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ON CLASSICAL SOLUTIONS OF THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS WITH NONNEGATIVE INITIAL
DENSITIES

YONGGEUN CHO AND HYUNSEOK KIM

ABSTRACT. We study the Navier-Stokes equations for compressible barotropic
fluids in a bounded or unbounded domain © of R3. We first prove the local
existence of solutions (p, ) in C([0, Tx]; (p*° + H3(Q)) x (D§ N .D3)(2)) under
the assumption that the data satisfies a natural compatibility condition. Then
deriving the smoothing effect of the velocity u in ¢ > 0, we conclude that (p, u)
is a classical solution in (0, Tx«) X Q for some Ty € (0,T%]. For these results,
the initial density needs not be bounded below away from zero and may vanish
in an open subset (vacuum) of .

1. INTRODUCTION

The motion of a viscous compressible barotropic fluid in a domain  of R? can
be described by the Naiver-Stokes equations

pt +div(pu) =0 in (0,7) x 9, (1.1)
(pu)¢ + div(ipu ® u) + Lu+ Vp = pf in (0,7) x £, (1.2)
Lu = —pAu— (A + p)Vdivu, p=p(p) (1.3)
and the initial and boundary conditions
(p, w)lt=0 = (po, wp) in Q, u=0 on (0,T)x 99, (1.4)
p(t,x) — p=°, wu(t,x) =0 as |z|—o00, (t,z) € (0,T)x Q. (1.5)

Here we denote by p, p and u the unknown density, pressure and velocity fields of
the fluid, respectively. f denotes a given external force and the constants u, A are
the viscosity coefficients. We assume that the pressure p = p(p) is a smooth function
of the density p and the viscosity coefficients p and A satisfy the natural physical
restrictions g > 0 and 3\ + 2 > 0 so that L = —pA — (A 4+ p)Vdiv is a strongly
elliptic operator. Moreover, (0,7") x 2 is the time-space domain for the evolution of
the fluid, where T is a finite positive number and §2 is either a bounded domain in
R? with smooth boundary or a usual unbounded domain such as the whole space
R3, the half space R? x R, and an exterior domain with smooth boundary. Of
course, if Q is a bounded domain (or the whole space), then the condition (1.5) at
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2 YONGGEUN CHO AND HYUNSEOK KIM

infinity (or the boundary condition in (1.4) respectively) is unnecessary and should
be neglected.

In this paper, we study the initial boundary value problem (simply IBVP) (1.1)-
(1.5) with nonnegative initial densities.

Under the crucial assumption that the initial density pg is bounded below away
from zero, the first existence results for the IBVP (1.1)-(1.5) were obtained by Nash
[20], Itaya [13] and Tani [24]. They applied a fixed point argument or the method of
successive approximations in Holder spaces to prove the local (in time) existence of
classical solutions even for more general heat-conducting fluid models. Then using
delicate energy methods in Sobolev spaces, Matsumura and Nishida showed in their
pioneering papers [18, 19] that the classical solutions exist globally in time provided
that the data are small in some sense. See also the papers [6, 12, 23, 27, 28, 29] for
some further local or global results in case of positive densities.

On the other hand, the existence of weak or strong solutions has been proved
in rather recent works even for the general case of nonnegative initial densities. In
fundamental works [16, 17], Lions developed an existence theory of global (in time)
weak solutions to the IBVP (1.1)-(1.5). Then Lions’ theory has been improved by
several authors to deduce more general results; see [7, 8, 9, 10, 14, 15] for details.
The very recent papers [2, 3, 4] by Choe and the authors are devoted to establishing
some local existence results on strong solutions. Among other things, we showed
in [2, 3] (see also the paper [21] by Salvi and Straskraba) that if the initial data po,
ug satisfy the regularity condition

po—p> €H? p*cRy, po>0 in Q wuyecDiND? (1.6)
and the compatibility condition
1
Lug +Vp(po) =pggr in Q forsome g € L2 (1.7)

then there exist a small time T}, € (0,7) and a unique strong solution (p,u) to the
IBVP (1.1)-(1.5) such that

p—p> €C(0,T.); H*), wu € C([0,T.]; D{ N D*) N L*0,T,; D?), 1)
pi € C([0,T.]; HY), w; € L*(0,Ty; DY) and /puy € L>(0,Ty; L?). ’

Throughout this paper, we adopt the following simplified notations for the stan-
dard homogeneous and inhomogeneous Sobolev spaces.

L' =L'(Q), D" ={ve L (Q): |o]ps < oo},

Wk — 7 A Db HF — W2 Dk — pk2,

D} ={veL%N): |v|py < oo and v=0 on 90},

H}=L*nD},  |vlprr = |VFu|pr and [vlpg = [V|Le.
Then it follows from the classical Sobolev embedding results that

[vlzs < Clvlpys  [vlze < Clolwra and  Jv[re < Clv|pinpe.
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Hereafter we use the obvious notation
| |xny =] |x+]-|y for (semi-)normed spaces X,Y

and C denotes a generic positive constant depending only on the fixed constants
i, A, T and the norms of p = p(-) and f. We also denote by H~! the dual space
of H} with < -,- > being the dual paring of H~! and H}. A detailed study of
homogeneous Sobolev spaces may be found in Galdi’s book [11].

The main purpose of this paper is to prove the local existence of classical so-
lutions to the IBVP (1.1)-(1.5) with nonnegative initial densities. First we prove
the existence of solutions in C([0,T%]; (p> + H?) x (D§ N D3)) under a stronger
compatibility condition than (1.7) on the data.

Theorem 1.1. Assume that
po—pX €H? p*eRy, po>0 in Q wug€ DiND? 19)
f € L2(07T; H2)7 ft € L2(07T;L2) and b= p() € C3(ﬁ+) .

Assume further that the data pg,uq, f satisfy the compatibility condition

Lug + Vp(po) = po (f(0) + g2) for some g2 € D§ with /p, g2 € L. (1.10)

Then there exist a small time T, € (0,T) and a unique strong solution (p,u) to the
IBVP (1.1)-(1.5) such that

p—p> € C(0,T.];H%), weC(0,T.); Dy N D*) N L*(0,T,; DY),

) ) ) ) (1.11)
u € L(0,T; D) N L*(0,T; D) and +/pu, € L*>(0,T,; L*).

Remark 1.2. From the continuity equation (1.1), it follows immediately that
pi € C([0,T,); H*) and py € L*°(0,T,; L*) N L*(0,T,; H').

Note that the hypotheses of Theorem 1.1 imply (1.6) and (1.7) with g, =
VPo(f(0) + g2) € L?. Hence the existence of a unique local solution (p,u) with
the regularity (1.8) was already proved in [2, 3] and our new theorem shows that
(p,u) has some additional regularity if the data satisfy a stronger compatibility
condition (1.10). Tt is easy to show that (1.10) is also necessary for the existence
of solutions with the regularity (1.11). In fact, let (p,u) be a solution to the
IBVP (1.1)-(1.5) with the regularity (1.11). Then since u; € L*(0,T,; D}) and
Vour € L>=(0,T,; L?), there is a sequence {tj}, t;, — 0, such that u(t;) — g in D}
for some g € D} with VP(0)g € L?. Hence letting t = t;, — 0 in the momentum
equation (1.2), we readily obtain

Lu(0) 4+ Vp(p(0)) = p(0)(f(0) = u(0) - Vu(0) — g),

which implies then that

Lu(0) + Vp(p(0)) = p(0)(f(0) + g2),
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where go = —u(0) - Vu(0) — g. Noting that p(0) = pg, u(0) = ug, g2 € D and
Vp(0)g2 € L?, we conclude that the compatibility condition (1.10) is necessary for
the existence of solutions with the regularity (1.11).

In case that pg has a positive lower bound and ug has the additional integrability
condition ug € L?, Theorem 1.1 can be proved applying the method of successive
approximations or a fixed point argument as in [1, 13, 18, 24, 29]. Our proof of
the theorem is based on the method of successive approximations, whose general
strategy may be described as follows. First we consider a linearized problem for the
IBVP (1.1)-(1.5) and solve it successively to construct a sequence of approximate
solutions. Then we derive some uniform bounds for approximate solutions and
finally prove the convergence of the sequence to a solution to the original nonlinear
problem. A detailed proof of Theorem 1.1 following this strategy is provided in
Section 4.

Next, we prove the existence of classical solutions to the IBVP (1.1)-(1.5). Let
(p,u) be a solution to (1.1)-(1.5) satisfying the regularity in Theorem 1.1. Then in
view of the Sobolev embedding results, we have

(p,u) € C([0,T.]; C*(Q)) and p; € C([0,T%] x Q), (1.12)

which implies that (p,u) satisfies (1.1), (1.3), (1.4) and (1.5) in a classical sense.
But in order to conclude that (1.2) is satisfied in a classical sense, we need to prove
further regularity of u. In case that pg is bounded below away from zero, that is,
§ = infg po > 0, it follows from (1.12) that p > 26 > 0 on [0,T%.] x Q for some
T.. € (0,T,] and the momentum equation (1.2) can be rewritten as

u+p 'Lu=f—u-Vu—p 'Vp(p)

in (0,Tys) x Q. Hence by virtue of the smoothing effect of solutions of parabolic
equations, we deduce that (V2u,u;) € C((0,T%] x Q) and (p,u) is a classical
solution of (1.2) in (0, Tis) x Q. For details, see Lemma 2.4 in the next section and
the paper [18] by Matsumura and Nishida. However the smoothing effect of the
velocity w in ¢ > 0 is not obvious for the general case of nonnegative initial densities
because (1.2) is no more parabolic in the region where the density vanishes.

Nevertheless, using the same method as in the proof of Theorem 1.1, we can
prove the following result.

Theorem 1.3. In addition to (1.9) and (1.10), we assume that

tif e L0, T; H?), tif, € L®(0,T;L%), tify € L*(0,T;HY),
tfr € L®(0,T;HY), tfy € L*(0,T;L?), (1.13)
t3f € L0, T:L%) and t? fu, € L2(0,T; HY).
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Then there exist a small time T, € (0,T) and a unique strong solution (p,u) to the
IBVP (1.1)-(1.5) such that

p—p> € C(0,T.); H*), w € C([0,T.]; D N D*) N L*(0,T,; D),
up € L(0,Ts; D§) N L2(0,Ts; D?),  /pug € L*(0,Ty; L?);
t2u e L®(0,T,; DY), t2u, € L®(0,T,; D?), t2uy € L*(0,T,; DY),
t2\/puy € L2(0,T,; L?);  tu, € L®(0,T; D?), (1.14)
tug € L(0,Ty; D) N L2(0,Ty; D?),  t\/puws € L*(0,Ty; L?);
t2uy € L(0,T,; D?), t2uyy € L2(0,T%; DS),  t2\/pue € L®(0,Ty; L?).
Let (p,u) be a solution of the compressible Navier-Stokes equations (1.1)-(1.3)

with the regularity (1.14). Then it is easy to show that (p,w) is indeed a classical
solution of (1.1)-(1.3) in (0, 7] x Q. First, using the standard embedding results

L*(0,T; HHY N W20, T; HY) — C([0, T.]; L?)
and
L0, T,; HY)Y nWh2(0,T,; H) — C([0, T.]; LY)
for any 2 < ¢ < 6, we deduce from (1.13) and (1.14) that
t3feC(0,T.]; W' and tu, € C([0,T.]; DL N D?).
On the other hand, by virtue of the continuity equation (1.1), we can rewrite the
momentum equation (1.2) as
pus + pu - Vu+ Lu+ Vp(p) = pf in (0,7,) x Q,
which implies that for each t € (0,7%], u = u(t) € D§ N D? is a solution of the
elliptic system
Lu=p(f —u—u-Vu)—Vp(p) = F in Q.
Note that tF' € C([0, T.]; W1*). Hence it follows from the elliptic regularity result
in [3] that
tV3u € C([0, T.); Whh).
Therefore, in view of the Sobolev embedding results, we conclude that
(ug, V2u) € C((0,T,] x Q)

and so (p,u) is a classical solution of (1.1)-(1.3) in (0, T,] x .

We have considered the Navier-Stokes equations (1.1)-(1.3) for general barotropic
compressible fluids including isentropic fluids as an important special class. An
isentropic viscous compressible fluid is governed by the Navier-Stokes equations
(1.1)-(1.3) with the density-pressure law p = p(-) given by

p=ApY for some constants A >0, v > 1. (1.15)

Note that (1.15) defines a C3-function on R if and only if v = 2 or v > 3. Hence
Theorem 1.1 and Theorem 1.3 can be used to deduce the corresponding existence
results for the isentropic equations (1.1)-(1.3) and (1.15) only in case when v = 2
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or v > 3. But in some physical situations, the case 1 < v < 2 is most important:
3
goal of the paper is to prove the existence of classical solutions of the isentropic

for instance, v = 2 in case of monatomic gases like Helium and Neon. The final

compressible Navier-Stokes equations (1.1)-(1.3) and (1.15) for general v > 1.

Theorem 1.4. Assume that the data pg,uq, f satisfy the reqularity condition

(po—p=,po—p*) € H*, p*eRy, po>0 in €,

ug € D{ND3,  fe L*0,T;H*) and f; € L?(0,T;L?)
and the compatibility condition

Lug + Vpo = po (f(0) + g2) for some g € D§ with \/p, g2 € L?,
where
po = Apg and — p™ = A(p™)7.

Then there exist a small time Ty € (0,T) and a unique strong solution (p,p,u) to
the IBVP (1.1)-(1.5) and (1.15) such that

(p—p>=, p—p>) € C(I0,T.); H*), we C([0,T.]; Dy N D*) N L*(0, T.; DY),
uy € L=(0,Ty; DY) N L*(0,Ty; D?)  and /puy € L>(0,Ty; L?).

Moreover, if the external force [ satisfies the additional reqularity (1.13), then the
velocity u satisfies (1.14) with T, replaced by some Tys € (0,T:] and so (p,p,u) is
a classical solution of (1.1)-(1.3) and (1.15) in (0, Tx) X 2.

If v =2 or v > 3, then Theorem 1.4 is just a reformulation of Theorem 1.1 and
Theorem 1.3 because

p—p> €C(0,T.]; H®) implies that p —p> € C([0,T.]; H?). (1.16)

But (1.16) fails to hold for general v > 1 and in fact, one major difficulty in proving
Theorem 1.4 is to show that p — p> € C([0,Ty]; H?). Our proof relies heavily on
the observation that since p satisfies (1.1) and (1.4), the pressure p = Ap? is a
solution to the linear hyperbolic problem

prtu-Vp+ypdivu =0 in (0,7)xQ and pli=o=po in Q,

provided that u is regarded as a known vector field. Hence assuming that u is
sufficiently regular, we can deduce from a standard regularity theory of hyperbolic
equations that if py — p> € H3, then p — p>= € C([0,T.]; H?). A detailed proof of
Theorem 1.4 is given in the final section.

The main results in this paper are Theorem 1.3 and Theorem 1.4 which are both
local existence results on classical solutions. It is then a fundamental question to
ask whether the solutions exist globally in time. A negative answer was obtained
by Xin [30] for the case that the spatial domain € is the whole space R3. He
showed that there is no global classical solution to the Cauchy problem for the
isentropic compressible Navier-Stokes equations with compactly supported initial
density and velocity. On the other hand, Choe and the second author [5] obtained
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a global existence result on radially symmetric strong solutions of the isentropic
compressible Navier-Stokes equations in bounded and unbounded annular domains.
Hence it is very likely that the methods in this paper and [5] can be combined to
prove the global existence of radially symmetric classical solutions with nonnegative
densities. This issue will be studied in a separated paper.

The rest of this paper is organized as follows. Section 2 is devoted to a study of
a linearized problem. We provide some existence and regularity results for a linear
transport equation and a linear parabolic system. In Section 3, we derive some
a priori estimates for solutions to the linearized problem. Applying the method
of successive approximations based on these estimates, we prove Theorem 1.1 in
Section 4. Finally, the proofs of Theorem 1.3 and Theorem 1.4 are given in Section
5 and Section 6, respectively.

2. EXISTENCE AND REGULARITY ON SOLUTIONS OF LINEAR EQUATIONS

In this section, we obtain some existence and regularity results on solutions of
a linear transport equation and a linear parabolic system, which are necessary to
prove all the main theorems in the paper.

2.1. A linear transport equation. First, we consider the following linear hyper-
bolic problem

pt+v-Vp+pdivve=0 in (0,7)xQ and p0)=py in £, (2.1)
where v is a known vector field in (0,7) x Q such that
v e C([0,T); Dy N D™)N L*(0,T; D™)  for some integer m > 2.
Following the arguments in [2], we prove

Lemma 2.1. Assume that po — p> € H™, p™ € Ry and py > 0 in Q. Then
(i) there exists a unique solution p to the problem (2.1) such that

p—p> eC(0,T;H™) and p, € C([0,T];H™ ),

(ii) the solution p satisfies the following estimate

t
1p() — 0% < (g0 — o™ s + 0°) exp (o | 1oy ds)
0

for 0 <t <T and finally,
(iii) the solution p is represented by the formula

p(t,z) = po(U(0,t,2)) exp {—/0 divu(s,U(s, t,x)) ds} , (2.2)

where U € C([0,T] x [0,T] x Q) is the solution to the initial value problem

{ DU(t,s,x) =v(t,U(t,s x)), 0<t<T,

ot i
Ul(s,s,z) =z, 0<s<T, z€. (2:3)
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Proof. To begin with, we construct sequences {pf§} and {v*} of more regular scalar
and vector fields such that

pb —p> € H"NnC™H(Q),

o* € L2(0,T; Dy N D™y n ™ ([0, T] x Q), (2.4)

‘Plg = polam + |Uk - U|L2(0,T;D30Dm+1) —0 as k— oo
For this purpose, we first recall that H™*2 and L?(0,T; H™*2) are dense in H™ and
L2(0,T; H™), respectively. Then since pg —p> € H™ and g = Vv € L?(0,T; H™),
there exist sequences {pf} in p> + H™*3 and {g*} in L?(0,7; H™*?2) such that

Pk —p> — pg— p*> in H™ and g*¥ — g in L2(0,T; H™) as k — oo.
For a.e. t € (0,T), let w* = wk(t) € D be the unique weak solution to the

elliptic boundary value problem

AwF =divg® in Q and w®*=0 on 90

It is obvious that w® € L2(0,T; D}) and |w”(t) — v(t)|py < lg* (t) — g(t)| 2 for a.e.
t € (0,7). Then by virtue of the elliptic regularity result in [3], we deduce that
wk € L%(0,T; D} N D™*3) and

[0k (t) ~ v pgrpms < O ([divg (1) — divg(t) s + [0 (1) ~ v(t) g
< Clg*(t) — g()] rrm
for a.e. t € (0,T). Hence it follows that w* — v in L2(0,T; D} N D™*1) as k — oo.
Therefore, recalling that C°°([0,T]; D} N D™*3) is dense in L?(0,T; D} N D™*3),
we conclude that there exists a sequence {v*} in C°°([0, T]; D} N D™*3) such that
v* — v in L2(0,T; D§ N D™*1) as k — oco. In view of the Sobolev embedding
results
H™3 s 0™H(Q) and D} N D™ — c™TH(Q),

we complete the proof of (2.4). To treat the case of unbounded domains, we also
need a cut-off procedure. Assuming that  is an unbounded domain such as the

whole space, the half space and an exterior domain, we choose a sufficiently large
integer Ry > 1 so that

R*\QC Bg,» if R*\QCCR?,

where for each R > 0, Bg denotes the open ball of radius R centered at the origin:
Br = {z € R? : |z| < R}. Then taking a cut-off function ¢ € C°(B;) such that
¢ =11in By/3, we define pE and vf by

po () = p> +¢(z/R) (po(w) — p>)  and ¥ (t,z) = p(x/R)v(t, z)
for (t,z) € [0,T] x Q and R > Ry. Note that pff = p> and v® = 0 in (0,7) x
(Q\ Qr), where Qp = QN Br. Moreover, it is easy to show that

1p& — polrm + [0t — V|2 0,mipinpm+1y — 0 as R — oo.
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Hence applying this cut-off technique to p§ and v* for each k > 1, we may assume
without loss of generality that if €2 is an unbounded domain, then

pt(x) =p> and o*(t,z)=0 for t€[0,T], € Q\Qg,, (2.5)
where {Ry} is a sequence such that Ry < Ry < Ry < --- and Ry — oc.
Now we consider the following regularized problem
pr+ 0" - Vp+pdive" =0 in (0,T)xQ and p(0)=pk in Q  (2.6)

for each k& > 1. Then since pf € C™*1(Q), v* € C™+1([0,T] x Q) and v* = 0
on [0,T] x 09, it follows from the standard hyperbolic theory that there exists a
unique solution p* € C™+1([0,T] x Q) to the problem (2.6) and the solution p* can
be represented by

P (t, ) = pf(U*(0,t,x)) exp [—/0 divo* (s, U"(s,t,x)) ds| , (2.7)

where U* € C™+1([0,T] x [0,T] x Q) is the solution to the initial value problem

%Uk(t,s,x):vk(t,U’C(t,S,w)), 0<t<T,
Uk(s,s,z) =, 0<s<T, z€.

It should be noted from (2.5) that if 2 is an unbounded domain, then
UF(t,s,z) =z and pF(t,z)=p> for t,sc[0,T], z€Q\Qpg,.

(2.8)

We will prove that the sequence {p*} converges to a solution of the original
problem. To show this, we first observe that

|Uk(t,s,:v) — Ul(t,s,sc)|

S/ |Uk(T,Uk(T,S,£L'))—UZ(T,UZ(T7S7$))’dT

t t
g/ [k (7) — ol (7) | dT+/ V0! (1) | U (7, 5, 2) — U (7, 5, 2)| dr.
Then in view of Gronwall’s inequality, we have

|UR(t,s,2) — Ut s, z)|

Tk 0 « T o
< </0 [0*(T) — v"(7)| e d7'> exp </0 |Vo' (7)| e dT)
<c </0 [0 () = 0 (") | pp dT> exp (c/o [0 () | pgrops m)

for each s,t € [0,T] and z € €, and thus

Hence it follows from the well-known embedding result H? — C° 2 that

T
/ |div (s, U (s,t,x)) — divv(s,Ul(s,t,x))| ds
0

Nl

T
SC’/ |Vv(s)|H2’Uk(s,t,x)—Ul(s,t,x)" ds — 0 as k,l — oo
0
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uniformly in (¢, z) € [0, T] x Q. Therefore, observing that

t
/ |divvk(s, U*(s,t,x)) — divol(s, Ul(s,t,a:))| ds
0
T
< / (|divo*(s) — divo(s)| e + [divel(s) — dive(s)|p=) ds
0

T
—|—/ |div (s, Uk(s,t,x)) —divv(s,Ul(s,t,x))| ds,
0
we deduce from (2.7) that

|p* — Pl|c([o,T]xﬁ) —0 as k- oo
This proves the existence of a limit p in C([0,7] x Q) such that
PP —=p in C0,T] xQ) as k— oc. (2.10)
It is easy to show that p is a weak solution to the original problem (2.1).
To prove the higher regularity of p, we derive uniform estimates for p* in higher
norms. Multiplying the equation in (2.6) with p = p* by p* — p> and integrating
over (), we have

d o0 : o0 o0 o0
g/lpk—p IdeSC/Idlvvkl(lpk—p |+ ™) |p— p™| da
and thus
d C (o) o0 o0 o0
—dt\pk—p 122 < C|VVF|peo|p® — p® 22 + Cp™|p* — p™°|L2|VVF 2. (2.11)

Let o be a multi-index with 1 < |a] = a1 + as + a3 < m. Then taking the
differential operator D® to (2.6), we have
(D®p*); + vF - V(DpF)
=" . V(D*p*) — D*(v* - VpF) — D*(p* divo®) = FF.

Multiplying this by D%p and integrating over 2, we obtain
d
G 102z <€ [ (divot D2t + |FEID 6 ) da

and thus
d .
D072 < C ([dive® | [ DMLz + [F3 L2 [ D012 ) (2.12)
But since
||
Ik - V(DpF) — D (v - Vph)| < C Z ‘v|a|+1—lvk‘ |vlpk| ’
=1
it follows from Holder and Sobolev inequalities that
sup ‘Uk ) V(Dapk) - Da(vk 'V/”€)|L2 < C’|Uk|ngDm+1|VP]€|HWH-
1<]al<m
A similar calculation also shows that

sup | D*(p* divor)|p. < C\vk|DémDm+1 (IVp* | gm—1 + |p"| 1) -
1<|al<m



CLASSICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES EQUATIONS 11
Hence from (2.11) and (2.12), it follows that

d
£|Pk = p™ i < C|Uk|D5mDm+1 10" = > [Grm + CPOO|Uk\D3,an+1 10" = ™.

Therefore, in view of Gronwall’s inequality, we conclude that
t
0) = %l < (166 = 0%l + o™ [ 105y s )
0

¢

X exp (C/ |vk(s)|DémDm+1 ds) (2.13)
0
for each ¢t € [0,T]. As a consequence of (2.10) and (2.13), we deduce that
pF—p® Sp—p> in L®0,T;H™) as k— oc.

Moreover since p; = —div (pv) € L°°(0,T; H™1), it follows from a classical embed-

ding result (see [26] for instance) that p — p>= € C([0,T7]; H"~ )N C([0,T); H™ —

weak). To prove the strong time-continuity of p — p*° in H™, we observe that for

each fixed t € [0,T], p*(t) — p> — p(t) — p> weakly in H™. Hence from (2.13), it
follows immediately that

t
06) = 1 < (10 = 9 lm + 0 [ o) lpyopmes ds )

¢
X exp (C/ [v(s)| pinpm+1 ds) (2.14)
0
for each ¢t € [0, 7). In particular, we have
limsup |p(t) — p™=|gm < |po — p™°|Hm,
t——+0

which implies that p — p> is right-continuous in H™ at ¢ = 0. Since the equation
in (2.1) is invariant under the reflections and translations in time, we conclude that
p—p> € C([0,T); H™). Tt also follows from (2.1) that p; € C([0,T]; H™ ). Tt is
easy to prove the uniqueness of solutions in this regularity class. This completes
the proof of (i). The estimate in (ii) follows immediately from (2.14). Hence it
remains to show (iii). By virtue of the regularity of v, we can prove the uniqueness
of a solution U in C([0,T] x [0,T] x Q) to the problem (2.3), whose existence is
guaranteed by (2.8) and (2.9). Finally, from (2.7), (2.9) and (2.10), we obtain the
representation formula (2.2) for the solution p. d

2.2. A linear parabolic system. Next, let  be a bounded domain in R? with
smooth boundary, and we consider the following linear parabolic problem
puy + Lu=F in (0,7) x £,
(2.15)
u(0) =wup in €, u=0 on (0,7) x 01,

where p is a known scalar field in (0,7) x Q such that

p € C(0,T); H?), pr€C(0,T];H*) and p>5 on [0,T]x (2.16)
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for some constant 6 > 0. Recall that L = —uA — (A + p)Vdiv is a strongly elliptic
operator (see [3] for instance). Then applying a standard method such as a semi-
discrete Galerkin method or the method of continuity, we can prove the following
existence and regularity results on solutions to the linear parabolic problem (2.15).
See also the papers [27, 28, 29] for similar results.

Lemma 2.2. (i) Assume that ug € H} and F € L*(0,T;L?). Then there exists a
unique strong solution u to the problem (2.15) such that
ue C([0,T); H3) N L*(0,T; H*) and wu; € L*(0,T;L?).
(ii) Ifup € HINH?, F € L*>(0,T; L?) and F, € L*(0,T; H~1), then the solution
u satisfies
uwe L(0,T; H?), wuy € L*(0,T;HY) and wuy € L*(0,T; H™Y).
(iii) Finally, if up € HE N H3, F € L>=(0,T; H'), F;, € L*(0,T; L?) and u,(0) =
p(0)~1 (F(0) — Lug) € HE, then the solution u also satisfies
uw€ L>®(0,T; H?), wuy € L*(0,T; H?) and wuy € L*(0,T; L?).

Remark 2.3. Let u be the solution obtained in the result (iii) of Lemma 2.2. Then
by virtue of a standard embedding result, we have

ue C([0,T); H*) and wuy € C([0,T]; Hy).
Moreover, it follows from an elliptic reqularity result that if F € L*(0,T; H?) in

addition, then u also satisfies

w€ L*(0,T; H*Y) and so ue C([0,T); H?).

Standard arguments based on Lemma 2.2 enable us to prove the smoothing effect
of the solution u for positive time ¢t > 0, provided that p and F are sufficiently
regular in ¢ > 0. Throughout this paper, we denote

10c(0, T X) = () L (7, T; X)
>0
for 1 <r < oo and a Banach space X.

Lemma 2.4. Let ug € H} and F € L?(0,T;L?). Assume in addition to (2.16)
that

pue € Lis.((0,T; L?),  put € Li,((0,T); H™Y), F e Ly5,((0,T); H?),

loc
F, € L. ((0,T); H'Y), Fyu € Li5.((0,T);L*) and Fuy € L, ((0,T); H).
Then there exists a unique solution u to the problem (2.15) such that
ue C([0,T); Hy) N L*(0,T; H?), w, € L*(0,T;L?);
u€ Lig (0,71 H*), we € L5, ((0,T]; Hg NH?), uy € L5, ((0,T]; Hy N H?),
ugee € LE2((0,T); L2) N LE((0,T); HY)  and  wgges € L7 ((0,T); H™Y).

loc
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Proof. The result (i) of Lemma 2.2 guarantees the existence of a unique solution u
with the regularity

u € C([0,T]; Hy) N L*(0,T; H*) and w; € L*(0,T; L?).

We prove the additional regularity of u using a standard iterative argument (see
[25] for instance). Let ¢ be a fixed small time in (0,T).

(a) Since u € L?(0,T; Hi N H?), we can choose a time t; in (0,tg) such that
u(t;) € HE N H% Then the result (ii) yields that u € L*(t;,T; H} N H?) and
ug € L%(t1,T; H}). Moreover, since F' € L2(t1,T; H'), it follows from the elliptic
regularity result that u € L2(t,T; H3).

(b) There is a time t5 € (t1,t0) such that u(ty) € Hi N H? and w(t2) € H}. In
view of the result (iii), we deduce that

w€ L®(ty, T; H®), wuy € L2(ty, T; H?) and  wuy € L*(to, T); L?).

(c) There is a time t3 € (t2,t9) such that u,(t3) € Hi N H2. Note that w = u; is
the unique solution to the problem

pwy + Lw =G in (t3,7) x Q,
w(

t3) = uy(ts) in Q, w=0 on (t3,7) x 99, (2.17)

where G = F; — pyus. Note that G € L?(t3,T; H') and Gy € L?(t3,T; H~'). Hence
it follows from the result (ii) that
we L®(ts, T; H?), w; € L(t3,T; Hy) and wy € L*(t3, T; H ).
Moreover, using the elliptic regularity result again, we deduce that
u€ L®(t3, T; H*) and w e L%(t3,T; H®).

(d) There is t4 € (t3,%9) such that w(ty) € HE N H3 and w(t4) € H}. Note that
G = F, — pyw € L™ (t4,T; H') and Gy € L?(t4,T; L?). Hence it follows from (iii)
that

w € L™ (ty, T; H?), wy € L(ty, T; H?) and  wy € L*(ty,T; L?).

(e) There is a time t5 € (t4,t9) such that wy(ts) € Hi N H? and v = wy, is the
unique solution to the problem

pvy+ Lv=H in (¢5,7) x Q,
w(

t5) =w(ts) in Q, w=0 on (t5,7T) % 09, (2.18)

where H = Gy — p;w;. Since H € L*(t5, T; L?) and H; € L?(t5,T; H~1), it follows
from (ii) that
ve L®(ts, T; H?), wv; € L(t5, T; HY) and vy € L2(ts5, T; H ).

Observing that 0 < t; < ty < t3 < t4 < t5 < tg and ty can be chosen to be
arbitrarily small, we complete the proof of Lemma 2.4. O
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3. A PRIORI ESTIMATES FOR THE LINEARIZED PROBLEM

To prove Theorem 1.1, we consider the following linearized problem

pe +div(pv) =0 in (0,7) x 9, (3.1)

pur + Lu+ Vp = p(f —v- Vo) in (0,7) xQ, (3.2)

(ps u)|t=0 = (po, up) in €, u=0 on (0,7) x 01, (3.3)
p(t,x) — p=°, w(t,z) =0 as |z|— o0, (t,z)e€ (0,T)xQ, (3.4)

where v is a known vector field in (0,7) x €2 such that
v € C([0,T); DN D* N L*0,T; DY), v, € L>=(0,T;D}) N L*(0,T; D?). (3.5)

Recall again that Lu = —pAu — (A + p)Vdive and p = p(p).
First, from the lemmas in Section 2, we obtain an existence result for positive
initial densities.

Lemma 3.1. Let Q be a bounded domain in R3 with smooth boundary. In addition
to (1.9) and (3.5), we assume that pg > 0 in Q for some constant § > 0 and
£(0) =v(0)- Vu(0) — pg * (Lug + Vp(po)) € HS. Then there exists a unique solution
(p,u) to the linearized problem (3.1), (3.2) and (3.3) such that

peC([0,T); H?), pr € C([0,T); H?),
u € C([0,T); HY n H3 N L2(0,T; H*),
uy € C([0,T); Hy) N L*(0,T; H?), (3.6)
ug € L*(0,T;L?) and p>6 on [0,T]xQ

for some constant § > 0.

Proof. The existence and regularity of a unique solution p to the linear hyperbolic
problem (3.1) and (3.3) were already proved in Lemma 2.1. To prove the remaining
part of the lemma, let us define F' by F' = —Vp(p) + p(f —v- Vv). Then by virtue
of (1.9), (3.5) and the regularity of p, we can easily show that F € L*(0,T; H?)
and F; € L*(0,T;L?). Moreover since py ' (F(0) — Lug) € H{, Lemma 2.2 and
Remark 2.3 allow us to deduce the existence and regularity of a unique solution u
to the linear parabolic problem (3.2) and (3.3). This completes the proof of Lemma
3.1. O

Assume that pg,ug, v, f, p = p(-) and Q satisfy the hypotheses of Lemma 3.1.
Then it follows from Lemma 3.1 that there exists a unique strong solution (p, ) to
the linear problem (3.1), (3.2) and (3.3) satisfying the regularity (3.6). The purpose
of this section is to derive some local (in time) a priori estimates for (p,u) which
are independent of the lower bound ¢ of pg and size of the domain €2. Let us choose
a constant cg > 1 so that

L+ p% + lpo = p> s + [uolpy + [Py 92l 12 + |g2]py < co,
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where go = py* (Lug + Vp(po)) — £(0) = —v(0) - Vo(0) — u(0), and assume that

[v(0)|pgrps <1+ e,

Ty
sup [o()lpy + [ (O dt <1+
0<t<T. 0

0<t<T,

T
%mwomm%+wmmﬁ+/ (Joe )32 + o) 3) dt <1+ e
0

0<t<T,

T
swp [o(0lpe + [ (Jolt)fpy + P(Oe) de < 1ben, ()
0

for some time T, € (0,T) and constants ¢;’s with 1 < ¢g < ¢; < ¢3 < c¢3 < c¢y. The

constants ¢;’s, 1 <14 < 4, and T, will be determined later and depend only on cg

and the parameters of C. Throughout this and next two sections, we denote by C'

a generic positive constant depending only on the fixed constants u, A, T', |p|cg(ﬁ+)

and the norm of f. Moreover, M = M(-) denotes an increasing continuous function

from [1,00) to [1,00) which is independent of § and the size of Q.
Lemma 3.2.
()L + |p(t) = p™|s < Ceo,  |p(t) = p™[ms < M(co),  |pe(t)mr < O,

[pe(t)| e < M(co)e3, /Ot |1 (s)[72 ds < Cc, /Ot [P (5)| 22 ds < M(eo)c,

loe(®)] 2 < Ccl, Ipe(D)lms < M(co)ei and  infp(t) > C75
for 0 <t < min(T,,T1), where Ty = (1 +¢4)~1 and p> = p(p>).
Proof. From Lemma 2.1, we recall that
¢
p(0) = 1> < (oo = p%Las + )50 (€ [ 06l s )

and

t
inf p(t) 2 (igf po) exp <—C /0 [v($)|pynpa d8>

for 0 <t < T. Hence observing that

t t 3
/0 [v(s)|pinps ds < ¢z (/0 \v(s)|2D(1)mD4 ds> <CA+e)t+C((1+ea)t)2,

we obtain the desired estimate for p. Then the esimates for p;, py, p, p: and py

follow immediately from the quations p; = —div(pv) and p = p(p).

Lemma 3.3.
t
Oy + [ lu(s)le ds < M)
0

for 0 <t < min(T%,Ty), where Ty = (1 +¢4)~* < T3.

O
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Proof. Multiplying the equation (3.2) by u; and integrating over 2, we obtain

1d
/p|ut|2 dx + 3q | Vul? + (X + p)(divu)? da

:—/Vp-utdx+/p(f—v~VU)-utdx. (3.8)

Using Lemma 3.2 together with (3.7), we can estimate the second term of the right
hand side in (3.8) as follows:

1
[ ots =0 0) unde < |plfelf = o Voloal Vurloo
1
< Clolze (If12 + lolbyepe ) + 51VPul3s
1
< Ceoch + Vpulia.
To estimate the first term, we observe that

—/Vp-utdasz/(p—poo)divutd;v

= %/(p—pm)divudx—/pt divu dzx,

[0 divuds < Clptp) = 5>+ §1Tults < Mleo) + 19l
and
— /pt divudz < |pi|32 + |Vult. < M(co)cs + |Vul7e.

Hence integrating (3.8) in time over (0,t), we have
¢
| Wr(@)a ds + Va0
0

t
< M(co) (14 [Vuoft) + M)t + € [ [Tu(s)ls s
0

for 0 <t < min(7y,T1). Therefore, in view of Gronwall’s inequality, we conclude
that

t
/ |\/pus(s)|22 ds + |Vu(t)|2s < M(cg) for 0<t<min(T,,Ty),
0

where Ty = (1+¢3)~* < T1. Moreover, since for each t € (0,7, u = u(t) € D{ND?
is a solution of the elliptic system

Lu=-Vp+p(f—v-Vv)—pu; in Q
it follows from the elliptic regularity result in [3] that
[ulpz < C (| = Vo4 p(f = v+ Vo) = pulza + Julpy )
< M(co) (1 + 3 + [v/pui|2)
and thus .
/0 lu(s)|%: ds < M(co) for 0<t<min(T,,Ts).

This completes the proof of Lemma 3.3. O
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Lemma 3.4.

W ol

Va0 + 0l + [ (o), + lu)ps) ds < Mlenehe
for 0 <t < min(Ty, T3), where T3 = (1 + ¢4) ™% < Ty.
Proof. We differentiate (3.2) with respect to ¢ and have
pug + Luy + Vpr = p(f —v - Vo) + pe(f —v- Vo —wy). (3.9)

Multiplying this by u; and integrating over €2, we obtain
1d
2dt

1
= / (—th +o(f—v-Vo)i+p(f —v-Vo— 2ut)) - uy dx. (3.10)

P‘Ut|2dx+/,u|vut|2+()\+u)(divut)2 dz

To estimate each term in the right hand side of (3.10), we follow the arguments
in [2, 3, 4]; we first apply the standard inequalities such as Hélder, Sobolev and

Young’s inequalities and then use Lemma 3.2.

,/th g da = /pt divug dz < Clpy|2s + %\w,ﬁz < M(co)cd + %|Vut|%2,
1
/Pft cupde < | felp2|p| 2 [VPuelre < |fel72 + Ceolv/pusliz,

1
- / pv - V0)s - g do < Clol e o1l py 0]y |/Be] 1

3 1 1
< Clpl gl pylvlpglv/pu| L2 [V 7o

- p
< 02 C ol oy [/ 2 + ety + 5 Vel

<2 Ce|Vpulis + nluilhy + K[V,

/pt(f —v-Vv) - urde < Clp| g (|f|L2 + ‘v|%3mD2) V|2
< Och (/12 + ) + G|Vl
< O+ G|Vl
and finally
1. 5 . 1, 5
— | pt §|ut| dx = [ div(pv) §|ut| dx
3 1 3
< [ phlfunl IVl do < Clolf < bl oyl Vo

S CC;|\/ﬁUt|%2 + §|vut|%2
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Here n € (0,1) is a small number. Substituting these estimates into (3.10) and
taking n = (1 + c3) !, we have

%/p|ut|2 dx+u/|Vut|2 dx

< M(co) (|felZ2 + €5) + Cesly/puelia + (14 e3) " uel Dy (3.11)

for 0 <t < min(7,,T>). On the other hand, since
uy € C([0,T]; Hy) and  u(0) = —v(0) - Vo(0) — go,
it follows that
VA (0)] 22 + 1 (0) py < CC. (3.12)
Hence integrating (3.11) over (0,t), we also have
N / |Vu(s) B ds < M(ex) (14 ) + O / ()2 ds.
Therefore, in view of Gronwall’s inequality, we conclude that
|\/pue(t) |32 + /Ot |ut(s)\2Dé ds < M(cy) for 0<t<min(Ty,T3),

where T3 = (1+¢4) "2 < Ty. Moreover, since for each t € (0,T), u = u(t) € D{ND3
is a solution of the elliptic system

Lu=-Vp+p(f—v-Vv)—pus in
it follows from the elliptic regularity result in [3] that
[u(t)|lp> < M(c1) (1+ |- Vo[r2)
< M(er) (1 ol ol Bype ) < Me)ci

and
t t
[ o) ds < 2a(er) [ (14 oy + o)y ) ds < M(er)

for 0 <t < min(7,T3). This completes the proof of Lemma 3.4. O

Lemma 3.5.
(Ol + Ol + [ (I /Buun(s) B + e (8)Bs + u(s) ) ds < M(e)el?
for 0 <t < min(Ty, T3).
Proof. Multiplying (3.9) by u; and integrating over 2, we have
/p\utt|2 dx + %% /M|Vut|2 + (A + p)(divug)? dae

= /(—th +po(f —v-Vu)e+pe(f —v- Vv —uy)) - uy de. (3.13)
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We can estimate the first two terms in the right hand side of (3.13) as follows:

d
f/th cuy dr = /ptdivutt dx = T /ptdivut dr — /pttdivut dx

< %/ptdivut dx + |puel 72 + V|72
and
/ p(f — v+ Vo) -unde < Clpli (1filne + 0lpyrpe il oy ) [y o2
< Cey (\ftlzp + C§|vt|2Dg) + %|\/ﬁ“tt|QL2'

To estimate the last term, we observe that

/pt(f—v-Vv)~uttdz

d

:%/pt(f_’l]~vv)-’U,tdl‘_/ptt(f—v.vv),utdm

—/pt(f—U-Vv)t-utdx

d 1 1
—/ptut © Ut dl‘ = _ﬁ Pt <2|ut|2> dx“‘/ptt <2ut2) dl‘

Then by virtue of Lemma 3.2, we obtain

and

_/ptt (f—v-Vv)-udr < Clpy|r2 (|f|H1 + |U|2D50D2) | V|2

< Ce3lpu|Ta + Va7,

~ [ o7 =0 90), unde < Clalus (|flie + ologapelonly ) [Vl
< e (1fulhe + Aluldy ) + Vil

and

1 . 1
/ptt (2|ut|2> dr = —/dlv(ptv—&—pvt) <2|ut|2) dx
< / (oello] + ploel) [ael Vo] de

3 1 3
< Oc3|Vulta + Ceg ol pylv/puel £ [V 75
< O3 Vulga + (1 + e3) ™ oo [pul /o p2 Ve 2
< chlutﬁ)é + (1 + 03)_1|'Ut|2D$ (|\//3Ut|%2 + |V’ut|i2) .

19



20 YONGGEUN CHO AND HYUNSEOK KIM

Substituting all the above estimates into (3.13), we have
d
/p|utt\2 dx + T /M\Vut|2 + (A 4 p) (divug)? do

d .
< o / (2ptdlvut +20(f —v- V) uy — pt|ut|2) dx

+C (Ipulte + chlpulle + AlfilEe + lolby + dlulhy)  (3.14)
+|Ut|2Dé [V/pue|7s + (1+ 03)71|Ut|§)(1] V|7
for 0 <t < min(7Ty,T3). Now let us define a function A by

AW = [ (ulVu + O+ ) aivan)?) (0 do

—/ (Zptdivut +20:(f —v-Vv) - us — pt|ut|2) (t) dx.
Then it follows from Lemma 3.2, Lemma 3.4 and (3.12) that
A1 < € (Vs + Il + loul3olf —v - Vol + ol lolbg /Bl
< C|Vuelis + M(cy)cs,
A>C Vw2 — M(er)ed and  |A(0)| < M(cy)cs.
Hence integrating (3.14) over (0,¢) and using Lemma 3.2 and Lemma 3.4, we deduce
that

t
| Wona(@is ds+ Va0l
0

t
SM(cl)céer/ C'(l+C3)71|vt|2Dé|Vut(s)|%z ds
0

for 0 < t < min(7T,T3). Therefore, in view of Gronwall’s inequality, we conclude
that

t
| W) ds + a0y < Mea)ef
0

for 0 <t < min(7},T5). Moreover, since Lu = —Vp+ p(f —v - Vv —u,) in Q, it
follows from the elliptic regularity result that

t
/ e (5)Ba ds + [u(®)[Be < M(e1)el2  for 0 < ¢ < min(Ts, Ty).
0

This completes the proof of Lemma 3.5. O

From Lemma 3.2-Lemma 3.5, it follows that

t
uOloy + [l ds < M(er),
0
¢ 31
o+ [ (hoals)ity + (o)) ds < My .

|ut(t) | py + |u(t)|ps +/0 (lue(s)[ D2 + u(s)[ps) ds < M(er)es?,

Ip(t) — p™=|ms + |pe(t) | 2 + |V/pue(t)| 2 < M(cr)es®
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for 0 <t < min(Ts,T5). Here M = M(-) is a fixed increasing continuous function
on [1,00) which depends only on the parameters of C. Therefore, defining the
constants ¢;’s and T by
c1 = M(co), co=M(c1), c3=c, cq4=cacs’ (3.15)
and
T, = min(T,T3) with T3 = (1+c4)?, (3.16)

we conclude that

T
sup [u®)lpy + [ fult)ipe dt <
0

0<t<T,

Ty
swp [u(®)lpe + [ (el + [u(®)fhe) d < ca
0

0<t<T,

Ty
ess sup (Jur(®)py + [u(®lps ) + [ (unlt)be + lu(o)) dt <
0<t<T, 0

(3.17)

ess sup (|p(t) — p™ s + |pe(t) |2 + [Vpwe(t)|12) < cq.
0<t<T.

4. PROOF OF THEOREM 1.1

Let (po,uo, f) be a given data satisfying the hypotheses of Theorem 1.1. To
prove the existence, we construct a sequence {(p¥,u*)};>1 of approximate so-
lutions solving the linearized problem (3.1)—(3.4) successively. First, let F €
C([0,00); HY) N L?(0,00; H?) be the solution of the heat equation Fy; — AF = 0
in (0,00) x Q with F(0) = —Vp(po) + po(f(0)+g2) € H'. Then since ug € DN D3
and F(0) — Lug = 0 € D}, we can easily show that there exists a unique solu-
tion w = u® € C([0,00); D§ N D3) N L?(0, 00; D*) to the following linear parabolic
problem

wy+Lw=F in (0,00)x and w(0)=wup in £

It is also easy to show that

1
s (18 Ologs + 1 0ly) + [ (O + 1 OFh) d
<C(1+IFO + luolhyps ). (41)
Let us define ¢y by
co =2+ p> +1po — p>|mz + [uolpy + |V/py 92lr2 + |921p2 5

and we choose the positive constants ¢1, ca, ¢3, ¢4 and T, as in (3.15) and (3.16),
which are dependent only on ¢y and the parameters of C. Then since ug € D} N D3
is a solution to the elliptic system

Lug = F(0) = =Vp(po) + po(f(0) +g2)  in ©
and
[F'(0)[zr = | — Vp(po) + po(f(0) + g2)|mr < M(co), (4.2)
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it follows from the elliptic regularity result in [3] that
[wolpgrnps < C (IFO) i + ol ) < M (o). (4.3)

By virtue of (3.15), (4.1), (4.2) and (4.3), we may assume without loss of generality
that
T
sup (Ju®(t)| pgrps + |uf (1) py) + (luf @)IDe + [ (t)[Da) dt < 1. (44)
0<t<Tx 0
The construction of the sequence {(p*,u*)},>1 is based on the following key
lemma to the proof of Theorem 1.1.

Lemma 4.1. Let v be a vector field satisfying the regularity (3.5) with T replaced
by T.. Assume further that v satisfies the following estimate

[v(0)[pzrps < 1,

Ty
swp [o(0)py + [ o0t < ca
0<t<T. 0

T
sup  |v(t)|pe +/ (\vt(t)|2Dé + |v(t)|§)3) dt < cs, (4.5)
0<t<T, 0

Ty
ess sup (|ua(B)oy + [00)po) + [ (e + o)) di <
0<t<T, 0

Then there exists a unique solution (p,u) to the linearized problem (3.1)—~(3.4) sat-
isfying the estimate (3.17) as well as the regularity

p— poo € C([O7T*]7 Hg)a u € C([O7T*]7 Dé N DS) n L2(O7T*7 D4)a

ug € L>(0,Ty; D§) N L*(0,Ts; D*)  and +/puy € L>=(0,T.; L?). (4.6)
Proof. Let Ry > 1 be a sufficiently large number so that

QC Bg,» if QCCcRY R*\Q C Bg,» if R*\QCCR?,
and we define

pfi(x) = ¢ (z/R), g5 (x) = p"(x)g2(),
v (t,x) = " (x)v(t, ) and  fR(tx) = " (2) f(t, )

for (t,z) € [0,Ty] x £, where ¢ € C°(By) is a smooth cut-off function such that

¢ =1in Byy. Note that if @ CC R3, then g = g2, v = v and f¥ = f for each

R > Ry and otherwise, they are supported in Qg or [0, T] X2, where g = QNBg
1

For each R > Ry, let uff € H}(Qr) N H3(2R) be a unique solution to the elliptic
boundary value problem

Lull=FF in Qg and ull =0 on 0Qg, (4.7)

1If Q is the half space R? x R, then the non-smooth domain Qg should be replaced by a
smooth domain Qg such that Qr C Qg C Qar.
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where
Fy' = =Vplpg) + pg (f7(0) +957) and pg = po+R°.
Then we extend ul® to Q by defining zero outside Q. We will show that
ull wup in D{(Q) as R — oo. (4.8)

To do this, we first observe that

Lug = —=Vp(po) + po (f(0)+g2) =Fpy in Q. (4.9)
From (4.7) and (4.9), it follows that L (u{' — ug) = F§* — Fy in Qp. Hence noting
that ull € H} (Qr), we obtain

/ p|Vul|? + (A + p)(divud))? de
Qr

= / uNVug - Vul + (A + p) divug divul de +/ (FE — Fy) -ulfde.  (4.10)
Qr Qr

The second term of the right hand side in (4.10) is bounded by

/ (FE — Fy) - ult de < / 1p(oE) — ploo) [Vl da
QR QR

LR / (1FO)] + lgal) [ult| de

+/ po (¢ = 1) (f(0) + g2) - uf dw,
Qr
while

/Q 1p(o8) — plpo)| [Vl die < R M(eo)|Vull| 2,
R

R[50 + oo of] de < OB (1£(O) s + by ) 1V

and

/Q po (¢ = 1) (£(0) + g2) - uff dz
- /Q (€7 — 1) (Luo + Vp(po)) - ulf de

< C/Q (IVe lug'| + 10" = 1IVuf]) (1Vuol + Ip(po) — p(p™)]) dx
R

< M(co) (|VUO|L2(Q\QR/2) +1po — P°°|L2(Q\QR/2)) Vg2
Hence from (4.10), it follows that

where o(1) denotes a function of R which tends to zero as R — oo. This means
that there exists a sequence {R;}, R; — o0, such that {ué% 7} converges weakly
in D§(Q) to a limit ug°. It is easy to show that Lui® = Lug in D~1(Q), where
D~1(Q) denotes the dual space of D{(£2). Hence it follows that u® = ug in  and
{ué%j} converges weakly in D () to ug. Then by virtue of (4.10) and (4.11), we
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deduce that {ué% 7} converges strongly to ug in D§(Q). Since the above argument
also shows that every subsequence of {u{f} has a subsequence converging in D§(Q)
to the same limit ug, we conclude that the whole sequence {uff} converges to ug in
D{(Q) as R — oo, which proves (4.8).

We are now ready to prove Lemma 4.1. To prove the existence, we consider the
following initial boundary value problem

pi + div (pv®) =0 in (0,7.) x Qr,  (4.12)
pu; + Lu+Vp(p) = p(f =0 -Vof')y  in (0,T%) x Qr,  (4.13)
(p, w)li=o = (p, uf) in Qr and w=0 on (0,T.) x INp. (4.14)
Since pf > R72 > 0 in Qp, it follows from Lemma 3.1 that for each R > Ry, there
exists a unique strong solution (p,u) = (pf,u®) to the problem (4.12), (4.13) and
(4.14). It is easy to show that
|UR - U|C([O,T*];DémD3) + |(UR)t - Ut|L°°(O,T*;Dé)ﬂL2(O,T*;D2) —0
and |\/py g5 — \/Pogalr> + 195 — galpy =0 as R— oo

Combining this, (4.5) and (4.8), we deduce that there exists a large number R; > Ry
such that for all R > Ry, vg satisfies the estimate (3.7) with the spatial domain
being Qi and

L+ (p® +R7%) + |pg = (0 + R7%) s )

Hug | pyany) + 1V PE 95 L2 ) + 195 D (@R) < CO-
Therefore, from the results in Section 3, we conclude that for each R > Rj, the
solution (pft, u®) satisfies the estimate (3.17) with the domain being Q5. We extend
(p®, uf) by defining zero outside Q. Then by virtue of the uniform estimate (3.17)
on R, we deduce that there exists a sequence {R;}, R; — oo, such that {(pf7,u%)}
converges in a weak or weak-* sense to a limit (p,u). Moreover, since (p,u) also
satisfies (3.17) with the domain being Qg for each R > R, it follows that

p—p>= € L>®0,T;H?), ueL>0,T.;DinD*nNL*0,T.; DY),
uy € L°(0,Ty; D) N L*(0,Ty; D?*) and  /pu; € L*(0,Ty; L?).
We will show that (p,u) is a solution to the original problem (3.1)-(3.4). It is

obvious that (p, u) satisfies the boundary conditions in (3.3) and (3.4). Let R > Ry
be a fixed large number. Then since for all sufficiently large j, (pf, ufi) satisfies

(4.15)

the uniform estimate (3.17) with the domain being g, it follows from a standard
compactness result (see [22] for instance) that a subsequence of {(pf%,u%)} con-
verges to (p,u) in C([0,T.]; H*(Qg)). Using this result together with (4.8), we
can show that (p,u) satisfies the equations (3.1) and (3.2) in (0,T%) x Qg and
(p(0),u(0)) = (po,up) in Qg. Since R can be arbitrarily large, we have proved
the existence of a solution (p,u) to the original problem (3.1)-(3.4) satisfying the
regularity (4.15). The uniqueness of solutions with this regularity is easily proved.
Hence it remains to prove the time-continuity of the solution (p, ). First, from a
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classical embedding result, we deduce that u € C([0,7%]; D{ N D3). Then the time-
continuity of p follows immediately from Lemma 2.1. This completes the proof of
Lemma 4.1. O

We turn to the proof of Theorem 1.1. We first observe that by virtue of (4.4),
the vector field v = u° satisfies the hypotheses of Lemma 4.1. Hence it follows
from Lemma 4.1 that there exists a unique strong solution (p,u) = (p!,u') to the
linearized problem (3.1)—(3.4) with v = u°, which satisfies the regularity estimate
(3.17). Then an obvious inductive argument allows us to construct approximate
solutions (p*,u*) for all k > 1: assuming that u*~! was defined for k > 1, let
(p*,u*) be the unique solution to the problem (3.1)-(3.4) with v = u*~!. Then
since u*(0) = wg for each k > 0, it follows from Lemma 4.1 that there exists a
constant C' > 1 such that

sup (10"(t) = p™ o + pr(t) 2 + [0 (1) pyrops ) < €
0<t<T,

Ty B
ess sup (1o (0)og + VA et Olz) + [ (b @)+ u)[b) e < €

0<t<T,

for all k& > 1. Throughout the proof, we denote by C a generic positive constant
depending only on ¢y and the parameters of C', but independent of k.

From now on, we show that the full sequence {(p*,u*)} of approximate solutions
converges to a solution to the original problem (1.1)-(1.5) in a strong sense. To do
this, let us define

prEHL = phtl gk gkt — Mk and  pf = p(ph).

Then from the equation (3.1), we derive
PR div (R b)) + div (pPak) = 0. (4.17)
Multiplying this by 5**! and integrating over 2, we obtain

d [ _ks1p2
— d
g / p " P dx
< [ IVatllp P 4 (V6 ]+ Tt do
< CIVUH e [P B + C (190 s + [Fl0e) [V 2l o
Hence it follows from the uniform bound (4.16) that
d _ 1A= _
%|pk+1 %2 <n 1C|pk+1|%2 + 77|V’U,k|L2 (418)

for 0 <t < T, where n € (0,1) is a small number.
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In case that p> = 0, we need an estimate for |ﬁk+1|Lg in addition to (4.18).

Multiplying (4.17) by sgn(p*t1)[p**1|2 and integrating over ©, we get

d —k+1(3

— 2

dt/lp |2 dx
< [ IVatlp T+ (1VaH ¥+ Tl do
< OIVuH e [4412y o+ Clo i [V 2 6 .

1
Hence multiplying this by |ﬁk+1|z§ and using (4.16), we have

|Pk+1\2 <0 'O IVt (4.19)
for0<t<T,.
Next from the equation (3.2), we derive
PRI Lk gkt gt g (phtt

— HU(f — b b R

T AN v L L v )
Multiplying this by w**!, integrating over Q and using the equation (3.1) with
(p,v) = (p**1,uF), we obtain

1d
ia/pk+1|ﬂk+l|2d‘r+ﬂ/|vﬂk+1|2 dr

<c [t ut |\u’“+1|dx+c/|pk+l PV da
+C’/|pk+1||f— uP T Ve [a Y da (4.20)
4 [P (VR (9 V) [ da

Using the uniform bound (4.16), we can estimate the last three integrals of the
right hand side in (4.20) as follows:

/|pk+1 prIIvartt de < Clp* 3, %|Vﬂk+1 72

C/ |ﬁk+1‘ |f — ukt. vuk71||ﬂk+l|dx
< C|ﬁk+1|Lz\f — uk_l VuF = g Va2

(:1| k+1 2 |v—k+1 %2,

C [ VR do < O] VTR 4 K vk,
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and
C/pk+l (Wk\ V| + ‘uk—1||vﬂk|) @ | da
< Clp* 1 (0 pype + 05 pype ) VAT @54 |2V s
< 'OV et e 4|Vt 2.
For the case that p> = 0 or ) CC R3, the first integral is readily bounded by

Olp* g luf oy |V 2 < CIp" P2y + 51V 3.
For the remaining case, we assume that 2 is an unbounded domain and p>° > 0.
Then since pg — p>= € H? and H? — Cy, where Cj is the space of all continuous
functions on €2 vanishing at infinity, we can choose a sufficiently large number R > 1

(of course, independent of k) so that

3 o0 5 o0
1’ < po(z) < 1’ for € Q\ Bgya- (4.21)
On the other hand, it follows from Lemma 2.1 that
Pt @)
t
= po(U*1(0,t,2)) exp {/ divuf (s, UM (s, t,x) ) ds| , (4.22)
0

where UFT1 = UF+1(¢, s, z) is the solution to the initial value problem

LU, s, 0) = uF(t,UFT (L, 5,2)),  0<t<T.,
Uktl(s,s,7) =z, 0<s<Ty, €.

In view of (4.16), we deduce that
t ¢
/ }divuk(s, U (s, t,2) )| ds < / |Vu*| o ds < Ct < In2
0 0
and
(U0, t,2) — x| = [U*H(0,t,2) — UM (¢, )|

t
s/ [k (r, UM (7, t,2))| dr < Ct < g
0

for all (¢, ) in [0,T1] x 2, where T7 is a small positive time in (0, 7. ) which depends
only on T, R and the parameters of C. In particular, note that if 0 < t < T} and
x € Q\ Bg, then UM(0,¢,2) € Q\ Bg/>. Hence it follows immediately from (4.21)
and (4.22) that

gpo" < PPt x) < gpoo for (¢t,x) €[0,T1] x (2\ Bg). (4.23)

Using this result, we can estimate the first integral in the right hand of (4.20) as
follows:

0/ P ufl[a™t de < O[p* | L2 uf | py | VE ™ 2
QNBRr 0

~ o’ -
< O™ + £ var
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and

_ _ C _ E ki—
0/ P b [T de < /w“\ /A ub | de
O\Br VP

S C‘ﬁk+1‘2 |Vuk+1 2

Therefore, substituting all the estimates into (4.20), we deduce that

d
— IV at T (@)1 + u|Vat (b))

dt
< 'CPRT(E) + 20| VaR (t)[7 (4.24)
for 0 <t < Ty, where

(pk+1(t) h/iﬂ |2 + |pk+1( ) L2 if p*>0
|\/7ﬂ’C |L2 +|pFHLt )|L§ . otherwise.
20

By virtue of (4.18), (4.19) and (4.24), we deduce that

L) + (D) < 7 O () + gy () (425)

for 0 < t < Ty, where ¢F*1(t) = [Vu**!(t)|2,. Note that ¢*T1(0) = 0. Hence
integrating (4.25) over (0,t), we have

t t t
k+1 t k+1 d < 4 k d —lé k+1 d ’
’ <>+u/0w (S)an/ow(S)ern /Oso (s) ds

which implies, in view of of Gronwall’s inequality, that

O TL(t) + / Y1) ds < nCexp(n~tCt) ( /0 YF(s) ds>. (4.26)

0

Choosing 1 > 0 and then 75 > 0 so small that

nC < To <T; and exp(rflé’TQ) <2

we deduce from (4.26) that

Z( sup oF(t) / PrTL(t) dt) <C w()dt<oo.

o1 \0<t<T»

Therefore, we conclude that the sequence {(p*,u*)} converges in a strong sense
to a limit (p,u) satisfying the regularity estimate (4.16) with T replaced by T5.
Adapting the proof of Lemma 4.1, we can show that (p,u) is a solution to the
original IBVP(1.1)-(1.5) with T replaced by T». This completes the proof of the
existence. The proof of the uniqueness is similar to (indeed easier than) the proof of
the convergence and so omitted. We have completed the proof of Theorem 1.1. O
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5. PROOF OF THEOREM 1.3

To prove Theorem 1.3, we follow basically the same methods as in the proof of
Theorem 1.1. Hence we consider the linearized problem (3.1)—(3.4) with a known
vector field v such that

v e C([0,T); Dy N D3N L*(0,T; D*), v, € L*(0,T; D) N L*(0,T; D?),
t20 € L®(0,T; DY), t2v, € L™(0,T;Ds N D?), t2vy € L*(0,T; DY),
tvy € L(0,T; D N D?),  tvy € L°°(0,T; D§) N L*(0,T; D?), (5.1)
t3uy € L0, T: Dy N D?) and  t3vy, € L2(0,T;D}).

For positive initial densities and bounded domains, we have the following existence
and regularity results for the linearized problem.

Lemma 5.1. Let Q be a bounded domain in R® with smooth boundary. Assume
that po, uo, f,v and p = p(-) satisfy the condition (5.1) as well as the hypotheses of
Theorem 1.3. If in addition, pg > 0 in Q for some constant § > 0, then there exists
a unique solution (p,u) to the linearized problem (3.1), (3.2) and (3.3) such that

peC(0.TLH?), peC0,T;H?), py € L¥(0,T;L%) N L*(0,T5 H'),

pt € L. ((0, T HY),  pus € Lo ((0,T); L?),
we (0, T} HE A HY) A L2(0, T; HY),  u, € C(0,T); HY) 0 I2(0, T; H2),
ug € L2(0,T;L?), we€ LS. ((0,T); HY), wuy € Li2.((0,T); H?),

Utt € L?ooc((oaTLHOl n H2)a Utt S L?ooc((OaT]yLQ) N L2 ((O,T],Hé),

loc

e € LEL((0,T; HY) and p>C7'5 on [0,7T) x Q.

Proof. The existence of a unique solution p € C([0,T]; H?) to the linear hyperbolic
problem (3.1) and (3.3) was already proved in Lemma 2.1. Then the remaining
regularity of p can be derived easily from (3.1) and (5.1).

Next, if we define F' by F' = —Vp(p) + p(f — v - Vv), then

F e L*0,T;H?), F,cL?*0,T;L%; FeLZ((0,T);H?),

loc

F, € LS, ((0,T); HY), Fy € Li5,((0,T);L?) and  Fy € L7, ((0,T]; H1).

Moreover, we observe that py ! (F(0) — Lug) = —v(0) - Vo(0) — go € H{. Hence
Lemma 2.2, Remark 2.3 and Lemma 2.4 allow us to deduce the existence and
regularity of a unique solution u to the linear parabolic problem (3.2) and (3.3).
This completes the proof of Lemma 5.1. O

Let (p,u) be a solution to the linearized problem (3.1), (3.2) and (3.3) with the
data po, ug, f,v and p = p(+) satisfying the hypotheses of Lemma 5.1. We will prove
some local a priori estimates for (p,u) which are independent of the lower bound §
of pp and the size of the domain €.

Let us choose a constant ¢y > 1 so that

L+ p™ +[po = p>|u= + [uolpy + [Py 92|12 + |92py < co-
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Note that go = py ' (Lug + Vp(po)) — f(0) = —v(0) - Vo(0) — u;(0). Moreover, we
assume that

[v(0)| pgaps < 1+c1,

Ty
sup [o(0)lpy + [ (Ot <1+
0<t<T. 0

Ty
sup [o(0lpe + [ (jolt)iby + o(Ofe) ds < 14 ca
0<t<T, 0 ©

T
ess sup (\Ut(t)bg + \U(t)|D3) +/ (loe@)IBe + [o()[pa) dt <1+ ey,
0

0<t<T,

(5.2)

T,
ess sup (t% vy (¢)| p= + t%|v(t)\D4) + / tlug ()| dt < 1+ cs,
0<t<T. 0 0

T
2| ()| dt < 1+ c,

ess sup (t|vtt(t)|Dé + t|vt(t)|D3> + /
0

0<t<T,

T
ess sup (t%|vtt(t)|D2) + / s (8) [y dt <1+ co.
0<t<T, 0 0

for some time T, € (0,7") and constants ¢;’s with 1 < ¢g < ¢1 < e <c3 <y <
¢5 < ¢g, which depend only on ¢y and the parameters of C.
Adapting the proofs of Lemma 3.2-Lemma 3.5, we can prove

Lemma 5.2.

[Pz + [p(t) = p=|us < Ceo,  [p(t) = p™|us < M(co),

t
e < Cci, ()] < M(co)e3, / |14 (3) |72 ds < O,
0
t
/O [pee(s)[72 ds < M(co)c5,  |pe(t)lm= < Oty |pe(t)] 2 < M(co)cd,
t
pee(t)]22 < Oty [pee(t)]12 < M(eo)et, / o1 (5)| 1 ds < COcf,
0
t t
[ ol ds < Men)ds, [ slpun()liads < Cel?.
0 0
t
/ s|pese(8)|32 ds < M(co)es®  and iréfp(t) >0
0
for 0 <t <min(T,T1), where Ty = (1 +c4)™t and p> = p(p™).
Lemma 5.3.
t
Oy + [ Tu(s) b ds < M(co)
0

for 0 <t < min(Ty, T), where To = (1 + c4) ™% < T1.
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Lemma 5.4.

t 3 1
V(O + )b+ [ (o) by + u(s)be) ds < Men)efef

¢
Jue ()| + [u(t) s +/0 (Iv/puse(s)[i2 + ur(s)[De + [u(s)[Ba) ds < M(er)es®
for 0 <t < min(Ty, T3), where T3 = (1 + ¢4) ™% < Ts.

Using the same methods as in the proof of Lemma 5.4, we can derive estimates
for higher regularity in positive time.

Lemma 5.5.

B ()3 -+t (Dl + (O + [ shue()/2y ds < M(er)el?
for 0 <t <min(T%,Ty), where Ty = (1 +¢5)7% < T3.
Proof. We differentiate (3.9) with respect to ¢ again and derive

puttt + Luge = =Vpge + p (f —v - Vo), + 20 (f —v- Vv — ),
+pu (f—v-Vo—uy). (5.3)

Multiplying this by u;; and integrating over {2, we have

1d
5%/P|Utt|2 dac—l—/u\Vutt\Q-l-(/\—i-u)(divutt)Q dx
= /pttdivutt dI-l—/p(f—v V), - Uy dx
+2/pt (f —v-Vu), ~uttdm+/ptt (f —v-Vv) - uyde (5.4)

3
*i/Pt|Utt|2d$*/pttUt Uy dx.

Following the same arguments as in the derivation of (3.11) from (3.10), we can
estimate each term of the right hand side of (5.4) as follows:

/pttdivutt dx S C|ptt|2Lz + %‘Vutt‘%%
204 12 2 H 2
/pftt g Az < | fe - | puse gy < Ccgl feelfp—1 + [Vpuse|72 + E|V“tt|L2a

1
—/P(U Vo)yy - up dr < Clplfoe (|U\D;np2|vtt|pg + |Ut|D5\Ut|D5mD2) |Vpust|L

< 07 Cesly/puslis + nlvelhy + cilvelhynpe

2 [ (7 =0 V), do < Clouls (Ifilao + ologooe ol oy ) [Vl

< Oc} (|filfa + ) + 45 Va3,
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/Ptt (f — V- V’U) c Ut dzx S C|ptt|L2 <|f‘H1 + "U|%émD2) |Vutt|L2

1
< CC§|ptt|2L2 + ﬁ|vutt|2L27

3 3 .
—§/pt|utt|2 dx = §/d1v(pv)\u,5t|2dac

< 3/p\1;||utt||Vutt| dr < Cci|\/pus|rs + %|Vutt|2L2

and finally

- /Pttut Uyt dx

< /(Ipt\lvl + plo]) (luel [Vuge| + [Vue|[uge|) do
3 1 1
< Clpt|s|vlpsnpzlusl py Vsl Lz + Clpl fo< [ve| pyue] By |V pus] L2 Ve 2
3 1 1
+ Clpl e vel pg luel pa [V puee | F2 [ Vue 2
3
= C|Pt\is|v|%5mp2|ut|%5 + C|P|iw\“t|%5|utbg\\/ﬁut|L2
3 2 2 2 P 2
+ Clpl Lo velpy luelpy + ClVpuslz + E\VUttle
< Celfurlby + [Vpuslte + Cly/pualia + £ Vuula.

Substituting all the estimates into (5.4) and taking n = (1 + ¢5) ™!, we have

d
7 p|utt|2 dz+u/|Vutt|2d:c

<C (Cg|ftt|?q—1 + c3lfelTe 4+ Ipulie + cslowlie + Ci|’0t\%3mD2) (5.5)
7012 2 1, |2 4 2
+C (%\Utbg + |\/ﬁut|L2) + (1 4¢5)" |vulpy + CcslVpuze
for 0 <t < min(7Ty,T3). From Lemma 5.2 and Lemma 5.4, we observe that
| fu (Bl € L2O.T), t:[vn(t)|py € L*(0.T2)

and all the remaining terms in the right hand side of (5.5) are integrable in (0, min(7%, T3)).
Hence multiplying (5.5) by ¢ and integrating over (7,t), we obtain
t
V@l +u [ o Tun(e)de

T

t
S ,2\4(01)04112 + T‘\/[sutt(T)|2L2 + / cht|\/ﬁutt(t)\%z dt

for 0 < 7 <t < min(7%, T3). By virtue of Gronwall’s inequality, we deduce that
t

t|\/ﬁutt(t)‘%2 +/ S|Vutt($)|%2 ds S M(Cl) (012 + T|\/ﬁutt(7)|i2) (56)

for 0 < 7 <t < min(7},Ty), where Ty = (1+c5)~2 < T3. On the other hand, since
Vpu € L*(0,T; L?), it follows (see also Remark 5 in [1]) that there is a sequence
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{7} of positive times such that
7, — 0 and Tk|\/ﬁutt(7k)\%z —0 as k — oo.

Therefore, letting 7 = 7, — 0 in (5.6), we conclude that

tlv/pue (t)[72 + /Ot slue(s)| By ds < M(e1)cy?
for 0 < t < min(7%,Ty). Moreover, since
Lu=—-Vp+p(f—v-Vv—u)
and
Lu; = —Vpi+p(f —v-Vo—u)t + pe(f —v- Vo —wy),
it follows from the elliptic regularity result that

tlug ()22 + tlu(t)|He < M(cp)ch? for 0 <t <min(T,T}).

This completes the proof of Lemma 5.5.

Lemma 5.6.

t
e (0) 2y + lun(t)s + / & (1Vpuse(s)3a + lure(5)[e) ds < M(er)e
0

for 0 <t < min(Ty,Ty).
Proof. Multiplying (5.3) by w4 and integrating over €2, we have
/p|um|2 dzr + %% /,u|Vutt|2 + (A 4 p) (divag)? d
= / (=Vpu+p(f —v-Vv),,) - uw do
+/2pt(f—v-Vv—ut)t g AT

+/ptt(f—v-Vv—ut)-uttth;.

We easily estimate the first term of the right hand side in (5.7) as follows.

d . .
- / Vit - upe dx = % / predivuy de — / Deeedivug dx

< %/pttdivutt dz + |pue|32 + |Utt\%3
and
/p(f —v-V)y - U d
< Ol |(f = v - VO)utl 2| /Duusee] 2
< C|p|%00(|ftt|L2 + vl panp2lveel oy + vt pa[vel ppap2 ) [v/Pusee| 2

1
< Cc (|ftt|%2 + |Utt|%>g + \vt%gmm) + §|\//3uttt|%2~

33

17
5
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To estimate the second term, we observe that

/pt(fo'Vv)t'utttdx

_4d
Tdt

—/pt(f—v-Vv)tt-uttdm

pt(f—v-Vv)t-uttdm—/ptt(f—U-Vv)t-uttdm

and

d 1 1
_/ptutt'uttt dxr = —a/f)t <2|Utt|2) dz*’/ﬂtt (2|Utt2) dz.

But in view of Lemma 5.2, we obtain

—/Ptt (f —v-Vv), - up dr < Clpyre (|ft|H1 + |U|ngD2|Ut|DémD2) lut| pa

<Cc (\ftﬁm +[velDype + |Utt|§73> ;

- / p(f =0 V) da < Cluls| (f — v Vo), |12 e oy

<Cq (Ifttﬁz +[vet| By + vl By pe + |Utt|2D5)
and

[ o (ghuet) o= = [ aivton) (Gl ) as

< [ oullol + ploa) e V| o

S CC§|U“|2D$ —+ C\vt|2DémD2|\/ﬁutt|%2.

Similarly, we can estimate the last term as follows.

/ptt (f —U- VU) Ut AT

d

= ptt(ffvon)~uttdx7/(ptt(ffv~Vv))t~uttdx
d

Sa/ptt(f—v-Vv)-uttdx

+C¢% (Iouil3e + [ fildn + lonfyepn + el
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and

- /Pttut U AT

d

= —% PttUt - Utt dx + / (Ptttut + Pttutt) Uy dT
d .

= T dt Prithy - Ugy AT — /le((Pv)tt)ut Uy dT 4 /ptt|utt|2 dx
d

< T /pttut Uy dr + CCZ <|ut|2D10D2 + |Utt|2D1>
t 0 0
2 2 2 2 2
+C (lnfgps + louldy ) (Ipudlia + ufby + |youali:)

Substituting all the above estimates into (5.7), we have
1 2 1 d 2 . 2
3 plugee]” dx + 1% w|Vu|* + (A + p)(divug)® da
d
< £A1 +Cc; (|pttt|2L2 + |l 72 + | fuel 72 + ‘ftﬁll)
+C6§ (Joulby + loeldyape + luelyape + lulb, )
+C (lvt|2DémD2 + |Utt|3r)g) (\\/ﬁutﬁz + fuelpy + |\/ﬁutt|2L2>
for 0 <t < min(7%,Ty), where
A (t) = /(pttdivutt +2p:(f —v - V)i - uge + pue(f —v - V) - uge) () do

- / (pt|utt\2 + prug. - Utt) (t) dex.

Hence if we multiply this by ¢? and integrate over (7,%), then by virtue of the

previous lemmas, we deduce that

1t 2 2 K2 712

5/7 =/ pusee (1) 72 dt + 515 [V (t)]72

< M(c1)el? + Cr2|Vug ()22 + ‘EQAl(E)‘ (5.8)
+ %A1 (1) +C/ttA1(t)|dt
for 0 < 7 <t < min(Ty,Ty). Tt is easy to show that
(AL (6)] <t 1M (cy)elt + g Vu(t)2.  for 0<t<min(T,,Ty).

Therefore, recalling that

/t 8|V ()22 ds < M(cy)cy? for 0<t<min(T,Ty)

0

and

72| Vg (14)]32 — 0 for some sequence {7} with 7, — 0,
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we conclude from (5.8) that

t
/ | Busee ()22 ds + 2| Vure ()22 < M(er)el”
0

for 0 <t < min(Ty,Ty). Then in view of the elliptic regularity result, we complete
the proof of Lemma 5.6. O

Lemma 5.7.

£ 1/pusee () |72 + |uee (£) 2 + /Ot §°usue(s) [y ds < M (er)e5”
for 0 <t < min(T%,Ts), where Ts = (1 +¢) ™% < Ty.
Proof. Differentiating (5.3) with respect to ¢ again, we derive

puttes + Ly = —Vpgee + p (f —v - Vo) +3p: (f —v - Vo —uy),
+3pue (f —v-Vo—uy), + pue (f —v- Vo —uy). (5.9)
Multiplying this by us; and integrating over 2, we have
1d .
5@ /p|um|2 d.’E + /,U/|V’thtt‘2 + ()\ + /J,)(le’U,ttt)2 d.’E
= / (ptttdiVUttt +p (f —U- Vv)m : Utt) dx

5
+3/pt (f —v-Vu), - up de — §/pt|um|2 dx (5.10)
+3/Ptt (f —v-Vv), - ugrde —3 / Pttt - Uggs AT

+/Pttt (f —U- VU) “Uggy dT — /ptttut Uy da.

Using Lemma 5.2 and Lemma 5.4 , we can estimate each term of the right hand
side of (5.10) as follows:

- 1
/ptttdlvuttt dx < C|pttt|2L2 + T6|Vuttt|%27
2 2 2 H 2
/pfttt'uttt dzr < |fttt|H*1|pUttt|Dé < CCO|fttt|H—1+|ﬁuttt|L2+T6|vuttt|L27

— / p(v- V), - Uy da
1
< Cloli (Iolprpslvuel by + vl pyepe el py ) 1Pl 22
< Uﬁlccg‘\/ﬁuttt\iz + 77|'Uttt|2Dé + |Ut|2DémD2‘Utt|2D(l)7
3/pt (f —v-Vu), - uy do
< Clpe|ps (|ftt|L2 + |U\D5nD2|Utt|D5 + |Ut\Dg|Ut|D5nD2) V|2

< Ccf (|ftt|%2 + Jvul by + |Ut|D5mD2) + %Wuttﬁh
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5 5 .
fé/pt\um\zdx: 5/d1V(pU)|Uttt|2d$ S C/p|v\|uttt|\Vuttt|d:E

I
< Ccly/puali» + Elwm\iz,

3/ptt (f —v-Vv), - upy do
< Clpulee (1filmr + lologee vl pye? ) [Varal o

< Cel* (|l + loelbyps) + 151 VunlEe:

_3/pttutt U AT
< C/ (loellv] + plvel) (lueel [Vure| + [Vuge|[uee]) do
3 1 1
< Clpt|pslvlpprpe [uee| pa | Vuree |22 + C|P|foo|vt\[)g\utt|éé|\/ﬁutt|zz|vuttt|m

3 1 1
+Cpl 1o lve| py |wee | pi |/ pusee| F2 Ve 72

< Ccllunlhy + |Vpunlt + Clypumlta + 1o Va2,

/Pttt (f —v- Vo) -up dr < Clpgt| 12 (|f|H1 + |’U|2D(1)OD2> [Vaugse| 2
< Ccslpruliz + %|Vuttt|%2

and finally
- /Ptttut Uttt dT
< C/ (lpeel[o] + |pel|ve] + ploee]) (el [Vuee| + |Vug||[uge]) do
<C <|Ptt|L2|U|ngD2 + |Pt|H1|Ut|Dg) |uel pynp2| Ve 2
+C|p|§°°|vtt|Dé|\/ﬁut|%2|ut|%é|vuttt|L2

3 1 1
+C|P|io«> "Utt|D[1, |Ut|D5 |\/5Uttt|iz \Vuttt|iz

< Cei’fulpynpe + M(er)esloul by + Cly/puneliz + l%lwmliz-
Substituting all the estimates into (5.10) and choosing 1 = (1 + cg) ™!, we have

d
ﬁ/p|uttt|2 dw+,u/|Vum|2 dx

< Cep® (\ptttﬁ;z + |l 32 + | feeelF—1 + | fuel72 + |ft|fql)

+M(01)C}10 <|Ut\2Dész + |Utt‘2DC1) + |Ut|%émD2|Utt|%é) +(1+ 06)71|’Uttt|2Dé

+Ccy” <|utt|§)5 + [uelpype + |\fputt|2L2> + Ccgly/pursel?
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for 0 < t < min(T,Ty). Hence multiplying this by ¢3, integrating over (0,%) and
using Lemma 5.2-Lemma 5.5, we deduce that

T
73 —
ElVpun®F+ [ )b di
0

T
< M(cp)e2? +/ Cegt’|/pue (t)|7 2 dt
0

for 0 < t < min(Ty,Ty). Therefore, in view of Gronwall’s inequality, we conclude
that

¢
tly/pues (t)|7- +/ §°[usne(s) [y ds < M (er)es?
0
for 0 <t < min(7%,T5), where T5 = (1 + ¢g)~? < Ty. Then by virtue of the elliptic

regularity result, we complete the proof of Lemma 5.7. ([l

Combining all the previous lemmas, we obtain

ww%+4mwmw§Mm»

[SVINTN

9

H®W+AXW@&+W@&)%SM@@6
mmmwwwm+4%mwa+wmw@<M@@%
ﬁmwm+ﬁwmm+fww@EMSMmm2

tuee (1) py + tlue(t)ps + /Ot 5% |uee (1) 2 dt < M (c1)c3?,

£ ure (6) 2 + /Ot s (3)[y dt < M(er)c2,

lp(t) = p™ s + |pe(t) |2 + [V/pue ()| L2 + /Ot [V/pur(s)| 72 ds < M(cr)c3?,

t
1 3
t4|Vualze + 6 Vpun(t)ls + | VBun (s ds < Me) .
0

for 0 <t < min(Ty, Ts), where Ts = (1+cg) 2. Therefore, if we define the constants
¢; and T, € (0,1) by

c1=M(cg), co=M(c1), c3= cg, Ccq = 026:1)’2,

cs = cach?, g =coct? and T, = min(T, (1 +c)~?),
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then we conclude that

T,
wpwwm+/ () s dt < e,
0

0<t<T,
Ty
sup [ul®)lpe + [ (Ju@)fby + fult)pe) ds <,
0<t<T, 0
Ty
ess sup ([u (0] y + fult)lps) + [ (@) + [u(®)e) dt < e
0<t<T. 0

.
ess sup (t%|ut(t)\D2 + t%|u(t)|D4> —|—/ tluge ()3, dt < 5,
0<t<T, 0 0

ess sup (¢l (8)] py + thue (D] ps ) < o,
0<t<T.
3 T.
ess sup (#Hun (1)) + [ a0yt <
0

0<t<T.

t
ess sup (|p(t) = p>[us + [pe(t) 2 + [V/Pue(t)|12) +/ |[V/puse(s)[72 ds < cs,
0

0<t<T,

t
1 3
ess Sup (t2 |V/pust| 2 +t2 |\//3Uttt(t)|L2) +/ s?[\/puri ()| 72 ds < co.
0<t<T, 0

39

By virtue of these a priori estimates, we can prove the existence and regularity

of a unique local classical solution (p,u) to the original nonlinear problem following

exactly the same arguments as in the proof of Theorem 1.1. We omit the details.

This completes the proof of Theorem 1.3.

6. PROOF OF THEOREM 1.4

To prove Theorem 1.4, we consider the following initial boundary value problem

pt +div (pu) =0 in (0,7) x €,
pr+u-Vp+ypdivu =0 in (0,T) x 9,

(pu)r + div(pu @ u) + Lu + Vp = pf in (0,7) x Q,

(p, p, w)|t=0 = (po, po, up) in €, u=0 on (0 x 0N,

(0,T)
(o, pyw)(t,x) — (p™, p=,0) as |z| — o0, (t,x)€ (0,T)x1Q,
where the known data pg, pg, ugp and f satisfy

(o —p=,po—p*) e H>, p®€Ry, p*eR, pp>0 in €,
up € DFND?,  fe L*0,T;H*) and f; € L*(0,T;L?%)

and
Lug + Vpo = po (f(0) + g2) for some go € D} with /p, g2 € L*.

Theorem 1.4 is an immediate corollary of the following result.
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Theorem 6.1. Assume that the data po,po,uo, f satisfy (6.6) and (6.7). Then
there exist a small time Ty, € (0,T) and a unique strong solution (p,p,u) to the

IBVP(6.1)-(6.5) such that

(p—p>=, p—p>) € C(0,T.); H*), wu e C([0,T.]; Dy N D*) N L*0,T.; D*),
uy € L=(0,Ty; DY) N L*(0,Tw; D?)  and /pu, € L*(0,Ty; L?).

Moreover, if the external force f satisfies the additional reqularity (1.13), then the
velocity u satisfies (1.14) with Ty replaced by some Ty, € (0,T%] and so (p,p,u) is
a classical solution of (6.1)-(6.3) in (0, Tws) X Q.

Proof of Theorem 1.4 from Theorem 6.1. Let (po,uo, f) be a given data satisfying
the hypotheses of Theorem 1.4. Then Theorem 6.1 guarantees the existence of a
unique solution (p,p,u) to the IBVP(6.1)-(6.5) with the initial data (pg,po,uo),
where po = Ap] and p> = A(p™>)".

To prove Theorem 1.4, we have only to show that p = Ap”. Let us denote
P =p— Ap”. Then using (6.1), (6.2) and (6.4) together with the fact that v > 1,
we deduce that

P, +u-Vp++pdivu =0 in (0,7%) x Q,

p(0)=0 in Q, peC([0,T.);H').

Hence by virtue of a standard energy method, we easily conclude that p = 0 in
(0, T) x Q. This completes the proof of Theorem 1.4. O

Finally, we turn to the proof of Theorem 6.1. For this purpose, we follow the
same strategy as in the previous sections. Let us consider the following uncoupled
linearized problem

pt +div (pv) =0 in (0,T) x £, (6.8)
pe+v-Vp+ypdive =0 in (0,7) x Q, (6.9)

pus + Lu+ Vp = p(f —v-Vv) in (0,7) x4, (6.10)

(ps Py W)lt=0 = (po, Po, uo) in €, u=0 on (0,7)x 99, (6.11)
(py py uw)(t,x) — (p>, p>,0) as |z] =00, (t,z)e€ (0,T)xQ, (6.12)

where v is a known vector field such that
v € C([0,T]; Dy N D3 N L*(0,T; D*), v, € L>=(0,T; D}) N L*(0,T; D?). (6.13)

Note that the proof of Lemma 2.1 can be used without any essential change to
deduce the corresponding result for the linear hyperbolic problem (6.9), (6.11) and
(6.12). Hence adapting the proof of Lemma 3.1, we can prove

Lemma 6.2. Let Q be a bounded domain in R3 with smooth boundary. In addition
to (6.6), (6.7) and (6.13), we assume that pg > § in Q for some constant § > 0.
Then there exists a unique solution (p,p,u) to the linearized problem (6.8)—(6.11)
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such that
p,pEC([O,T];HB), Pt Pt GC([OaT];Hz);
uw € C([0,T); Hy n H3) N L*(0,T; HY),
uy € O([0,T]; HY) N L*(0,T; H?), (6.14)
uge € L*(0,T;L?) and p>6 on [0,T] x Q.

for some constant § > 0.

Moreover, from Lemma 2.1 and its proof, it follows that

t
10(t) — 015 < (190 — P\ + p) exp (c | 1oy ds) ,
0

t
19(8) — 5115 < (1P — 5| 1as + ™]) exp (o JREOIE ds)
0
and
t
lgfp(t) > (lgfpo) exp <_C/o [v(s)|ppape dS)

for 0 <t < T. Here we denote by C' a generic positive constants depending only
on the fixed constants p, A\, T, v and the norm of f.
Hence adapting the proof of Lemma 4.1, we can also prove the key lemma.

Lemma 6.3. Let us choose a constant cg > 1 so that

L+ p> + [p>=|+[(po — ™, o — ™) ms + |wolpy + [Py 9222 + |92]p3 < co.

Then there exist positive constants Ty € (0,T) and ¢;’s, depending only on ¢y and
the parameters of C, with the following property:

If v is a vector field satisfying the regularity (6.13) with T replaced by T, and the
estimate

[v(0)|prrps < c1,

T,
sup [0(t)|ps + / 0(t)[2 dt < 2,
0<t<T, 0

Ty
sup [o(t)lp+ [ (@l + o(®fs) dt < ca
0<t<T. 0

Ty
ess sup ([on ()l + [o(Olos) + [ (e +o(®fe) de < ca
0<t<T. 0

then there exists a unique solution (p,p,u) to the linearized problem (6.8)—(6.12)
satisfying the reqularity
(p=p,p=p™) €C(0, T HY), u € C([0,T.); Dg N D*) N L(0, T2; DY),

uy € L=(0,Ty; DY) N L2(0,Ts; D?)  and /pus € L°°(0,T,; L?)
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and the estimate

Ty
sup [u®)lpy + [ fult)ibe dt <
0<t<T. 0

Ty
sup [u(®)lpe + [ (lua(Of; + a0} ) di < ca
0<t<T, 0

T
ess sup ([u ()] y + fult)lps) + [ (@) + lu(O)e) dt < co
0<t<T. 0

58 Sup (o= p=, 0= 0=)(O)| s + |(pes pe) ()| 2 + |V/Pue(t)] 12) < 4.
<t<T

The first part of Theorem 6.1 can be deduced from this key lemma following the

same arguments as in the proof of Theorem 1.1. Combining this idea and the proof

of Theorem 1.3, we can also prove the remaining part of the theorem. We omit its
details.
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