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1. Efficient and fast numerical methods to compute
fluid flows in the geophysical β plane

T. SAKAJO 1

Introduction

We consider a fluid flow in a rotating sphere with an unit radius. The flow is incom-
pressible and inviscid, and covers the sphere with a constant density. This kind of
flow is called a geophysical flow, since it is one of the simplest models of atmospheric
flows in the earth. In practical study of geophysical flows, we are sometimes interested
in a local flow in the neighborhood of a certain point in the sphere. In that case, we
consider flows in a plane which is tangent to the point as an approximation model.
The plane is called the geophysical β plane. In the present article, we introduce an
equation which describes a motion in the β plane. And a numerical procedure to
compute the equation is formulated. Furthermore, we suggest an efficient technique
to compute it fast and accurately by using a fast algorithm and a parallelization based
on the idea of Domain Decomposition. As an example of its application, we compute
a two-dimensional flow problem in the β plane and investigate the effectiveness of the
fast method and the effect of rotation on the evolution numerically.

Numerical computations of the geophysical flows play an important role in the
atmospheric research, such as the weather forecast and the investigation of the en-
vironmental issues. In spite of its importance, it is not easy to obtain useful and
practical results since it costs too much to compute these problems for sufficiently
fine resolutions. That is why a fast and accurate numerical method is required. The
purpose of the study is to give an efficient numerical method to compute such flows
and to show its effectiveness by applying it to some fluid problem.

In the next section, we suggest the fast numerical method: We consider the equa-
tion of the flows in the β plane, whose detailed definition and formulation is explained.
Our numerical method called the point potential vortex method is introduced. Then,
some techniques to compute it fast and accurately are appearing. In the third section,
we show some results of the numerical computation of a fluid flow in the β plane: (1)
effectiveness of the fast method and (2) investigation of the influence of rotation on
the evolution of the flow. The last section is conclusions.

Numerical methods

The equation of motion of fluids in the β plane

Now, we introduce an equation of motion of the flows in the geophysical β plane. Let
φ and λ be a latitude and longitude of a point in the sphere, respectively. When fixing
a point (λ0, φ0) in the sphere, we consider the plane which is tangent to the point and
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Figure 1: The β plane associated with the point (λ0, φ0) in the sphere.

introduce a new pair of variables (x, y) as follows (See Figure 1):

x = (cosφ0)λ, y = φ − φ0, (|x|, |y| << 1).

We define the stream function Ψ and the vorticity ω in the β plane as ω = rotu, ∆Ψ =
−ω. The velocity field u is recovered from the stream function by the formula
u = (−∂yΨ, ∂xΨ), and ∆ is the two-dimensional Laplacian. Then, the equation of
incompressible Euler flow in the β plane is given by

∂

∂t
∆Ψ +

∂(Ψ, ∆Ψ)

∂(x, y)
+ β

∂Ψ

∂x
= 0, (1)

where the second term is two-dimensional Jacobian:

∂(a, b)

∂(x, y)
=

∂a

∂x

∂b

∂y
−

∂a

∂y

∂b

∂x
.

The equation differs from the usual two-dimensional Euler equation in the effect of
rotation (β-effect) of the third term. Therefore, the vorticity is no longer an invariant
quantity along the trajectory of the fluid element just like in two-dimensional case.
However, we can define a “potential vorticity” by

q = ω + βy.

Then, substituting it to the equation (1), we obtain the following simple equations:

Dq

Dt
= (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)q = 0 (2)

∆Ψ = −ω, (u, v) = (−∂yΨ, ∂xΨ), (3)
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where D
Dt

represents the derivative along the trajectory of the fluid element which
moves together with the fluid flows (material derivative).

What the equation (2) indicates is the potential vorticity is invariant along the
trajectory of the fluid element. That means, when (x(t), y(t)) is a position of the fluid
element at some time t, the potential vorticity at the position is given by the initial
potential vorticity at (x(0), y(0)):

q(x(t), y(t), t) = q(x(0), y(0), 0) ≡ q0.

Hence, the vorticity ω at the position (x(t), y(t)) is represented by

ω(x(t), y(t), t) = q0 − βy(t). (4)

Based on the considerations in the section, we show a numerical method and some
techniques to compute the evolution of the flows in the β plane fast and accurately in
the following subsections.

The point potential vorticity method

At first, the velocity field is obtained by solving the Laplace equation (3). For the sake
of simplicity, we impose the periodic boundary condition in the x direction. Then, the
velocity field (u, v) = (−∂yΨ, ∂xΨ) are given by

u(x, y, t) = −
1

2

∫
ω(x̃, ỹ, t) sinh 2π(y − ỹ)

cosh 2π(y − ỹ) − cos 2π(x − x̃)
dx̃dỹ,

v(x, y, t) =
1

2

∫
ω(x̃, ỹ, t) sin 2π(x − x̃)

cosh 2π(y − ỹ) − cos 2π(x − x̃)
dx̃dỹ. (5)

We must note that the integrals on the right hand side are singular integral. What
follows is our numerical procedure.

1. We discretize the computational domain which includes the vorticity field. Then
we obtain the discretization points {(xn, yn)}, (n = 1, ..., N). We must discretize
a sufficiently large region including no vorticity at the beginning because of
generation of the “ghost vorticity”, which we will explain later section.

2. We assume that the vorticity concentrates in the discretization points, (Point
potential vortices).Then we approximate the vorticity field as follows:

ω(x, y, t) =

N∑
n=1

(qn0 − βyn)δ(x − xn, y − yn), (6)

where qn0 is initial potential vorticity and δ is Dirac’s delta function.

3. Substituting (6) to (5), we compute the velocity field induced by the vorticity.

uN(x, y, t) = −
1

2N

N∑
n=1

(qn0 − βyn) sinh 2π(y − yn)

cosh 2π(y − yn) − cos 2π(x − xn)
,

vN (x, y, t) =
1

2N

N∑
n=1

(qn0 − βyn) sin 2π(x − xn)

cosh 2π(y − yn) − cos 2π(x − xn)
. (7)
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4. The point potential vortices evolves by the induced velocity field:

dxn

dt
= uN (xn, yn),

dyn

dt
= vN (xn, yn), (n = 1, ..., N).

We use the 4-th order Runge-Kutta method to compute the step 4. We refer the
numerical scheme as the “point potential vortex method”.

The fast algorithm and parallel implementation

Although the idea of the point potential vortex method is simple, it has not been easily
applied to simulations of practical geophysical flows so far because of some difficulties.
Here, we explain these difficulties and show some methods to overcome them.

Desingularization of the equation As we note in the previous section, the ve-
locity field (5) is given as a singular integral. Due to the singularity, the round-off
error has a seriously bad influence on numerical solutions. To get rid of the bad influ-
ence of the round-off error, we use the Krasny’s desingularization technique[Kra86].
That is, taking a sufficiently small positive real number ε, we compute the following
desingularized summation instead of (7):

uε
N(x, y, t) = −

1

2N

N∑
n=1

(qn0 − βyn) sinh 2π(y − yn)

cosh 2π(y − yn) − cos 2π(x − xn) + ε2
,

vε
N (x, y, t) =

1

2N

N∑
n=1

(qn0 − βyn) sin 2π(x − xn)

cosh 2π(y − yn) − cos 2π(x − xn) + ε2
. (8)

We can compute the velocity field (8) stably since they are bounded as long as ε 6= 0.

Fast summation method Let N be the number of point potential vortices which is
obtained by the discretizaion of the computational domain. The amount of computa-
tion which is required to compute the velocity field (8) for a point is O(N). Therefore,
it takes O(N2) operations to compute the Step 4 for all the points. Due to the rapid
increase of the total amount of operations, it is difficult to use high resolution in the
practical numerical computation. In order to overcome the difficulty, we apply the
Draghicescu’s fast algorithm. This algorithm reduces the total amount of operations
to O(N log N), allowing approximation error to some extent. However, the method
works well for a large number of N , since the approximation error reduces with O( 1

N
)

and is negligible as N increases. As for the detailed algorithms and how to apply the
algorithm to the periodic boundary condition, we would like the readers to refer to
Draghicescu[Dra94] and Sakajo & Okamoto[SO98], respectively.

Parallel implementation We implement the fast numerical algorithm to a parallel
computer. Now when the parallel computer has p CPUs, we assign N

p
point potential

vortices to each processor and then compute the evolutions concurrently. Since the
point potential vortices are obtained by discretizing the computational domain, the
parallelization would be one of the Domain Decomposition techniques. In the present
computation, we use a distributed parallel computer with four DEC Alpha 21264
processors.
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N+M 8192 32768 131072
direct 143 2288 36789
fast 25 120 463

parallel+fast 12 51 156

Table 1: The elapsed time to compute the velocity field (8) in seconds

Results

We apply the point potential vortex method to the computation of a vortex sheet in
the β plane. A vortex sheet is a surface across which the velocity of the fluid changes
discontinuously. That means that initially the vorticity exists only in the vortex
sheet, and outside of the vortex sheet there exists no vorticity. In the two-dimensional
β plane, the vortex sheet is represented by a one-parameter curve: (x(Γ, t), y(Γ, t)),
where Γ is circulation parameter along the sheet and t is time. We imposed the
periodic boundary condition on the sheet as follows,

x(Γ + 1, t) = x(Γ, t) + 1, y(Γ + 1, t) = y(Γ, t), (0 ≤ Γ < 1).

A flat vortex sheet (x, y) = (Γ, 0) is a steady state. We add a small disturbance to
the steady state and take it as an initial condition of the numerical computation:

x(Γ, t) = Γ + 0.01 sin2πΓ, y(Γ, t) = −0.01 sin2πΓ.

If we consider the ordinary two-dimensional vortex sheet, we have only to discretize
the vortex sheet since the vorticity is invariant. However, since not the vorticity but
the potential vorticity is invariant in the β plane approximation, the vorticity could
be created as a result of the vertical movement of the point potential vortices even if
it has no vorticity at the beginning. The created vorticity is called the ghost vorticity.
Therefore, we have to discretize the sufficiently large regions to the y directions in this
case by taking the creation of ghost vorticity into considerations.

We discretize the vortex sheet along the sheet and obtain N point potential vortices
(xn, yn), (n = 1, ..., N), whose initial position is

xn(0) =
n

N
+ 0.01 sin 2π

n

N
, yn(0) = −0.01 sin2π

n

N
, (n = 1, ..., N).

and initial potential vorticity is qn0 = 1

N
+βyn(0). We also discretize the outer regions

by grids and obtain M point potential vortices, (x̃n(t), ỹn(t)), whose initial potential
vorticity is q̃n0 = 0 + βỹn(0), (1 ≤ n ≤ M).

Effectiveness of the fast computation

We show the effectiveness of the fast algorithm and parallelization. The desingulariza-
tion parameter is fixed to 0.1. Table 1 shows the elapsed time to compute the velocity
field (8) in second when we change the number of discretization N + M . When we
use the direct summation of O(N2), the computational time increases rapidly. On the
other hand, the time is very small when we use the fast summation method. It takes
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N+M 8192 32768 131072
error 2.26e-07 5.35e-08 9.46e-09

Table 2: Maximum approximation error of the fast algorithm

about 80 times faster than the direct summation when N = 131072 point potential
vortices are used. Moreover, as a result of the implementation of the fast algorithm
to the parallel computer, we achieve more than 230 times faster computation for
N = 131072 points are used. Table 2 shows the maximum approximation error of the
fast algorithm. As N + M increase, the error gets smaller. The fast algorithm yields
very accurate computation for a large number of point potential vortices.

These two results indicates that the more we use point potential vortices the more
accurate and faster we can compute the velocity field.

An application - a vortex sheet in the β plane

We discretize the vortex sheet by 65536 points and the other no vorticity region
[0, 1] × [−2.0, 2.0] by 128× 512 grid points. The desingularization parameter ε is 0.1.
We change only the parameter β to see the effect of rotation to the evolution.

Figure 2 shows the time evolution of the vortex sheet: (a) β = 0 (no rotation),
(b) β = 5 (mild rotation) and (c) β = 10 (fast rotation). At first, when there exists
no β-effect (column (a)), it evolves in the same way as the two-dimensional vortex
sheet, which Krasny computed[Kra86]. Nearly flat vortex sheet becomes unstable and
roll-up and then generates the spiral structure in the middle of the region. Next, when
β = 5 (column (b)), it forms the spiral structure as well. However, the center of the
spiral moves toward the northwest. This movement is due to the effect of rotation,
which is well-known as the Rosby effect. Note that the number of winding of the spiral
becomes few. At last, when β = 10 (column (c)), it begins forming the spiral structure
at t = 1.0 but it hardly grows. Instead, an another spiral structure is generated at
t = 2.0. The result indicates that faster rotation results in the appearance of the new
spiral structure, which would be a new feature of the β-effect.

Conclusions

We suggest the point potential vortex method to compute the geophysical fluids in
the β plane numerically. The fast summation method and the implementation to the
parallel computer based on the Domain Decomposition approach makes us possible to
execute the numerical computation accurately and fast. The hybrid combination of
these two fast numerical method brings us a possibility to try the numerical compu-
tations of various practical geophysical flows.

As one of the examples, we apply the numerical scheme to the computation of
the vortex sheet in the β plane. We find the northwestward movement of the spiral
structure and the appearance of the new spiral structure due to the effect of rotation.
The analytic investigation of these phenomena remains in the future.
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The point potential vortex method could be extended to the case of the flows
in the rotating sphere. The formulation is the same as the present method. That
is, the potential vorticity is also preserved along the trajectory of the fluid element.
However, since there is no fast summation method to compute the velocity field fast,
the extension wouldn’t be completed. The development of the fast algorithm for the
velocity field in the sphere is challenging.
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Figure 2: The time evolution of the vortex sheet in the β plane. (a) β = 0.0, (b)
β = 5.0 and (c) β = 10.0


