,

t
3
2 |utt(t)|D2 +

∫ t

0

s3|uttt(s)|2D1
0
dt ≤ M(c1)c22

5 ,

|ρ(t)− ρ∞|H3 + |ρt(t)|H2 + |√ρut(t)|L2 +
∫ t

0

|√ρutt(s)|2L2 ds ≤ M(c1)c22
5 ,

t
1
2 |√ρutt|L2 + t

3
2 |√ρuttt(t)|L2 +

∫ t

0

s2|√ρuttt(s)|2L2 ds ≤ M(c1)c22
5 .

for 0 ≤ t ≤ min(T∗, T5), where T5 = (1+c6)−9. Therefore, if we define the constants
ci and T∗ ∈ (0, 1) by

c1 = M(c0), c2 = M(c1), c3 = c5
2, c4 = c2c

12
3 ,

c5 = c2c
12
4 , c6 = c2c

22
5 and T∗ = min(T, (1 + c6)−9),
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then we conclude that

sup
0≤t≤T∗

|u(t)|D1
0

+
∫ T∗

0

|u(t)|2D2 dt ≤ c2,

sup
0≤t≤T∗

|u(t)|D2 +
∫ T∗

0

(
|ut(t)|2D1

0
+ |u(t)|2D3

)
ds ≤ c3,

ess sup
0≤t≤T∗

(
|ut(t)|D1

0
+ |u(t)|D3

)
+

∫ T∗

0

(|ut(t)|2D2 + |u(t)|2D4

)
dt ≤ c4,

ess sup
0≤t≤T∗

(
t

1
2 |ut(t)|D2 + t

1
2 |u(t)|D4

)
+

∫ T∗

0

t|utt(t)|2D1
0
dt ≤ c5,

ess sup
0≤t≤T∗

(
t|utt(t)|D1

0
+ t|ut(t)|D3

)
≤ c6,

ess sup
0≤t≤T∗

(
t

3
2 |utt(t)|D2

)
+

∫ T∗

0

t3|uttt(t)|2D1
0
dt ≤ c6,

ess sup
0≤t≤T∗

(|ρ(t)− ρ∞|H3 + |ρt(t)|H2 + |√ρut(t)|L2) +
∫ t

0

|√ρutt(s)|2L2 ds ≤ c6,

ess sup
0≤t≤T∗

(
t

1
2 |√ρutt|L2 + t

3
2 |√ρuttt(t)|L2

)
+

∫ t

0

s2|√ρuttt(s)|2L2 ds ≤ c6.

By virtue of these a priori estimates, we can prove the existence and regularity
of a unique local classical solution (ρ, u) to the original nonlinear problem following
exactly the same arguments as in the proof of Theorem 1.1. We omit the details.
This completes the proof of Theorem 1.3.

6. Proof of Theorem 1.4

To prove Theorem 1.4, we consider the following initial boundary value problem

ρt + div (ρu) = 0 in (0, T )× Ω, (6.1)

pt + u · ∇p + γp divu = 0 in (0, T )× Ω, (6.2)

(ρu)t + div(ρu⊗ u) + Lu +∇p = ρf in (0, T )× Ω, (6.3)

(ρ, p, u)|t=0 = (ρ0, p0, u0) in Ω, u = 0 on (0, T )× ∂Ω, (6.4)

(ρ, p, u)(t, x) → (ρ∞, p∞, 0) as |x| → ∞, (t, x) ∈ (0, T )× Ω, (6.5)

where the known data ρ0, p0, u0 and f satisfy

(ρ0 − ρ∞, p0 − p∞) ∈ H3, ρ∞ ∈ R+, p∞ ∈ R, ρ0 ≥ 0 in Ω,

u0 ∈ D1
0 ∩D3, f ∈ L2(0, T ;H2) and ft ∈ L2(0, T ;L2) (6.6)

and

Lu0 +∇p0 = ρ0 (f(0) + g2) for some g2 ∈ D1
0 with

√
ρ0 g2 ∈ L2. (6.7)

Theorem 1.4 is an immediate corollary of the following result.
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Theorem 6.1. Assume that the data ρ0, p0, u0, f satisfy (6.6) and (6.7). Then
there exist a small time T∗ ∈ (0, T ) and a unique strong solution (ρ, p, u) to the
IBVP(6.1)-(6.5) such that

(ρ− ρ∞, p− p∞) ∈ C([0, T∗];H3), u ∈ C([0, T∗];D1
0 ∩D3) ∩ L2(0, T∗; D4),

ut ∈ L∞(0, T∗; D1
0) ∩ L2(0, T∗; D2) and

√
ρut ∈ L∞(0, T∗; L2).

Moreover, if the external force f satisfies the additional regularity (1.13), then the
velocity u satisfies (1.14) with T∗ replaced by some T∗∗ ∈ (0, T∗] and so (ρ, p, u) is
a classical solution of (6.1)-(6.3) in (0, T∗∗)× Ω.

Proof of Theorem 1.4 from Theorem 6.1. Let (ρ0, u0, f) be a given data satisfying
the hypotheses of Theorem 1.4. Then Theorem 6.1 guarantees the existence of a
unique solution (ρ, p, u) to the IBVP(6.1)-(6.5) with the initial data (ρ0, p0, u0),
where p0 = Aργ

0 and p∞ = A(ρ∞)γ .
To prove Theorem 1.4, we have only to show that p = Aργ . Let us denote

p = p − Aργ . Then using (6.1), (6.2) and (6.4) together with the fact that γ > 1,
we deduce that 




pt + u · ∇p + γp divu = 0 in (0, T∗)× Ω,

p(0) = 0 in Ω, p ∈ C([0, T∗];H1).

Hence by virtue of a standard energy method, we easily conclude that p = 0 in
(0, T∗)× Ω. This completes the proof of Theorem 1.4. ¤

Finally, we turn to the proof of Theorem 6.1. For this purpose, we follow the
same strategy as in the previous sections. Let us consider the following uncoupled
linearized problem

ρt + div (ρv) = 0 in (0, T )× Ω, (6.8)

pt + v · ∇p + γp divv = 0 in (0, T )× Ω, (6.9)

ρut + Lu +∇p = ρ(f − v · ∇v) in (0, T )× Ω, (6.10)

(ρ, p, u)|t=0 = (ρ0, p0, u0) in Ω, u = 0 on (0, T )× ∂Ω, (6.11)

(ρ, p, u)(t, x) → (ρ∞, p∞, 0) as |x| → ∞, (t, x) ∈ (0, T )× Ω, (6.12)

where v is a known vector field such that

v ∈ C([0, T ];D1
0 ∩D3) ∩ L2(0, T ; D4), vt ∈ L∞(0, T ; D1

0) ∩ L2(0, T ; D2). (6.13)

Note that the proof of Lemma 2.1 can be used without any essential change to
deduce the corresponding result for the linear hyperbolic problem (6.9), (6.11) and
(6.12). Hence adapting the proof of Lemma 3.1, we can prove

Lemma 6.2. Let Ω be a bounded domain in R3 with smooth boundary. In addition
to (6.6), (6.7) and (6.13), we assume that ρ0 ≥ δ in Ω for some constant δ > 0.
Then there exists a unique solution (ρ, p, u) to the linearized problem (6.8)–(6.11)
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such that

ρ, p ∈ C([0, T ]; H3), ρt, pt ∈ C([0, T ];H2),

u ∈ C([0, T ]; H1
0 ∩H3) ∩ L2(0, T ;H4),

ut ∈ C([0, T ];H1
0 ) ∩ L2(0, T ; H2), (6.14)

utt ∈ L2(0, T ; L2) and ρ ≥ δ on [0, T ]× Ω.

for some constant δ > 0.

Moreover, from Lemma 2.1 and its proof, it follows that

|ρ(t)− ρ∞|H3 ≤ (|ρ0 − ρ∞|H3 + ρ∞) exp
(

C

∫ t

0

|v(s)|D1
0∩D4 ds

)
,

|p(t)− p∞|H3 ≤ (|p0 − p∞|H3 + |p∞|) exp
(

C

∫ t

0

|v(s)|D1
0∩D4 ds

)

and

inf
Ω

ρ(t) ≥
(
inf
Ω

ρ0

)
exp

(
−C

∫ t

0

|v(s)|D1
0∩D4 ds

)

for 0 ≤ t ≤ T . Here we denote by C a generic positive constants depending only
on the fixed constants µ, λ, T , γ and the norm of f .

Hence adapting the proof of Lemma 4.1, we can also prove the key lemma.

Lemma 6.3. Let us choose a constant c0 > 1 so that

1 + ρ∞ + |p∞|+ |(ρ0 − ρ∞, p0 − p∞)|H3 + |u0|D1
0

+ |√ρ0 g2|L2 + |g2|D1
0

< c0.

Then there exist positive constants T∗ ∈ (0, T ) and ci’s, depending only on c0 and
the parameters of C, with the following property:

If v is a vector field satisfying the regularity (6.13) with T replaced by T∗ and the
estimate

|v(0)|D1
0∩D3 ≤ c1,

sup
0≤t≤T∗

|v(t)|D1
0

+
∫ T∗

0

|v(t)|2D2 dt ≤ c2,

sup
0≤t≤T∗

|v(t)|D2 +
∫ T∗

0

(
|vt(t)|2D1

0
+ |v(t)|2D3

)
dt ≤ c3,

ess sup
0≤t≤T∗

(
|vt(t)|D1

0
+ |v(t)|D3

)
+

∫ T∗

0

(|vt(t)|2D2 + |v(t)|2D4

)
dt ≤ c4,

then there exists a unique solution (ρ, p, u) to the linearized problem (6.8)–(6.12)
satisfying the regularity

(ρ− ρ∞, p− p∞) ∈ C([0, T∗];H3), u ∈ C([0, T∗];D1
0 ∩D3) ∩ L2(0, T∗; D4),

ut ∈ L∞(0, T∗; D1
0) ∩ L2(0, T∗; D2) and

√
ρut ∈ L∞(0, T∗; L2)
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and the estimate

sup
0≤t≤T∗

|u(t)|D1
0

+
∫ T∗

0

|u(t)|2D2 dt ≤ c2,

sup
0≤t≤T∗

|u(t)|D2 +
∫ T∗

0

(
|ut(t)|2D1

0
+ |u(t)|2D3

)
dt ≤ c3,

ess sup
0≤t≤T∗

(
|ut(t)|D1

0
+ |u(t)|D3

)
+

∫ T∗

0

(|ut(t)|2D2 + |u(t)|2D4

)
dt ≤ c4,

ess sup
0≤t≤T∗

(|(ρ− ρ∞, p− p∞)(t)|H3 + |(ρt, pt)(t)|H2 + |√ρut(t)|L2) ≤ c4.

The first part of Theorem 6.1 can be deduced from this key lemma following the
same arguments as in the proof of Theorem 1.1. Combining this idea and the proof
of Theorem 1.3, we can also prove the remaining part of the theorem. We omit its
details.
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