HOKKAIDO UNIVERSITY

Title	Unirationality of certain supersingular K3 surfaces in characteristic 5
Author(s)	Duc, Tai Pho; Shimada, Ichiro
Citation	manuscripta mathematica, 121(4), 425-435 https:/doi.org/10.1007/s00229-006-0045-3
Issue Date	2006-12
Dottp://hdl.handle.net/2115/16950 URL	
Type	The original publication is available at www.springerlink.com
Note	MM121-4.pdf
File Information	
Morsion)	

Instructions for use

UNIRATIONALITY OF CERTAIN SUPERSINGULAR K3 SURFACES IN CHARACTERISTIC 5

DUC TAI PHO AND ICHIRO SHIMADA

Abstract

We show that every supersingular $K 3$ surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

1. Introduction

We work over an algebraically closed field k.
A $K 3$ surface X is called supersingular (in the sense of Shioda [22]) if the Picard number of X is equal to the second Betti number 22. Supersingular $K 3$ surfaces exist only when the characteristic of k is positive. Artin [3] showed that, if X is a supersingular $K 3$ surface in characteristic $p>0$, then the discriminant of the Néron-Severi lattice $\mathrm{NS}(X)$ of X is written as $-p^{2 \sigma(X)}$, where $\sigma(X)$ is a positive integer ≤ 10. (See also Illusie [9, Section 7.2].) This integer $\sigma(X)$ is called the Artin invariant of X.

A surface S is called unirational if the function field $k(S)$ of S is contained in a purely transcendental extension field of k, or equivalently, if there exists a dominant rational map from a projective plane \mathbb{P}^{2} to S. Shioda [22] proved that, if a smooth projective surface S is unirational, then the Picard number of S is equal to the second Betti number of S. Artin and Shioda conjectured that the converse is true for $K 3$ surfaces (see, for example, Shioda [23]):

Conjecture 1.1. Every supersingular $K 3$ surface is unirational.
In this paper, we consider this conjecture for supersingular $K 3$ surfaces in characteristic 5 .

From now on, we assume that the characteristic of k is 5 . Let $k[x]_{6}$ be the space of polynomials in x of degree 6 , and let $\mathcal{U} \subset k[x]_{6}$ be the space of $f(x) \in k[x]_{6}$ such that the quintic equation $f^{\prime}(x)=0$ has no multiple roots. It is obvious that \mathcal{U} is a Zariski open dense subset of $k[x]_{6}$. For $f \in \mathcal{U}$, we denote by $C_{f} \subset \mathbb{P}^{2}$ the projective plane curve of degree 6 whose affine part is defined by

$$
y^{5}-f(x)=0 .
$$

Let $Y_{f} \rightarrow \mathbb{P}^{2}$ be the double covering of \mathbb{P}^{2} whose branch locus is equal to C_{f}, and let $X_{f} \rightarrow Y_{f}$ be the minimal resolution of Y_{f}.

Theorem 1.2. If f is a polynomial in \mathcal{U}, then X_{f} is a supersingular $K 3$ surface with $\sigma\left(X_{f}\right) \leq 3$. Conversely, if X is a supersingular $K 3$ surface with $\sigma(X) \leq 3$, then there exists $f \in \mathcal{U}$ such that X is isomorphic to X_{f}.

The affine part of Y_{f} is defined by $w^{2}=y^{5}-f(x)$. Hence the function field $k\left(X_{f}\right)$ is equal to $k(w, x, y)$, and it is contained in the purely transcendental extension field $k\left(w^{1 / 5}, x^{1 / 5}\right)$ of k. Therefore we obtain the following corollary:

Corollary 1.3. Every supersingular $K 3$ surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

The unirationality of a supersingular $K 3$ surface X in characteristic $p>0$ with Artin invariant σ has been proved in the following cases: (i) $p=2$, (ii) $p=3$ and $\sigma \leq 6$, and (iii) p is odd and $\sigma \leq 2$. In the cases (i) and (ii), the unirationality was proved by Rudakov and Shafarevich [15], [16] by showing that there exists a structure of the quasi-elliptic fibration on X. The case (iii) follows from the result of Ogus [13],[14] that a supersingular $K 3$ surface in odd characteristic with Artin invariant ≤ 2 is a Kummer surface associated with a supersingular abelian surface, and the result of Shioda [24] that such a Kummer surface is unirational. The unirationality of X in the case $(p, \sigma)=(5,3)$ proved in this paper seems to be new.

In [19], we have shown that a supersingular $K 3$ surface in characteristic 2 is birational to a normal $K 3$ surface with $21 A_{1}$-singularities, and that such a normal $K 3$ surface is a purely inseparable double cover of \mathbb{P}^{2}. In [20], we have proved that a supersingular $K 3$ surface in characteristic 3 with Artin invariant ≤ 6 is birational to a normal $K 3$ surface with $10 A_{2}$-singularities, and it is also birational to a purely inseparable triple cover of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. These yield an alternative proof to the results of Rudakov and Shafarevich [15], [16] in the cases (i) and (ii) above.

In this paper, we show that a supersingular $K 3$ surface in characteristic 5 with Artin invariant ≤ 3 is birational to a normal $K 3$ surface with $5 A_{4}$-singularities that is a double cover of \mathbb{P}^{2}, and then prove that such a normal $K 3$ surface is isomorphic to Y_{f} for some $f \in \mathcal{U}$. The first step follows from the structure theorem of the NéronSeveri lattices of supersingular $K 3$ surfaces due to Rudakov and Shafarevich [16]. For the second step, we investigate projective plane curves of degree 6 with $5 A_{4}$ singularities in Section 2.

2. Projective plane curves with $5 A_{4}$-Singularities

Definition 2.1. A germ of a curve singularity in characteristic $\neq 2$ is called an A_{n}-singularity if it is formally isomorphic to

$$
y^{2}-x^{n+1}=0
$$

(see Artin [4], and Greuel and Kröning [8].)
We assume that the base field k is of characteristic 5 until the end of the paper.
Proposition 2.2. Let $C \subset \mathbb{P}^{2}$ be a reduced projective plane curve of degree 6 . Then the following conditions are equivalent to each other.
(i) The singular locus of C consists of five A_{4}-singular points.
(ii) There exists $f \in \mathcal{U}$ such that $C=C_{f}$.

For the proof, we need the following result due to Wall [26], which holds in any characteristic. Let $D \subset \mathbb{P}^{2}$ be an integral plane curve of degree $d>1$, and let $I_{D} \subset \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{\vee}$ be the closure of the locus of all $(x, l) \in \mathbb{P}^{2} \times\left(\mathbb{P}^{2}\right)^{\vee}$ such that x is
a smooth point of D and l is the tangent line to D at x. Let $D^{\vee} \subset\left(\mathbb{P}^{2}\right)^{\vee}$ be the image of the second projection

$$
\pi_{D}: I_{D} \rightarrow\left(\mathbb{P}^{2}\right)^{\vee}
$$

We equip D^{\vee} with the reduced structure, and call it the dual curve of D. Note that the first projection $I_{D} \rightarrow D$ is birational. Therefore, by the projection π_{D}, we can regard the function field $k(D)$ as an extension field of the function field $k\left(D^{\vee}\right)$. The corresponding rational map from D to D^{\vee} is called the Gauss map. We put

$$
\operatorname{deg} \pi_{D}:=\left[k(D): k\left(D^{\vee}\right)\right] .
$$

We choose general homogeneous coordinates $\left[w_{0}: w_{1}: w_{2}\right]$ of \mathbb{P}^{2}, and let $F\left(w_{0}, w_{1}, w_{2}\right)=$ 0 be the defining equation of D. We denote by $D_{Q} \subset \mathbb{P}^{2}$ the curve defined by

$$
\frac{\partial F}{\partial w_{2}}=0
$$

which is called the polar curve of D with respect to $Q=[0: 0: 1]$.
Proposition 2.3 (Wall [26]). For a singular point s of D, we denote by $\left(D . D_{Q}\right)_{s}$ the local intersection multiplicity of D and D_{Q} at s. Then we have

$$
\operatorname{deg} \pi_{D} \cdot \operatorname{deg} D^{\vee}=d(d-1)-\sum_{s \in \operatorname{Sing}(D)}\left(D \cdot D_{Q}\right)_{s} .
$$

Remark 2.4. If $s \in D$ is an A_{n}-singular point, then the polar curve D_{Q} is smooth at s and the local intersection multiplicity $\left(D \cdot D_{Q}\right)_{s}$ is $n+1$.
Proof of Proposition 2.2. Suppose that C has $5 A_{4}$-singular points as its only singularities. Since an A_{4}-singular point is unibranched, C is irreducible. By Proposition 2.3 and Remark 2.4, we have

$$
\operatorname{deg} \pi_{C} \cdot \operatorname{deg} C^{\vee}=5
$$

Suppose that $\left(\operatorname{deg} \pi_{C}, \operatorname{deg} C^{\vee}\right)=(1,5)$. Let $\nu: \widetilde{C} \rightarrow C$ be the normalization of C. Since $\operatorname{deg} \pi_{C}=1$, we can consider \widetilde{C} as a normalization of C^{\vee}. We denote by

$$
\nu^{\vee}: \widetilde{C} \rightarrow C^{\vee}
$$

the morphism of normalization. Let s be a singular point of C, and let $\widetilde{s} \in \widetilde{C}$ be the point of \widetilde{C} that is mapped to s by ν. We can choose affine coordinates (x, y) of \mathbb{P}^{2} with the origin s and a formal parameter t of \widetilde{C} at \widetilde{s} such that ν is given by

$$
t \mapsto(x, y)=\left(t^{2}, t^{5}+c_{6} t^{6}+c_{7} t^{7}+\cdots\right) .
$$

Let (u, v) be the affine coordinates of $\left(\mathbb{P}^{2}\right)^{\vee}$ such that the point $(u, v) \in\left(\mathbb{P}^{2}\right)^{\vee}$ corresponds to the line of \mathbb{P}^{2} defined by $y=u x+v$. Then ν^{\vee} is given at \widetilde{s} by

$$
t \mapsto(u, v)=\left(3 c_{6} t^{4}+\cdots, t^{5}+\cdots\right)
$$

(See, for example, Namba [10, p. 78].) Therefore $\nu^{\vee}(\widetilde{s})$ is a singular point of C^{\vee} with multiplicity ≥ 4. We choose distinct two points $s_{1}, s_{2} \in \operatorname{Sing}(C)$. There exists a line of $\left(\mathbb{P}^{2}\right)^{\vee}$ that passes through both of $\nu^{\vee}\left(\widetilde{s_{1}}\right) \in C^{\vee}$ and $\nu^{\vee}\left(\widetilde{s_{2}}\right) \in C^{\vee}$. This contradicts Bezout's theorem, because $\operatorname{deg} C^{\vee}=5<4+4$. Therefore we have $\left(\operatorname{deg} \pi_{C}, \operatorname{deg} C^{\vee}\right)=(5,1)$. Then there exists a point $P \in \mathbb{P}^{2}$ such that we have

$$
\begin{equation*}
l \in C^{\vee} \Longleftrightarrow P \in l \tag{2.1}
\end{equation*}
$$

We choose homogeneous coordinates $\left[w_{0}: w_{1}: w_{2}\right]$ of \mathbb{P}^{2} in such a way that $P=$ [0:1:0]. Let L_{∞} be the line $w_{2}=0$, and let (x, y) be the affine coordinates on
$\mathbb{A}^{2}:=\mathbb{P}^{2} \backslash L_{\infty}$ given by $x:=w_{0} / w_{2}$ and $y:=w_{1} / w_{2}$. Suppose that C is defined by $h(x, y)=0$ in \mathbb{A}^{2}. From (2.1), we have

$$
\begin{equation*}
h(a, b)=0 \quad \Longrightarrow \quad \frac{\partial h}{\partial y}(a, b)=0 \tag{2.2}
\end{equation*}
$$

Let $U_{C} \subset \mathbb{A}^{1}$ be the image of the projection $(C \backslash \operatorname{Sing}(C)) \cap \mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$ given by $(a, b) \mapsto a$. Note that U_{C} is Zariski dense in \mathbb{A}^{1}. Let $\left(a_{0}, b_{0}\right)$ be a smooth point of $C \cap \mathbb{A}^{2}$. By (2.2), we have

$$
\frac{\partial h}{\partial x}\left(a_{0}, b_{0}\right) \neq 0
$$

Hence there exists a formal power series $\gamma(\eta) \in k[[\eta]]$ such that C is defined by $x-a_{0}=\gamma\left(y-b_{0}\right)$ locally around $\left(a_{0}, b_{0}\right)$. By (2.2) again, $\gamma^{\prime}(\eta)$ is constantly equal to 0 , and hence there exists a formal power series $\beta(\eta) \in k[[\eta]]$ such that $\gamma(\eta)=\beta(\eta)^{5}$. Therefore the local intersection multiplicity of the line $x-a_{0}=0$ and C at $\left(a_{0}, b_{0}\right)$ is ≥ 5. Thus we obtain the following:

$$
\begin{align*}
& \text { If } a \in U_{C} \text {, then the equation } h(a, y)=0 \text { in } y \\
& \text { has a root of multiplicity } \geq 5 \tag{2.3}
\end{align*}
$$

We put

$$
h(x, y)=c y^{6}+g_{1}(x) y^{5}+\cdots+g_{5}(x) y+g_{6}(x)
$$

where c is a constant, and $g_{\nu}(x) \in k[x]$ is a polynomial of degree $\leq \nu$. Suppose that $c \neq 0$. We can assume $c=1$. By (2.3), we have $g_{2}(a)=g_{3}(a)=g_{4}(a)=0$ and $g_{1}(a) g_{5}(a)=g_{6}(a)$ for any $a \in U_{C}$. Since U_{C} is Zariski dense in \mathbb{A}^{1}, we have $g_{2}=g_{3}=g_{4}=0$ and $g_{1} g_{5}=g_{6}$. Then we have $h(x, y)=\left(y^{5}+g_{5}(x)\right)\left(y+g_{1}(x)\right)$, which contradicts the irreducibility of C. Thus $c=0$ is proved. Then, by (2.3), we have $g_{1} \neq 0$ and $g_{2}=g_{3}=g_{4}=g_{5}=0$. We put $g_{1}=A x+B$, and define a new homogeneous coordinate system $\left[z_{0}: z_{1}: z_{2}\right]$ of \mathbb{P}^{2} by

$$
\begin{cases}\left(z_{0}, z_{1}, z_{2}\right):=\left(w_{0}, w_{1}, A w_{0}+B w_{2}\right) & \text { if } B \neq 0 \\ \left(z_{0}, z_{1}, z_{2}\right):=\left(w_{2}, w_{1}, A w_{0}\right) & \text { if } B=0\end{cases}
$$

Then C is defined by a homogeneous equation of the form

$$
z_{2} z_{1}^{5}-F\left(z_{0}, z_{2}\right)=0
$$

where $F\left(z_{0}, z_{2}\right)$ is a homogeneous polynomial of degree 6 . We put $L_{\infty}^{\prime}:=\left\{z_{2}=0\right\}$. Defining the affine coordinates (x, y) on $\mathbb{P}^{2} \backslash L_{\infty}^{\prime}$ by $(x, y):=\left(z_{0} / z_{2}, z_{1} / z_{2}\right)$, we see that the affine part of C is defined by $y^{5}-f(x)$ for some polynomial $f(x)$ of degree ≤ 6. If $\operatorname{deg} f<6$, then L_{∞}^{\prime} would be an irreducible component of C because $\operatorname{deg} C=6$. Therefore we have $\operatorname{deg} f=6$. Then $C \cap L_{\infty}^{\prime}$ consists of a single point $[0: 1: 0]$, and C is smooth at $[0: 1: 0]$. Therefore we have

$$
\operatorname{Sing}(C)=\left\{\left(\alpha, f(\alpha)^{1 / 5}\right) \mid f^{\prime}(\alpha)=0\right\}
$$

Since C has five singular points, we have $f \in \mathcal{U}$.
Conversely, suppose that $f \in \mathcal{U}$. We show that $\operatorname{Sing}\left(C_{f}\right)$ consists of $5 A_{4}$-singular points. Let $L_{\infty} \subset \mathbb{P}^{2}$ be the line at infinity. It is easy to check that $C_{f} \cap L_{\infty}$ consists of a single point $[0: 1: 0]$, and C_{f} is smooth at this point. Therefore we have $\operatorname{Sing}\left(C_{f}\right)=\left\{\left(\alpha, f(\alpha)^{1 / 5}\right) \mid f^{\prime}(\alpha)=0\right\}$. In particular, C_{f} has exactly five singular points. Let (α, β) be a singular point of C_{f}. Since α is a simple root of the quintic equation $f^{\prime}(x)=0$, there exists a polynomial $g(x)$ with $g(\alpha) \neq 0$ such that

$$
f(x)=f(\alpha)+(x-\alpha)^{2} g(x)
$$

Because $\beta^{5}=f(\alpha)$, the defining equation of C is written as

$$
(y-\beta)^{5}-(x-\alpha)^{2} g(x)=0 .
$$

Therefore (α, β) is an A_{4}-singular point of C_{f}.

3. Proof of Theorem 1.2

First we show that, if $f \in \mathcal{U}$, then X_{f} is a supersingular $K 3$ surface with Artin invariant ≤ 3. Since the sextic double plane Y_{f} has only rational double points as its singularities by Proposition 2.2, its minimal resolution X_{f} is a $K 3$ surface by the results of Artin [1], [2]. Let Σ_{f} be the sublattice of the Néron-Severi lattice $\mathrm{NS}\left(X_{f}\right)$ of X_{f} that is generated by the classes of the (-2)-curves contracted by $X_{f} \rightarrow Y_{f}$. Then Σ_{f} is isomorphic to the negative-definite root lattice of type $5 A_{4}$ by Proposition 2.2. In particular, Σ_{f} is of rank 20, and its discriminant is 5^{5}. Let $H_{f} \subset X_{f}$ be the pull-back of a line of \mathbb{P}^{2}, and put

$$
h_{f}:=\left[H_{f}\right] \in \operatorname{NS}\left(X_{f}\right)
$$

Since the line at infinity $L_{\infty} \subset \mathbb{P}^{2}$ intersects C_{f} at a single point [0:1:0] with multiplicity 6 , and $[0: 1: 0]$ is a smooth point of C_{f}, the pull-back of L_{∞} to X_{f} is a union of two smooth rational curves that intersect each other at a single point with multiplicity 3 . Let L_{f} be one of the two rational curves, and put

$$
l_{f}:=\left[L_{f}\right] \in \operatorname{NS}\left(X_{f}\right) .
$$

Then h_{f} and l_{f} generate a lattice $\left\langle h_{f}, l_{f}\right\rangle$ of rank 2 in $\mathrm{NS}\left(X_{f}\right)$ whose intersection matrix is equal to

$$
\left(\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right) .
$$

In particular, the discriminant of $\left\langle h_{f}, l_{f}\right\rangle$ is -5 . Note that Σ_{f} and $\left\langle h_{f}, l_{f}\right\rangle$ are orthogonal in $\mathrm{NS}\left(X_{f}\right)$. Therefore $\mathrm{NS}\left(X_{f}\right)$ contains a sublattice $\Sigma_{f} \oplus\left\langle h_{f}, l_{f}\right\rangle$ of rank 22 and discriminant -5^{6}. Thus X_{f} is supersingular, and $\sigma\left(X_{f}\right) \leq 3$.

In order to prove the second assertion of Theorem 1.2, we define an even lattice S_{0} of rank 22 with signature $(1,21)$ and discriminant -5^{6} by

$$
S_{0}:=\Sigma_{5 A_{4}}^{-} \oplus\langle h, l\rangle,
$$

where $\Sigma_{5 A_{4}}^{-}$is the negative-definite root lattice of type $5 A_{4}$, and $\langle h, l\rangle$ is the lattice of rank 2 generated by the vectors h and l satisfying

$$
h^{2}=2, \quad l^{2}=-2, \quad h l=1
$$

Remark 3.1. This lattice $\langle h, l\rangle$ is the unique even indefinite lattice of rank 2 with discriminant -5 . See Edwards [7], or Conway and Sloane [5, Table 15.2a].

Claim 3.2. For $\sigma=1,2,3$, there exists an even overlattice $S^{(\sigma)}$ of S_{0} with the following properties:
(i) the discriminant of $S^{(\sigma)}$ is $-5^{2 \sigma}$,
(ii) the Dynkin type of the root system $\left\{r \in S^{(\sigma)} \mid r h=0, r^{2}=-2\right\}$ is $5 A_{4}$,
(iii) the set $\left\{e \in S^{(\sigma)} \mid e h=1, e^{2}=0\right\}$ is empty.

Here we prove that $S^{(3)}=S_{0}$ satisfies (ii) and (iii). Let $v=s+x h+y l$ be a vector of $S^{(3)}=S_{0}$, where $s \in \Sigma_{5 A_{4}}^{-}$and $x, y \in \mathbb{Z}$. If $v h=0$ and $v^{2}=-2$, then we have $2 x+y=0$ and $s^{2}-10 x^{2}=-2$. Since $s^{2} \leq 0$, we have $x=y=0$ and hence v is a root in $\Sigma_{5 A_{4}}^{-}$. Therefore $S^{(3)}=S_{0}$ satisfies (ii). If $v h=1$ and $v^{2}=0$, then we have $2 x+y=1$ and $s^{2}-10 x^{2}+10 x-2=0$. Since $s^{2} \leq 0$, there is not such an integer x. Hence $S^{(3)}=S_{0}$ satisfies (iii). Thus Claim 3.2 for $\sigma=3$ has been proved. For the cases $\sigma=2$ and $\sigma=1$, see Proposition 4.1 in the next section.

Let X be a supersingular $K 3$ surface with $\sigma=\sigma(X) \leq 3$. By the results of Rudakov and Shafarevich [16], the isomorphism class of the lattice $\operatorname{NS}(X)$ is characterized by the following properties;
(a) even and signature $(1,21)$, and
(b) the discriminant group is isomorphic to $\mathbb{F}_{5}^{\oplus 2 \sigma}$.

Since the discriminant group of $S^{(\sigma)}$ is a quotient group of a subgroup of the discriminant group $\mathbb{F}_{5}^{\oplus 6}$ of S_{0}, the lattice $S^{(\sigma)}$ has also these properties. Therefore there exists an isomorphism

$$
\phi: S^{(\sigma)} \xrightarrow{\sim} \mathrm{NS}(X) .
$$

By [16, Proposition 3 in Section 3], we can assume that $\phi(h)$ is the class [H] of a nef divisor H. Note that $H^{2}=h^{2}=2$. If the complete linear system $|H|$ had a fixed component, then, by Nikulin [12, Proposition 0.1], there would be an elliptic pencil $|E|$ and a (-2)-curve Γ such that $|H|=2|E|+\Gamma$ and $E \Gamma=1$, and the vector $e \in S^{(\sigma)}$ that is mapped to $[E]$ by ϕ would satisfy $e h=1$ and $e^{2}=0$. Therefore the property (iii) of $S^{(\sigma)}$ implies that the linear system $|H|$ has no fixed components (see also Urabe [25, Proposition 1.7].) Then, by Saint-Donat [17, Corollary 3.2], $|H|$ is base point free. Hence we have a morphism $\Phi_{|H|}: X \rightarrow \mathbb{P}^{2}$ induced by $|H|$. Let

$$
X \rightarrow Y_{H} \rightarrow \mathbb{P}^{2}
$$

be the Stein factorization of $\Phi_{|H|}$. Then $Y_{H} \rightarrow \mathbb{P}^{2}$ is a finite double covering branched along a curve $C_{H} \subset \mathbb{P}^{2}$ of degree 6 . By the property (ii) of $S^{(\sigma)}$, we see that $\operatorname{Sing}\left(Y_{H}\right)$ consists of $5 A_{4}$-singular points, and hence $\operatorname{Sing}\left(C_{H}\right)$ also consists of $5 A_{4}$-singular points. By Proposition 2.2 , there exists an element $f \in \mathcal{U}$ such that C_{H} is isomorphic to C_{f}. Then X is isomorphic to X_{f}.
Remark 3.3. In [21], it is proved that a normal $K 3$ surface with $5 A_{4}$-singular points exists only in characteristic 5 .

4. Classification of overlattices

Let $F \subset S_{0}$ be a fundamental system of roots of $\Sigma_{5 A_{4}}^{-} \subset S_{0}$ (see Ebeling [6] for the definition and properties of a fundamental system of roots.) Then F consists of 4×5 vectors

$$
e_{i}^{(j)} \quad(i=1, \ldots, 4, j=1, \ldots, 5)
$$

such that

$$
e_{i}^{(j)} e_{i^{\prime}}^{\left(j^{\prime}\right)}= \begin{cases}0 & \text { if } j \neq j^{\prime} \text { or }\left|i-i^{\prime}\right|>1, \\ 1 & \text { if } j=j^{\prime} \text { and }\left|i-i^{\prime}\right|=1, \\ -2 & \text { if } j=j^{\prime} \text { and } i=i^{\prime}\end{cases}
$$

(see Figure 4.1.) We put

Figure 4.1. The Dynkin diagram of type A_{4}

$$
\operatorname{Aut}(F, h):=\left\{g \in O\left(S_{0}\right) \mid g(F)=F, g(h)=h\right\}
$$

where $O\left(S_{0}\right)$ is the orthogonal group of the lattice S_{0}. Then $\operatorname{Aut}(F, h)$ is isomorphic to the automorphism group of the Dynkin diagram of type $5 A_{4}$, and hence it is isomorphic to the semi-direct product $\{ \pm 1\}^{5} \rtimes S_{5}$. Note that $\operatorname{Aut}(F, h)$ acts on the dual lattice $\left(S_{0}\right)^{\vee}$ of S_{0} in a natural way, and hence it acts on the set of even overlattices of S_{0}. We classify all even overlattices of S_{0} with the properties (ii) and (iii) in Claim 3.2 up to the action of $\operatorname{Aut}(F, h)$. The main tool is Nikulin's theory of discriminant forms of even lattices [11].

The set $F \cup\{h, l\}$ of vectors form a basis of S_{0}. Let

$$
\left(e_{i}^{(j)}\right)^{\vee} \quad(i=1, \ldots, 4, j=1, \ldots, 5), \quad h^{\vee} \quad \text { and } \quad l^{\vee}
$$

be the basis of $\left(S_{0}\right)^{\vee}$ dual to $F \cup\{h, l\}$. We denote by G the discriminant group $\left(S_{0}\right)^{\vee} / S_{0}$ of S_{0}, and by

$$
\operatorname{pr}:\left(S_{0}\right)^{\vee} \rightarrow G
$$

the natural projection. Then G is isomorphic to $\mathbb{F}_{5}^{\oplus 5} \oplus \mathbb{F}_{5}$ with basis

$$
\operatorname{pr}\left(\left(e_{1}^{(1)}\right)^{\vee}\right), \ldots, \operatorname{pr}\left(\left(e_{1}^{(5)}\right)^{\vee}\right), \operatorname{pr}\left(h^{\vee}\right)
$$

With respect to this basis, we denote the elements of G by $\left[x_{1}, \ldots, x_{5} \mid y\right]$ with $x_{1}, \ldots, x_{5}, y \in \mathbb{F}_{5}$. The discriminant form $q: G \rightarrow \mathbb{Q} / 2 \mathbb{Z}$ of S_{0} is given by

$$
q\left(\left[x_{1}, \ldots, x_{5} \mid y\right]\right)=-\frac{4}{5}\left(x_{1}^{2}+\cdots+x_{5}^{2}\right)+\frac{2}{5} y^{2} \bmod 2 \mathbb{Z}
$$

The action of $\operatorname{Aut}(F, h)$ on $G=\mathbb{F}_{5}^{\oplus 5} \oplus \mathbb{F}_{5}$ is generated by the multiplications by -1 on x_{i}, and the permutations of x_{1}, \ldots, x_{5}. We define subgroups H_{0}, \ldots, H_{8} of G by their generators as follows:

$$
\begin{aligned}
H_{0} & :=\{0\}, \\
H_{1} & :=\langle[0,0,2,2,2 \mid 2]\rangle, \\
H_{2} & :=\langle[2,2,2,2,2 \mid 0]\rangle, \\
H_{3} & :=\langle[0,1,2,2,2 \mid 1]\rangle, \\
H_{4} & :=\langle[1,2,2,2,2 \mid 2]\rangle, \\
H_{5} & :=\langle[0,1,1,2,2 \mid 0]\rangle, \\
H_{6} & :=\langle[1,0,1,2,2 \mid 0],[0,1,2,1,3 \mid 0]\rangle, \\
H_{7} & :=\langle[1,0,0,1,1 \mid 1],[0,1,1,1,3 \mid 3]\rangle, \\
H_{8} & :=\langle[1,0,1,1,2 \mid 2],[0,1,1,3,3 \mid 0]\rangle .
\end{aligned}
$$

We then put

$$
S_{i}:=\operatorname{pr}^{-1}\left(H_{i}\right) \subset\left(S_{0}\right)^{\vee} .
$$

the (a,b,y)-type	the roots in h^{\perp}	the set E	
$(0,0,0)$	$5 A_{4}$	empty	$*$
$(0,2, \pm 1)$	$A_{9}+3 A_{4}$	empty	
$(0,3, \pm 2)$	$5 A_{4}$	empty	$*$
$(0,5,0)$	$5 A_{4}$	empty	$*$
$(1,1,0)$	$E_{8}+3 A_{4}$	empty	
$(1,3, \pm 1)$	$5 A_{4}$	empty	$*$
$(1,4, \pm 2)$	$5 A_{4}$	empty	$*$
$(2,0, \pm 2)$	$A_{9}+3 A_{4}$	empty	
$(2,2,0)$	$5 A_{4}$	empty	$*$
$(3,0, \pm 1)$	$5 A_{4}$	empty	$*$
$(3,1, \pm 2)$	$5 A_{4}$	empty	$*$
$(4,1, \pm 1)$	$5 A_{4}$	empty	$*$
$(5,0,0)$	$5 A_{4}$	empty	$*$

Table 4.1. The isotropic vectors in (G, q)

Proposition 4.1. The submodules S_{0}, \ldots, S_{8} of $\left(S_{0}\right)^{\vee}$ are even overlattices of S_{0} with the properties (ii) and (iii) in Claim 3.2. The discriminant of S_{i} is -5^{6} for $i=0,-5^{4}$ for $i=1, \ldots, 5$, and -5^{2} for $i=6, \ldots, 8$.

Conversely, if S is an even overlattice of S_{0} with the properties (ii) and (iii), then there exists a unique S_{i} among S_{0}, \ldots, S_{8} such that $S=g\left(S_{i}\right)$ holds for some $g \in \operatorname{Aut}(F, h)$.

Proof. The mapping $S \mapsto S / S_{0}$ gives rise to a one-to-one correspondence between the set of even overlattices S of S_{0} and the set of totally isotropic subgroups H of (G, q). The inverse mapping is given by $H \mapsto \operatorname{pr}^{-1}(H)$. If $\operatorname{dim}_{\mathbb{F}_{5}} H=d$, then the discriminant of $\mathrm{pr}^{-1}(H)$ is equal to $-5^{6-2 d}$ (see Nikulin [11].)

$$
\begin{aligned}
& \text { For } v=\left[x_{1}, \ldots, x_{5} \mid y\right] \in G \text {, we put } \\
& \qquad \delta(v):=(a, b, y) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0} \times \mathbb{F}_{5},
\end{aligned}
$$

where a is the number of $\pm 1 \in \mathbb{F}_{5}$ among x_{1}, \ldots, x_{5} and b is the number of $\pm 2 \in \mathbb{F}_{5}$ among x_{1}, \ldots, x_{5}. Note that $\delta(v)=\delta(w)$ holds if and only if there exists $g \in$ $\operatorname{Aut}(F, h)$ such that $g(v)=w$. A vector $v \in G$ is isotropic with respect to q if and only if $\delta(v)$ appears in the first column of Table 4.1. For each (a, b, y)-type α in Table 4.1, we choose a vector $v \in G$ such that $\delta(v)=\alpha$, and calculate the even overlattice

$$
S_{\alpha}:=\operatorname{pr}^{-1}(\langle v\rangle)
$$

of S_{0}. The second column of Table 4.1 presents the Dynkin type of the root system $\left\{r \in S_{\alpha} \mid r h=0, r^{2}=-2\right\}$, and the third column presents the set $E:=$ $\left\{e \in S_{\alpha} \mid e h=1, e^{2}=0\right\}$. Hence we see that the following two conditions on a subgroup H of G are equivalent:
(I) The corresponding submodule $\mathrm{pr}^{-1}(H)$ of $\left(S_{0}\right)^{\vee}$ is an even overlattice of S_{0} with the properties (ii) and (iii) in Claim 3.2.
(II) For any $v \in H, \delta(v)$ is an (a, b, y)-type with $*$ in Table 4.1.

Using a computer, we make the complete list of subgroups of G that satisfy the condition (II) up to the action of $\operatorname{Aut}(F, h)$. The complete set of representatives is $\left\{H_{0}, \ldots, H_{8}\right\}$ above.

Remark 4.2. Since there exist no even unimodular lattices of signature $(1,21)$ (see Serre [18, Theorem 5 in Chapter V]), all totally isotropic subgroups of (G, q) are of dimension ≤ 2 over \mathbb{F}_{5}.

References

[1] M. Artin, Some numerical criteria for contractability of curves on algebraic surfaces, Amer. J. Math. 84, (1962) 485-496.
[2] \qquad On isolated rational singularities of surfaces, Amer. J. Math. 88, (1966) 129-136.
[3] \qquad Supersingular K3 surfaces, Ann. Sci. École Norm. Sup. (4) 7, (1974) 543-567 (1975).
[4] algebraic geometry, (Iwanami Shoten, Tokyo, 1977), pp. 11-22.
[5] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, third ed., Grundlehren der Mathematischen Wissenschaften, vol. 290, (Springer-Verlag, New York, 1999).
[6] W. Ebeling, Lattices and codes, revised ed., Advanced Lectures in Mathematics, (Friedr. Vieweg \& Sohn, Braunschweig, 2002).
[7] H. M. Edwards, Fermat's last theorem, Graduate Texts in Mathematics, vol. 50, (SpringerVerlag, New York, 1996).
[8] G.-M. Greuel and H. Kröning, Simple singularities in positive characteristic, Math. Z. 203, (1990) 339-354.
[9] L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. École Norm. Sup. (4) 12, (1979) 501-661.
[10] M. Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied Mathematics, vol. 88. (Marcel Dekker, New York, 1984).
[11] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979) 111-177, 238. English translation: Math. USSRIzv. 14, (1979) 103-167 (1980).
[12] _, Weil linear systems on singular K3 surfaces, Algebraic geometry and analytic geometry (Tokyo, 1990), ICM-90 Satell. Conf. Proc., (Springer, Tokyo, 1991), pp. 138-164.
[13] A. Ogus, Supersingular K3 crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. II, Astérisque, vol. 64, (Soc. Math. France, Paris, 1979), pp. 3-86.
[14] , A crystalline Torelli theorem for supersingular K3 surfaces, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, (Birkhäuser Boston, Boston, MA, 1983), pp. 361-394.
[15] A. N. Rudakov and I. R. Shafarevich, Supersingular K3 surfaces over fields of characteristic 2, Izv. Akad. Nauk SSSR Ser. Mat. 42, (1978) 848-869: Reprinted in I. R. Shafarevich, Collected Mathematical Papers, (Springer-Verlag, Berlin, 1989), pp. 614-632.
[16] , Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics, Vol. 18, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1981: Reprinted in I. R. Shafarevich, Collected Mathematical Papers, (Springer-Verlag, Berlin, 1989), pp. 657-714, pp. 115-207.
[17] B. Saint-Donat, Projective models of $K-3$ surfaces, Amer. J. Math. 96, (1974) 602-639.
[18] J.-P. Serre, A course in arithmetic, (Springer-Verlag, New York, 1973), Translated from the French, Graduate Texts in Mathematics, No. 7.
[19] I. Shimada, Rational double points on supersingular K3 surfaces, Math. Comp. 73, (2004) 1989-2017 (electronic).
[20] I. Shimada and De-Qi Zhang, K3 surfaces with ten cusps, 2004, preprint, http://www.math.sci.hokudai.ac.jp/~shimada/preprints.html
[21] _, Dynkin diagrams of rank 20 on supersingular K3 surfaces, 2005, preprint, http://www.math.sci.hokudai.ac.jp/~shimada/preprints.html
[22] T. Shioda, An example of unirational surfaces in characteristic p, Math. Ann. 211, (1974) 233-236.
[23] , On unirationality of supersingular surfaces, Math. Ann. 225 (1977) 155-159.
[24] , Some results on unirationality of algebraic surfaces, Math. Ann. 230, (1977) 153168.
[25] T. Urabe, Combinations of rational singularities on plane sextic curves with the sum of Milnor numbers less than sixteen, Singularities (Warsaw, 1985), (Banach Center Publ., vol. 20, PWN, Warsaw, 1988), pp. 429-456.
[26] C. T. C. Wall, Quartic curves in characteristic 2, Math. Proc. Cambridge Philos. Soc. 117, (1995) 393-414.

Department of Mathematics, Vietnam National University, 334 Nguyen Trai street, Hanoi, VIETNAM

E-mail address: phoductai@yahoo.com, taipd@vnu.edu.vn
Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 0600810, JAPAN

E-mail address: shimada@math.sci.hokudai.ac.jp

