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1. Introduction 

Let A be a uniform algebra on a compact Hausdorff space X. If I is a closed ideal of A, 
then the quotient algebra AI I is a commutative Banach algebra with unit. In this paper, if a 
Banach algebra B is isometrically isomorphic to AI I, then B is called a Q-algebra. (F.Bonsall 
and J.Duncan called B an IQ-algebra.(cf. [1], p.270)) B.Cole (cf. [1], p.272) showed that 
any Q-algebra is an operator algebra on a Hilbert space H, that is, there exists an isometric 
isomorphism to an operator algebra on H. Let f.1 be a probability measure on X and H2(f.1) 
the closure of A in L2 (f.1). H2 (f.1) nIl.. denotes the annihilator of I in H2 (f.1). Let P be the 
orthogonal projection from H2(f.1) onto H2(f.1) nIl.. and for any 1 E A put 

S'je/J = P(Je/J), (e/J E H2(f.1) n Il..). 

Then S'j+k = S'j for k in I and IIS'j II ::; 111 + III. SIl is the map of AI Ion operators on H2(f.1) nIl.. 
which sends 1 + I ----+ S'j for each 1 in A. Hence SIl is a contractive homomorphism from A into 
B(H2(f.1) nIl..) where B(H2(f.1) nIl..) is the set of all bounded linear operators on H2(f.1) nIl... 
The kernel of SIl contains I. Then we say that SIl gives a contractive representation of AI I 
into B(H2(f.1) nIl..). If IIS'j11 = 111 + III, (J E A) then ker SIl = I and we say that SIl gives an 
isometric representation of AI I on H2 (f.1) nIl... 

Problem 1. Prove that any finite n-dimensional Q-algebra can be represented on a 
Hilbert space of finite dimension n. 

If SIl is isometric then we solve Problem 1. In fact, T.Nakazi and K.Takahashi (cf. [9]) 
solved Problem 1 for n = 2 in this way. It seems to be unknown for n 2: 3. 

Problem 2. Describe a finite n-dimensional Q-algebra in finite n-dimensional commu-
tative operator algebras with unit on a Hilbert space of finite dimension n. 

Problem 2 is clear for n = 1 and it was proved by S.W.Drury (cf. [4]) and T.Nakazi (cf. 
[8]) that a 2-dimensional commutative operator algebra with unit on a Hilbert space is just a 
Q-algebra. J.Holbrook (cf. [6]) proved that von Neumann's inequality 

can fail for some polynomials p in 3 variables, where T = (TI' T2 , T3) is a triple of commuting 
contractions on C 4

, and TI , T2 , T3 are simultaneously diagonalizable. Then we can construct 
a 4-dimensional commutative matrix algebra with unit on C 4 , which is not a Q-algebra. If 
n 2: 4, then this implies that the set of all n-dimensional Q-algebra AI I is smaller than the 
set of all set of all n-dimensional commutative oparator algebras with unit on a n-dimensional 
Hilbert space. If n = 3, then Problem 2 has not been solved yet. In this paper, we concen
trate on a semisimple commutative Banach algebra and we study Problem 2. In Section 2, 
we will prove several general results of semisimple finite dimensional Q-algebras that will be 
used in the latter sections. In Section 3, we will study arbitrary semisimple n dimensional 
Q-algebras for n = 2,3. In Section 4, we will study the isometric representation of AI I. In 
Section 5, we will describe completely 3-dimensional semisimple Q-algebras of the disc alge
bra in 3-dimensional commutative operator algebras with unit on a 3-dimensional Hilbert space. 
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2. Semisimple and commutative matrix algebra 

In this section, we study 3-dimensional commutative semisimple operator algebras on a 
3-dimensional Hilbert space. In particular, we study when two such operator algebras are iso
metric or unitary equivalent. S.McCullough and V.Paulsen (cf. [7], Proposition 2.2) proved the 
similar result of Proposition 2.3. We use Lemma 2.1 to prove Proposition 2.2 and Proposition 
2.3. In Example 2.6, we construct a 4-dimensional commutative matrix algebra with unit on 
C 4 which is not a Q-algebra using the example of J.Holbrook (cf. [6]). 

Lemma 2.1. Let n 2:: 2 and let H be an n-dimensional Hilbert space which is spanned 
by kl' k2' ... , kn. Let 

Then { 'l/JI, ... ,'l/Jn} is an orthonormal basis for H. Let g, ... , Pn be the idempotent operators on 

H such that Piki = ki' ~kj = 0 ifi =I- j. For 1::; m::; n, let a~j) = (Pm'l/Jj,'l/Ji), (1::; i,j::; n). 

Then Pm = (a~j)h<::i,j<::n is an n x n matrix such that 

PI = ( ~I ) , ... , Pm = (Z ~m ), ... , Pn = (0 Bn), 

where Bm is an m x (n - m + 1) matrix such that 

BI = (1 . . . a~~), ... , Bm = , ... , Bn = 

1 1 

Then a~J = 1, and for m 2:: 2, 

and for m + 1 ::; j ::; n, 

Since this lemma is proved by elementary calculations, the proof is omitted. It is well 
known that any n-dimensional commutative semisimple Banach algebra with unit I is spanned 
by commuting idempotents PI, ... , Pn satisfying PI + ... + Pn = I. 
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Proposition 2.2. In Lemma 2.1, for 1 ::; m ::; n, rankPm = 1, and B = span{P1 , ... , Pn} 
is an n-dimensional semisimple commutative operator algebra with unit on H. Then n x n ma

trix (a~j)) for Pm with respect to {1/11, ... , 1/1n} is a~j) = (Pm 1/1j , 1/1i), and 

1 
(1) 

a12 
(1) 

a1n 0 
(2) 

a12 
(2) 

a13 
(2) 

a1n 
0 0 0 0 1 

(2) 
a23 

(2) 
a2n 

P1 = (ag)) = P2 = (a~J)) = 0 0 0 0 

0 0 0 0 0 0 0 

0 0 
(n) 

a1n 
0 0 

(n) 
a2n 

...... , p = (a(~)) = n ~J 

0 0 
(n) 

an-1n 
0 0 1 

In Lemma 2.1, a~j) is written using k1' ... , kn and 1/11, ... , 1/1n. 

Proof. By the assumption of Lemma 2.1, Piki = ki and ~kj = 0 if i #- j. Hence 
rankPm = 1. If i #- j, then PiPjkm = 5jmPikj = 0, (1 ::; m ::; n). Since H = span{k1 , ... , kn}, 
this implies that PiPj = 0 if i #- j. Hence B is commutative. Since Pl km = 5imPikm = 
Pikm, (1 ::; m ::; n), it follows that Pl = Pi' Hence B is semisimple and n-dimensional. Since 
(Pt + ... + Pn)km = Pmkm = km' (1 ::; m ::; n), it follows that Pt + ... + Pn = I. Hence B has a 
unit I. This completes the proof. 

Proposition 2.3. Let H be a 3-dimensional Hilbert space which is spanned by 

k1' k2' k3. Let (', ') denote the inner product, and let II . II denote the norm of H. 

1/13 = k3 - (k3' 1/11}1/11 - (k3,1/12}1/12 

II k3 - (k3' 1/11}1/11 - (k3,1/12}1/1211' 

Then 1/11, 1/12, 1/13 is an orthonormal basis in H. Let Pi be the idempotent operator on H such 
that ~ki = ki' ~kj = 0 if i #- j. For m = 1,2,3, the 3 x 3 matrix (a~j)) for Pm with respect 

to {1/11,1/12,1/13} is a~j) = (Pm1/1j,1/1i)' Then 

where 
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Proof. By Proposition 2.2, there exist x, y such that 

PI = (aU)) = 0 0 0 . 
( 

1 x Y) 

By Lemma 2.1, 

( 

1 x Y) 
PI = 0 0 0 , 

o 0 0 

because PI + P2 + P3 = I. By Lemma 2.1, 

-x 
1 
o 

(2) - Lh=2(k3, 'ljJh)a~~ 
z = a23 = II k3 - Lh=I (k3, 'ljJh)'ljJhll 

By Lemma 2.1, 

Hence 

This completes the proof. 

000 

Theorem 2.4. Let PI, P2, P3 be idempotent operators defined in Proposition 2.3. 
Let H' be a 3-dimensional Hilbert space. Let {3' be a 3-dimensional semisimple commutative 
operator algebra on H'. Then, there are idempotent operators QI, Q2, Q3 on H', an orthonormal 
basis 'ljJ~,'ljJ~,'ljJ~ in H' and complex numbers Xo,Yo,Zo such that {3' = span{QI,Q2,Q3} and, as 
matrices relative to 'ljJ~, 'ljJ~, 'ljJ~, 

( 

1 Xo yo) 
QI = 0 0 0 , 

000 

-XoZo ) 
Zo , 
o 

Let T be the map of {3 on {3' such that 
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(1) T is isometric if and only if 

Ixl2 + lyl2 = Ixol2 + IYoI2, 

(1 + IxI 2)(1 + Iz12) = (1 + IXo 12)(1 + IZo 12), 

Ixl2 + xzy = Ixol2 + XOZoYO. 

(2) T is induced by a unitary map from H to H' if and only if there are complex numbers 
UI, U2, U3 such that 

Then Ixl = Ixol, IYI = IYol, Izl = Izol, xzy = XoZoYo· 

Proof. (1) By the theorem of B.Cole and J.Wermer (cf. [3]), T is isometric if and 
only if, writing tr for trace, 

If T is isometric, then 

1 + Ixl 2 + lyl2 = tr(P; Pd = tr(QiQd = 1 + Ixol2 + IYoI2, 

(1 + IxI 2)(1 + Iz12) = tr(P; P2 ) = tr(Q;Q2) = (1 + IxoI2)(1 + IzoI2), 

Ixl 2 + xzy = tr(P;P2) = tr(QiQ2) = Ixol2 + XoZoYo· 

Conversely, if three equalities in (1) hold, then 

tr(P; Pd = 1 + Ixl2 + lyl2 = 1 + Ixol2 + IYol2 = tr(QiQd, 

tr(P; P2 ) = (1 + IxI 2)(1 + Iz12) = (1 + IxoI2)(1 + Izol2) = tr(Q;Q2), 

tr(P; P2) = Ixl 2 + xzy = Ixol2 + XoZoYo = tr( QiQ2), 

tr(P;P3) = xz(y - xz) -lzl2 = xozo(yo - xozo) -lzol2 = tr(Q;Q3), 

tr(P; Pd = y(xz - y) = Yo(xozo - Yo) = tr( QiQI), 

tr(P;P3) = 1 + Izl2 + Ixz - YI2 = 1 + Izol2 + Ixozo - Yol2 = tr(QiQ3). 

(2) Suppose T is induced by a unitary map U = (Uij), (1 ::; i,j ::; 3) from H to H'. Since 
ug = QIU, it follows that U21 = U31 = O. Since UP2 = Q2U, it follows that U32 = O. Hence U 
is an upper triangular matrix. Since the columns of U are pairwise orthogonal, U is a diagonal 
matrix. Hence there are complex numbers UI, U2, U3 such that UI, U2, U3 are diagonal element 

of U, and lUll = IU21 = IU31 = 1. Since UPI = QIU, it follows that UIX = U2XO, UIY = U3YO. S
ince UP2 = Q2U, it follows that U2Z = U3Z0. The converse is also true. This completes the proof. 

Example 2.5. Let Bo = span {PI , P2, P3}, where 

P2 = (~ ~ 
1 

~ 
1 

) , 
o 0 0 
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and let B1 = span{Pt,P;,P;}. This is an example which is established by W.Wogen (cf. [3]). 
He proved that Bo and B1 are isometrically isomorphic, and not unitarily equivalent. There is 
another example as the following. Let B2 = span{Q1,Q2,Q3}, where 

(
1 J2 0) 

Q1 = 0 0 0 , 
( 

0 -J2 -f'ii3) 
Q2 = 0 1 1jV3, 

(

00 f'ii3) 
Q3 = 0 0 -ljV3 . 

o 0 0 o 0 0 o 0 1 

Then Bo and B2 are 3-dimensional commutative operator algebras with unit. By the calculation, 

Ixl2 + lyl2 = Ixol2 + IYol2 = 2, 

(1 + IxI 2)(1 + Iz12) = (1 + Ixo 12)(1 + Izo 12) = 4, 

Ixl2 + xZY = Ixol2 + XoZoYo = 2. 

By (1) of Theorem 2.4, this implies that Bo and B2 are isometrically isomorphic. By (2) of 
Theorem 2.4, Bo and B2 are not unitarily equivalent. 

3. One to one representation 

In this section, we assume that Aj I is n-dimensional and semisimple. Hence there exist 
T1, ... ,Tn in the maximal ideal space M(A) of A such that Ti #- Tj (i #- j) and 1= nj=l kerTj. SP 
gives a contractive representation ofAjlinto B(H2(JL)nIl..) anddimH2(JL)nIl..::; dimAjI = n. 
We study when SP is one to one from AjI to B(H2(JL) nIl..). It is clear that SP is one to one if 
and only if dim H2 (JL) nIl.. = dim Aj I. For 1 ::; j ::; n, there exist fj E A such that Ti (fj) = 6ij. 
Then fj + I is idempotent in Aj I and Aj I = span{ft + I, ... , fn + I}. The following two 
quantities are important to study SP. For 1 ::; j ::; n, 

Pj = sup{h(f)1 ; f E nZ#j kerTz, Ilfll ::; I} 

and 
Pj(JL) = sup{h(f)1 ; f E nZh kerTz, II flip ::; I}, 

where Ilfll denotes the sup norm of f in A and Ilfllp = (1, niP = (J IfI 2dJL)1/2. Then it is easy 
to see that 

and 

Ilh + III ~ IISjJ ~ Ilh + Illw 

If SP is one to one then Tj has a bounded extension to H2 (JL). In fact, if SP is one to one then 
dim H 2(JL) nIl.. = n and so dim H 2(JL) n (ker Tj)l.. = 1 for 1 ::; j ::; n. Then for 1 ::; j ::; n, there 
exists k j E H 2 (JL) such that 
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Proposition 3.1. There exists a one to one contractive representation SJi of A/I. 

Proof. Since Tj E M(A), there exists a positive representing measure mj of Tj on X. 
Let f1 = 2:,"]=1 mj / n. Then 

Hence Tj has a unique bounded extension i j to H2 (f1) and i j #- ii (j #- i). Since H2 (f1) nIl.. = 
nj=1 kerij, dim H2(f1) n Il.. = n. Hence H2(f1) nIl.. = span{ k1' ... , kn }. Suppose Sf = 0, then 

Tj(f)kj = (Sf)*kj = O. Hence Tj(f) = 0, (1 ::; j ::; n). Hence f E nj kerTj = I. This implies 
that SJi is one to one from A/I to B(H2(f1) n Il..). This completes the proof. 

Theorem 3.2. Suppose that SJi is a one to one contractive representation of A/I. Let 
kj be a function in H2(f1) such that Tj(f) = (1, kjJJi (f E A), for 1 ::; j ::; n. Then 
(1) H2(f1) nIl.. = span{k1' ... , kn } and H2(f1) n If = span{kj } where I j = kerTj. 
(2) If mj = Ilkjll~2IkjI2df1 and m = 2:,"]=1 mj/n, then mj is a representing measure for Tj for 
each 1 ::; j ::; n, and we may assume that f1 is absolutely continuous with respect to m. 

(3) IISh II = IlkjllJillh + lIIJi for 1 ::; j ::; n. 

Proof. (1) Since SJi is one to one, Tj has a unique bounded extension i j to H2(f1). 
In fact, if SJi is one to one then dimH2(f1) nIl.. = n and so dimH2(f1) n (kerTj)l.. = 1 for 
1 ::; j ::; n. Then there exists kj E H2(f1) such that Tj(f) = (1, kjJJi (f E A). If gEl, then 
0= Tj(g) = (g, kjJ and so kj -.l g. Thus kj E H2(f1) nIl.. for each j. Since k1' ... , kn are linearly 
independent, {k1' ... , kn } is a basis of H2(f1) nIl... If 9 E I j , then 0 = Tj(g) = (g, kjJ and so 
kj -.l g. Thus kj E H2 (f1) n If for each j. Hence kj is a basis of H2 (f1) n If. 
(2) For 1 ::; j ::; n, 

[ [lkj l2 (1kj, kjJJi ij(fkj ) Tj (f)ij (kj ) () ( ) 
ix fdmj = ix f Ilkjll~ df1 = Ilkjll~ = Ilkjll~ = Ilkjll~ = Tj f, f EA. 

Hence mj is a representing measure for Tj. Let m = 2:,"]=1 mj / n and let f1 = f1a + f1s be a 
Lebesgue decomposition by m. Then H 2(f1a) nIl.. = H2(f1) nIl.. and so H 2(f1S) nIl.. = {O} 
where f1a and f1s are divided by their total masses. Hence Sf = Sr EEl Sf" = Sr EEl 0 and so 

IISfl1 = IISr II for f E A. 
(3) Since rank(Sh)* = 1, there exists Xj E H2(f1)nIl.. such that (Sh)*¢ = (¢, xjJkj = (k/Z)xj)¢, 

(¢ E H2(f1) n Il..). Then IISh II = II(Sh)*11 = Ilkj ® xjll = IlkjllJillxjllw Let P be the orthogonal 
projection from H2(f1) onto H2(f1) nIl... Then 

because (1, kjJ = 1. Hence Pfj = Xj' Hence 

Hence IISfj II = IlkjllJillh + Illw This completes the proof. 
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Let G ( T) denote the Gleason part of T. If G ( Ti) = G ( Tj ), then we write Ti rv Tj. 

Proposition 3.3. Suppose that dim H2 (J1 )nI 1.. = n, J1 = njENl ker Tj, 12 = n jEN2 ker Tj, 
N 1 n N 2 = 0 and N 1 U N 2 = {I, 2, ... , n}. Let ~Nj denote the number of elements in Nj. If 
Tj rf Tk whenever j E N 1 and k E N 2, then H 2(J1) = H 2(J11) EEl H 2(J12), H 2(J1) n 11.. = 
(H2(J11) n (11)1..) EEl (H2(J12) n (12)1..), S~ = S~l EEl S~2 and dimH2(J1j) n (1j)1.. = ~Nj, where 

J1 = tLl~tL2, J11 -.l J12 and J1j is a probability measure for j = 1,2. 

Proof. By (1) of Theorem 3.2, H 2(J1) n 11.. = span{k1, ... , kn}. We may assume that 
N 1 = {1,2, ... ,l} and N 2 = {l + 1, ... ,n}. By (2) of Theorem 3.2, mj = Ilkjll~2IkjI2dJ1 is a 

representing measure for Tj for each 1 ::; j ::; n. Put Al = t 2:;=1 mj and A2 = n~l 2:J=l+1 mj 
then Al -.l A2 by definitions of N 1 and N2. Let J1 = J16 + J15 be a Lebesgue decomposition with 
respect to Al such that J16 « Al and J15 -.l AI. Put J11 = J16/11J1611 and J12 = J15/11J1511. This 
completes the proof. 

4. Isometric representation 

In this section, we assume that A/lis n-dimensional and semisimple. Hence there exist 
Tl, ... , Tn in the maximal ideal space M (A) of A such that Ti =I- Tj (i =I- j) and I = nj=1 ker Tj. 
For 1 ::; j ::; n, there exist fj E A such that Ti(fj) = 6ij. Then fj + I is idempotent in A/land 
A/ 1= span{h +1, ... , fn +I}. If StL is an isometric representation of A/I, then IISh II = Ilfj +111 
for 1 ::; j ::; n. By (3) of Theorem 3.2, this implies that IIIi + III = IlkjlltLllIi + Illw Hence, 
if StL is an isometric representation of A/I, then IlkjlltL = IIIi + III/IIIi + IlltL for 1 ::; j ::; n. 
Is the converse of this statement true? If n = 2, then the answer will be given in Proposition 4.4. 

Theorem 4.1. Suppose that G(Ti) n G(Tj) n G(TI) = 0 if i,j and 1 are different from 
each other. Then there exists an isometric representation StL of A/I. 

Proof. By Proposition 3.3, if G (Tj) = {Tj}, for all 1 ::; j ::; n, then there exists an 
isometric representation StL

j 
of A/lj where I j = kerTj, and J1i -.l J1 j . If J1 = (J11 + ... + J1n)/n, 

then H 2(J1) n 11.. = (H2(J11) n 11..) EEl ••• EEl (H2(J1n) n 11..) and S1 = Sf EEl ••• EEl Sf (f E A). There
fore, the theorem is proved in the case when G (Tj) = {Tj}, for all 1 ::; j ::; n. It is sufficient to 
prove the theorem when Ti rv Tj for some i,j(i =I- j). Suppose T2k-l rv T2k, (1 ::; k ::; no) 
and G(TI) = {TI}, (2no + 1 ::; 1 ::; n) for some no. Since G(Ti) n G(Tj) n G(TI) = 0, it 
follows that dim A/lij = 2 where Iij = Ii n I j = ker Ti n ker Tj. By Corollary 1 in [9], 

. . ij 

t~~re is a probability meas~~e J1 zJ such that IIS1 II = Ilf + Iijll for all f E A. By Propo-
SItIOn 3.3, there are probabIlity measures J12k- 1, k,(l ::; k::; no) and J11,(2no + 1 ::; 1 ::; n) 
such that J1 = (J112 + J134 + ... + J12no-l,2no + J12no+l + ... + J1n)/(n - no), H 2(J1) n 11.. = 
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(H2 (1/12) n 11..) EB EB (H2(1/2no-l,2no) n 11.. ) EB (H2(1/2no+1) n 11.. ) EB EB (H2(lln) n 11..) r 12 ... r 2no-l,2no r 2no+l ... r n' 
12 2nO-l,2nO 2nO+l n 

S'j = S'j EB ... EB S'j EB S'j EB ... EB S'j Hence SP is an isometric representation of Aj I 
where I = (n~~1 12k- 1,2k) n (n l=2no+l I[). This completes the proof. 

For example, we consider when n = 3 and Tl rv T2 rf T3. Let 112 = lIn h = ker Tl nker T2· 
Then dim Aj 112 = 2. By Corollary 1 in [9], there is a probability measure f112 such that 

IISf2 11 = Ilf + Idl for all f E A. Let SP3 be the isometric representation of Aj 13 where 
13 = kerT3' Let f1 = (f112+f13)j2. Then f112 -.l f13, H2(f1)nI1.. = (H2(f112)nlf2)EB(H2(f13)nL);), 

S'j = Sf2 EB sf, (J E A), (Sf2)*kj = Tj(J)kj , (j = 1,2), and (Sf)*k3 = T3(J)k3. Hence 

IIS'j11 = max(IISf
2

11, IIS'j3 11 ) = max(llf + Idl, h(J)I) = sup I [ fdvl = Ilf + III· 
VE(A/I)*,ll vll:=;1 ix 

Hence SP is an isometric representation of Aj I where I = 112 n 13, By the theorem of T.Nakazi 
(cf. [8]), Ilf + Idl can be written using PI = sup{h(J)1 ; f E kerT2, Ilfll ::; I}. 

Corollary 4.2. Let A be a uniform algebra and I = nj=1 kerTj and Ti rf Tj(i #- j). 
Then there exists an isometric representation SP of AjI, and Ilf+III = max(h(J)I, ... , ITn(J)I). 

Proof. Since Ti rf Tj (i #- j), there exist probability measures f1\ ... , f1n such that 
f1 = (f11 + ... + f1n)jn, f1i -.l f1j (i #- j), H2(f1) n 11.. = (H2(f11) n 11..) EB ... EB (H2(f1n) n 11..), 

S'j = Sf EB ... EB sr. Since (St)*kj = Tj(J)kj, and (S'jj)* is a rank 1 operator on H2(f1) n 

(kerTj)1.. = span {kj }, it follows that list II = II(st)*11 = h(J)I. Then 

IIS'j11 = max(IISf II, ... , IISr II) = max(h(J)I, ... , ITn(J)I) = sup I [ fdvl = Ilf + III· 
vE(A/I)*,llvI19 ix 

This completes the proof. 

Corollary 4.3. Let A be a uniform algebra and I = nj=1 kerTj and Ti rf Tj(i #- j). 
Suppose that SP is an isometric representation of Aj I. Then, 
(1) f1 = 2:,j=1 f1 j , f1i -.l f1j (i #- j), f1j « m j where f1j is a positive measure and m j is some 
representing measure for Tj. 

(2) S'j = 2:,j=1 EBst (J E A) where f1j is divided by its total variation and spj is an isometric 
representation of Aj I j , where I j = ker Tj. 
(3) S'j is an isometric representation of a diagonal n x n matrix for any f in A. 

Proof. By the proof of (2) of Theorem 3.2 and Theorem 4.1, (1), (2) and (3) holds. 

If Aj I is 2-dimensional and semisimple, then there exist Tl, T2 in M(A) such that Tl #- T2 
and 1= kerTl n kerT2' For j = 1,2, there exists fj E A such that Ti(Jj) = 6ij. Then fj + I is 
idempotent in Aj I and Aj 1= span{h + I, f2 + I}. If n = 2, then 

PI = sup{h(J)1 ; f E kerT2, Ilfll ::; I}, 
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Pl(/1) = sup{h(1)1 ; f E ker72, Ilfll tL ::; I} 

where Ilfll denotes the supnorm of f in A and IlflltL = (j, f)tL = (J IfI2d/1)1/2. Then PI is a 
Gleason distance between 71 and 72, and IliI +111 = 11Pl, IliI +IlltL = 1/Pl(/1). The following 
proposition is essentially known (cf. Lemma 3 of [9]). 

Proposition 4.4. If AI I is 2-dimensional and semisimple, then the following condi
tions are equivalent. 
(1) 5 tL is an isometric representation of AI I. 
(2) IlkllltL = Pl(/1)/pl. 
(3) IlkllltL = IliI + Ill/lliI + Illw 

Proof. By Theorem 3.2, (1) implies (3). By the above remark, (2) is equivalent to (3). 
It is sufficient to show that (3) implies (1). By Theorem 3.2, if (3) holds, then 115jJ = Ilfl +111. 
By the above remark, this implies 115j

1
11 = II Pl. By the theorem of T.Nakazi (cf. [8]), if 

1= {f E A ; 71(1) = 72(1) = O}, then 

Ilf+III = 

+ 

171U) ; 72(1) I' (~ -1) + ('71(1)1; h(1)I), 

171 U) ; 72(1) I' (:1 -1) + (iTt (1)1; hU)I)' 

Since 115jJ = II PI, it follows from the theorem of LFeldman, N.Krupnik and A.Markus (cf. 
[5]) that 

This completes the proof. 

T. Nakazi and K. Takahashi [9] proved that there exists an isometric representation of 
AI I in the case when dim AI 1= 2. The following theorem gives a concrete matrix representa
tion of AI I. 

Theorem 4.5. 5uppose AI I is 3-dimensional and semisimple. If 71 rv 72 rf 73 

and 5 tL is an isometric representation of AI I, then AI I is isometric to {5j ; f E A} 
span {5j1 , 5j2' 5j3}, 5j = 71 (1)5j1 + 72 (1)5j2 + 73 (1)5j3 , and 

(

Ix 0) 
(5jJ* = 0 0 0 , 

000 ( 
0 -x 0) 

(5j2)* = 0 1 0 , 
o 0 0 

where 
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Proof. This follows from Lemma 2.1 and Theorem 4.1. 

If B c B(H) and dim H = 3, then 

( 

1 x y) 
PI = 0 0 0 , 

000 
( 

0 0 xz - y ) 
P3 = 0 0 -z , 

o 0 1 

It follows from a 2-dimensional case that if y = z = 0, then B is a Q-algebra. 

If the following condition (1) implies (2) for any distinct points T1, ... , Tn E M(A) and 
complex numbers WI, ... , Wn, then we say that AI I satisfies the Pick property. 
(1) [(1 - wiwj)kji]i,j=l 2: 0, where kij = (ki' kj)J-L' and Tj(f) = \f, kj)J-L' (f E A). 
(2) There exists f E A such that Tj(f) = Wj, (1 ::; j ::; n) and Ilf + III ::; 1. 
The following proposition is essentially known. 

Proposition 4.6. Let AI I be an n-dimensional semisimple commutative Banach alge
bra. Then SJ-L : AI I -----t B(H2(f.1) n I.L) is isometric if and only if AI I satisfies the Pick property. 

Proof. Suppose SJ-L is isometric. For any WI, ... , Wn E C, there exists an f E A 
such that Tj(f) = Wj, (1 ::; j ::; n). Suppose [(1 - wiwj)kji]i,j=l 2: O. For any complex 

numbers D:1, ... , D:n, let k = 2:,j=l D:jkj . Then Ilkll; = 2:,i,j=l D:iD:jkji . Since (Sf)*kj = Tj(f)kj , 

(S'j)*k = 2:,j=l D:jTj(f)kj . By (1), 

n 

Ilk II! -11(Sf)*kll! = L D:iD:j(1- wiwj)kji 2: o. 
i,j=l 

Since H2(f.1) n I.L is spanned by k1' ... , kn' this implies that II(S'j)*11 ::; 1. Since SJ-L is isometric, 
Ilf + III = IIS'j11 ::; 1. Therefore AI I satisfies the Pick property. Conversely, suppose AI I 
satisfies the Pick property and IIS'j11 = 1. Since (S'j)*kj = Tj(f)kj and II(S'j)*11 = 1, it follows 
that 

n 

L D:iD:j(1 - Ti(f)Tj(f))kji = Ilkll! - II(S'j)*kll! 2: 0, 
i,j=l 

and hence [(1 - Ti(f)Tj(f))kji ]i,j=l 2: O. By the Pick property, there exists g E A such that 
Ilg + III ::; 1 and Tj(g) = Tj(f), (1 ::; j ::; n). Therefore Ilf + III = Ilg + III ::; 1 = IIS'jII. Since 
the reverse inequality IIS'j11 ::; Ilf+III is always holds, IIS'j11 = Ilf+III. This completes the proof. 
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5. Q-Algebras of a Disc Algebra 

In this section, we assume that A is the disc algebra and dim AI I = 3. For f E A, let 
Ilf + III = Ilf + IliA/I. Since M(A) = D = {Izl ::; I}, for each 1 ::; j ::; 3, 7j is just an evaluation 
functional at a point of D and so we write that 71 = a, 72 = band 73 = c, where a, band c 
are in D. By Theorem 3.2, we may assume that a, band c are in D = {Izl < I}. Theorem 5.2 
shows that the set of all 3-dimensional semisimple Q-algebras of the disc algebra is a proper 
subset in the set of all 3-dimensional semisimple commutative operator algebras with unit on 
a Hilbert space of dimension 3. However Theorem 5.2 has not solved Problem 2 yet. We use 
Lemma 5.1 to prove Theorem 5.2. Let a, b, c be the distinct points in the open unit disc D. 
Let T(a, b, c) denote the subset of C3 which consists of all (x, y, z) E C3 satisfying 

1- ba 

I 

- 12 
1 + Ixl

2 
= a _ b ' 

1

1 - cb 12 
1 + Izl2 = b _ c ' 

1 + lyl21 a - b 12 = 11 - lic 12 
I-ba c-a 

This implies that x =I- 0, y =I- 0, and z =I- o. T(a, b, c) is characterized by saying that the absolute 
values of x, y, z are fixed and that their argument are arbitrary. In the following, we consider 
some inequalities of x, y, and z. For j = 1,2,3, there exists fj E A such that 7i(fj) = 6ij. 

Hence, h(a) = f2(b) = f3(C) = 1, and h(b) = h(c) = h(a) = h(c) = h(a) = h(b) = o. 

Lemma 5.1. Let a, b, c be the distinct points in D. Let f E A. Let I {g E 

A ; g(a) = g(b) = g(c) = O}. Let df1 = g!. 
(1) Sf = f(a)Sfl + f(b)Sf2 + f(c)Sf3' and 

(
Ix Y) 

(SfJ* = 0 0 0 , 
o 0 0 

for some (x, y, z) E T(a, b, c). 
(2) Ilf + III = IISfll, (f E A). That is, AI I is isometrically isomorphic to the 3-dimensional 
semisimple commutative operator algebra on H2 (f1) n I ~ which is spanned by 

(
Ix Y) 

PI = 0 0 0 , 
000 

for some (x, y, z) E T(a, b, c). 

Proof. H2(f1) n I~ is a 3-dimensional Hilbert space which is spanned by 

1 
kl (z) = 1 -, - az 

13 



For orthonormal basis 'l/Jt, 'l/J2, 'l/J3 defined in Proposition 2.3, 

)1 - lal2 z - a )1 - Ibl2 
Z - a z - b )1 - lel2 

'l/J1 (z) = 1 - , 'l/J2 (z) = /2 1 - 1 b ' 'l/J3 (z) = /3 1 - 1 b 1 - , - az - az - z - az - z - ez 

where 

a-b a-b a-e - a-e b-e b-e 
( ) -1 I I 1 ( ) -1 I I 

/2 = - 1 - ab 1 - ab' /3 = (1 - ae) 11 - ae I 1 - be 1 - be . 

Since 

it follows that 

Hence 
k2 - (k2, 'l/JI)'l/J1 Z - a )1 - Ibl2 

~= =~ . IIk2 - (k2' 'l/J1)'l/J111 1 - az 1 - bz 
Since 

k _ k _ k _ (a - c)(b - c)(z - a)(z - b) 
3 (3, 'l/J1)'l/J1 (3, 'l/J2)'l/J2 - (1 _ ca)(1 _ cb)(1 - az)(1 - bz)(1 - cz)' 

it follows that 

'l/J3 = k3 - (k3' 'l/J1)'l/J1 - (k3' 'l/J2)'l/J2 = /3 Z - a z - b )1 - le l2 . 
IIk3 - (k3' 'l/J1)'l/J1 - (k3' 'l/J2)'l/J211 1 - az 1 - bz 1 - cz 

If we calculate x, y, z using the formulas in Proposition 2.3, then it follows that (x, y, z) E 

T(a, b, e). Then 

where 

Hence 

Since 

it follows that 

1 + Ixl2 = 11 - ba 12 
a-b 
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where 

( ) I 1

-1 ( ) -1 I II I a-b a-b b-c b-c 1-ca 
15 = 1 - ab 1 - ab 1 - bc 1 - bc 1 - ca . 

Since 

it follows that 

where 

,6 ~ U -=-:b) 11
a 

-=-:r (; -=-:J -1 I; -=- :c II ~ = ~~I 
Since 1121 = 1131 = 1141 = 1151 = 1161 = 1, it follows that 

1 + IYI21 a - b 12 = 11 - ac 1

2
, 1 + Izl2 = 11 - cb 12 

1 - ba c - a b - c 

Hence, (1) follows. It is sufficient to prove (2). By the theorem ofD.Sarason (cf. [2], p.125, [10], 
Vol.1, p.231, [11]), Ilf +111 = IISjll· Then (SjJ*k1 = k1' (SjJ*k2 = (SjJ*k3 = 0, (Sj2)*k2 = k2' 
(Sj2)*k3 = (Sj2)*k1 = 0, (Sj3)*k3 = k3, and (Sj3)*k1 = (Sj3)*k2 = O. By Proposition 2.3, 

( 

1 x Y) 
(SjJ* = 0 0 0 , 

o 0 0 ( 

0 -x -XZ) 
(Sj2)* = 0 1 z , 

o 0 0 ( 

0 0 xz - Y ) 
(SjJ* = 0 0 -z . 

o 0 1 

Since f - f(a)ft - f(b)h - f(c)h E I and I(H2(J1) n I~) C IH2(J1) C H 2(J1) n I~, it follows 
that 

(Sj - Sj(a)h+f(b)h+f(c)h)'IjJ = Sj-f(a)h-f(b)h-f(c)h'IjJ = 0, ('IjJ E I;). 

Hence 

Sj = Sj(a)h+f(b)h+f(c)h = f(a)Sjl + f(b)Sj2 + f(C)Sj3· 

This completes the proof. 

For example, if (a, b, c) = (O,~,~) and (x, y, z) = (-yI3, 4V2, -2V6), then the algebra 
span{Pt, P2, P3} is isometrically isomorphic to AI I which is a Q-algebra of a disc algebra. 

Theorem 5.2. Let a, b, c be the distinct points in D. Let f E A. Let dJ1 = g!. Let 
I = {g E A ; g(a) = g(b) = g(c) = O}. If a 3-dimensional semisimple commutative operator 
algebra B on H2 (J1) n I ~ is isometrically isomorphic to AI I, then B is unitarily equivalent to 
the 3-dimensional commutative operator algebras with unit on a 3-dimensional Hilbert space H 
spanned by P1, P2, P3 such that 

( 

1 x y) 
P1 = 0 0 0 , 

000 
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where x, y, z satisfy (1) rv (3). 

(1) xyz #- 0, 

(2) 
1 1 1 

VI + lyl2 < VI + Ixl2 + VI + Iz12' 

(3) 

Proof. By the theorem of B.Cole and J.Wermer (cf. [3]) and (2) of Theorem 2.4, we 
may assume that H is spanned by the orthonormal basis 'lPt, ¢2, ¢3 which are calculated in the 
proof of Lemma 5.1. By Lemma 5.1, there are complex numbers x, y, z satisfying (x, y, z) E 

T(a, b, c). Since 
1- ba 

I 
- 12 1 + Ixl2 = a _ b > 1, 

1
1 -b 12 1 + Izl2 = b __ ~ > 1, 

1 121 a - b 12 11 - ac 12 1 + y = > 1, 
1 - ba c - a 

(1) follows. Let 

p(z, w) = _. 
I 
z-w I 
1- wz 

Then 

1 
p(a, b) = V ' 

1 + Ixl2 
1 

p(b, c) = V ' 1 + Izl2 
p(c, a) = 1 + Ixl2 1 

1 + Ixl2 + lyl2 > VI + lyl2' 

Since p(c,a):S: p(a, b) + p(b,c), (2) follows. Let 

d( ) -~l l+p(z,w) 
z, w - og ( ). 

2 1- p z,w 

Since d(c, a) :s: d(a, b) + d(b, c), 

VI + Ixl2 + lyl2 + VI + Ixl2 VI + Izl2 + 1 VI + Ixl2 + 1 
~=========-~r====< . . VI + Ixl2 + lyl2 - VI + Ixl2 - VI + Izl2 - 1 VI + Ixl2 - 1 

Hence 

this implie (3). This completes the proof. 
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Example 5.3. In Example 2.5, Bo is isometrically isomorphic to B2. Since Yo = 0, it 
follows from Theorem 5.2 that B2 is not isometrically isomorphic to a 3-dimensional semisimple 
Q-algebra AI I where A is a disc algebra. Hence Bo is also not isometrically isomorphic to a 
Q-algebra AI I. Therefore Bo and B2 is the example to show that the set of all 3-dimensional 
semisimple Q-algebra AI I where A is a disc algebra is smaller than the set of all 3-dimensional 
commutative operator algebras with unit on a 3-dimensional Hilbert space. 
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