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Ekedahl-Oort Strata and the First Newton Slope Strata

Shushi Harashita

Abstract

We investigate stratifications on the moduli space A, of principally polarized abelian
varieties of dimension g in characteristic p > 0. In this paper we give an easy algorithm
determining the first Newton slope of any generic point of each Ekedahl-Oort stratum.

1 Introduction

We study p-divisible groups and Barsotti-Tate truncated level one groups (BT) in characteristic
p > 0 and conclude some results about stratifications on the moduli space A, of principally
polarized abelian varieties over fields of characteristic p.

For a p-divisible group, we can define its Newton polygon. The isogeny classes of p-divisible
groups are classified by Newton polygons. From a Newton polygon, we have a finite set of
rational numbers \; (i = 1,--- ,t) satisfying 0 < Ay < --- < Ay < 1 (cf. §2.2). We call \q the
first Newton slope. An abelian variety X defines its p-divisible group

X[p™] := ind.lim. X [p’]

whose Newton polygon is symmetric, i.e., it satisfies \; + A\py1-; = 1 for ¢ = 1,--- ;¢t. The
symmetric Newton polygon with A\ = 1/2 (hence all A; = 1/2) is called supersingular and is
denoted by o. For a symmetric Newton polygon £ ending at (2g, g), we can define its NP-stratum
We in Ay (cf. §2.2).

On the other hand, Ekedahl and Oort defined another new stratification which is now called
the EO-stratification. This stratification is defined by isomorphism classes of p-kernels of prin-
cipally polarized abelian varieties (we shall give a brief review in §2.3). We will denote by S,
an EO-stratum.

Thus we have two stratifications on 4,. Our basic problem is to find an easy criterion for
S, C We. This is still an open problem in general. For the supersingular case { = o, Oort
gave an answer (cf. (4.0.3)), which played an important role in determining whether S, is
irreducible or not. Our chief aim is to generalize his result. More precisely speaking, let A be
a rational number and Z, the locus where the first Newton slope is not less than A. Then we
have a necessary and sufficient condition for S, C Z) (Cor. 4.2). This is a corollary to our main
theorem (Th. 4.1), in which we determine the first Newton slope of any generic point of S,.

This theorem can be regarded as a variant of the result of Goren and Oort ([3], Th. 5.4.11)
on reductions modulo inert primes of Hilbert modular varieties. For these modular varieties,
they computed the first Newton slope of any generic point of the generalized a-number locus
which is an analogue of EO-stratum. Note that in their cases the Newton polygon of every
point is determined only by its first Newton slope, as shown by themselves, and therefore the
computation of the first Newton slopes gave the complete answer.
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Notations. We fix once for all a rational prime p. All base fields and all base schemes will be
in characteristic p. For non-negative integers m,n we denote by gcd(m,n) the greatest common
divisor where for convenience we set gcd(m, 0) = ged(0,m) = m for Vm € Z>.

2 Stratifications

Let us review the definitions of the stratifications we will deal with. We recall some known facts.

2.1 Dieudonné theory

Let K be a perfect field of characteristic p and W (K) the ring of infinite Witt vectors with
coordinates in K. Let Ax be the p-adic completion of the associative ring

W (K)[F,V]/(Fx — 2P F,Var —aV, FV — p,VF — p,Ya € W(K))

with the Frobenius automorphism p on W(K). Note Ag is not commutative unless K = IF).
A Dieudonné module over W(K) is a left Ax-module which is finitely generated as a W (K)-
module.

We use the covariant Dieudonné theory, which says that there is a canonical categorical
equivalence D from the category of p-torsion finite commutative group schemes (resp. p-divisible
groups) over K to the category of Dieudonné modules over W (K') which are of finite length (resp.
free as W (K )-modules). We write F' and V for “Frobenius” and “Verschiebung” on commutative
group schemes. Note the covariant Dieudonné functor D satisfies D(F) =V and D(V') = F. For
a p-torsion finite commutative group scheme G, we have length(G) = length(D(G)).

2.2 The NP-stratification

For m,n € Z>( with ged(m,n) = 1, we define a p-divisible group G, ,, over [F,, by
D(Gmn) = Ar, /Ar, (F™ = V"). (2.2.1)

Let K be a field of characteristic p and k an algebraically closed field containing K. Let G be a
p-divisible group over K. By the Dieudonné-Manin classification, see [5] and [1], G is isogeneous

over k to
t

B G, (2.2.2)

i=1

for some finite set of pairs (m;, n;) with ged(m;,n;) = 1. Set \; = n;/(m; +n;). We can suppose

M <A << N (2.2.3)



without losing generality. We call A; the i-th Newton slope. The height of G is equal to Zﬁzl(mi—i—

n;) and the dimension of G is equal to Zle m;. The Newton polygon NP(G) of G is the line

graph which starts at (0,0) and ends at (3i_ (m; +n;),3F_ ;) and whose break-points are

of the form (}7_,(m; +n;),> ]_; n;) for some 1 < j < ¢— 1. We write this Newton polygon as
[mi,ni] + -+ [, ne. (2.2.4)

(This is usually written as (mq,n1) + - -+ + (m¢, ny). But in this paper, this would be confusing,

because we use a similar symbol for another notion.) In general, a Newton polygon is a line

graph obtained in this way from some finite set of pairs (m;,n;) of non-negative integers with

ged(mi,m;) = 1. For an abelian variety X, we write NP(X) = NP(X[p>]). We say, for two

Newton polygons &, & with the same end point, that & < £ if every point of ¢ is not below &.
For a symmetric Newton polygon £ ending at (2g, g), we define its NP-stratum by

We = {(X,n) € Ag| NP(X) < ¢},

which has a natural structure of closed subscheme of A, by Grothendieck and Katz (4], Th.
2.3.1 on p. 143). We also define the open NP-stratum by

W¢ = {(X,n) € Ag| NP(X) = ¢},

which is a locally closed subscheme of A,.

For a rational number A = n/(m + n) with m > n > 0 and ged(m,n) = 1 and for a natural
number e with e(m +n) < g, let ) . be the lowest Newton polygon with Newton slopes A; = A
foralll1 <i<e Weset Z),= ng and write Z) = Z, 1. We denote by de the locally closed
subscheme of A, which consists of principally polarized abelian varieties with the Newton slopes
A=A forall 1 <¢<e. Note that Wg}e C Z&)’e and in many cases de #* Wg‘e

2.3 The EO-stratification
Let K be a field of characteristic p.

Definition 2.1. (1) A finite commutative group scheme G over K is said to be a Barsotti- Tate
truncated level one group scheme (denoted by BT ) over K if

Im(V : GP) - @) = Ker(F : G — GP)),
Im(F : G — G?) = Ker(V : GP) = G).

(2) A symmetric BT over K is a pair (G,¢) of a BT; G over K and a group isomorphism ¢
over K from G to its Cartier dual GP.
Definition 2.2. (1) An elementary sequence of length g is a map
30:{0717"' 79} - {0717 7g}

satisfying ¢(0) = 0 and ¢(i — 1) < (i) < p(i —1) + 1 for 1 < i < g. We shall frequently
write ¢ as (p(1),(2), -+ ,¢(g))-



(2) A final sequence of length 2g is a map

1/}:{0717"' 729} - {0717 79}

satisfying ¥ (i—1) < (i) < ¢(i—1)+1for 1 <i < 2g with ¢(0) = 0 and ¢(29—1i) = g—i+
(i) for 0 <i < 2g. We shall frequently write ¢ as (¢(1),--- ,9¥(g);¢(g + 1), -+ ,1¥(29)).

(3) Let ¢ be an elementary sequence. The map

1/13{071,"' 729} — {0717 7g}

defined by ¥ (i) = ¢(i) and (29 —i) = g—i+ (i) for 0 < i < g is called the final sequence
stretched from .

Let G be a symmetric BT over K. For any subgroup scheme H of G over K and for any
word w of V, F~!, we define w - H inductively by

V-H:=VH® and F' H:=F'HYNFG). (2.3.1)

Then there exists a unique elementary sequence ¢ of a certain length g such that for any word
w of V, F~! we have
Y(length(w - G)) = length(Vw - G), (2.3.2)

where v is the final sequence stretched from ¢, see 7], (2.3) and (5.6). Moreover in [7], Prop. 9.6,
it was proved that there exists a filtration over K

0=GoCGIC--CGy=G (2.3.3)
with length(G;) = i such that
V.Gi=Gyg and F~'-Gi=Gypyyu for 0<i<2g. (2.3.4)
A filtration as in (2.3.3) satisfying (2.3.4) is called a final filtration of G.

Remark 2.3. Although ¢ is uniquely determined by G, the final filtration is not unique, see
[7], Rem. 9.6.

Thus we have a canonical map
ES : {symmetric BT, of length 2¢g over K}/K-isom. — {elementary sequence of length g}.
The following deep result is due to Oort, [7], (9.4):
Theorem 2.4. If K is algebraically closed, the map ES is bijective.
For a principally polarized abelian variety (X, ), we have a BT; X|[p] and a symmetry
o X[p) = X'p] = X[p]”

where the second isomorphism is a canonical one ([6], III, Cor. 19.2). Thus for each (X, u) we
have an elementary sequence ES(Xp],¢,), which will be simply denoted by ES(X).



For a principally polarized abelian variety (X, p), its p-rank f(X) is defined by X|[p|(K) =
(Z/pZ)®) and its a-number a(X) is defined to be dim# Homz(ay,, X). These invariants depend
only on (X|p],¢,). In fact, if we put ¢ = ES(X), then f(X) = max{i|p(i) =i} and a(X) =

9—¢(9)-
For each elementary sequence ¢, the EO-stratum S, is defined to be the subset of A,

consisting of points y € A, where y comes over some field from a principally polarized abelian
variety X, such that ES(X,) = ¢, see [7], (5.11). As shown in [7], (3.2), S, has a natural
structure of a locally closed reduced subscheme of A,.

There are two partial orderings on the set of elementary sequences of length g.

Definition 2.5. Let ¢ and ¢’ be elementary sequences of length g.
(Bruhat ordering) We say ¢’ < ¢ if ¢/(i) < (i) for all i =1,--- , g.
(Geometric ordering) We say ¢’ C ¢ if S,/ is contained in the Zariski closure §¢ of S.
We shall use the fundamental results of [7] on the EO-stratification:
Theorem 2.6. (1) S, is quasi-affine. Furthermore g@ is connected unless p(g) = 0.

(2) Any irreducible component of S, has dimension Y 9_, p(i). In particular S, is not empty
for every .

(3) ¢ < implies @' C .

(4) ¢’ C ¢ is equivalent to Sy NS, # 0.

3 Combinatorics arising from elementary sequences

In order to describe our main theorem, we introduce some new notions: W-sets, ®-sets, and
invariants: A, e,. We derive some basic properties of them.

3.1 The slope )\, associated with ¢

Let ¢ be an elementary sequence and v the final sequence stretched from ¢. Let G be a
symmetric BT over an algebraically closed field & with ES(G) = ¢. Choose one of the final
filtrations

Gi: 0=GogC---CGyC---CGy=0G.

We define a map
U {Gi, - ,Gog} —— {G1,-++ ,Gay}

by sending G; to

V-G = Gy if ¢(2) # 0, (3.1.1)
F1.Gi=Gypiyu) = Ggri i (i) =0.
We get a non-empty subset
D := m Im O/
j=1



of the set {G1,--- ,Gag}. Then U induces an automorphism
v: D —— D.
Set C:=DN{Gyq1,Ggq2, - ,Goq}.
Definition 3.1. The slope associated with ¢ is the rational number
A, = 4C/#D. (3.1.2)

Remark 3.2. One can regard (D, ¥) as a pair of a subset of {1,--- ,2¢} and an automorphism
on it, and the pair depends only on ¢. Hence all combinatorial objects defined only from (D, ¥)
are independent of the choice of a final filtration.

Lemma 3.3. C =0 if and only if p(1) = 1.

Proof. If p(1) = 1, then (i) # 0 for all i. By definition this means ¥(H) = V - H for any
HeD. ThusD=V-DC{Gy,---,Gy}. Hence C =0.

If (1) =0, then (i) <ifori=1,---,2g; hence some power of V kills G. Thus D contains
an element of the form F~! - G; = G,; for some i > 1, i.e., C # 0. O

Suppose ¢(1) = 0. For any subgroup scheme H of G, let [(H) denote the least integer [
such that V*1. H = 0. Obviously for any two subgroup schemes H, H' with H C H’, we have
I(H) <I(H"). We introduce an automorphism

;. C——¢C (3.1.3)
which is defined by sending G; to F-1yUGi) . G,. Note
D={VI-H|HeC, 0<i<I(H)}. (3.1.4)
In particular we have §D =3, -(I(H) + 1).
Lemma 3.4. Assume ¢(1) =0. Fori> g+ 1, we have [(G;) > 1.

Proof. Since (g +1)=g—(9—1)+p(g—1) > 1, we have V- G411 #0, i.e.,, I(Gg41) > 1. By
Gg_|_1 C G, we have Z(GZ) > Z(Gg+1) > 1. O

Lemma 3.5. (1) 0< )\, <1/2.
(2) Ap =0 if and only if (1) = 1.
(3) Ay =1/2 if and only if ¢([(g +1)/2]) = 0.

Proof. (2) Note A\, = 0 is equivalent to C = ). Then this follows immediately from Lem. 3.3.

(1) It suffices to show that A, < 1/2 for ¢(1) = 0. Suppose (1) = 0. By Lem. 3.4, we have
I(H) > 1 for every H € C. Then A\, =1C/ ) yee(l(H) + 1) is at most 1/2.

(3) Suppose A, = 1/2. Then we have [(H) = 1 for all H € C. Let G; be the biggest element
of C. Note F7'V - G; = G;. Then we have ¢(i) =i —g. If i > g+ [(g + 1)/2], then we have
i—g>1[(g+1)/2] and p(i — g) = length V2 - G; = 0 by I(G;) = 1. Thus ¢([(g + 1)/2]) = 0.
If i < g+ [(g+1)/2], then p(2g —4) = (i) + g —i = 0 with 29 —i > [(g + 1)/2]. Hence
o(l(g +1)/2) = 0.



Conversely assume ¢([(g + 1)/2]) = 0. It suffices to show that [(H) =1 for all H € C. Let
H be an element of C. Then there exists H' € D such that V- H' =0 and H = F~! - H'. Set
j=length H' ie., H = G;. Then V - H' = 0 implies ¢(j) = 0. We also have H = G4 ;. Since
©([(g +1)/2]) = 0 implies ¢(v) < max{0,v — [(g + 1)/2]}, we have

Y(g+g) = j+lg—17)
J if 7 > [g9/2],
i+@—i—-lg+1)/2])=1[g/2] ifj<lg/2l.

By v¥(j) = 0 and ¥([g/2]) = 0, we have ¥?(g+ j) = 0 and therefore V2. H = Gy2(g+4) = 0. This
means [(H) = 1. O

<

3.2 VU-sets and P-sets

Definition 3.6. (1) A W-set in D (or simply in @) is a subset of D which is stable under the
action of the group generated by W. We call D the full W-set.

(2) A W-cycle in D is an orbit in D under the action of the group generated by .

Definition 3.7. (1) A ®-set in C (or simply in @) is a subset of C which is stable under the
action of the group generated by ®. We call C the full ®-set.

(2) A ®-cycle in C is an orbit in C under the action of the group generated by P.

For a ®-set P in C, we get a V-set
Qp ={VI-H|HeP, 0<i<I(H)},
which is called the W-set associated with P. Conversely for a W-set Q in D, we get a P-set
Pog:=9NC=9N{Ggs1, - ,Ga},

which is called the ®-set associated with Q. Thus there is a canonical bijection from the set of
W-sets to the set of ®-sets.
Let Q be a U-set. We denote by e(Q) the cardinal number of the set of W-cycles in Q and
set
e, = e(D). (3.2.1)
Since D # (), we have e, > 1. Let P be the ®-set associated with Q. Set ¢(Q) := §P and

d(Q) := $Q and put ¢ = ¢(D) and d = d(D). Note A, = ¢/d. Since 0 < A\, < 1/2, there are
non-negative integers m, and n,, such that

Ap =N/ (Mg + ny) (3.2.2)

with ged(my,ne) = 1 and my, > ne,.

We write D as {1, -+ ,Iq} with Iy C --- C I. Note I; € C & d—c¢ < i < d. Since
V(I;) =0 1<1i<c¢ wehave U([;) C¥([;)ifc<i<jori<j<cand¥(;) D V() if
i <c<j. Thus

R I P



We define a bijective map
7: D —— Z/dZ

by sending I; to the class of ¢ — 1. Then we have the commutative diagram

D T 7/dZ

v| |-

D — 7)dZ.

Then clearly we obtain
Proposition 3.8. (1) e, = gecd(c,d) and therefore c = ey,ny, and d = ey(my + ny);
(2) for any W-cycle Q in D, there is an integer i with 0 < i < ey, such that 7(Q) = (i+e,Z)/dZ.

Corollary 3.9. For any ¥-set Q in D, we have ¢(Q) = e(Q)n, and d(Q) = e(Q)(my + ny).
In particular e(Q) = ged(c(Q), d(Q)).

Proof. It suffices to show that for any W-cycle @ in Q we have §Q) = m,+n, and §P = n,,, where
P is the ®-cycle associated with Q. By Prop. 3.8 (2), we have 7(Q) = (i + e,Z)/dZ for some
0 <i<e, Hence §Q =d/e, =my+n, and fP =4{j|d —c<i+eyj <d} =c/e, =n, O

Corollary 3.10. e, < [g/m].

Proof. Since D\ C C {G1,---,Gg4}, we have an inequality d — ¢ < g. By Prop. 3.8 (1) we get
epxmy < g. O

Definition 3.11. Let Q be a W-set in D.

(1) The absolute shape of Q is the subset of Z? defined by

(2) Let us write Q as {J1,---,Jgo)} with J1 C --- C Jyo). The relative shape of Q is the
subset of Z? defined by
RS(Q) = {(4,5) [ ¥(J;) = J;}.

Proposition 3.12. Let ¢ and ¢’ be two elementary sequences (possibly of different lengths).
Let Q and Q' be W-sets in ¢ and ¢ respectively. We have X\, = Ay and e(Q) = e(Q') if and
only if RS(Q) = RS(Q') as subsets of Z.2.

Proof. First note that A\, = A\, and e(Q) = e(Q’) is equivalent to ¢(Q) = ¢(Q’) and d(Q) =
d(Q') by Cor. 3.9.
If RS(Q) = RS(Q’), then we have ¢(Q) = ¢(Q’) and d(Q) = d(Q'). In fact ¢(Q) = #{(,)) €
RS(Q) |7 < j} and d(Q) = §RS(Q).
Conversely assume c(Q) = ¢(Q') and d(Q) = d(Q'). Let J; C --- C Jyg) be as in Def. 3.11
(2). Consider the bijection
To: Q —— Z/d(Q)Z



sending J; to the class of j — 1. By the definition of ¥, we have W(J;) = Jj 40)-c(g) for
J < ¢e(Q) and ¥(J;) = Jj_0) for j > ¢(Q). Hence we have a commutative diagram

Z
wl l—c(g)

TQ

Thus RS(Q) depends only on ¢(Q) and d(Q), and therefore RS(Q) = RS(Q’). O

3.3 Explicit description of ®-cycles

In this subsection we assume ¢(1) = 0. Let m = m,, and n = n,. By the assumption, we have
Ay =n/(m+n) > 0 and therefore n > 0.

Let P be a ®-cycle. By Cor. 3.9 the cardinal number of P is equal ton and ) 5 p(I(H)+1) =
m +n. We write P as {Lq,---,L,} with L; C Ly C --- C L,, and define a bijective map

w: P —— Z/nZ
by sending L; to the class of ¢ — 1. Our aim is to describe ® as an automorphism of Z/nZ.
Lemma 3.13. We have |I[(G;) — I(G;)| <1 for any i,j > g.

Proof. By the definition of [, we have [(G4) = (V- Gag) = I(G24) — 1. Then this lemma follows
immediately from I(G4) < [(G;) < 1(Goq) for all g <i < 2g. O

For z € R, let [x] denote the smallest integer > x.

Lemma 3.14. For any H € P, we have [(H) € {[m/n] —1,[m/n]}. At least one H € P has
I(H) =[m/n].

Proof. First note |[[(H)—I(H')| < 1for any H, H € P by Lem. 3.13. Let y = max{l{(H)|H € P}.
Then we have

m= Zl(H)Sny< Z(Z(H)—l—l):m—i-n.

HeP HeP
Hence y = [m/n]. O

Let P, ={H € P|l(H) = [m/n]} and P, = P\ P; and set n; = §P; and ny = §P». Then
we have

PlZ{Ln2+17Ln2+l7“‘ 7Ln} a‘nd PQZ{L]JL]J“' 7Ln2}‘
Lemma 3.15. (1) ny =m+n—n[m/n] and ng =n[fm/n| —m.
(2) U(Li) = [(m —n+i)/n].

Proof. (1) Note m +n =Y ycp(l(H) +1) = ni([m/n] + 1) + na([m/n]). By n =ny + ny, we
have m 4+ n =ny +n|[m/n]. Hence ny = m +n —n[m/n|. Then no =n —ny =nlm/n] —m.
(2) Set I'(i) :== [(m —n+1)/n]. Then for 0 < j < ny we have

'(ng = j) = [(m = n+mng —j)/n] = [[m/n] = 1= (j/n)] = [m/n] -1,



and for 1 < j < nj; we have

U'(n2 +j) = [(m —n+n2+j)/n] = [[m/n] =1+ (j/n)] = [m/n].
These mean [(L;) =1'(i) for all 1 <i <n. O
Proposition 3.16. We have the commutative diagram

P = 7Z/nZ

»| | +m

P —— 7/nZ.

Proof. First for L, L' € P; (i =1,2) with L C L', we have ®(L) C ®(L’). Secondly let L € P;
and L' € P,. Obviously L D L’. We claim ®(L) C ®(L’). Indeed V-L CV -G =G, C L' and
therefore ®(L) = F~1V[m/?l. [, = p=tyIm/n1=1.(V.L) is contained in F~1V[m/?1=1. 1/ = &(L/).

Hence we have
a(Ly) = {7 L=
L, ifj>mns.
Since n; = —ng = m (modn) by Lem. 3.15 (1), we have the required commutative diagram. O
We denote by Hy = Hy(P) the biggest element of P. Set
H; = ®'(Hy) and I;=I1(H;) for i€ Zso. (3.3.1)

Note P = {Hy, -+ ,Hp_1} and H; = H;y, for all i > 0. We define natural numbers r; (i € Z)
by
r; = im (modn) and 0<r <n. (3.3.2)

By using these we can describe some basic properties on ®-cycles:
Corollary 3.17. Let P, L;, H; and l; be as above. We have

(1) H; = L,, fori € Z>o;

(2) l; =[(m —n+r;)/n] forie Z>o.

Proof. Since wj(Hy) is the class of n — 1, the class of w;(H;) is given by r; — 1 for i € Z>( by
Prop. 3.16, i.e., H; = L,,. Then from Lem. 3.15 (2), we get l; = l(Ly,) = [(m —n+r;)/n]|. O

Remark 3.18. In order to compute A\, = n/(m + n) for a given ¢, it suffices to find a ®-cycle
P and calculate P and I; (i =0,--- ,n —1). In fact n = §P and m = Z?:_ol l;.

Here we give some examples.
Example 3.19. (1) Let g = 3. Consider ¢ = (0,0,1). Then ¢ = (0,0,1;1,2,3).
Gy Ga Gs Ga Gs Gs
\/

We have a ®-cycle with Hy = G4. Indeed V - G4 = Gy = G1 and V2.Gy =V -G =
Gw(l) =0. Also F7'vV . Gy = F1. G1 =Gy

10



There is another ®-cycle:

Gl G2 Gg G4 G5 G6
Indeed put Hyg = G5. Then V - G5 = Gy5) = G2 and V2. Gy =V -Gy =Gy =0. Also
F_IV'Gg, :F_I'GQZG5.
Note these two give all ®-cycles in G, ie., e, = 2. We have n = 1 and [y = 1, Thus
Ap =1/2.
(2) Let ¢ =(0,1,1,2). Then ¢ = (0,1,1,2;2,3,3,4).

VRN /_\
Gy Gy G Gy Gs Ge G Gy
\//

We have a unique ®-cycle with Hy = G5, i.e., e, = 1. In this case, [p = 2; hence we have
n =1, m=2; thus A\, =1/3.

(3) Let ¢ = (0,0,1,1,2). Then ¢ = (0,0,1,1,2:2,3,3,4,5).

T o

Gh G Gs G:GZrG/Gr G Gs Go Go
We have a unique ®-cycle: (Ho, Hi) = (G7,Gg), ie., e, = 1. In this case, lp = 2 and
[y = 1. Thus we have n =2, m = 3 and A\, = 2/5.

(4) Let ¢ = (0,0,1,2,2,3). Then ¢ = (0,0,1,2,2,3;3,4,4,4,5,6). There are two ®-cycles,
i.e., e, = 2. Those are given by Hy = G7 and Hp = Gg. In the both cases, we have [y = 2;
hence A\, = 1/3.

(5) We can check that there are two ®-cycles for ¢ = (0,0,0,0,1,2,2,2,2,3). Those are given
by (Ho, H1) = (G13,G11) and (Hy, H1) = (G14,G12). In the both cases, we have [g = 2
and [y = 1. Thus A\, =2/5 and e, = 2.

4 Main results

Let ¢ be an elementary sequence. The main purpose of this paper is to show

Theorem 4.1. Any generic point of Sy, has the Newton slopes \; = A, for all 1 <i <e,. (All
the other Newton slopes are > \,, see (2.2.3).)

As an obvious conclusion of this theorem, we have
Corollary 4.2. S, C Z) if and only if A, > A.

Proof. Suppose S, C Zy. By the definition of Zy, Th. 4.1 implies A, > A. Conversely suppose
Ap > A Clearly Z,, C Zy. Since Z,, is closed by Grothendieck and Katz [4], Th. 2.3.1, we
have S, C Z,, by Th. 4.1. O

By Lem. 3.5 (3) and the fact W, = Z; /2, this corollary can be viewed as a generalization of
Oort’s result:
S, CW, <= ¢((g+1)/2]) =0. (4.0.3)
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5 Decompositions of symmetric BT’s

The first aim of this section is to give a criterion for the existence of decompositions of symmetric
BT;’s in terms of self-dual (V, F~1)-subsets. After that, we shall apply the criterion to symmetric
BT;’s which have a W-set making a (V, F~1)-subset. Then we will obtain a key result (Cor. 5.26),
where we shall see that these symmetric BT’s have direct summands which come from minimal
p-divisible groups.

5.1 (V,F!)-cycles and self-dual (V, F~!)-subsets

Let us recall the notion of (V, F~1)-cycles (cf. [7], (2.5)), which is different from that of ¥-cycles,
and introduce the notion of self-dual (V, F~!)-subsets.

Let ¢ be an elementary sequence of length g and ) its stretched final sequence. Choose a
symmetric BT} G with ES(G) = ¢ and a final filtration G, as in (2.3.3). Set

There exists a bijection
. I' —— T (5.1.2)

defined by sending G;/G;_1 to

{V - Gi/V - Gi1 = Gy(iy/Guiz) if (i — 1) <4(d), (5.1.3)

FUGi/F~ G = Gayig) [ Gopica—piny 1900 — 1) = 9(0).

Definition 5.1. (1) A (V, F~!)-subset is a subset of I which is stable under the action of the
group generated by . We call T' the full (V, F~!)-subset.

(2) A (V,F~1)-cycle is an orbit in T under the action of the group generated by 7.

In [7], (5.1), an operation L on the set of subgroup schemes of G was introduced. Recall it
satisfies GZ-L = Gyy—; and therefore it defines an operation on I', denoted by the same symbol L,
by sending v = G;/G;_1 to v+ = Gl-l_l/GiL = Gag4+1-i/Gag—i. Since L on I satisfies

m =1, (5.1.4)
the operation L respects the disjoint union into (V, F~1)-cycles.
Definition 5.2. A (V, F~!)-subset A is said to be self-dual if A = A*.

From now on, let A be a self-dual (V, F~!)-subset. Note #A is even because vy # v for all
v eT. Set gn = #A/2. Let us write {u € {1,---,29} |Gy /Gu-1 € A} as {ug, ug,- - ,uzy, } with
up < --- < ugg,. By the self-duality of A, we have

Ui + Uggy+1—5 = 29 + 1. (5.1.5)
Definition 5.3. We associate to A an elementary sequence @ of length g defined by
ea(d) = t{u € {ur, - uit [o(u —1) < p(u)} (5.1.6)

fori=1,--- ,ga. We call pp the type of A.

12



Note the final sequence 15 stretched from @, satisfies

Ya(i) = #{u € {ur, - s uib [Y(u—1) <P(u)} (5.1.7)
foralli=1,---,2ga. For convenience we set ug = 0. Then one can check
_ -1 _ ;
V-Gy, = G“wA(i) and F~' -Gy, = G“gAJri—wA(i) for 0<1i<2g,. (5.1.8)

Definition 5.4. The relative shape of A is the subset of Z? defined by
rs(A) = { (0, 5) [ 7(Gu; /Gui—1) = Gu; /Guj1}
Proposition 5.5. We have
oa(i") =8{(i,7) € rs(A) |i <4 and i > j} for 1<i' <ga. (5.1.9)
In particular the type o of A is determined by rs(A).

Proof. Comparing (5.1.6) and (5.1.9), it suffices to show

Claim: for (4, ) € rs(A) with i < g, the condition ¢ > j is equivalent to ¢(u; — 1) < p(u;).
First note that by (5.1.5) the condition i < g, is equivalent to u; < g, and by definition the

condition (i,7) € rs(A) is equivalent to

{uj = o(u;) if o(u; — 1) < plug),
uj =g +u; —(u;) i plu; — 1) = o(u).

Proof of Claim: If p(u; — 1) < ¢(u;), then we have u; = ¢(u;). In particular we get u; > u; and
therefore ¢ > j. Conversely assume i > j. If u; = g + u; — ¢(u;) holds, then we have u; > u;
and therefore ¢ < j. Hence if i > j, then ¢(u; — 1) < ¢(u;) has to hold. The remaining case is
the case of i = j. Let us suppose ¢ = j and show p(u; — 1) < p(u;). If p(u; — 1) = ¢(u;), then
we have u; = g+ u; — p(u;), i.e., p(u;) = g. Hence we get g = ¢o(u;) = p(u; — 1) <wu; —1, ie,
u; > g+ 1, which contradicts ¢ < ga. [l

5.2 Construction of decompositions

Let k£ be an algebraically closed field in characteristic p. All BT;’s considered in this subsection
will be over k.

Let ¢ be an elementary sequence of length g and v the final sequence stretched from . Let
G be a symmetric BT with elementary sequence . For two symmetric BT’s G’ and G”, the
direct sum G’ ® G” becomes a symmetric BT canonically. In this subsection we give a sufficient
condition for G ~ G’ ® G” as symmetric BT ’s.

We begin by recalling the construction ([7], (9.1)) of the quasi-polarized Dieudonné module
A, such that D(G) ~ A,. For this we consider the sets

{1<i<2gfv(i-1) <)} = {m <---<mg},
{1<i<2g[v(i-1) =)} = {ng<---<m}

Note m; +n; = 2g+1for 1 < i < g. First A, is the k-vector space of dimension 2g generated by
Z1,-+ , Zag. We put X; = Zy, and Y; = Z,, for 1 < i < g. The operation F on A, is defined by

F(Xi)=2; and F(Y;)=0 for 1<i<yg

13



and the quasi-polarization on A, is the alternating pairing defined by
Note these determine the operation } on A, in fact

V(ZZ) =0 and V(Zgg_i_H) = :|:YVZ for 1 < ) < g

where V(Zgg_i_;,_l) = +4Y; if ZQg_i+1 S {Yl,'“ ,Yg} and V(Zgg_i_;,_l) = -Y; if Zgg_i_;,_l S
(X1 X,
Note
Z,e{X1, -, Xy} = Z.=Xyy for 1<2<2g, (5.2.1)

since ¢¥(m;) =1 for 1 <i < g.

We put Ay ; := k(Z1, -, Z;) for 0 <1i < 2g. Then A, ; is a k[F,V]-submodule of A,. Thus
we have a filtration 0 = A, o C Ay C -+ C Ay = A, Note this yields a final filtration
0cGyC--- CGQQZG. LetF:{GZ/GZ_1|1§z§2g}

Proposition 5.6. Assume I' is decomposed as T = A’ LU A" for some self-dual (V, F~1)-subsets
A and N'. Set @' := ppr and " := opn. Then there are two symmetric BT1’s G' and G” such
that G ~ G' & G" with ES(G') = ¢’ and ES(G") = ¢".

Proof. It suffices to construct an isomorphism A, ~ A, @© A, as quasi-polarized Dieudonné
modules. Let {Z1, -, Zag} = {X1,---, X} U{Y1, -, Yy} be the basis of A, as above.

Let 1" and 9" be the final sequences stretched from ¢’ and ¢” respectively and set g’ = gas
and ¢’ = gav. Let us write A" as {G/ /Gy _1|i = 1,---,2¢'} and A as {G/Gur_q|i =
1,---,2¢"}. Set Zj = Z,; for all 1 <7 §Z2g’ and define m; and n} by ' '

{1<i<2d|v(uj—1) <¥(uy)} = {mp <. <my},
{1<i<2d|v(u—1)=v(y)} = {ny <.~ <ni}
Write X = Z;, and Y/ = Z/,. Similarly we define Z' (1 <i < 2¢"), m/,nj (1 <i < g¢") and

X'y (1<i SZ g"). From the assumption T' = A’UA”, we get {X1,---, X} = {X7{,---, X, }U
(X0, X0 Y and (Y, e Yok = (Voo YIJO{VE, oo Y. Since i/ (m!) = i for 1 £ i< ¢
by the definition of 1)/, we have

Zye{Xl, Xyy = Zy=Xy) for 1<u<2g. (5.2.2)
Put A" = k(Z1,- -, Zy,) and A" == k(Z{, - , Zy ). First we claim

(Zi,Z2]) =0 for 1<i<g'and1<j<g", (5.2.3)
<Xz{>}/j,> = 52’j7 <Xz/7X]/> =0, <Y;/>}/j,> =0 for 1<4,5< g/’ (5'2'4)
(XIY]) = by, (XEXD =0, (YN =0 for 1<ij<g. (529

Indeed since A’ is self-dual, we have u:n; + u;; = 2g + 1; hence (X},Y)) = <Z1/n;’le~l;.> = 0jj.

Similarly (X', Yj”> = 0;5. Then the others must be 0, because for each ¢ (1 < i < 2g) there is
only one j (1 < j < 2g) such that (Z;, Z;) # 0.
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Next we show that FA" C A" and FA” C A”. (Then we also have VA" C A" and VA" c A" by
using the quasi-polarizations.) If ¢(u;) > ¢ (uj—1), then Zy = Xy ) and Gy ) /Gyuy)—1 € A
Hence

f(Zu;) = Zﬂ}(u;) c A (5.2.6)
If 9(uj) = (uj — 1), then Z,, = Y; for some j and therefore
F(Zy)=0€ A (5.2.7)

Thus we have FA' C A’. Similarly we get FA” c A”.
The equations (5.2.6) and (5.2.7) are paraphrased as

f(X]’-) = Z]’- and .7-'(Yj') =0 for 1<j5<{. (5.2.8)

By definition, (5.2.4) and (5.2.8) say that A’ is isomorphic to A,/. Similarly we have A” ~ A_r.
Then by (5.2.3) we get an isomorphism A, ~ A, ® A, as required. O

For symmetric BT’s G’ and G”, let ¢/ and ¢” be the elementary sequences of G’ and G”
respectively. We denote by ¢’ @ ¢” the elementary sequence of G’ & G”. Also for any elementary
sequences @1, , Y., we define o1 @ - - B @, similarly.

Corollary 5.7. Suppose I' is decomposed as T = A1Li---UA, for some self-dual (V, F~1)-subsets
A; of I'. Then we have ¢ = o1 ® --- @ p. with p; = @, .

Remark 5.8. By Cor. 5.7, it is easy to get a decomposition ¢ = @1 @ -+ O ¢, as above for
given ¢. However unexpectedly it is so complicated in general to determine the explicit form of
01D D, for given p; (1 <i<e).

5.3 Minimal p-divisible groups

In this subsection we shall review the theory of minimal p-divisible groups, developed in [10].

Definition 5.9. For non-negative integers m,n with ged(m,n) = 1, we define a p-divisible

group H,, , over [, by
m+4n—1

D(Hmn) = P Zpx:
i=0
with F,V operations:
Fri=xitn and Vz; =z, for VieZs (5.3.1)

where z; (i € Z>m+n) are defined as satisfying z;4p4, = px; for i € Z>o.
For an arbitrary perfect field K, the Dieudonné module D(H,, , ® K) has a W (K)-basis
{0, , ZTmin—1} satisfying the equations (5.3.1), which is called a minimal basis of D(H,, ,, ®

For a Newton polygon & = Zle[mi, n;|, we denote by H () the p-divisible group

B Hunimi- (5.3.2)

Note the Newton polygon of H(£) is equal to &.
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Definition 5.10. A p-divisible group G is called minimal if there exist a Newton polygon £ and
an isomorphism from G to H () over an algebraically closed field.

In the proof of the main theorem, we shall use

Theorem 5.11 (Oort, [10]). Let G be a p-divisible group over an algebraically closed field k.
If Glp] ~ H(&)[p] ® k, then G ~ H(§) ® k over k.

Let & be a symmetric Newton polygon. By [8], Prop. 3.7, there exists a principal quasi-
polarization ¢ on H (&), which is unique up to isomorphism of H(&). We set

we == ES(H(&)[p], C[p])-

Lemma 5.12. Let & be the Newton polygon [m,n] + [n, m] with ged(m,n) =1 and m > n > 0.
Put g =m+n. Let G be the symmetric BT (H(&)[p],([p]). Then

1 =(0,---,0,1,2,--- m—mn,m—mn,---,m—n);

1) e = g —m—m)

(2) G has a unique final filtration 0 = Go C Gy C --- C Gog = G}

(3) Qmn ={G1, - ,Gm,Gg41, -+ ,Ggn} is the unique V-cycle;

(4) Ape = n/(m+n).

Proof. Set N = D(G). Let {zg,--- ,z4-1} and {yo,-- ,Yg—1} be minimal bases of D(H,, ,) and
D(H,,,m) respectively. We define a basis {21, , 224} of N over F,, by

(Zl)"' 7229) = (l'g—la"' sy Ly Yg—15" yYmy Tn—1,""" L0y Ym—1," " 7y0)'

Set N; = Fp(z1,---, %) and let G; be the subgroup scheme of G such that D(G;) = N;. By
using Fx; = Tijyn, VTi = Titm, FYi = Yi+m and Vy; = y;1n, one can check that

(0 it i<n, Nyii it i<n,
N;_p, if n<i<m, Ngin if n<i<m,

FN, = Npn ?f m <.z' <g, VLN, = Ngti—min %f m <.z' <g,
Ni—gym—n if g<i<g-+n, Nog—min if g<i<g+n,
Ny, if g+n<i<g+m, Nytiem if g+n<i<g+m,
Ni_g if g+m<i<2g, Nog if g+m<i<2g.

In particular this implies that 0 C G1 C --- C Gy = G is a final filtration and also (1) holds.
(We will show later that G, is the unique final filtration.)

Then since we have U(G;) = Gijq for 1 < i < n, ¥(G;) = Gi—y, for n < i < m, ¥(G;) =
Gi—gtm-n for g <i < g+mnand V(G;) = Gy, for g+n <i < g+m, we get ¥(Qmn) = Qmn,
ie, Qmn is a Y-set. We denote by P,,, the ®-set associated with @, ,. Then P, , =
{Gys1,--+ ,Ggyn}. Since Py, ,, = n and §Qp,n = m + n, we have Age = n/(m+mn). Also since
e(Qmn) = ged(m,n) = 1, the U-set Q, p is a Y-cycle. By [g/m] = 1, Cor. 3.10 implies that
there is only one W-cycle in ¢¢.

Finally let us show that G is the unique final filtration. We claim that any element of @, »,
is written as w - G for some word w of V, F~!. Indeed V2-G =V - Gy = Gm—n € Qmpn; then
since Q. is a W-cycle, every element of Q. ,, is of the form w - G for some word w of V, F~1.
Put U = {u|Gy € Qmn}. Since UU{2g —u|ue UU{g,29} ={i € Z|1 <i < 2g}, any G;
(1 <i < 2g) is either of the form w - G or of the form (w - G)* for some word w of V, F~1. O
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5.4 Dualized VU-sets

Let O be a U-set in D. Let Hy be the biggest element of Q and vy the integer satisfying
Hy = Gy,. Set H; = ®'(Hy) and l; = I(H;) for any i € Z>o.

Lemma 5.13. If A, < 1/2, then we have ¥(vg) < 2g — vp.

Proof. Since Hy = F-lyin-1 . H, |, we have length(Vl"*1 - H,—1) = v9 — ¢g. In particular
(vo — g) = 0. By the assumption A, < 1/2, Lem. 3.5 (3) implies vg — g < [g9/2] and therefore
vo < 39 — vg. Hence 1(vp) is less than or equal to

$(3g —vo) = ¥(29 = (vo = 9)) = g — (vo = g) +¥(vo — 9) = 29 — vo + ¢ (vo — 9)-
By ¢(vg — g) = 0, we have 1(vg) < 2g — vp. O
We define a bijection
A {Gl,...’G2g} - {Gl,"'aG2g}
by sending G; to G* = Gag11-;.
Lemma 5.14. (1) QN Q" # 0 implies X\, = 1/2.
(2) For any H € QN Q" we have V(H) = W(HM)".

Proof. (1) Assume QNQ”" #  and A\, < 1/2. Let G; be an element of QNQ", i.e., G;, Gogy1-i €
Q. Let j = min{i,2g + 1 —i}. Note j < g and G, Gag11—; € Q. Since G; € Q \ P, there is
an element I of Q such that Gj =V -I. By I C Gy,, we have G; C V - Gyy = Gy(yy)- Thus
Jj < (vg). Hence 2g+1—3 > 2g+1—1(vg) > vgp+ 1 by Lem. 5.13. By the definition of vy, we
have Gag41—; ¢ Q. This is a contradiction.

(2) If A, = 1/2, then for G; € Q, we have ¥(G;) = Gj_4 if j > g and V(G;) = Gjiq
if j<g. Let H=G; € Qn Q" Ifi > g, then G} = Gag+1—; with 29+ 1 — i < g; hence
U(G}) = Gsgy1-i; thus U(G)" = Gogi1-3g+1-i) = Gimg = V(Gy). Ifi < g, then 2g4+1—i > g;
hence W(G}') = Ggy1-4; thus W(G)" = Gogi1_(gr1-1) = Girg = V(Gy). O

Thus we can define a map
T: QUM —— QuQ"
by sending G; € Q to ®(G;) € Q and G; € Q" to ®(G})" € Q™.
Definition 5.15. The set Q := Q U Q" is called the dualized VU -set.

Definition 5.16. Let Q be a W-set in D. Writing Q as {By, - ,B@} with By C --- C Bﬁg.
The dualized relative shape of Q is the subset of Z? defined by

RS(Q) = {(i,4) | ¥(By) = B;}.

Proposition 5.17. Assume A\, < 1/2. Then RS(Q) is determined by RS(Q).
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Proof. Let Q = {I,--- 7Id(Q)} with 1 C --- C Id(Q) and Q" = {J1,-- 7Jd(Q)} with J; C
-+ C Jgg)- Note Ijo) = Gy, and Jy = G, . By Lem. 5.14 (1), we have @ N Q" = (. Thus
19 = 2d(Q). Let By, - - ; Bog(o) be as in Def. 5.16. We claim (B, -+, Bagg)) is equal to

(I, 5 La@)—c(@), J15 5 Je(Q)s La(Q)—c(Q)+15 > La(Q)> Je(@)+15 "+ 5 Jd(9))-

By definition, this proposition follows immediately from this claim. Let us show this claim.
Since I} = Jygy41—; for all 1 <4 < d(Q), it suffices to show (1) I; C J; for 1 <i < d(Q) —¢(Q)
and 1 < j <d(Q) and (2) J; C I; for d(Q) — ¢(Q) <i < d(Q) and 1 < j < ¢(Q).

(1) If 1 <i<d(Q) — ¢(Q), then there is an element H of Q such that I; =V - H. For any
1<j<d(Q), wehave V-H CV -Gy, = Gyny) C Gog—vo = G}y 11 C Gy C ;.

(2) For d(Q) — ¢(Q) < i < d(Q), we have Gy11 C I;. Hence if 1 < j < ¢(Q), we have

Jj :Ic/l\(Q)—l—l—j CGg/]\-i-l ZGg C I;. [l

5.5 W-sets making (V, F~!)-subsets

Let ¢ be an elementary sequence and G a symmetric BT with ES(G) = ¢. Choose a final
filtration G, of GG. Let C and D be as in §3.1. Let Q be a ¥-set in D.

Definition 5.18. We say that Q makes a (V, F~1)-subset if 7(G;/Gi_1) = G;/G;_1 is equiva-
lent to V(G;) = G for every G; € Q .

Note if Q makes a (V, F~!)-subset, the subset I'g := {G;/G;_1|G; € Q} of T'is a (V, F~1)-
subset.

Lemma 5.19. A U-set Q makes a (V, F~')-subset if and only if (i) > (i — 1) for every i
satisfying G; € Q and (i) > 0.

Proof. Compare the definitions of ¥ and 7, see (3.1.1) and (5.1.3). O

Lemma 5.20. Assume a V-set Q makes a (V,F~')-subset. Let Q = Q1 U --- U Qg be
the decomposition into V-cycles of Q. Then Q; makes a (V, F~Y)-subset and we have g =
FQI LI---UFQE(Q).

Proof. By Lem. 5.19, any W-cycle in Q makes a (V, F~1)-subset, if Q makes a (V, F~!)-subset.
The decomposition of I'g is obvious. U

Note
(Gi/Gic1 )t = G- 1 /G = Gagy1-i/Gag—i = G} /Gy, (5.5.1)

for 1 <14 < 2g, where we set GQQ +1 = {0} for convenience. Hence we have
FJ‘ = {Gz/Gz—l | G; € Q/\} (5.5.2)
Let Ag denote the self-dual (V, F~!)-subset To UT'5 = {G;/G;_1|G; € Q} with @ = QU Q.

Lemma 5.21. Let Q be a U-set making a (V, F~1)-subset. Then rs(Ag) = RS(Q).
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Proof. 1t suffices to show
W(Gi/GZ’_l) = Gj/Gj_l e T(GZ) = Gj

for any G; € Q. Since Q makes a (V,F _1)—subset, this equivalence for GG; € Q is obvious by
definition. Let us consider the case of G; € @". Note 7(G;/G;_1) = G;/G;_1 is equivalent to
(G} /Glyy) = G /Ghyy by (5.1.4) and (5.5.1). Since G € Q, this is equivalent to ¥(G/') = G7.

Clearly ¥(G}') = G/ is equivalent to W(G;) := ¥(G})" = Gj. O
Lemma 5.22. Suppose A\, < 1/2. Let Q be a U-set making a (V, F~1)-subset. Then TgNT§ =
0.

Proof. Lem. 5.14 (1) says QN Q" = (). Hence P'g NT'§ = 0 by (5.5.2). O

Lemma 5.23. Suppose A\, < 1/2. Let Q be a ¥-set making a (V, F~1)-subset. Then the type
of Ag is determined by RS(Q). (See Def. 5.3 for the definition of types.)

Proof. By Prop. 5.5 the type of Ag is determined by rs(Ag). Lem. 5.21 says that rs(Ag) =
RS(Q). In Prop. 5.17 we showed that RS(Q) is determined by RS(Q). O

First we investigate the following special case:

Lemma 5.24. Let m,n and § be as in Lem. 5.12. Consider the case of ¢ = p¢. Let Qun be
the W-cycle in @¢ obtained in Lem. 5.12 (3). Then

(1) Qmn makes a (V, F~1)-cycle;
(2) ' = Aq,,,.- In particular the type of Aq,, ., s e.
Proof. Let )¢ be the final sequence stretched from ¢¢. By Lem. 5.12 (1), ¥¢ equals

0,---,0,1,--- m—mn,--- m—n;m—-n+1,--- m,--- . mm+1---, g). (5.5.3)
—— —— N ——

n m—-n n n m—n n

Recall Qppn = {G1, -+ ,Gm,Gg41, -+ ,Ggin}. Note Gy € Qppn and e(i) > 0 if and only if
n+1<i<morg+1<i<g+mn;in this case we have ¥¢(i — 1) < ¢(i) by (5.5.3). Hence by
Lem. 5.19, we obtain (1). Obviously we have Q. U Q. n = {G1,- -+, Gomyn) } and therefore
(2) holds. O

Let us return to the general situation.

Proposition 5.25. Let ¢ be an elementary sequence with A\, < 1/2. Set m =my, and n = n,.
Let Q be a V-set in ¢. If Q makes a (V,F~')-subset, then Ag is of type go?e(g) with £ =
[m, n] + [n,m].

Proof. Let Q@ = Q1 U---U Q) be the decomposition into W-cycles of Q. By Lem. 5.20 and
Lem. 5.22, we have Ag = Ag, U--- U AQE(Q) with Ag, = g, U Féi. By Cor. 5.7, the type of Ag
is the direct sum of the types of Ag,,--- ,AQe(Q).

It suffices to show that the type of Ag, (i =1,---,e(Q)) is equal to ¢¢. Let Q. be the
U-cycle in p¢. By Lem. 5.24, @y, ,, makes a W-cycle and the type of Ag,, , is @¢. By Prop. 3.12,
we have RS(Q;) = RS(Qm,n), since Ay, =n/(m +n) = Ay, and e(Q;) =1 = e(Qm,n). Hence by
Lem. 5.23, the type of Ag, is equal to the type ¢ of Ag,, .- O
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Corollary 5.26. Let p,m,n and Q be as in Prop. 5.25. If Q makes a (V,F~1)-subset, then
there exists an elementary sequence ¢’ of length g — e(Q)(m +n) such that

o =g ®pF? (5.5.4)
with & = [m,n] + [n,m].

Proof. By Prop. 5.25 the type of Ag is go?e(g) with £ = [m,n] + [n,m]. Set A’ := T\ Ag.

Obviously A’ is a self-dual (V, F~!)-subset. Let ¢/ be the type of A’. Then Cor. 5.7 shows

6 Proof of the main theorem

In [2], Th. 11.5, Ekedahl and van der Geer proved that S, is irreducible if A, < 1/2. Hence in
order to prove Th. 4.1 for A, < 1/2, it suffices to show

(A) S, C 2y, and (B)S,NZ3 . #0.

For A\, = 1/2, it suffices to show (A). Indeed Z,, is the supersingular locus Wy; hence (A)
Sy C Zy 2 implies that any Newton slope of any generic point of S, is 1 /2.

In this section, we shall always mean by a p-divisible group (resp. a BT;) a p-divisible group
(resp. a BT) over an algebraically closed field k.

6.1 Proof of (A)

Let ¢ be an elementary sequence and G a symmetric BT with ES(G) = ¢. Choose a final
filtration G, of G. We set m = m, and n = n,, (see (3.2.2) for the definition of m, and n).
Let P be a ®-cycle and let Hy be the biggest element of P. Set H; = ®(Hy) and I; = I(H;)
(i€ Z).

The next proposition is the key for the proof of (A).

Proposition 6.1. Assume ¢(1) = 0. Then for any p-divisible group G over k with G ~ G[p],
we have _
VH‘Z;l:j(ﬁl(lj""l) -G C pjl—jog (6.1.1)

for all integers j1 > jo > 0. In particular, for any o € N we have

ylralmin) g - pong. (6.1.2)

We prepare a general lemma in order to prove Prop. 6.1. For a k[F,V]-submodule S of
N = M/pM, we define an Ag-submodule of M by (S)) := {z € M |(zmodp) € S}.

Lemma 6.2. We have
(1) (V718) = p~ L (FS) NpM). In particular, if FS =0 then (V71S) = p~LF(S)).
(2) (FS) =F(S) +pM.
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Proof. (1) follows from the direct calculation:

(v=18) = {xr e M|(zmodp) € V71S} = {z € M|(Vxmodp) € S}
= V7 1{Vr e VM|(Vzmodp) € S} = V-LH{S) N VM) = p~H(F(S) NnpM).

(2) By definition F({(S)) + pM is contained in (FS)). Any element = of (FS)) = {z €
M|zmodp € FS} is of the form x = py + Fz for some y € M and for some z € ((S)). This
means (FS) C F{S) +pM. O

Proof of Prop. 6.1. Set M = D(G) and N = M/pM. Put E; = D(H,), which is a k[F,V]-
submodule of N. Note F4 ™ E; = 0 and Ej11 = VI FUE;.
By Lem. 6.2, for any j, we can compute (E; 1)) = (V" 'FUE;) as

P EFI(E,) +pM) = p FS B + FM.

Inductively we can show that (Ej,41) = (V1 Fbr ... V=L Flior1y=1 Flio B, )) is equal to

) Ji .
p—hﬂwﬂfiﬁm@ﬁU«Eh»+.E:p—hﬂ7ﬂ+2ﬁmH%+Umﬁ (6.1.3)
r=Jjo

Since ((Ej, 41)) is an Ag-submodule of M, the term of r = jy of (6.1.3) is contained in M. Hence

FHEimen Gty p1=90 M. Thus we obtain the inclusion (6.1.1).
For any o € Z>q, considering the case of j; — jo = an in (6.1.1), we have the inclusion
(6.1.2). Here we used l;1,, =[; for all i > 0 and Z?_ol l; =m. O

Proposition 6.3. For any p-divisible group G with G[p| ~ G, the first Newton slope of G is
greater than or equal to \,.

Proof. If p(1) = 1, then A, = 0 and therefore there is nothing to prove.

Assume ¢(1) = 0. Let w be the slope-function of M (see [1], IV. 5), which is a continuous
real-valued function on R. It suffices to show w(A,) = 2g\,, because this implies that the first
slope of M is not less than A\, by the definition of the slope function ([1], p. 86). By the inclusion
(6.1.2), for any € € Qs and for any 8 € N with fe € N, we get FPm+n+) p\f < pf7 M. Hence
by [1], Cor. on p. 88,

n 1
w|———) = lim ————— length(M/(FP0Tr+) Nr 4 pPrpg
<m~|—n~l—5> ﬁl—mﬁ(m—i-n—i-e) gth(M/( P )
= lim ————length(M/p""M
ﬁl—{goﬁ{nm—i-n—i-e) ength(M/p )
e/ e —
m+n+e¢
The continuity of w implies w(A,) = 2gA,. O

Corollary 6.4. S, C Z),,.

Proof. Let (X,n) be a principally polarized abelian variety with ES(X[p],¢,) = ¢. Then
Prop. 6.3 says that the p-divisible group X[p*°] has the first Newton slope > \,. This means
(X,n) € Zy,- O
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6.2 Proof of (B)

Proposition 6.5. Let ¢ be an elementary sequence with A, < 1/2 and Q a V-set in p. Assume
that ¢ is minimal in the Bruhat ordering among elementary sequences in which there is a ¥-set
Q' satisfying AS(Q') = AS(Q) (see Def. 3.11 (1) for the definition of AS(Q)). Then Q makes
a (V, F~1)-subset.

Proof. By Lem. 5.19, it suffices to prove
P(i) > ¢P(i —1) for all G; € Q satisfying (i) > 0. (6.2.1)

First show (6.2.1) for i < g. Suppose ¥ (i — 1) was equal to 1(i). We define an elementary
sequence @1 by
L) =1 it <diand ¢(5) = @(i),
pr(d) =4 " .
v(J) otherwise.

Then clearly 1 < ¢. Let 11 be the final sequence stretched from ¢;. We claim that
P1(i') = (i) for all Gy € Q. (6.2.2)

Indeed, for i' < g, since Q is a W-set, we have ¢(i') # (i) for any Gi € Q with i’ < g and
i’ # i; then by the definition of ¢1, (6.2.2) holds for i’ < g. Let us show (6.2.2) for i > g. Note
P1(j) = ¥(j) for g < 7 < 2g—1i by the definition of ¢;. Let Hy be the biggest element of Q, and
let v be the integer such that Hy = G,,. Recall 9(vg) < 2g — vy (Lem. 5.13). For every Gy € Q
with ¢/ > g, we have i’ < vy < 29 — 1 (vg) < 29 —i. Thus (6.2.2) holds also for i’ > g. Clearly
(6.2.2) implies that ¢ has a W-set with the same absolute shape as that of Q. This contradicts
the minimality of .

Similarly we can show (6.2.1) for ¢ > ¢g. Suppose (i) = ¥ (i — 1). We define an elementary
sequence @9 by

orli) = {w(j) —1 i) >2g—iand ¥(2g =) = ¥(@)
v(J) otherwise.

Since (29 —i+1) = (29 —i+1) — 1, we have ps < . Let 15 be the final sequence stretched
from y. We claim that
Po(i') = (') for all Gy € Q. (6.2.3)

Indeed for i > g, since Q is a W-set, we have (i) # (i) for any Gy € Q with ¢/ > ¢ and
i’ # i; then by the definition of @9, (6.2.3) holds for i > g. Since for all ¢/ with Gy € Q and
i’ < g we have i' < (vg) < 29 —vg < 29 — i, we get (6.2.3) also for i’ < g by the definition of
2. It follows from (6.2.3) that 2 has a W-set with the same absolute shape as that of Q. This
contradicts the minimality of ¢. O

Corollary 6.6. Let ¢ be an elementary sequence of length g with A, < 1/2. Set m = my, and
n =ny. Then there exists an elementary sequence ¢’ of length g — e,(m +n) such that

0D <o (6.2.4)

with § = [m,n] + [n,m].
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Proof. Let D be the full ¥-set in p. Choose a minimal elementary sequence " in the Bruhat
ordering such that ¢” < ¢ and there is a U-set Q" in ¢” satisfying AS(Q”) = AS(D). By
Prop. 3.12, AS(Q") = AS(D) implies A, = Ay» and e, = e(Q”). In particular we have A\ » <
1/2; then we can apply Prop. 6.5 to the pair (¢”,Q"); hence Q" makes a (V, F~1)-subset. By
Cor. 5.26 we have ¢ = ¢’ & 30?6“0. O

Corollary 6.7. S,NZ3 . #0.

Proof. If A\, = 1/2, then this follows from (A): S, C Z; )5 = 210/2 e, and Th. 2.6 (2): S, # 0.
Assume A\, < 1/2. Let ¢’ be the elemegltary sequence obtained in Cor. 6.6. Then go’@go?e“" <
. By Th. 2.6 (3), we have Sso/ o0 C S,. There exist principally polarized abelian varieties
¢

X,Y such that ES(X) = ¢’ and ES(Y) = @?e“’ by Th. 2.6 (2). Then X x Y gives a point of
S@,QBCP@W. Since X xY € §¢ C Zy, by (A), the first Newton slope of X x Y is > A, and
¢

therefore the first Newton slope of X is > A,. Th. 5.11 says that NP(Y') is the Newton polygon
ex([m,n|+[n,m]). By Grothendieck and Katz ([4], Th. 2.3.1), there exists a point x of S, whose
Newton polygon = NP(X x Y'). Then it follows from (A) S, C Z,, that the point = has the
Newton slopes A\j = -+ = Ae, = Ay O

Corollary 6.8. (1) The elementary sequences ¢ and ¢’ in Cor. 5.26 satisfy Xy > .
(2) In Cor. 6.6 we can choose ¢’ satisfying Ay > Ay in addition.

Proof. (1) Let Q and & be as in Cor. 5.26. Applying Cor. 6.7 to ¢’, there exists a principally
polarized abelian variety X’ such that ES(X') = ¢’ and the first Newton slope of X' is equal
to Ay. We also take a principally polarized abelian variety Y with ES(Y’) = go?e(g). Note
X' xY' e S, If Ay < Ay, then the first Newton slope of X’ x Y is < A,. However this
contradicts (A) S, C Zy,.

(2) Applying (1) to ¢” in the proof of Cor. 6.6, we have A\,» > A,». Hence (2) follows from
A = M. O

7 Examples

For given elementary sequence ¢, it is easy to compute A, (see Rem. 3.18). However it is difficult
in general to enumerate ¢ satisfying A, = A for given rational number A with 0 < A <1/2. In
this section we give some examples for which we can do that.

7.1 Elementary sequences ¢ with big m, + n,

Proposition 7.1. Let g be a positive integer and m,n positive integers with ged(m,n) =1 and
m > n. Assume that m +n =g or g — 1. Then every elementary sequence ¢ of length g with
Ao =n/(m +n) is either of the form

Somm:(oa 7071727"' y T — M, 1T — Ty - - - ,’I?’L—Tl)
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or of the form

on_nm = (07 7071727"' ,y M —n,m—mn,--- ,m—n,m—n—l—l).
n m—n g—m—1
Proof. First we claim
e if m+n=y,
®Pmin = .
we @ (0) (= Pesqi) if m4+n=g—1

with & = [m,n] + [n,m]. In the case of m + n = g, this is nothing but Lem. 5.12 (1). Let us

show this claim for m +n = g — 1. The full (V, F~!)-set T = {G;/G;_1|1 < i < 2g} of Ymin

is decomposed into two self-dual (V, F~!)-subsets A’ = {G;/G;_1|i = m + 1,9 +n + 1} and

A =T\ A’". One can easily check that ¢ = pp and ¢ = (0). Then Cor. 5.7 shows this claim.
The elementary sequence @i, has the unique W-cycle whose absolute shape is

{G,g+D)i=1,- n}u{(n+i,d)|i=1,--- ,;m—n}u{(g+i,m—n+i)i=1,---,n}. (7.1.1)

In particular A, . = n/(m+n).

Let ¢ be an elementary sequence with A, = n/(m +n). By Cor. 6.6 and its proof, there is
an elementary sequence ¢’ of length < 1 such that p¢ @ ¢’ < ¢ and ¢¢ @ ¢’ has a U-cycle with
the same absolute shape as that of the ¥-cycle in ¢. Then ¢’ must be () if m +n = g and (0)
if m+mn =g—1. (Here () is the elementary sequence of length 0 and (0) is the elementary
sequence of length 1 sending 1 to 0.) This means ¢min = @¢ @ ¢'; hence min < ¢. Then by
(7.1.1) the final sequence v stretched from ¢ has to be of the form:

(07 0,1, .-+ m—mn,ay,--- 7ag—m;m_n+1a"' g Ty %y ’*)
— ~ —
n m—-n g—m n
for some integers a1, - - - ,ag—pm satisfyingm—-—n <ay <--- <ag_pyy <m-—n+1. Ifayg_p,, =m-n,
then a; = m — n for all 4, ie., ¢ = @min. Otherwise we have a;_,, = m —n + 1; then
ag—m—1=¢(g—1) =19(g+1) —1=m —n; hence a; = m —n for all i < g —m; thus we have
= Prin- O

7.2 EO-strata contained in the almost supersingular locus

The almost supersingular locus is the second smallest NP-stratum. More precisely speaking,
this is defined to be W, with

[+ [97%%} if g is odd,

%,QT] [ 2,%] if g is even.

(7.2.1)

If g > 3, the condition & < v is equivalent to that the first Newton slope of £ is greater than or
equal to (g — 1)/2g for odd g and (g — 2)/2(g — 1) for even g.

Assume g > 3. Let ¢ be an elementary sequence of length g with S, ¢ W,. Then S, C W,
if and only if ¢ equals either

[(9-1)/2] [(9-1)/2]
—— ——
o, =(0,---,0,1,---,1,1) or ¢f:=(0,---,0,1,---,1,2) (7.2.2)
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by Prop. 7.1. One may ask whether each of S, and S(p;r intersects with the supersingular locus

or not. Since ¢, comes from the minimal p-divisible group H(v), we conclude that S, C W)
by Th. 5.11; hence S,, N W, = 0. On the other hand, we expect W, N S@ # () for all g > 3.

We intend to prove this and to enumerate the irreducible components of W, N .S oF in a future
paper.
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