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1. Introduction

Let A be a uniform algebra on a compact Hausdorff space X. If I is a closed ideal of A,
then the quotient algebra A/I is a commutative Banach algebra with unit. In this paper, if a
Banach algebra B is isometrically isomorphic to A/I, then B is called a Q-algebra. (F.Bonsall
and J.Duncan called B an IQ-algebra.(cf. [1], p.270)) B.Cole (cf. [1], p.272) showed that
any (Q-algebra is an operator algebra on a Hilbert space H, that is, there exists an isometric
isomorphism to an operator algebra on H. Let p be a probability measure on X and H?(u)
the closure of A in L?(u). H?(u) N I+ denotes the annihilator of I in H?(y). Let P be the
orthogonal projection from H?(u) onto H?(u) N I+ and for any f € A put

St =P(f9), (b€ HAu)NI").

Then S%,, = S for kin I and [|S¥|| < || f+I||. S*is the map of A/I on operators on H?(p)NI*
which sends f+1 — S}‘ for each f in A. Hence S* is a contractive homomorphism from A into
B(H?(u) N It) where B(H?(p) N I1) is the set of all bounded linear operators on H?(u) N I+,
The kernel of S* contains I. Then we say that S* gives a contractive representation of A/I
into B(H?(pu) N I+). If ||S5|| = ||f + I||,(f € A) then ker S* = I and we say that S¥ gives an
isometric representation of A/I on H?(u) N I+.

Problem 1.  Prove that any finite n-dimensional @)-algebra can be represented on a
Hilbert space of finite dimension n.

If S* is isometric then we solve Problem 1. In fact, T.Nakazi and K.Takahashi (cf. [9])
solved Problem 1 for n = 2 in this way. It seems to be unknown for n > 3.

Problem 2.  Describe a finite n-dimensional ()-algebra in finite n-dimensional commu-
tative operator algebras with unit on a Hilbert space of finite dimension n.

Problem 2 is clear for n = 1 and it was proved by S.W.Drury (cf. [4]) and T.Nakazi (cf.
[8]) that a 2-dimensional commutative operator algebra with unit on a Hilbert space is just a
Q-algebra. J.Holbrook (cf. [6]) proved that von Neumann’s inequality

()] < [lplleo

can fail for some polynomials p in 3 variables, where T' = (11,75, T3) is a triple of commuting
contractions on C*, and T, T5, T; are simultaneously diagonalizable. Then we can construct
a 4-dimensional commutative matrix algebra with unit on C*, which is not a Q-algebra. If
n > 4, then this implies that the set of all n-dimensional Q-algebra A/I is smaller than the
set of all set of all n-dimensional commutative oparator algebras with unit on a n-dimensional
Hilbert space. If n = 3, then Problem 2 has not been solved yet. In this paper, we concen-
trate on a semisimple commutative Banach algebra and we study Problem 2. In Section 2,
we will prove several general results of semisimple finite dimensional ()-algebras that will be
used in the latter sections. In Section 3, we will study arbitrary semisimple n dimensional
Q-algebras for n = 2,3. In Section 4, we will study the isometric representation of A/I. In
Section 5, we will describe completely 3-dimensional semisimple ()-algebras of the disc alge-
bra in 3-dimensional commutative operator algebras with unit on a 3-dimensional Hilbert space.



2. Semisimple and commutative matrix algebra

In this section, we study 3-dimensional commutative semisimple operator algebras on a
3-dimensional Hilbert space. In particular, we study when two such operator algebras are iso-
metric or unitary equivalent. S.McCullough and V.Paulsen (cf. [7], Proposition 2.2) proved the
similar result of Proposition 2.3. We use Lemma, 2.1 to prove Proposition 2.2 and Proposition
2.3. In Example 2.6, we construct a 4-dimensional commutative matrix algebra with unit on
C* which is not a Q-algebra using the example of J.Holbrook (cf. [6]).

Lemma 2.1. Letn > 2 and let H be an n-dimensional Hilbert space which is spanned
by kl, kg, ceey kn Let
ki ks i1 Ky )
y i — i
[ ks — 32123 (R )l
Then {¢1, ... ,¥,} is an orthonormal basis for H. Let Py, ..., P, be the idempotent operators on
H such that Pk; = ki, Pk; =0 if i # j. For 1 <m <, let a{} = (Put;,:), (1 <i,j <n).

Then P, = (agn))lgi,jgn 15 an n X n matriz such that

P1:<%>,...,Pm:(8 gm),...,Pn:(O Bn),

where By, is an m X (n — m + 1) matriz such that

Y1 = (2 <j<n).

(m) (m) {n)

alm . . . aln aln
Bi=(1 ... ),y Ba=| . o | Bas
1 ag%) 1

Then a{™ =1, and for m > 2,

T ke = SRS Ry Yn) 0l

a

and form+1<j<mn, ‘
g Zﬂip(f%l/)wa%n : .
’ 1k — Sk (g on) ¥on|

Since this lemma, is proved by elementary calculations, the proof is omitted. It is well
known that any n-dimensional commutative semisimple Banach algebra with unit [ is spanned
by commuting idempotents P, ..., P, satisfying P, + ... + P, = 1.



Proposition 2.2.  In Lemma 2.1, for 1 < m < n,rankP,, = 1, and B = span{ Py, ..., P, }
18 an n-dimensional semisimple commutative operator algebra with unit on H. Then n X n ma-
triz (agn)) for P, with respect to {11, ..., 10, } 18 agn) = (P, ;), and

1 a%) e a&) 0 ag) a%) S aﬁ)
oo .... 0 0 1 a%) Coe agi)
P1 — (U/E.]l)) — . . . . . . . , P2 — (GE;)) — O O O . . . O ,
0 0 0 0 0 O 0
0 0 o
0 0 oV
...... ., P.=(a{) | |
o ... .0 ailn_)ln
o ... .0 1

In Lemma 2.1, agn) s written using ky, ..., k, and ¥y, ..., ¥,.

Proof. By the assumption of Lemma 2.1, Pk, = k; and Pk; = 0 if ¢« # j. Hence
rankP,, = 1. If i # j, then P,Pjk,, = §;, P;k; = 0, (1 < m < n). Since H = span{k, ..., k,},
this implies that P,P; = 0 if i # j. Hence B is commutative. Since P2k, = 8imPiky, =
Pk, (1 <m < n), it follows that P? = P;. Hence B is semisimple and n-dimensional. Since
(Py+ ...+ P)km = Ppkm = kn, (1 <m <mn), it follows that P, + ...+ P, = I. Hence B has a

unit 7. This completes the proof.

Proposition 2.3. Let H be a 3-dimensional Hilbert space which is spanned by
ki, ko, ks. Let {-,-) denote the inner product, and let || - || denote the norm of H.

kl ¢2 _ k2 - <k2)¢1>¢1 k3 — <k3)¢1>¢1 - <k3’1/)2>,‘/)2
LAl kg — (2, 1)t ks — (ks 1)1 — (ks, ¢2)1b2 |
Then i1, 19,13 ts an orthonormal basis in H. Let P; be the idempotent operator on H such
that Pk, = k;, Pik; =0 4f i # j. For m =1,2,3, the 3 x 3 matriz (agn)) for P, with respect
to {t1,%a, U3} is a§§”) = (Pntj, ¥i). Then

1/)1: ¢3:

1 z y 0 —z —zz 0 0 zz—y
P=@M=[000]|, P=(l) 01 =z |, P=() 00 —z
00 0 00 0 00 1
where
T = _<k2’k1> y = _<k3)1/)1> _ <k3,¢2>.’1}
Ikl — e, ko) 2 [ks — (ks, 1) tps — (ks, Pa)ibal|”
_<k3)1/)2>

z

ks — (ks, ¥n) b1 — (ks, Goya]”

4



Proof. By Proposition 2.2, there exist z,y such that

1 =z y
P=@)=100 0.
0 0
By Lemma 2.1,
o) —(kg, k1)
=ajy = ,
BRI E 2 — [(, k)2
and 0
y = a%) __~ Sroi(ks, Yn)ay, —(ks, 1) — (ks, o)z

ks — 371 (ks Yn)0nll — Nlks — (ks, i)tn — (ks, a)iba|”
By Proposition 2.2, there exist z,w such that

1 0 —z w 00 —w—y
P=]0 , PB=10 1 2|, P=|00 —z ,
0 0 0 O 00 1

because P, + P, + P; = I. By Lemma 2.1,

(2) - Zi:2<k3a ¢h>a$z) _ —(ks, ¢2)

S O 8
o ow

Z = Q5 = = )

2 ks — Sao (s, Un) Ul [1ks — (ks, h1)ibr — (ks )|
By Lemma 2.1,

—(ko, k
CL(IZ) = > < z 1> > = —0322)
Ik l12llk22 = [k, k2|

Hence

2 (2) . (2)

w = ag) _ Sh—o(ks, n)ayy, o (k3, P2)ai5 _ zag) _ —za%) ——

ks — Shoi (ks, Yn)¥nll  [lks — Shi (ks, ¥n) ¥all
This completes the proof.

Theorem 2.4. Let Py, P5, P; be idempotent operators defined in Proposition 2.3.
Let H' be a 3-dimensional Hilbert space. Let B' be a 3-dimensional semisimple commutative
operator algebra on H'. Then, there are idempotent operators Q1,Qs, Q3 on H', an orthonormal
basis ¥y, ¥4, 5 in H' and complex numbers g, yo, 20 such that B' = span{Q1,Q-,Q3} and, as
matrices relative to ¥y, 1y, U5,

1 2o w 0 —zy —mo2o 0 0 z9z0 — yo
Q=100 0], Q=|01 2y , @3=100 —20 .
00 O 0 0 0 0 0 1

Let T be the map of B on B’ such that

8
S

T (MPL+ APy + A3Ps3) = MQ1 + XaQ2 + A3Q3, (A1, A2, A3 € C).

5



(1) 7 is isometric if and only if
|z + [yl* = |zol* + |30/,
1+ |2 (L +121*) = (1 + |z [*) (1 + |20]*),

z)? + 227 = |z0|® + zo20To-

(2) T is induced by a unitary map from H to H' if and only if there are complex numbers
U1, Us, ug Such that

lur| = |ug| = |us| =1, wz = uoxy, WY = uslYp, U2Z = U3Zp.
Then |z| = |zol, |yl = vl [2] = 20|, 227 = zo2070.

Proof. (1) By the theorem of B.Cole and J.Wermer (cf. [3]), 7 is isometric if and
only if, writing tr for trace,

tr(PyP;) = tr(Q;Q;), (1<i,5<3).
If 7 is isometric, then

L+ |z + y* = tr(Py Pr) = tr(Q7Q1) = 1+ |aol + [wol?,
(L4121 + [2?) = tr(P5 Py) = tr(Q5Q2) = (1 + |aol*) (1 + [20]*),
|22 + 227 = tr(Py Py) = tr(Q;Q2) = |zol* + Zo2070.

Conversely, if three equalities in (1) hold, then

tr(PyP) =1+ [z + |yI> = 1 + |zof* + |wo]” = tr(Q}Q1),

tr(PyPy) = (1 + |z (1 + |2*) = (1 + |zo*) (1 + |20?) = tr(Q3Q2),
tr(PyPy) = |z|° + 227 = |zo|* + zozo¥o = tr(Q}Q2),

tr(P; Ps) = T2(y — z2) — |2|* = Zozo(yo — To20) — |20]* = t1(Q3Q3),
tr(Ps P) = y(zz — y) = yo(@ozo — Yo) = tr(Q3Q1),

tr(PyPs) = 1+ 2> 4+ |2z — y|> = 14 |20|* + |2020 — wo|* = tr(Q5Q3).

(2) Suppose 7 is induced by a unitary map U = (u;;), (1 <i,j < 3) from H to H'. Since
UP, = Q4 U, it follows that us; = uz; = 0. Since UP, = Q,U, it follows that uzs = 0. Hence U
is an upper triangular matrix. Since the columns of U are pairwise orthogonal, U is a diagonal
matrix. Hence there are complex numbers uq, us, uz such that uq,us, us3 are diagonal element
of U, and |uq| = |ua| = |uz| = 1. Since UP, = Q1U, it follows that ujz = uazg, w1y = uzye. S-
ince UP, = U, it follows that usz = uzz9. The converse is also true. This completes the proof.

Example 2.5. Let By = span{ Py, P», P;}, where

-1 -1
1 1 |, P
0 0

I
oo o

111 0
Pp=looo|, B=]|0
00 0 0



and let By = span{ Py, Py, P;}. This is an example which is established by W.Wogen (cf. [3]).
He proved that By and B; are isometrically isomorphic, and not unitarily equivalent. There is
another example as the following. Let By = span{Q, @2, @3}, where

\/2/3

V2 00
Q1= 0 1/v3 |, Q=00 -1/V3
0 00 1

O O =

Then By and B, are 3-dimensional commutative operator algebras with unit. By the calculation,

jz” + |y> = |wo|® + |wo|® = 2,
(L4121 +[2%) = (1 + |zo|) (A + |20]*) = 4,
z|? + 227 = |zo|® + 2o20To = 2.

By (1) of Theorem 2.4, this implies that By and Bs are isometrically isomorphic. By (2) of
Theorem 2.4, By and B, are not unitarily equivalent.

3. One to one representation

In this section, we assume that A/ is n-dimensional and semisimple. Hence there exist
T1, .-, Tn in the maximal ideal space M(A) of A such that ; # 7; (i # j) and [ = N7_, ker 7;. S*
gives a contractive representation of A/ into B(H?(u)NIt) and dim H2(p)NI+ < dim A/I = n.
We study when S* is one to one from A/I to B(H?(u)NI1). Tt is clear that S* is one to one if
and only if dim H?(u)NI' = dim A/I. For 1 < j < n, there exist f; € A such that 7;(f;) = d;;.
Then f; + I is idempotent in A/I and A/I = span{fi + I,..., f, + I}. The following two
quantities are important to study S*. For 1 < j < mn,

pj = sup{|7;(f)| ; f € Mizikern, || fl| <1}

and
p;i() = sup{|7(f)| 5 f € Niyykern, ||f]l, < 1},

where || f|| denotes the supnorm of f in A and ||f||, = (f, /)}/> = (/ |f|2dp)""?. Then it is easy
to see that

1
and
1F5 + 1 2 WS L2 115 + L]
If S* is one to one then 7; has a bounded extension to H?(u). In fact, if S* is one to one then
dim H?(p) N I+ = n and so dim H?(p) N (ker 7;)= = 1 for 1 < j < n. Then for 1 < j < n, there
exists k; € H?(u) such that

Ti(f) = (i ki)u = /ka_jdu, (f € A).

7



Proposition 3.1.  There exists a one to one contractive representation S* of A/I.

Proof. Since 7; € M(A), there exists a positive representing measure m; of 7; on X.
Let p =37, m;/n. Then

500 =1 [ fdms| < n( [ 1Pd)"? = nl ], ( € A).

Hence 7; has a unique bounded extension 7j to H?(u) and 7; # 7; (j # ). Since H2(u) NI+ =
N?_, ker 7, dim H?(u) N I~ = n. Hence H?*(u) NI+ = span{ki, ..., k,}. Suppose S% = 0, then
i (Hk; = (S%)*k; = 0. Hence 7;(f) =0, (1 < j <n). Hence f € N;ker7; = I. This implies
that S* is one to one from A/I to B(H?(u) N I+). This completes the proof.

Theorem 3.2.  Suppose that S* is a one to one contractive representation of A/I. Let
k; be a function in H?*(u) such that 7;(f) = (f, k), (f € A), for 1 < j < n. Then
(1) H*(uw)NI" =spanf{ky,...,kn} and H*(p) N I;- = span{k;} where I; = ker7;.
(2) If my = Ik;l1.%1ks)?dp and m = 7 mj/n, then m; is a representing measure for T; for
each 1 < 5 < n, and we may assume that p s absolutely continuous with respect to m.
(3) IS5 = Wksllull f5 + Il for 1 < j < m.

Proof. (1) Since S* is one to one, 7; has a unique bounded extension 7; to H?(p).
In fact, if S* is one to one then dim H?(u) N I' = n and so dim H*(u) N (kerr;)* = 1 for
1 < j < n. Then there exists k; € H?(u) such that 7;(f) = (f,k;), (f € A). If g € I, then
0=ri(g) = (g,k;) and so k; L g. Thus k; € H*>(u) NI+ for each j. Since ki, ..., k, are linearly
independent, {ki,...,k,} is a basis of H?>(u) N I*+. If g € I;, then 0 = 7;(g9) = (g,k;) and so
ki L g. Thus k; € H?(u) N I} for each j. Hence k; is a basis of H?(u) N I}
(2) For1<j<m,

|5 * (ki ki)  Ti(fk;)  7(f)T5(k;)
d ;] — d _= — — — . , A.
Jotam = [ g = T T el P U

Hence m; is a representing measure for 7;. Let m = 7, m;/n and let p = p® + p° be a
Lebesgue decomposition by m. Then H?(u®) NI+ = H?(u) NI+ and so H*(p®) N I+ = {0}
where p® and p* are divided by their total masses. Hence Sf = S}ﬂ ) st = S}‘a @ 0 and so
1S%1l = 11SF | for f € A.

(3) Since rank(S% )" = 1, there exists z; € H?(p)NI+ such that (5%)¢ = (¢, zj)k; = (k;®z;)9,
(6 € H2(1) (1 1), Then [1S% | = (5"l = Ik} © 250l = ilullzs ] Let P be the orthogonal
projection from H?(u) onto H?(u) N I+. Then

(Pfi,¢) = (S§1,0) = (1,(SF)"¢) = (zj, o)1, ky) = (zj,8), (6 € H*(w)NI"),
because (1,k;) = 1. Hence Pf; = z;. Hence
1f5 + Il = 1P Fillw = ll2;llu-

Hence ||S%, || = ||%;lullf; + I|ls- This completes the proof.




Let G(7) denote the Gleason part of 7. If G(7;) = G(7;), then we write 7; ~ 7;.

Proposition 3.3.  Suppose that dim H2(p)NI+ = n, I' = Njen1 ker 75, I? = Njene ker 7,
N'NN?2 =0 and N'UN? = {1,2,...,n}. Let N7 denote the number of elements in N7. If
7; * Tr whenever j € N' and k € N?, then H*(p) = H*(p') ® H*(y?), H*(u) NI+ =
(H2(ph) N (1YY @ (H?(u?) N (I7)1Y), Sh = Sgl ® 5'52 and dim H?(17) N (IF)Y = §N7, where

o 1+ 2 s .q- L
p= E2E, pt L p? and 17 is a probability measure for j =1,2.

Proof. By (1) of Theorem 3.2, H%(u) N It = span{ky, ..., k,}. We may assume that
N' = {1,2,..,1} and N? = {l + 1,...,n}. By (2) of Theorem 3.2, m; = ||k;||.%|k;|*du is a
representing measure for 7; for each 1 < j < n. Put A\! = %25:1 m; and A? = ﬁ X my
then A\! L A\? by definitions of N! and N,. Let u = ug + p2 be a Lebesgue decomposition with
respect to A! such that p} < Al and g2 L AL, Put p! = pb/||pusll and p? = pd/||p2||. This
completes the proof.

4. Isometric representation

In this section, we assume that A/I is n-dimensional and semisimple. Hence there exist
T1,..,Tn i0 the maximal ideal space M(A) of A such that 7; # 7; (i # j) and I = N}_, ker 7;.
For 1 < j < n, there exist f; € A such that 7,(f;) = 6;;. Then f; + I is idempotent in A/J and
A/I = span{fi+1,..., fo+I}. If S* is an isometric representation of A/1, then ||S% || = [|f;+||
for 1 < j < n. By (3) of Theorem 3.2, this implies that ||f; + I|| = ||k;ll.llf; + ||~ Hence,
if S# is an isometric representation of A/I, then ||k;|l, = |If; + I||/IIf; + ]|, for 1 < j < n.
Is the converse of this statement true? If n = 2, then the answer will be given in Proposition 4.4.

Theorem 4.1.  Suppose that G(7;) N G(7;) NG(n) =0 if i, j and | are different from
each other. Then there exists an isometric representation S* of A/I.

Proof. By Proposition 3.3, if G(7;) = {7;}, for all 1 < j < n, then there exists an
isometric representation S# of A/I; where I; = ker;, and g L pf. If p = (u' + ... + ) /n,
then H2(u) NI+ = (H2(p)) NI @ ... (H*(u")NI") and S = S @...® 84" (f € A). There-
fore, the theorem is proved in the case when G(7;) = {7;}, for all 1 < j < n. It is sufficient to
prove the theorem when 7; ~ 7; for some i,5(¢ # j). Suppose Top—1 ~ Tox, (1 < k < ng)
and G(n) = {n},(2no + 1 < I < n) for some ny. Since G(1;) N G(r;) N G(r) = 0, it
follows that dim A/I;; = 2 where I;; = I; N I; = kerr, Nkerr;. By Corollary 1 in [9],
there is a probability measure u¥ such that [|S4”|| = ||f + I;;|| for all f € A. By Propo-
sition 3.3, there are probability measures p?*~1%* (1 < k < ng) and p!,(2no +1 < 1 < n)
such that p = (u'2 + p®* + ... 4 p2ro=t2mo 4 y2rotl o 4y /(n — ng), H*(u) NI+ =




(2 (0 O 1) @ . (0 200) 1 T ) ® (B2 ) 1) .. () ),
Si=8% ©..08}F © S% e @S}L Hence S* is an isometric representation of A/
where I = (M Ior—12k) N (Nfgp,+111). This completes the proof.

2ng—1,2ng

For example, we consider when n = 3 and 7y ~ 7 % 73. Let I1o = I; NI, = ker 7y Nker 7.
Then dim A/I;, = 2. By Corollary 1 in [9], there is a probability measure u'? such that
||S}‘12|| = ||f + Io| for all f € A. Let S#° be the isometric representation of A/I; where
I3 = ker7s. Let g = (u*?+p3)/2. Then p'? | p3, H3(p)N I+ = (H2( NI e (H2(ud)NIi),
SN = S}‘ S Sus, (f S A), (S}L )*kj = Tj(f)kj, (] = 1,2), and (Sﬂ ) k3 = Tg(f)kg. Hence
12 3
1571 = (117 1) = w1 + ol () = sup | [ gl =+ 7).

Hence S* is an isometric representation of A/I where I = I;5N I3. By the theorem of T.Nakazi
(cf. [8]), ||f + 12| can be written using p; = sup{|n(f)|; f € kerm, ||f]| < 1}

Corollary 4.2.  Let A be a uniform algebra and I = N}_ ker7; and 7; # 7;(i # j)-
Then there exists an isometric representation S* of A/I, and || f+I|| = max(|7.(f)], -, | (F)])-

Proof.  Since 7; % 7; (i # j), there exist probability measures p!, ..., u" such that
p= (4. ") /n, L e (i # ), H*(@nIt = (H(p)NIY) & ..o (H(u)N I,
Sh = S“ ®..d S” . Since (S" )k; = 1;(f)k;, and (S”J) is a rank 1 operator on H?(u) N
(ker ;) = span {k;}, it follows that [|S¥" || = [|(S¥)*|| = |7;(f)|. Then

IS11 = mas(|SF [l -, |47 ]1) = max(jri(f)l, s [7a(F)) = sup I/ favl = |f +1]|

ve(A/I)s|Iv|I<1

This completes the proof.

Corollary 4.3.  Let A be a uniform algebra and I = N}_, ker7; and 7; # 7;(i # j)-
Suppose that S* is an isometric representation of A/I. Then,
(1) p=35 1, p* Lpd (i #J), W < m! where (7 is a positive measure and m? is some
representing measure for ;.
(2) S¥ =35, @S"J (f € A) where i is divided by its total variation and S¥ is an isometric
representatzon of A / where I; = ker7;.
(3) S}‘ s an z'sometrz'c representation of a diagonal n X n matriz for any f in A.

Proof. By the proof of (2) of Theorem 3.2 and Theorem 4.1, (1), (2) and (3) holds.

such that 1, # 7

If A/I is 2-dimensional and semisimple, then there exist 7y, in M(A)
= 0;5. Then f; +1 is

and I = kery Nkerm,. For j = 1,2, there exists f; € A such that 7;(f;)
idempotent in A/l and A/I =span{f, + I, fo+ I}. If n =2, then

pr =sup{|n(f)|; f € kerm, ||f|l <1},
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pi(p) = sup{|Ti(f)| ; f € kermy, [|f|l, < 1}

where || f|| denotes the supnorm of f in A and ||f||, = (f, f)p = ([ |f|2d,u)1/2. Then p; is a
Gleason distance between 7y and 72, and || f +I|| =1/p1, ||fi+1|, = 1/p1(1). The following
proposition is essentially known (cf. Lemma 3 of [9]).

Proposition 4.4. If A/I is 2-dimensional and semisimple, then the following condi-
tions are equivalent.
(1) S* is an isometric representation of A/I.
2) kalla = prlr)/pr-
) Nkallu =12+ /11 f2 + Il

Proof. By Theorem 3.2, (1) implies (3). By the above remark, (2) is equivalent to (3).

It is sufficient to show that (3) implies (1). By Theorem 3.2, if (3) holds, then [|S% || = || fi +I||-
By the above remark, this implies ||S; || = 1/p1. By the theorem of T.Nakazi (cf. [8]), if

I={fcA; n(f) =n(f) =0}, then
: (pi ) 1) N (Iﬁ(f)| ' |T2<f>|>2

2 2
1 _
N (& 1) + (0L U2
\ P1 2
Since ||S% || = 1/p1, it follows from the theorem of I.Feldman, N.Krupnik and A.Markus (cf.
[5]) that

n(f) = n(f)
2

n(f) — na(f)
2

IF+1 = \

I + 11l = Im(f)SF + m(F)SE I = I1SFII-
This completes the proof.

T. Nakazi and K. Takahashi [9] proved that there exists an isometric representation of

A/I in the case when dim A/I = 2. The following theorem gives a concrete matrix representa-
tion of A/I.

Theorem 4.5. Suppose A/I is 3-dimensional and semisimple. If 7 ~ 15 & T3
and S* is an isometric representation of A/I, then A/I is isometric to {S} ; f € A} =

span{S%, S, S}, St — ri(f)Sh + ma(£)S, + 7o(/)S, and
0
0|,
1

1 0 0 —z 0 0 0
Sty =10 0], Sp)yr=101 0], (Sg)=|00
0 0 00 O 0 0

T = _<k27k1>u
VIEE R 2 = [(a, ko)

S O 8

where
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Proof. This follows from Lemma 2.1 and Theorem 4.1.

If BC B(H) and dim H = 3, then

1 0 -z —=xz 0 0 zz—y
P1: 0 y P2: 01 Z y P3: 00 —z y
0 00 0 00 1

It follows from a 2-dimensional case that if y = z = 0, then B is a (J-algebra.

S O 8
O ow

If the following condition (1) implies (2) for any distinct points 7, ...,7,, € M(A) and
complex numbers wy, ..., w,, then we say that A/I satisfies the Pick property.
(1) [(1 — wiw)kji]ij=1 > 0, where kij = (ki, k;),, and 7;(f) = (f, kj)p, (f € A).
(2) There exists f € A such that 7;(f) = w;, (1 <j<n)and ||f+I| <1
The following proposition is essentially known.

Proposition 4.6.  Let A/I be an n-dimensional semisimple commutative Banach alge-
bra. Then S*: A/I — B(H?(p)NI1) is isometric if and only if A/I satisfies the Pick property.

Proof. Suppose S* is isometric. For any w;,...,w, € C, there exists an f € A
such that 7;(f) = w;, (1 < j < n). Suppose [(1 — wiw;)k;]7;—; > 0. For any complex
numbers ay, ..., 0m, let k = 37, a;k;. Then k|2 = Y7, @aykji. Since (S%)*k; = 7;(f)k;,
(S}‘)*k = 371 oy (f)k;. By (1),

[l — NCSF) kIl = Z @oj(1 — wwy)kj; > 0.
2,j=1
Since H?(pu) N I+ is spanned by ki, ..., ky, this implies that ||(S})*|| < 1. Since S* is isometric,
If +II] = ||S¥]] < 1. Therefore A/I satisfies the Pick property. Conversely, suppose A/I
satisfies the Pick property and ||S¥|| = 1. Since (S%)*k; = 7;(f)k; and ||(S})*|| = 1, it follows
that

> @iy (1= 7i(£)i(H))kji = 1Kl — (SF) kIl > 0,

3,j=1

and hence [(1 — 7,(f)7;(f))ksl7;—, > 0. By the Pick property, there exists g € A such that
llg+ I|| <1 and 7;(g) = 75(f),(1 < j <mn). Therefore ||f +I||=|g+1I|| <1= ||S}‘|| Since
the reverse inequality ||S%|| < || f+1|| is always holds, ||S%|| = || f+1||. This completes the proof.
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5. @-Algebras of a Disc Algebra

In this section, we assume that A is the disc algebra and dim A/I = 3. For f € A, let
| f+I||=]|1f+I|lajr- Since M(A) =D = {|z| < 1}, for each 1 < j < 3, 7; is just an evaluation
functional at a point of D and so we write that 74 = a, 7» = b and 73 = ¢, where a, b and ¢
are in D. By Theorem 3.2, we may assume that a, b and ¢ are in D = {|2| < 1}. Theorem 5.2
shows that the set of all 3-dimensional semisimple ()-algebras of the disc algebra is a proper
subset in the set of all 3-dimensional semisimple commutative operator algebras with unit on
a Hilbert space of dimension 3. However Theorem 5.2 has not solved Problem 2 yet. We use
Lemma 5.1 to prove Theorem 5.2. Let a,b, ¢ be the distinct points in the open unit disc D.
Let T(a, b, c) denote the subset of C* which consists of all (z,y, 2) € C? satisfying

2 2

1—ba 1—¢b
N R =
1+ [y[? a—b2_ 1—ac|?
y 1—ba| lec—a

This implies that £ # 0, y # 0, and z # 0. T(a, b, ¢) is characterized by saying that the absolute
values of z,y, z are fixed and that their argument are arbitrary. In the following, we consider
some inequalities of z,y, and z. For j = 1,2,3, there exists f; € A such that 7,(f;) = d;.
Hence, fi(a) = f2(b) = f3(c) = 1, and f1(b) = fi(c) = f2(a) = fa(c) = f3(a) = f3(b) = 0.

Lemma 5.1. Let a,b,c be the distinct points in D. Let f € A. Let I = {g €
A; g(a) = g(b) = g(c) = 0}. Let du= 2.

27

(1) S% = f(a)S% + f(b)S%, + f(c)S%,, and

1 =z y 0 -z —xz 0 0 zz—y
(S}‘l)* =100 0|, (S’”z)* =01 z , (S};)* =100 -z ,
000 0 0 0 0 0 1

for some (x,y,z) € T(a,b,c).
(2) If +1)l = IS¥ll, (f € A). That is, A/I is isometrically isomorphic to the 3-dimensional
semisimple commutative operator algebra on H*(u) N I+ which is spanned by

1 z y 0 —x —zz 0 0 zz—y
P1: 0 00 y P2: 01 Z y P3: 00 —z y
000 00 0 00 1

for some (x,y,z) € T(a,b,c).

Proof. H?(u)N I+ is a 3-dimensional Hilbert space which is spanned by
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For orthonormal basis 1, 19, 13 defined in Proposition 2.3,

_ 2 _ 2 _ 2
we) = VP 2 a v z-a z-by1-1d

1—az ’ “T ar 16 1/}3(2):731—&21—52 1—¢ez ’
where
a—b\""|a—0b a—c\ 'a—c|[{b—c) '|b—c
722_(1—&6) l—ab|’ 73:(1—ac> 1—ac (1—Bc> |1—Bc'
Since

_(5 —a)(z—a) i
(1 —ba)(1 —az)(1 —bz)’

ka — (k2 1)y =

it follows that
1

N

]|

h—
A

jl|

a

Hence
ke — (k) z—a /1B
Y2, (a1 a1 bz

Since

(@—2e)(b—2)(z—a)(z—b)

ks — (ks, ¥1)¥1 — (k3, ¥2)¥2 = (1= za)(1 — )1 — az)(1 — b2)(1 — c2)’

it follows that

ks — (ks r )i — (ks 2)1bo _ z—az —_b 1—cf?
ks — (ks, 1) — (ks bo)tbal|  °1—azl—bz 1—éz

If we calculate z,y, z using the formulas in Proposition 2.3, then it follows that (z,y,z) €
T(a,b,c). Then

Y3 =

= —<]€2,k'1> _ 1:%a — \/]_ — |a|2\/1 — |b|2
\/||k1||2||k2||2 - |<k1, k2>|2 \/(1—|a|2)1(1—|b|2) B |1_{—zb|2 |a - b|

where

_ 1—ab

T

Hence L

Lt o = |20

la-—0b
Since

—(ks, 1) — (k3, o)z = ml —abc—b

1—¢a b—a 1—be

it follows that

_ —(ks, Y1) — (K3, Y2) _1-ab \/1 — |a|2\/1 — |2
Y7 Tlks = (ks )01 — (ksy ¥adtall  "a—b Ja—e
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where

_fa—-b\|la—b b—c\ |b-c |1 — cal
R S 1—be 1—bel 1—¢éa’
Since
k ¢>__E—d\/1_|b|2
BT T 1
it follows that
L — (ks ) L VAR e
— — /6 ?
ks — (ks, 1)3h1 — (ks, ¥2)42]| b — |
where
_f(a=b\|la—-b| (c—a)‘l c—a ||l—be
= \1T—a) |1 —ab 1—ac 1—acl 1—be"
Since |ya| = || = |4l = |5] = |76] = 1, it follows that
a—b| 1— acl? 1—ab|
1 2 —| = 1 7=
+ 1l 1—ba c—al’ + 1l ‘b—c

Hence, (1) follows. It is sufficient to prove (2). By the theorem of D.Sarason (cf. [2], p.125, [10],
Vol.1, p.231, [11]), || f +1I|| = [|SF||. Then (S} ) ki = ki, (S},) k2 = (S%,) ks = 0, (S},) ka2 = ko,
(Suz)*kg = (Suz)*kl = 0, (SNS)*kg = k3, and (S;“‘s)*kl = (SNS)*kQ = 0. By PI'OpOSitiOIl 23,

1 =z vy 0 -z —xz 0 0 zz—y
<s;:1>*(o ; 0), (5“2)*(0 " ) (5;3)*(0 0 )
0 0O 00 0 00 1
Since f — f(a)fi — f(0)fo — fle)fs € I and I(H?*(p) N IY) C TH?(u) C H?(u) N I+, it follows

(SF = San+swnsr@n)¥ = Si-rn-ron-ron¥ =0 @ € L)
Hence
87 = Stnrrwnras = ()85 + f(b)SE, + f(€)S),-
This completes the proof.

For example, if (a,b,c) = (0, 1, %) and (z,y,2) = (—v/3,4v/2, —21/6), then the algebra
span{P;, P», P;} is isometrically isomorphic to A/I which is a Q-algebra of a disc algebra.

Theorem 5.2.  Let a,b,c be the distinct points in D. Let f € A. Let du = %. Let
I={gec A; gla) = g(b) = g(c) = 0}. If a 3-dimensional semisimple commutative operator
algebra B on H*(u) N It is isometrically isomorphic to A/I, then B is unitarily equivalent to
the 3-dimensional commutative operator algebras with unit on a 3-dimensional Hilbert space H

spanned by Py, Py, P3 such that

1
P1: O
0

o O R
o o
N——
N~
|
TN
o OO
S =
8
|
=B SIS
N
N——
B
|
TN
o OO
o OO
8
|N
= |
@
N——
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where x,y, z satisfy (1) ~ (3).

(1) xyz # 0,

1 1 1
® M1+WP<\ﬂwwﬂf+¢1+pP’

3) ol > —=2L
V1t 22 +1

Proof. By the theorem of B.Cole and J.Wermer (cf. [3]) and (2) of Theorem 2.4, we
may assume that H is spanned by the orthonormal basis 1, ¥, %3 which are calculated in the
proof of Lemma 5.1. By Lemma 5.1, there are complex numbers z,y, z satisfying (z,y, z) €

T(a,b,c). Since

2 2

1—ba 1—ab
1 o >1, 1 o= 1
T e IR AT L I
2 _
a—b 1— acl?
1 2 —| = > 1,
+|y| 1—ba c—a
(1) follows. Let
( ) Zz —w
Z, W) = .
PAZ 1—wz
Then
(a.) 1 (b.0) 1 (c.0) 1+ |z|? N 1
pLa, = T P\, C) = —F—y pLc,a) = .
1+ |zf? 1+ |2)? L+ lzP+yl? /14 |y

Since p(c,a) < p(a,b) + p(b,c), (2) follows. Let

1 1+ p(zw)

d = _log— 5

Since d(c,a) < d(a,b) + d(b,¢),

¢L+WP+WP+¢L+M2<vﬁ+VP+1_M1+MP+1
VIl =1+l ™ J14]P-1 J1+zP-1

Hence

1+ z2+1 1+ |22+ |y2 + /1 + |z|? 1+ ]z24+1 1+ z|2+1
Y1+ 2l <¢ o2 + [yl + /1 + |a] Sv |H| Wit lPtT
z

|y| |y |z]

this implie (3). This completes the proof.
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Example 5.3. In Example 2.5, By is isometrically isomorphic to By. Since y = 0, it
follows from Theorem 5.2 that B; is not isometrically isomorphic to a 3-dimensional semisimple
Q-algebra A/I where A is a disc algebra. Hence By is also not isometrically isomorphic to a
Q-algebra A/I. Therefore By and Bs is the example to show that the set of all 3-dimensional
semisimple Q-algebra A/I where A is a disc algebra is smaller than the set of all 3-dimensional
commutative operator algebras with unit on a 3-dimensional Hilbert space.
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