

HOKKAIDO UNIVERSITY

Title	Unirationality of certain supersingular K3 surfaces in characteristic 5
Author(s)	Duc, Tai Pho; Shimada, Ichiro
Citation	manuscripta mathematica, 121(4), 425-435 https://doi.org/10.1007/s00229-006-0045-3
Issue Date	2006-12
Doc URL	http://hdl.handle.net/2115/16950
Туре	article (author version)
Note	The original publication is available at www.springerlink.com
File Information	MM121-4.pdf

UNIRATIONALITY OF CERTAIN SUPERSINGULAR K3 SURFACES IN CHARACTERISTIC 5

DUC TAI PHO AND ICHIRO SHIMADA

ABSTRACT. We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

1. INTRODUCTION

We work over an algebraically closed field k.

A K3 surface X is called *supersingular* (in the sense of Shioda [22]) if the Picard number of X is equal to the second Betti number 22. Supersingular K3 surfaces exist only when the characteristic of k is positive. Artin [3] showed that, if X is a supersingular K3 surface in characteristic p > 0, then the discriminant of the Néron-Severi lattice NS(X) of X is written as $-p^{2\sigma(X)}$, where $\sigma(X)$ is a positive integer ≤ 10 . (See also Illusie [9, Section 7.2].) This integer $\sigma(X)$ is called the Artin invariant of X.

A surface S is called *unirational* if the function field k(S) of S is contained in a purely transcendental extension field of k, or equivalently, if there exists a dominant rational map from a projective plane \mathbb{P}^2 to S. Shioda [22] proved that, if a smooth projective surface S is unirational, then the Picard number of S is equal to the second Betti number of S. Artin and Shioda conjectured that the converse is true for K3 surfaces (see, for example, Shioda [23]):

Conjecture 1.1. Every supersingular K3 surface is unirational.

In this paper, we consider this conjecture for supersingular K3 surfaces in characteristic 5.

From now on, we assume that the characteristic of k is 5. Let $k[x]_6$ be the space of polynomials in x of degree 6, and let $\mathcal{U} \subset k[x]_6$ be the space of $f(x) \in k[x]_6$ such that the quintic equation f'(x) = 0 has no multiple roots. It is obvious that \mathcal{U} is a Zariski open dense subset of $k[x]_6$. For $f \in \mathcal{U}$, we denote by $C_f \subset \mathbb{P}^2$ the projective plane curve of degree 6 whose affine part is defined by

$$y^5 - f(x) = 0.$$

Let $Y_f \to \mathbb{P}^2$ be the double covering of \mathbb{P}^2 whose branch locus is equal to C_f , and let $X_f \to Y_f$ be the minimal resolution of Y_f .

Theorem 1.2. If f is a polynomial in \mathcal{U} , then X_f is a supersingular K3 surface with $\sigma(X_f) \leq 3$. Conversely, if X is a supersingular K3 surface with $\sigma(X) \leq 3$, then there exists $f \in \mathcal{U}$ such that X is isomorphic to X_f .

¹⁹⁹¹ Mathematics Subject Classification. 14J28.

The affine part of Y_f is defined by $w^2 = y^5 - f(x)$. Hence the function field $k(X_f)$ is equal to k(w, x, y), and it is contained in the purely transcendental extension field $k(w^{1/5}, x^{1/5})$ of k. Therefore we obtain the following corollary:

Corollary 1.3. Every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

The unirationality of a supersingular K3 surface X in characteristic p > 0 with Artin invariant σ has been proved in the following cases: (i) p = 2, (ii) p = 3 and $\sigma \leq 6$, and (iii) p is odd and $\sigma \leq 2$. In the cases (i) and (ii), the unirationality was proved by Rudakov and Shafarevich [15], [16] by showing that there exists a structure of the quasi-elliptic fibration on X. The case (iii) follows from the result of Ogus [13],[14] that a supersingular K3 surface in odd characteristic with Artin invariant ≤ 2 is a Kummer surface associated with a supersingular abelian surface, and the result of Shioda [24] that such a Kummer surface is unirational. The unirationality of X in the case $(p, \sigma) = (5, 3)$ proved in this paper seems to be new.

In [19], we have shown that a supersingular K3 surface in characteristic 2 is birational to a normal K3 surface with $21A_1$ -singularities, and that such a normal K3 surface is a purely inseparable double cover of \mathbb{P}^2 . In [20], we have proved that a supersingular K3 surface in characteristic 3 with Artin invariant ≤ 6 is birational to a normal K3 surface with $10A_2$ -singularities, and it is also birational to a purely inseparable triple cover of $\mathbb{P}^1 \times \mathbb{P}^1$. These yield an alternative proof to the results of Rudakov and Shafarevich [15], [16] in the cases (i) and (ii) above.

In this paper, we show that a supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is birational to a normal K3 surface with $5A_4$ -singularities that is a double cover of \mathbb{P}^2 , and then prove that such a normal K3 surface is isomorphic to Y_f for some $f \in \mathcal{U}$. The first step follows from the structure theorem of the Néron-Severi lattices of supersingular K3 surfaces due to Rudakov and Shafarevich [16]. For the second step, we investigate projective plane curves of degree 6 with $5A_4$ singularities in Section 2.

2. Projective plane curves with $5A_4$ -singularities

Definition 2.1. A germ of a curve singularity in characteristic $\neq 2$ is called an A_n -singularity if it is formally isomorphic to

$$y^2 - x^{n+1} = 0,$$

(see Artin [4], and Greuel and Kröning [8].)

We assume that the base field k is of characteristic 5 until the end of the paper.

Proposition 2.2. Let $C \subset \mathbb{P}^2$ be a reduced projective plane curve of degree 6. Then the following conditions are equivalent to each other.

- (i) The singular locus of C consists of five A_4 -singular points.
- (ii) There exists $f \in \mathcal{U}$ such that $C = C_f$.

For the proof, we need the following result due to Wall [26], which holds in any characteristic. Let $D \subset \mathbb{P}^2$ be an integral plane curve of degree d > 1, and let $I_D \subset \mathbb{P}^2 \times (\mathbb{P}^2)^{\vee}$ be the closure of the locus of all $(x, l) \in \mathbb{P}^2 \times (\mathbb{P}^2)^{\vee}$ such that x is

a smooth point of D and l is the tangent line to D at x. Let $D^{\vee} \subset (\mathbb{P}^2)^{\vee}$ be the image of the second projection

$$\pi_D: I_D \to (\mathbb{P}^2)^{\vee}.$$

We equip D^{\vee} with the reduced structure, and call it the *dual curve of* D. Note that the first projection $I_D \to D$ is birational. Therefore, by the projection π_D , we can regard the function field k(D) as an extension field of the function field $k(D^{\vee})$. The corresponding rational map from D to D^{\vee} is called the *Gauss map*. We put

$$\deg \pi_D := [k(D) : k(D^{\vee})].$$

We choose general homogeneous coordinates $[w_0 : w_1 : w_2]$ of \mathbb{P}^2 , and let $F(w_0, w_1, w_2) = 0$ be the defining equation of D. We denote by $D_Q \subset \mathbb{P}^2$ the curve defined by

$$\frac{\partial F}{\partial w_2} = 0,$$

which is called the *polar curve of* D with respect to Q = [0:0:1].

Proposition 2.3 (Wall [26]). For a singular point s of D, we denote by $(D.D_Q)_s$ the local intersection multiplicity of D and D_Q at s. Then we have

$$\deg \pi_D \cdot \deg D^{\vee} = d(d-1) - \sum_{s \in \operatorname{Sing}(D)} (D \cdot D_Q)_s.$$

Remark 2.4. If $s \in D$ is an A_n -singular point, then the polar curve D_Q is smooth at s and the local intersection multiplicity $(D.D_Q)_s$ is n+1.

Proof of Proposition 2.2. Suppose that C has $5A_4$ -singular points as its only singularities. Since an A_4 -singular point is unibranched, C is irreducible. By Proposition 2.3 and Remark 2.4, we have

$$\deg \pi_C \cdot \deg C^{\vee} = 5.$$

Suppose that $(\deg \pi_C, \deg C^{\vee}) = (1, 5)$. Let $\nu : \widetilde{C} \to C$ be the normalization of C. Since $\deg \pi_C = 1$, we can consider \widetilde{C} as a normalization of C^{\vee} . We denote by

$$\nu^{\vee}: \widetilde{C} \to C^{\vee}$$

the morphism of normalization. Let s be a singular point of C, and let $\tilde{s} \in \tilde{C}$ be the point of \tilde{C} that is mapped to s by ν . We can choose affine coordinates (x, y) of \mathbb{P}^2 with the origin s and a formal parameter t of \tilde{C} at \tilde{s} such that ν is given by

$$t \mapsto (x, y) = (t^2, t^5 + c_6 t^6 + c_7 t^7 + \cdots).$$

Let (u, v) be the affine coordinates of $(\mathbb{P}^2)^{\vee}$ such that the point $(u, v) \in (\mathbb{P}^2)^{\vee}$ corresponds to the line of \mathbb{P}^2 defined by y = ux + v. Then ν^{\vee} is given at \tilde{s} by

$$t \mapsto (u, v) = (3 c_6 t^4 + \cdots, t^5 + \cdots).$$

(See, for example, Namba [10, p. 78].) Therefore $\nu^{\vee}(\tilde{s})$ is a singular point of C^{\vee} with multiplicity ≥ 4 . We choose distinct two points $s_1, s_2 \in \text{Sing}(C)$. There exists a line of $(\mathbb{P}^2)^{\vee}$ that passes through both of $\nu^{\vee}(\tilde{s}_1) \in C^{\vee}$ and $\nu^{\vee}(\tilde{s}_2) \in C^{\vee}$. This contradicts Bezout's theorem, because deg $C^{\vee} = 5 < 4 + 4$. Therefore we have $(\deg \pi_C, \deg C^{\vee}) = (5, 1)$. Then there exists a point $P \in \mathbb{P}^2$ such that we have

$$(2.1) l \in C^{\vee} \iff P \in l$$

We choose homogeneous coordinates $[w_0 : w_1 : w_2]$ of \mathbb{P}^2 in such a way that P = [0:1:0]. Let L_{∞} be the line $w_2 = 0$, and let (x, y) be the affine coordinates on

 $\mathbb{A}^2 := \mathbb{P}^2 \setminus L_\infty$ given by $x := w_0/w_2$ and $y := w_1/w_2$. Suppose that C is defined by h(x, y) = 0 in \mathbb{A}^2 . From (2.1), we have

(2.2)
$$h(a,b) = 0 \implies \frac{\partial h}{\partial y}(a,b) = 0.$$

Let $U_C \subset \mathbb{A}^1$ be the image of the projection $(C \setminus \operatorname{Sing}(C)) \cap \mathbb{A}^2 \to \mathbb{A}^1$ given by $(a,b) \mapsto a$. Note that U_C is Zariski dense in \mathbb{A}^1 . Let (a_0,b_0) be a smooth point of $C \cap \mathbb{A}^2$. By (2.2), we have

$$\frac{\partial h}{\partial x}(a_0, b_0) \neq 0$$

Hence there exists a formal power series $\gamma(\eta) \in k[[\eta]]$ such that C is defined by $x - a_0 = \gamma(y - b_0)$ locally around (a_0, b_0) . By (2.2) again, $\gamma'(\eta)$ is constantly equal to 0, and hence there exists a formal power series $\beta(\eta) \in k[[\eta]]$ such that $\gamma(\eta) = \beta(\eta)^5$. Therefore the local intersection multiplicity of the line $x - a_0 = 0$ and C at (a_0, b_0) is ≥ 5 . Thus we obtain the following:

(2.3) If
$$a \in U_C$$
, then the equation $h(a, y) = 0$ in y
has a root of multiplicity > 5 .

We put

$$h(x,y) = c y^{6} + g_{1}(x) y^{5} + \dots + g_{5}(x) y + g_{6}(x),$$

where c is a constant, and $g_{\nu}(x) \in k[x]$ is a polynomial of degree $\leq \nu$. Suppose that $c \neq 0$. We can assume c = 1. By (2.3), we have $g_2(a) = g_3(a) = g_4(a) = 0$ and $g_1(a)g_5(a) = g_6(a)$ for any $a \in U_C$. Since U_C is Zariski dense in \mathbb{A}^1 , we have $g_2 = g_3 = g_4 = 0$ and $g_1g_5 = g_6$. Then we have $h(x, y) = (y^5 + g_5(x))(y + g_1(x))$, which contradicts the irreducibility of C. Thus c = 0 is proved. Then, by (2.3), we have $g_1 \neq 0$ and $g_2 = g_3 = g_4 = g_5 = 0$. We put $g_1 = Ax + B$, and define a new homogeneous coordinate system $[z_0 : z_1 : z_2]$ of \mathbb{P}^2 by

$$\begin{cases} (z_0, z_1, z_2) := (w_0, w_1, Aw_0 + Bw_2) & \text{if } B \neq 0; \\ (z_0, z_1, z_2) := (w_2, w_1, Aw_0) & \text{if } B = 0. \end{cases}$$

Then C is defined by a homogeneous equation of the form

$$z_2 z_1^5 - F(z_0, z_2) = 0$$

where $F(z_0, z_2)$ is a homogeneous polynomial of degree 6. We put $L'_{\infty} := \{z_2 = 0\}$. Defining the affine coordinates (x, y) on $\mathbb{P}^2 \setminus L'_{\infty}$ by $(x, y) := (z_0/z_2, z_1/z_2)$, we see that the affine part of C is defined by $y^5 - f(x)$ for some polynomial f(x) of degree ≤ 6 . If deg f < 6, then L'_{∞} would be an irreducible component of C because deg C = 6. Therefore we have deg f = 6. Then $C \cap L'_{\infty}$ consists of a single point [0:1:0], and C is smooth at [0:1:0]. Therefore we have

Sing(C) = {
$$(\alpha, f(\alpha)^{1/5}) \mid f'(\alpha) = 0$$
 }.

Since C has five singular points, we have $f \in \mathcal{U}$.

Conversely, suppose that $f \in \mathcal{U}$. We show that $\operatorname{Sing}(C_f)$ consists of $5A_4$ -singular points. Let $L_{\infty} \subset \mathbb{P}^2$ be the line at infinity. It is easy to check that $C_f \cap L_{\infty}$ consists of a single point [0:1:0], and C_f is smooth at this point. Therefore we have $\operatorname{Sing}(C_f) = \{(\alpha, f(\alpha)^{1/5}) | f'(\alpha) = 0\}$. In particular, C_f has exactly five singular points. Let (α, β) be a singular point of C_f . Since α is a simple root of the quintic equation f'(x) = 0, there exists a polynomial g(x) with $g(\alpha) \neq 0$ such that

$$f(x) = f(\alpha) + (x - \alpha)^2 g(x).$$

Because $\beta^5 = f(\alpha)$, the defining equation of C is written as

$$(y - \beta)^5 - (x - \alpha)^2 g(x) = 0.$$

Therefore (α, β) is an A₄-singular point of C_f .

3. Proof of Theorem 1.2

First we show that, if $f \in \mathcal{U}$, then X_f is a supersingular K3 surface with Artin invariant ≤ 3 . Since the sextic double plane Y_f has only rational double points as its singularities by Proposition 2.2, its minimal resolution X_f is a K3 surface by the results of Artin [1], [2]. Let Σ_f be the sublattice of the Néron-Severi lattice $NS(X_f)$ of X_f that is generated by the classes of the (-2)-curves contracted by $X_f \to Y_f$. Then Σ_f is isomorphic to the negative-definite root lattice of type $5A_4$ by Proposition 2.2. In particular, Σ_f is of rank 20, and its discriminant is 5⁵. Let $H_f \subset X_f$ be the pull-back of a line of \mathbb{P}^2 , and put

$$h_f := [H_f] \in \mathrm{NS}(X_f).$$

Since the line at infinity $L_{\infty} \subset \mathbb{P}^2$ intersects C_f at a single point [0:1:0] with multiplicity 6, and [0:1:0] is a smooth point of C_f , the pull-back of L_{∞} to X_f is a union of two smooth rational curves that intersect each other at a single point with multiplicity 3. Let L_f be one of the two rational curves, and put

$$l_f := [L_f] \in \mathrm{NS}(X_f).$$

Then h_f and l_f generate a lattice $\langle h_f, l_f \rangle$ of rank 2 in NS(X_f) whose intersection matrix is equal to

$$\left(\begin{array}{cc} 2 & 1 \\ 1 & -2 \end{array}\right).$$

In particular, the discriminant of $\langle h_f, l_f \rangle$ is -5. Note that Σ_f and $\langle h_f, l_f \rangle$ are orthogonal in NS(X_f). Therefore NS(X_f) contains a sublattice $\Sigma_f \oplus \langle h_f, l_f \rangle$ of rank 22 and discriminant -5^6 . Thus X_f is supersingular, and $\sigma(X_f) \leq 3$.

In order to prove the second assertion of Theorem 1.2, we define an even lattice S_0 of rank 22 with signature (1, 21) and discriminant -5^6 by

$$S_0 := \Sigma_{5A_4}^- \oplus \langle h, l \rangle_{2A_4}$$

where $\Sigma_{5A_4}^-$ is the negative-definite root lattice of type 5A₄, and $\langle h, l \rangle$ is the lattice of rank 2 generated by the vectors h and l satisfying

$$h^2 = 2, \quad l^2 = -2, \quad hl = 1.$$

Remark 3.1. This lattice $\langle h, l \rangle$ is the unique even indefinite lattice of rank 2 with discriminant -5. See Edwards [7], or Conway and Sloane [5, Table 15.2a].

Claim 3.2. For $\sigma = 1, 2, 3$, there exists an even overlattice $S^{(\sigma)}$ of S_0 with the following properties:

- (i) the discriminant of $S^{(\sigma)}$ is $-5^{2\sigma}$,
- (ii) the Dynkin type of the root system $\{r \in S^{(\sigma)} | rh = 0, r^2 = -2\}$ is $5A_4$,
- (iii) the set $\{e \in S^{(\sigma)} | eh = 1, e^2 = 0\}$ is empty.

Here we prove that $S^{(3)} = S_0$ satisfies (ii) and (iii). Let v = s + xh + yl be a vector of $S^{(3)} = S_0$, where $s \in \Sigma_{5A_4}^-$ and $x, y \in \mathbb{Z}$. If vh = 0 and $v^2 = -2$, then we have 2x + y = 0 and $s^2 - 10x^2 = -2$. Since $s^2 \leq 0$, we have x = y = 0 and hence v is a root in $\Sigma_{5A_4}^-$. Therefore $S^{(3)} = S_0$ satisfies (ii). If vh = 1 and $v^2 = 0$, then we have 2x + y = 1 and $s^2 - 10x^2 + 10x - 2 = 0$. Since $s^2 \leq 0$, there is not such an integer x. Hence $S^{(3)} = S_0$ satisfies (iii). Thus Claim 3.2 for $\sigma = 3$ has been proved. For the cases $\sigma = 2$ and $\sigma = 1$, see Proposition 4.1 in the next section.

Let X be a supersingular K3 surface with $\sigma = \sigma(X) \leq 3$. By the results of Rudakov and Shafarevich [16], the isomorphism class of the lattice NS(X) is characterized by the following properties;

- (a) even and signature (1, 21), and
- (b) the discriminant group is isomorphic to $\mathbb{F}_5^{\oplus 2\sigma}$.

Since the discriminant group of $S^{(\sigma)}$ is a quotient group of a subgroup of the discriminant group $\mathbb{F}_5^{\oplus 6}$ of S_0 , the lattice $S^{(\sigma)}$ has also these properties. Therefore there exists an isomorphism

$$\phi : S^{(\sigma)} \xrightarrow{\sim} \mathrm{NS}(X).$$

By [16, Proposition 3 in Section 3], we can assume that $\phi(h)$ is the class [H] of a nef divisor H. Note that $H^2 = h^2 = 2$. If the complete linear system |H| had a fixed component, then, by Nikulin [12, Proposition 0.1], there would be an elliptic pencil |E| and a (-2)-curve Γ such that $|H| = 2|E| + \Gamma$ and $E\Gamma = 1$, and the vector $e \in S^{(\sigma)}$ that is mapped to [E] by ϕ would satisfy eh = 1 and $e^2 = 0$. Therefore the property (iii) of $S^{(\sigma)}$ implies that the linear system |H| has no fixed components (see also Urabe [25, Proposition 1.7].) Then, by Saint-Donat [17, Corollary 3.2], |H| is base point free. Hence we have a morphism $\Phi_{|H|} : X \to \mathbb{P}^2$ induced by |H|. Let

$$X \to Y_H \to \mathbb{P}^2$$

be the Stein factorization of $\Phi_{|H|}$. Then $Y_H \to \mathbb{P}^2$ is a finite double covering branched along a curve $C_H \subset \mathbb{P}^2$ of degree 6. By the property (ii) of $S^{(\sigma)}$, we see that $\operatorname{Sing}(Y_H)$ consists of $5A_4$ -singular points, and hence $\operatorname{Sing}(C_H)$ also consists of $5A_4$ -singular points. By Proposition 2.2, there exists an element $f \in \mathcal{U}$ such that C_H is isomorphic to C_f . Then X is isomorphic to X_f . \Box

Remark 3.3. In [21], it is proved that a normal K3 surface with $5A_4$ -singular points exists only in characteristic 5.

4. Classification of overlattices

Let $F \subset S_0$ be a fundamental system of roots of $\Sigma_{5A_4}^- \subset S_0$ (see Ebeling [6] for the definition and properties of a fundamental system of roots.) Then F consists of 4×5 vectors

$$e_i^{(j)}$$
 $(i = 1, \dots, 4, j = 1, \dots, 5)$

such that

$$e_i^{(j)} e_{i'}^{(j')} = \begin{cases} 0 & \text{if } j \neq j' \text{ or } |i - i'| > 1, \\ 1 & \text{if } j = j' \text{ and } |i - i'| = 1, \\ -2 & \text{if } j = j' \text{ and } i = i', \end{cases}$$

(see Figure 4.1.) We put

FIGURE 4.1. The Dynkin diagram of type A_4

Aut
$$(F, h) := \{ g \in O(S_0) \mid g(F) = F, g(h) = h \}$$

where $O(S_0)$ is the orthogonal group of the lattice S_0 . Then $\operatorname{Aut}(F, h)$ is isomorphic to the automorphism group of the Dynkin diagram of type $5A_4$, and hence it is isomorphic to the semi-direct product $\{\pm 1\}^5 \rtimes S_5$. Note that $\operatorname{Aut}(F, h)$ acts on the dual lattice $(S_0)^{\vee}$ of S_0 in a natural way, and hence it acts on the set of even overlattices of S_0 . We classify all even overlattices of S_0 with the properties (ii) and (iii) in Claim 3.2 up to the action of $\operatorname{Aut}(F, h)$. The main tool is Nikulin's theory of discriminant forms of even lattices [11].

The set $F \cup \{h, l\}$ of vectors form a basis of S_0 . Let

$$(e_i^{(j)})^{\vee}$$
 $(i = 1, \dots, 4, j = 1, \dots, 5), h^{\vee}$ and l^{\vee}

be the basis of $(S_0)^{\vee}$ dual to $F \cup \{h, l\}$. We denote by G the discriminant group $(S_0)^{\vee}/S_0$ of S_0 , and by

$$\operatorname{pr}: (S_0)^{\vee} \to G$$

the natural projection. Then G is isomorphic to $\mathbb{F}_5^{\oplus 5} \oplus \mathbb{F}_5$ with basis

$$\operatorname{pr}((e_1^{(1)})^{\vee}), \ldots, \operatorname{pr}((e_1^{(5)})^{\vee}), \operatorname{pr}(h^{\vee}).$$

With respect to this basis, we denote the elements of G by $[x_1, \ldots, x_5 | y]$ with $x_1, \ldots, x_5, y \in \mathbb{F}_5$. The discriminant form $q: G \to \mathbb{Q}/2\mathbb{Z}$ of S_0 is given by

$$q([x_1, \dots, x_5 | y]) = -\frac{4}{5}(x_1^2 + \dots + x_5^2) + \frac{2}{5}y^2 \mod 2\mathbb{Z}$$

The action of $\operatorname{Aut}(F,h)$ on $G = \mathbb{F}_5^{\oplus 5} \oplus \mathbb{F}_5$ is generated by the multiplications by -1 on x_i , and the permutations of x_1, \ldots, x_5 . We define subgroups H_0, \ldots, H_8 of G by their generators as follows:

$$\begin{array}{rcl} H_{0} &:= & \{0\}, \\ H_{1} &:= & \langle \left[0, 0, 2, 2, 2 \, | \, 2 \right] \rangle, \\ H_{2} &:= & \langle \left[2, 2, 2, 2, 2 \, | \, 0 \right] \rangle, \\ H_{3} &:= & \langle \left[0, 1, 2, 2, 2 \, | \, 1 \right] \rangle, \\ H_{4} &:= & \langle \left[1, 2, 2, 2, 2 \, | \, 2 \right] \rangle, \\ H_{5} &:= & \langle \left[0, 1, 1, 2, 2 \, | \, 0 \right] \rangle, \\ H_{6} &:= & \langle \left[1, 0, 1, 2, 2 \, | \, 0 \right] \rangle, \\ H_{7} &:= & \langle \left[1, 0, 0, 1, 1 \, | \, 1 \right], \left[0, 1, 1, 1, 3 \, | \, 3 \right] \rangle, \\ H_{8} &:= & \langle \left[1, 0, 1, 1, 2 \, | \, 2 \right], \left[0, 1, 1, 3, 3 \, | \, 0 \right] \rangle \end{array}$$

We then put

$$S_i := \operatorname{pr}^{-1}(H_i) \subset (S_0)^{\vee}.$$

· 1 / 1

.1

the (a, b, y) -type	the roots in h^{\perp}	the set E	
(0,0,0)	$5A_4$	empty	*
$(0,2,\pm 1)$	$A_9 + 3A_4$	empty	
$(0,3,\pm 2)$	$5A_4$	empty	*
(0,5,0)	$5A_4$	empty	*
(1, 1, 0)	$E_8 + 3A_4$	empty	
$(1,3,\pm 1)$	$5A_4$	empty	*
$(1, 4, \pm 2)$	$5A_4$	empty	*
$(2, 0, \pm 2)$	$A_9 + 3A_4$	empty	
(2, 2, 0)	$5A_4$	empty	*
$(3,0,\pm 1)$	$5A_4$	empty	*
$(3, 1, \pm 2)$	$5A_4$	empty	*
$(4, 1, \pm 1)$	$5A_4$	empty	*
(5, 0, 0)	$5A_4$	empty	*

TABLE 4.1. The isotropic vectors in (G,q)

Proposition 4.1. The submodules S_0, \ldots, S_8 of $(S_0)^{\vee}$ are even overlattices of S_0 with the properties (ii) and (iii) in Claim 3.2. The discriminant of S_i is -5^6 for $i = 0, -5^4$ for $i = 1, \ldots, 5$, and -5^2 for $i = 6, \ldots, 8$.

Conversely, if S is an even overlattice of S_0 with the properties (ii) and (iii), then there exists a unique S_i among S_0, \ldots, S_8 such that $S = g(S_i)$ holds for some $g \in Aut(F,h)$.

Proof. The mapping $S \mapsto S/S_0$ gives rise to a one-to-one correspondence between the set of even overlattices S of S_0 and the set of totally isotropic subgroups H of (G,q). The inverse mapping is given by $H \mapsto \mathrm{pr}^{-1}(H)$. If $\dim_{\mathbb{F}_5} H = d$, then the discriminant of $\mathrm{pr}^{-1}(H)$ is equal to -5^{6-2d} (see Nikulin [11].)

For $v = [x_1, \ldots, x_5 | y] \in G$, we put

$$\delta(v) := (a, b, y) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0} \times \mathbb{F}_5,$$

where a is the number of $\pm 1 \in \mathbb{F}_5$ among x_1, \ldots, x_5 and b is the number of $\pm 2 \in \mathbb{F}_5$ among x_1, \ldots, x_5 . Note that $\delta(v) = \delta(w)$ holds if and only if there exists $g \in$ $\operatorname{Aut}(F, h)$ such that g(v) = w. A vector $v \in G$ is isotropic with respect to q if and only if $\delta(v)$ appears in the first column of Table 4.1. For each (a, b, y)-type α in Table 4.1, we choose a vector $v \in G$ such that $\delta(v) = \alpha$, and calculate the even overlattice

$$S_{\alpha} := \mathrm{pr}^{-1}(\langle v \rangle)$$

of S_0 . The second column of Table 4.1 presents the Dynkin type of the root system $\{r \in S_\alpha \mid rh = 0, r^2 = -2\}$, and the third column presents the set $E := \{e \in S_\alpha \mid eh = 1, e^2 = 0\}$. Hence we see that the following two conditions on a subgroup H of G are equivalent:

- (I) The corresponding submodule $\operatorname{pr}^{-1}(H)$ of $(S_0)^{\vee}$ is an even overlattice of S_0 with the properties (ii) and (iii) in Claim 3.2.
- (II) For any $v \in H$, $\delta(v)$ is an (a, b, y)-type with * in Table 4.1.

Using a computer, we make the complete list of subgroups of G that satisfy the condition (II) up to the action of $\operatorname{Aut}(F,h)$. The complete set of representatives is $\{H_0, \ldots, H_8\}$ above.

Remark 4.2. Since there exist no even unimodular lattices of signature (1, 21) (see Serre [18, Theorem 5 in Chapter V]), all totally isotropic subgroups of (G, q) are of dimension ≤ 2 over \mathbb{F}_5 .

References

- M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84, (1962) 485–496.
- [2] _____, On isolated rational singularities of surfaces, Amer. J. Math. 88, (1966) 129–136.
- [3] _____, Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4) 7, (1974) 543–567 (1975).
 [4] _____, Coverings of the rational double points in characteristic p, Complex analysis and
- algebraic geometry, (Iwanami Shoten, Tokyo, 1977), pp. 11–22.
- [5] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third ed., Grundlehren der Mathematischen Wissenschaften, vol. 290, (Springer-Verlag, New York, 1999).
- [6] W. Ebeling, *Lattices and codes*, revised ed., Advanced Lectures in Mathematics, (Friedr. Vieweg & Sohn, Braunschweig, 2002).
- [7] H. M. Edwards, *Fermat's last theorem*, Graduate Texts in Mathematics, vol. 50, (Springer-Verlag, New York, 1996).
- [8] G.-M. Greuel and H. Kröning, Simple singularities in positive characteristic, Math. Z. 203, (1990) 339–354.
- [9] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12, (1979) 501–661.
- [10] M. Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics, vol. 88. (Marcel Dekker, New York, 1984).
- [11] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 111–177, 238. English translation: Math. USSR-Izv. 14, (1979) 103–167 (1980).
- [12] _____, Weil linear systems on singular K3 surfaces, Algebraic geometry and analytic geometry (Tokyo, 1990), ICM-90 Satell. Conf. Proc., (Springer, Tokyo, 1991), pp. 138–164.
- [13] A. Ogus, Supersingular K3 crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, Astérisque, vol. 64, (Soc. Math. France, Paris, 1979), pp. 3–86.
- [14] _____, A crystalline Torelli theorem for supersingular K3 surfaces, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, (Birkhäuser Boston, Boston, MA, 1983), pp. 361–394.
- [15] A. N. Rudakov and I. R. Shafarevich, Supersingular K3 surfaces over fields of characteristic 2, Izv. Akad. Nauk SSSR Ser. Mat. 42, (1978) 848–869: Reprinted in I. R. Shafarevich, Collected Mathematical Papers, (Springer-Verlag, Berlin, 1989), pp. 614–632.
- [16] _____, Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981: Reprinted in I. R. Shafarevich, Collected Mathematical Papers, (Springer-Verlag, Berlin, 1989), pp. 657–714, pp. 115–207.
- [17] B. Saint-Donat, Projective models of K-3 surfaces, Amer. J. Math. 96, (1974) 602–639.
- [18] J.-P. Serre, A course in arithmetic, (Springer-Verlag, New York, 1973), Translated from the French, Graduate Texts in Mathematics, No. 7.
- [19] I. Shimada, Rational double points on supersingular K3 surfaces, Math. Comp. 73, (2004) 1989–2017 (electronic).
- [20] I. Shimada and De-Qi Zhang, K3 surfaces with ten cusps, 2004, preprint,
- http://www.math.sci.hokudai.ac.jp/~shimada/preprints.html
- [21] _____, Dynkin diagrams of rank 20 on supersingular K3 surfaces, 2005, preprint, http://www.math.sci.hokudai.ac.jp/~shimada/preprints.html
- [22] T. Shioda, An example of unirational surfaces in characteristic p, Math. Ann. 211, (1974) 233–236.
- [23] _____, On unirationality of supersingular surfaces, Math. Ann. 225 (1977) 155–159.
- [24] _____, Some results on unirationality of algebraic surfaces, Math. Ann. 230, (1977) 153– 168.
- [25] T. Urabe, Combinations of rational singularities on plane sextic curves with the sum of Milnor numbers less than sixteen, Singularities (Warsaw, 1985), (Banach Center Publ., vol. 20, PWN, Warsaw, 1988), pp. 429–456.

[26] C. T. C. Wall, Quartic curves in characteristic 2, Math. Proc. Cambridge Philos. Soc. 117, (1995) 393–414.

Department of Mathematics, Vietnam National University, 334 Nguyen Trai street, Hanoi, VIETNAM

E-mail address: phoductai@yahoo.com, taipd@vnu.edu.vn

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060-0810, JAPAN

 $E\text{-}mail\ address:\ \texttt{shimada@math.sci.hokudai.ac.jp}$

10