HOKKAIDO UNIVERSITY

Title	Finite dimensional semisimple Q-algebras
Author(s)	Nakazi, Takahiko; Y amamoto, Takanori
Citation	Linear A Igebra and its A pplications, 420(2-3), 407-423 https:/doi.org/10.1016/.laa.2006.07.016
Issue Date	2007-01-15
Doc URL	http:/hdl. handle.net/2115/17154
Type	article (author version)
File Information	LAA 420-2-3.pdf

Instructions for use

Finite Dimensional Semisimple Q-Algebras

Takahiko Nakazi* and Takanori Yamamoto*

Abstract

*This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education of Japan.

Abstract

A Q-algebra can be represented as an operator algebra on an infinite dimensional Hilbert space. However we don't know whether a finite n-dimensional Q-algebra can be represented on a Hilbert space of dimension n except $n=1,2$. It is known that a two dimensional Q-algebra is just a two dimensional commutative operator algebra on a two dimensional Hilbert space. In this paper we study a finite n-dimensional semisimple Q-algebra on a finite n-dimensional Hilbert space. In particular we describe a three dimensional Q-algebra of the disc algebra on a three dimensional Hilbert space. Our studies are related to the Pick interpolation problem for a uniform algebra.

AMS Classification: 46J05; 46J10; 47A30; 47B38
Keywords: commutative Banach algebra; semisimple Q-algebra; three dimension; norm; Pick interpolation

Takahiko Nakazi
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: nakazi@math.sci.hokudai.ac.jp
Takanori Yamamoto
Department of Mathematics
Hokkai-Gakuen University
Sapporo 062-8605, Japan
E-mail: yamamoto@elsa.hokkai-s-u.ac.jp

1. Introduction

Let A be a uniform algebra on a compact Hausdorff space X. If I is a closed ideal of A, then the quotient algebra A / I is a commutative Banach algebra with unit. In this paper, if a Banach algebra \mathcal{B} is isometrically isomorphic to A / I, then \mathcal{B} is called a Q-algebra. (F.Bonsall and J.Duncan called \mathcal{B} an $I Q$-algebra.(cf. [1], p.270)) B.Cole (cf. [1], p.272) showed that any Q-algebra is an operator algebra on a Hilbert space H, that is, there exists an isometric isomorphism to an operator algebra on H. Let μ be a probability measure on X and $H^{2}(\mu)$ the closure of A in $L^{2}(\mu) . H^{2}(\mu) \cap I^{\perp}$ denotes the annihilator of I in $H^{2}(\mu)$. Let P be the orthogonal projection from $H^{2}(\mu)$ onto $H^{2}(\mu) \cap I^{\perp}$ and for any $f \in A$ put

$$
S_{f}^{\mu} \phi=P(f \phi), \quad\left(\phi \in H^{2}(\mu) \cap I^{\perp}\right)
$$

Then $S_{f+k}^{\mu}=S_{f}^{\mu}$ for k in I and $\left\|S_{f}^{\mu}\right\| \leq\|f+I\| . S^{\mu}$ is the map of A / I on operators on $H^{2}(\mu) \cap I^{\perp}$ which sends $f+I \rightarrow S_{f}^{\mu}$ for each f in A. Hence S^{μ} is a contractive homomorphism from A into $B\left(H^{2}(\mu) \cap I^{\perp}\right)$ where $B\left(H^{2}(\mu) \cap I^{\perp}\right)$ is the set of all bounded linear operators on $H^{2}(\mu) \cap I^{\perp}$. The kernel of S^{μ} contains I. Then we say that S^{μ} gives a contractive representation of A / I into $B\left(H^{2}(\mu) \cap I^{\perp}\right)$. If $\left\|S_{f}^{\mu}\right\|=\|f+I\|,(f \in A)$ then ker $S^{\mu}=I$ and we say that S^{μ} gives an isometric representation of A / I on $H^{2}(\mu) \cap I^{\perp}$.

Problem 1. Prove that any finite n-dimensional Q-algebra can be represented on a Hilbert space of finite dimension n.

If S^{μ} is isometric then we solve Problem 1. In fact, T.Nakazi and K.Takahashi (cf. [9]) solved Problem 1 for $n=2$ in this way. It seems to be unknown for $n \geq 3$.

Problem 2. Describe a finite n-dimensional Q-algebra in finite n-dimensional commutative operator algebras with unit on a Hilbert space of finite dimension n.

Problem 2 is clear for $n=1$ and it was proved by S.W.Drury (cf. [4]) and T.Nakazi (cf. [8]) that a 2-dimensional commutative operator algebra with unit on a Hilbert space is just a Q-algebra. J.Holbrook (cf. [6]) proved that von Neumann's inequality

$$
\|p(T)\| \leq\|p\|_{\infty}
$$

can fail for some polynomials p in 3 variables, where $T=\left(T_{1}, T_{2}, T_{3}\right)$ is a triple of commuting contractions on \mathbf{C}^{4}, and T_{1}, T_{2}, T_{3} are simultaneously diagonalizable. Then we can construct a 4 -dimensional commutative matrix algebra with unit on \mathbf{C}^{4}, which is not a Q-algebra. If $n \geq 4$, then this implies that the set of all n-dimensional Q-algebra A / I is smaller than the set of all set of all n-dimensional commutative oparator algebras with unit on a n-dimensional Hilbert space. If $n=3$, then Problem 2 has not been solved yet. In this paper, we concentrate on a semisimple commutative Banach algebra and we study Problem 2. In Section 2, we will prove several general results of semisimple finite dimensional Q-algebras that will be used in the latter sections. In Section 3, we will study arbitrary semisimple n dimensional Q-algebras for $n=2,3$. In Section 4, we will study the isometric representation of A / I. In Section 5, we will describe completely 3 -dimensional semisimple Q-algebras of the disc algebra in 3-dimensional commutative operator algebras with unit on a 3-dimensional Hilbert space.

2. Semisimple and commutative matrix algebra

In this section, we study 3 -dimensional commutative semisimple operator algebras on a 3-dimensional Hilbert space. In particular, we study when two such operator algebras are isometric or unitary equivalent. S.McCullough and V.Paulsen (cf. [7], Proposition 2.2) proved the similar result of Proposition 2.3. We use Lemma 2.1 to prove Proposition 2.2 and Proposition 2.3. In Example 2.6, we construct a 4-dimensional commutative matrix algebra with unit on \mathbf{C}^{4} which is not a Q-algebra using the example of J.Holbrook (cf. [6]).

Lemma 2.1. Let $n \geq 2$ and let H be an n-dimensional Hilbert space which is spanned by $k_{1}, k_{2}, \ldots, k_{n}$. Let

$$
\psi_{1}=\frac{k_{1}}{\left\|k_{1}\right\|}, \quad \psi_{j}=\frac{k_{j}-\sum_{i=1}^{j-1}\left\langle k_{j}, \psi_{i}\right\rangle \psi_{i}}{\left\|k_{j}-\sum_{i=1}^{j-1}\left\langle k_{j}, \psi_{i}\right\rangle \psi_{i}\right\|}(2 \leq j \leq n)
$$

Then $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is an orthonormal basis for H. Let P_{1}, \ldots, P_{n} be the idempotent operators on H such that $P_{i} k_{i}=k_{i}, P_{i} k_{j}=0$ if $i \neq j$. For $1 \leq m \leq n$, let $a_{i j}^{(m)}=\left\langle P_{m} \psi_{j}, \psi_{i}\right\rangle,(1 \leq i, j \leq n)$. Then $P_{m}=\left(a_{i j}^{(m)}\right)_{1 \leq i, j \leq n}$ is an $n \times n$ matrix such that

$$
P_{1}=\binom{B_{1}}{O}, \ldots, P_{m}=\left(\begin{array}{ll}
O & B_{m} \\
O & O
\end{array}\right), \ldots, P_{n}=\left(\begin{array}{ll}
O & B_{n}
\end{array}\right),
$$

where B_{m} is an $m \times(n-m+1)$ matrix such that

$$
B_{1}=\left(\begin{array}{lll}
1 & \cdot & a_{1 n}^{(1)}
\end{array}\right), \ldots, B_{m}=\left(\begin{array}{ccccc}
a_{1 m}^{(m)} & \cdot & . & . & a_{1 n}^{(m)} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & . & a_{m n}^{(m)}
\end{array}\right), \ldots, B_{n}=\left(\begin{array}{c}
a_{1 n}^{(n)} \\
\cdot \\
\cdot \\
\cdot \\
1
\end{array}\right)
$$

Then $a_{m m}^{(m)}=1$, and for $m \geq 2$,

$$
a_{i m}^{(m)}=\frac{\left\langle k_{m}, \psi_{i}\right\rangle}{\left\|k_{m}-\sum_{h=1}^{m-1}\left\langle k_{m}, \psi_{h}\right\rangle \psi_{h}\right\|}
$$

and for $m+1 \leq j \leq n$,

$$
a_{i j}^{(m)}=\frac{-\sum_{h=m}^{j-1}\left\langle k_{j}, \psi_{h}\right\rangle a_{i h}^{(m)}}{\left\|k_{j}-\sum_{h=1}^{j-1}\left\langle k_{j}, \psi_{h}\right\rangle \psi_{h}\right\|} .
$$

Since this lemma is proved by elementary calculations, the proof is omitted. It is well known that any n-dimensional commutative semisimple Banach algebra with unit I is spanned by commuting idempotents P_{1}, \ldots, P_{n} satisfying $P_{1}+\ldots+P_{n}=I$.

Proposition 2.2. In Lemma 2.1, for $1 \leq m \leq n$, $\operatorname{rank} P_{m}=1$, and $\mathcal{B}=\operatorname{span}\left\{P_{1}, \ldots, P_{n}\right\}$ is an n-dimensional semisimple commutative operator algebra with unit on H. Then $n \times n m a$ trix $\left(a_{i j}^{(m)}\right)$ for P_{m} with respect to $\left\{\psi_{1}, \ldots, \psi_{n}\right\}$ is $a_{i j}^{(m)}=\left\langle P_{m} \psi_{j}, \psi_{i}\right\rangle$, and

$$
\begin{aligned}
& P_{1}=\left(a_{i j}^{(1)}\right)=\left(\begin{array}{ccccccc}
1 & a_{12}^{(1)} & . & . & . & . & a_{1 n}^{(1)} \\
0 & 0 & . & . & . & . & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & . & 0
\end{array}\right), \quad P_{2}=\left(a_{i j}^{(2)}\right)=\left(\begin{array}{cccccc}
0 & a_{12}^{(2)} & a_{13}^{(2)} & . & . & . \\
0 & a_{1 n}^{(2)} \\
0 & 1 & a_{23}^{(2)} & . & . & . \\
a_{2 n}^{(2)} \\
0 & 0 & 0 & . & . & . \\
. & . & . & . & . & . \\
. & . \\
. & . & . & . & . & . \\
0 & 0 & 0 & . & . & . \\
0
\end{array}\right), \\
& \ldots \ldots, \quad P_{n}=\left(a_{i j}^{(n)}\right)=\left(\begin{array}{cccccc}
0 & . & . & . & . & 0 \\
0 & a_{1 n}^{(n)} \\
0 & . & . & . & . & 0 \\
._{2 n}^{(n)} \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & . & . & . & . & 0 \\
0 & . & . & . & a_{n-1 n}^{(n)} \\
0 & . & . & . & 0 & 1
\end{array}\right) .
\end{aligned}
$$

In Lemma 2.1, $a_{i j}^{(m)}$ is written using k_{1}, \ldots, k_{n} and $\psi_{1}, \ldots, \psi_{n}$.
Proof. By the assumption of Lemma 2.1, $P_{i} k_{i}=k_{i}$ and $P_{i} k_{j}=0$ if $i \neq j$. Hence $\operatorname{rank} P_{m}=1$. If $i \neq j$, then $P_{i} P_{j} k_{m}=\delta_{j m} P_{i} k_{j}=0,(1 \leq m \leq n)$. Since $H=\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}$, this implies that $P_{i} P_{j}=0$ if $i \neq j$. Hence \mathcal{B} is commutative. Since $P_{i}^{2} k_{m}=\delta_{i m} P_{i} k_{m}=$ $P_{i} k_{m},(1 \leq m \leq n)$, it follows that $P_{i}^{2}=P_{i}$. Hence \mathcal{B} is semisimple and n-dimensional. Since $\left(P_{1}+\ldots+P_{n}\right) k_{m}=P_{m} k_{m}=k_{m},(1 \leq m \leq n)$, it follows that $P_{1}+\ldots+P_{n}=I$. Hence \mathcal{B} has a unit I. This completes the proof.

Proposition 2.3. Let H be a 3-dimensional Hilbert space which is spanned by k_{1}, k_{2}, k_{3}. Let $\langle\cdot, \cdot\rangle$ denote the inner product, and let $\|\cdot\|$ denote the norm of H.

$$
\psi_{1}=\frac{k_{1}}{\left\|k_{1}\right\|}, \quad \psi_{2}=\frac{k_{2}-\left\langle k_{2}, \psi_{1}\right\rangle \psi_{1}}{\left\|k_{2}-\left\langle k_{2}, \psi_{1}\right\rangle \psi_{1}\right\|}, \quad \psi_{3}=\frac{k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|}
$$

Then $\psi_{1}, \psi_{2}, \psi_{3}$ is an orthonormal basis in H. Let P_{i} be the idempotent operator on H such that $P_{i} k_{i}=k_{i}, P_{i} k_{j}=0$ if $i \neq j$. For $m=1,2,3$, the 3×3 matrix $\left(a_{i j}^{(m)}\right)$ for P_{m} with respect to $\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}$ is $a_{i j}^{(m)}=\left\langle P_{m} \psi_{j}, \psi_{i}\right\rangle$. Then
$P_{1}=\left(a_{i j}^{(1)}\right)=\left(\begin{array}{lll}1 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad P_{2}=\left(a_{i j}^{(2)}\right)=\left(\begin{array}{ccc}0 & -x & -x z \\ 0 & 1 & z \\ 0 & 0 & 0\end{array}\right), \quad P_{3}=\left(a_{i j}^{(3)}\right)=\left(\begin{array}{ccc}0 & 0 & x z-y \\ 0 & 0 & -z \\ 0 & 0 & 1\end{array}\right)$,
where

$$
\begin{gathered}
x=\frac{-\left\langle k_{2}, k_{1}\right\rangle}{\sqrt{\left\|k_{1}\right\|^{2}\left\|k_{2}\right\|^{2}-\left|\left\langle k_{1}, k_{2}\right\rangle\right|^{2}}}, \quad y=\frac{-\left\langle k_{3}, \psi_{1}\right\rangle-\left\langle k_{3}, \psi_{2}\right\rangle x}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|} \\
z=\frac{-\left\langle k_{3}, \psi_{2}\right\rangle}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|}
\end{gathered}
$$

Proof. By Proposition 2.2, there exist x, y such that

$$
P_{1}=\left(a_{i j}^{(1)}\right)=\left(\begin{array}{ccc}
1 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

By Lemma 2.1,

$$
x=a_{12}^{(1)}=\frac{-\left\langle k_{2}, k_{1}\right\rangle}{\sqrt{\left\|k_{1}\right\|^{2}\left|\left\|k_{2}\right\|^{2}-\left|\left\langle k_{1}, k_{2}\right\rangle\right|^{2}\right.}},
$$

and

$$
y=a_{13}^{(1)}=\frac{-\sum_{h=1}^{2}\left\langle k_{3}, \psi_{h}\right\rangle a_{1 h}^{(1)}}{\left\|k_{3}-\sum_{h=1}^{2}\left\langle k_{3}, \psi_{h}\right\rangle \psi_{h}\right\|}=\frac{-\left\langle k_{3}, \psi_{1}\right\rangle-\left\langle k_{3}, \psi_{2}\right\rangle x}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|} .
$$

By Proposition 2.2, there exist z, w such that

$$
P_{1}=\left(\begin{array}{ccc}
1 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}
0 & -x & w \\
0 & 1 & z \\
0 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{ccc}
0 & 0 & -w-y \\
0 & 0 & -z \\
0 & 0 & 1
\end{array}\right)
$$

because $P_{1}+P_{2}+P_{3}=I$. By Lemma 2.1,

$$
z=a_{23}^{(2)}=\frac{-\sum_{h=2}^{2}\left\langle k_{3}, \psi_{h}\right\rangle a_{2 h}^{(2)}}{\left\|k_{3}-\sum_{h=1}^{2}\left\langle k_{3}, \psi_{h}\right\rangle \psi_{h}\right\|}=\frac{-\left\langle k_{3}, \psi_{2}\right\rangle}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|}
$$

By Lemma 2.1,

$$
a_{12}^{(1)}=\frac{-\left\langle k_{2}, k_{1}\right\rangle}{\sqrt{\left\|k_{1}\right\|^{2}\left\|k_{2}\right\|^{2}-\left|\left\langle k_{1}, k_{2}\right\rangle\right|^{2}}}=-a_{12}^{(2)}
$$

Hence

$$
w=a_{13}^{(2)}=\frac{-\sum_{h=2}^{2}\left\langle k_{3}, \psi_{h}\right\rangle a_{1 h}^{(2)}}{\left\|k_{3}-\sum_{h=1}^{2}\left\langle k_{3}, \psi_{h}\right\rangle \psi_{h}\right\|}=\frac{-\left\langle k_{3}, \psi_{2}\right\rangle a_{12}^{(2)}}{\left\|k_{3}-\sum_{h=1}^{2}\left\langle k_{3}, \psi_{h}\right\rangle \psi_{h}\right\|}=z a_{12}^{(2)}=-z a_{12}^{(1)}=-x z .
$$

This completes the proof.

Theorem 2.4. Let P_{1}, P_{2}, P_{3} be idempotent operators defined in Proposition 2.3. Let H^{\prime} be a 3-dimensional Hilbert space. Let \mathcal{B}^{\prime} be a 3-dimensional semisimple commutative operator algebra on H^{\prime}. Then, there are idempotent operators Q_{1}, Q_{2}, Q_{3} on H^{\prime}, an orthonormal basis $\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}$ in H^{\prime} and complex numbers x_{0}, y_{0}, z_{0} such that $\mathcal{B}^{\prime}=\operatorname{span}\left\{Q_{1}, Q_{2}, Q_{3}\right\}$ and, as matrices relative to $\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}$,

$$
Q_{1}=\left(\begin{array}{ccc}
1 & x_{0} & y_{0} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Q_{2}=\left(\begin{array}{ccc}
0 & -x_{0} & -x_{0} z_{0} \\
0 & 1 & z_{0} \\
0 & 0 & 0
\end{array}\right), \quad Q_{3}=\left(\begin{array}{ccc}
0 & 0 & x_{0} z_{0}-y_{0} \\
0 & 0 & -z_{0} \\
0 & 0 & 1
\end{array}\right) .
$$

Let τ be the map of \mathcal{B} on \mathcal{B}^{\prime} such that

$$
\tau\left(\lambda_{1} P_{1}+\lambda_{2} P_{2}+\lambda_{3} P_{3}\right)=\lambda_{1} Q_{1}+\lambda_{2} Q_{2}+\lambda_{3} Q_{3}, \quad\left(\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbf{C}\right)
$$

(1) τ is isometric if and only if

$$
\begin{aligned}
& |x|^{2}+|y|^{2}=\left|x_{0}\right|^{2}+\left|y_{0}\right|^{2}, \\
& \left(1+|x|^{2}\right)\left(1+|z|^{2}\right)=\left(1+\left|x_{0}\right|^{2}\right)\left(1+\left|z_{0}\right|^{2}\right), \\
& |x|^{2}+x z \bar{y}=\left|x_{0}\right|^{2}+x_{0} z_{0} \overline{y_{0}} .
\end{aligned}
$$

(2) τ is induced by a unitary map from H to H^{\prime} if and only if there are complex numbers u_{1}, u_{2}, u_{3} such that

$$
\left|u_{1}\right|=\left|u_{2}\right|=\left|u_{3}\right|=1, \quad u_{1} x=u_{2} x_{0}, \quad u_{1} y=u_{3} y_{0}, \quad u_{2} z=u_{3} z_{0}
$$

Then $|x|=\left|x_{0}\right|, \quad|y|=\left|y_{0}\right|, \quad|z|=\left|z_{0}\right|, \quad x z \bar{y}=x_{0} z_{0} \overline{y_{0}}$.
Proof. (1) By the theorem of B.Cole and J.Wermer (cf. [3]), τ is isometric if and only if, writing tr for trace,

$$
\operatorname{tr}\left(P_{i}^{*} P_{j}\right)=\operatorname{tr}\left(Q_{i}^{*} Q_{j}\right), \quad(1 \leq i, j \leq 3)
$$

If τ is isometric, then

$$
\begin{aligned}
& 1+|x|^{2}+|y|^{2}=\operatorname{tr}\left(P_{1}^{*} P_{1}\right)=\operatorname{tr}\left(Q_{1}^{*} Q_{1}\right)=1+\left|x_{0}\right|^{2}+\left|y_{0}\right|^{2} \\
& \left(1+|x|^{2}\right)\left(1+|z|^{2}\right)=\operatorname{tr}\left(P_{2}^{*} P_{2}\right)=\operatorname{tr}\left(Q_{2}^{*} Q_{2}\right)=\left(1+\left|x_{0}\right|^{2}\right)\left(1+\left|z_{0}\right|^{2}\right) \\
& |x|^{2}+x z \bar{y}=\operatorname{tr}\left(P_{1}^{*} P_{2}\right)=\operatorname{tr}\left(Q_{1}^{*} Q_{2}\right)=\left|x_{0}\right|^{2}+x_{0} z_{0} \overline{y_{0}}
\end{aligned}
$$

Conversely, if three equalities in (1) hold, then

$$
\begin{aligned}
& \operatorname{tr}\left(P_{1}^{*} P_{1}\right)=1+|x|^{2}+|y|^{2}=1+\left|x_{0}\right|^{2}+\left|y_{0}\right|^{2}=\operatorname{tr}\left(Q_{1}^{*} Q_{1}\right), \\
& \operatorname{tr}\left(P_{2}^{*} P_{2}\right)=\left(1+|x|^{2}\right)\left(1+|z|^{2}\right)=\left(1+\left|x_{0}\right|^{2}\right)\left(1+\left|z_{0}\right|^{2}\right)=\operatorname{tr}\left(Q_{2}^{*} Q_{2}\right), \\
& \operatorname{tr}\left(P_{1}^{*} P_{2}\right)=|x|^{2}+x z \bar{y}=\left|x_{0}\right|^{2}+x_{0} z_{0} \overline{y_{0}}=\operatorname{tr}\left(Q_{1}^{*} Q_{2}\right), \\
& \operatorname{tr}\left(P_{2}^{*} P_{3}\right)=\overline{x z}(y-x z)-|z|^{2}=\overline{x_{0} z_{0}}\left(y_{0}-x_{0} z_{0}\right)-\left|z_{0}\right|^{2}=\operatorname{tr}\left(Q_{2}^{*} Q_{3}\right), \\
& \operatorname{tr}\left(P_{3}^{*} P_{1}\right)=y(\overline{x z-y})=y_{0}\left(\overline{x_{0} z_{0}-y_{0}}\right)=\operatorname{tr}\left(Q_{3}^{*} Q_{1}\right), \\
& \operatorname{tr}\left(P_{3}^{*} P_{3}\right)=1+|z|^{2}+|x z-y|^{2}=1+\left|z_{0}\right|^{2}+\left|x_{0} z_{0}-y_{0}\right|^{2}=\operatorname{tr}\left(Q_{3}^{*} Q_{3}\right) .
\end{aligned}
$$

(2) Suppose τ is induced by a unitary map $U=\left(u_{i j}\right)$, ($1 \leq i, j \leq 3$) from H to H^{\prime}. Since $U P_{1}=Q_{1} U$, it follows that $u_{21}=u_{31}=0$. Since $U P_{2}=Q_{2} U$, it follows that $u_{32}=0$. Hence U is an upper triangular matrix. Since the columns of U are pairwise orthogonal, U is a diagonal matrix. Hence there are complex numbers u_{1}, u_{2}, u_{3} such that u_{1}, u_{2}, u_{3} are diagonal element of U, and $\left|u_{1}\right|=\left|u_{2}\right|=\left|u_{3}\right|=1$. Since $U P_{1}=Q_{1} U$, it follows that $u_{1} x=u_{2} x_{0}, u_{1} y=u_{3} y_{0}$. Since $U P_{2}=Q_{2} U$, it follows that $u_{2} z=u_{3} z_{0}$. The converse is also true. This completes the proof.

Example 2.5. Let $\mathcal{B}_{0}=\operatorname{span}\left\{P_{1}, P_{2}, P_{3}\right\}$, where

$$
P_{1}=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}
0 & -1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

and let $\mathcal{B}_{1}=\operatorname{span}\left\{P_{1}^{*}, P_{2}^{*}, P_{3}^{*}\right\}$. This is an example which is established by W.Wogen (cf. [3]). He proved that \mathcal{B}_{0} and \mathcal{B}_{1} are isometrically isomorphic, and not unitarily equivalent. There is another example as the following. Let $\mathcal{B}_{2}=\operatorname{span}\left\{Q_{1}, Q_{2}, Q_{3}\right\}$, where

$$
Q_{1}=\left(\begin{array}{lll}
1 & \sqrt{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad Q_{2}=\left(\begin{array}{ccc}
0 & -\sqrt{2} & -\sqrt{2 / 3} \\
0 & 1 & 1 / \sqrt{3} \\
0 & 0 & 0
\end{array}\right), \quad Q_{3}=\left(\begin{array}{ccc}
0 & 0 & \sqrt{2 / 3} \\
0 & 0 & -1 / \sqrt{3} \\
0 & 0 & 1
\end{array}\right) .
$$

Then \mathcal{B}_{0} and \mathcal{B}_{2} are 3-dimensional commutative operator algebras with unit. By the calculation,

$$
\begin{aligned}
& |x|^{2}+|y|^{2}=\left|x_{0}\right|^{2}+\left|y_{0}\right|^{2}=2, \\
& \left(1+|x|^{2}\right)\left(1+|z|^{2}\right)=\left(1+\left|x_{0}\right|^{2}\right)\left(1+\left|z_{0}\right|^{2}\right)=4, \\
& |x|^{2}+x z \bar{y}=\left|x_{0}\right|^{2}+x_{0} z_{0} \overline{y_{0}}=2 .
\end{aligned}
$$

By (1) of Theorem 2.4, this implies that \mathcal{B}_{0} and \mathcal{B}_{2} are isometrically isomorphic. By (2) of Theorem 2.4, \mathcal{B}_{0} and \mathcal{B}_{2} are not unitarily equivalent.

3. One to one representation

In this section, we assume that A / I is n-dimensional and semisimple. Hence there exist $\tau_{1}, \ldots, \tau_{n}$ in the maximal ideal space $M(A)$ of A such that $\tau_{i} \neq \tau_{j}(i \neq j)$ and $I=\cap_{j=1}^{n} \operatorname{ker} \tau_{j} . S^{\mu}$ gives a contractive representation of A / I into $B\left(H^{2}(\mu) \cap I^{\perp}\right)$ and $\operatorname{dim} H^{2}(\mu) \cap I^{\perp} \leq \operatorname{dim} A / I=n$. We study when S^{μ} is one to one from A / I to $B\left(H^{2}(\mu) \cap I^{\perp}\right)$. It is clear that S^{μ} is one to one if and only if $\operatorname{dim} H^{2}(\mu) \cap I^{\perp}=\operatorname{dim} A / I$. For $1 \leq j \leq n$, there exist $f_{j} \in A$ such that $\tau_{i}\left(f_{j}\right)=\delta_{i j}$. Then $f_{j}+I$ is idempotent in A / I and $A / I=\operatorname{span}\left\{f_{1}+I, \ldots, f_{n}+I\right\}$. The following two quantities are important to study S^{μ}. For $1 \leq j \leq n$,

$$
\rho_{j}=\sup \left\{\left|\tau_{j}(f)\right| ; f \in \cap_{l \neq j} \operatorname{ker} \tau_{l},\|f\| \leq 1\right\}
$$

and

$$
\rho_{j}(\mu)=\sup \left\{\left|\tau_{j}(f)\right| ; f \in \cap_{l \neq j} \operatorname{ker} \tau_{l},\|f\|_{\mu} \leq 1\right\}
$$

where $\|f\|$ denotes the supnorm of f in A and $\|f\|_{\mu}=\langle f, f\rangle_{\mu}^{1 / 2}=\left(\int|f|^{2} d \mu\right)^{1 / 2}$. Then it is easy to see that

$$
\left\|f_{j}+I\right\|=\frac{1}{\rho_{j}}, \quad\left\|f_{j}+I\right\|_{\mu}=\frac{1}{\rho_{j}(\mu)}
$$

and

$$
\left\|f_{j}+I\right\| \geq\left\|S_{f_{j}}^{\mu}\right\| \geq\left\|f_{j}+I\right\|_{\mu}
$$

If S^{μ} is one to one then τ_{j} has a bounded extension to $H^{2}(\mu)$. In fact, if S^{μ} is one to one then $\operatorname{dim} H^{2}(\mu) \cap I^{\perp}=n$ and so $\operatorname{dim} H^{2}(\mu) \cap\left(\operatorname{ker} \tau_{j}\right)^{\perp}=\mathbf{1}$ for $1 \leq j \leq n$. Then for $1 \leq j \leq n$, there exists $k_{j} \in H^{2}(\mu)$ such that

$$
\tau_{j}(f)=\left\langle f, k_{j}\right\rangle_{\mu}=\int_{X} f \overline{k_{j}} d \mu,(f \in A)
$$

Proposition 3.1. There exists a one to one contractive representation S^{μ} of A / I.
Proof. Since $\tau_{j} \in M(A)$, there exists a positive representing measure m_{j} of τ_{j} on X. Let $\mu=\sum_{j=1}^{n} m_{j} / n$. Then

$$
\left|\tau_{j}(f)\right|=\left|\int_{X} f d m_{j}\right| \leq n\left(\int_{X}|f|^{2} d \mu\right)^{1 / 2}=n\|f\|_{\mu},(f \in A)
$$

Hence τ_{j} has a unique bounded extension $\tilde{\tau_{j}}$ to $H^{2}(\mu)$ and $\tilde{\tau_{j}} \neq \tilde{\tau}_{i}(j \neq i)$. Since $H^{2}(\mu) \cap I^{\perp}=$ $\cap_{j=1}^{n} \operatorname{ker} \tilde{\tau_{j}}, \operatorname{dim} H^{2}(\mu) \cap I^{\perp}=n$. Hence $H^{2}(\mu) \cap I^{\perp}=\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}$. Suppose $S_{f}^{\mu}=0$, then $\overline{\tau_{j}(f)} k_{j}=\left(S_{f}^{\mu}\right)^{*} k_{j}=0$. Hence $\tau_{j}(f)=0,(1 \leq j \leq n)$. Hence $f \in \cap_{j} \operatorname{ker} \tau_{j}=I$. This implies that S^{μ} is one to one from A / I to $B\left(H^{2}(\mu) \cap I^{\perp}\right)$. This completes the proof.

Theorem 3.2. Suppose that S^{μ} is a one to one contractive representation of A/I. Let k_{j} be a function in $H^{2}(\mu)$ such that $\tau_{j}(f)=\left\langle f, k_{j}\right\rangle_{\mu}(f \in A)$, for $1 \leq j \leq n$. Then
(1) $H^{2}(\mu) \cap I^{\perp}=\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}$ and $H^{2}(\mu) \cap I_{j}^{\perp}=\operatorname{span}\left\{k_{j}\right\}$ where $I_{j}=\operatorname{ker} \tau_{j}$.
(2) If $m_{j}=\left\|k_{j}\right\|_{\mu}^{-2}\left|k_{j}\right|^{2} d \mu$ and $m=\sum_{j=1}^{n} m_{j} / n$, then m_{j} is a representing measure for τ_{j} for each $1 \leq j \leq n$, and we may assume that μ is absolutely continuous with respect to m.
$\left\|S_{f_{j}}^{\mu}\right\|=\left\|k_{j}\right\|_{\mu}\left\|f_{j}+I\right\|_{\mu}$ for $1 \leq j \leq n$.
Proof. (1) Since S^{μ} is one to one, τ_{j} has a unique bounded extension $\tilde{\tau}_{j}$ to $H^{2}(\mu)$. In fact, if S^{μ} is one to one then $\operatorname{dim} H^{2}(\mu) \cap I^{\perp}=n$ and so $\operatorname{dim} H^{2}(\mu) \cap\left(\operatorname{ker} \tau_{j}\right)^{\perp}=1$ for $1 \leq j \leq n$. Then there exists $k_{j} \in H^{2}(\mu)$ such that $\tau_{j}(f)=\left\langle f, k_{j}\right\rangle_{\mu}(f \in A)$. If $g \in I$, then $0=\tau_{j}(g)=\left\langle g, k_{j}\right\rangle$ and so $k_{j} \perp g$. Thus $k_{j} \in H^{2}(\mu) \cap I^{\perp}$ for each j. Since k_{1}, \ldots, k_{n} are linearly independent, $\left\{k_{1}, \ldots, k_{n}\right\}$ is a basis of $H^{2}(\mu) \cap I^{\perp}$. If $g \in I_{j}$, then $0=\tau_{j}(g)=\left\langle g, k_{j}\right\rangle$ and so $k_{j} \perp g$. Thus $k_{j} \in H^{2}(\mu) \cap I_{j}^{\perp}$ for each j. Hence k_{j} is a basis of $H^{2}(\mu) \cap I_{j}^{\perp}$.
(2) For $1 \leq j \leq n$,

$$
\int_{X} f d m_{j}=\int_{X} f \frac{\left|k_{j}\right|^{2}}{\left\|k_{j}\right\|_{\mu}^{2}} d \mu=\frac{\left\langle f k_{j}, k_{j}\right\rangle_{\mu}}{\left\|k_{j}\right\|_{\mu}^{2}}=\frac{\tilde{\tau}_{j}\left(f k_{j}\right)}{\left\|k_{j}\right\|_{\mu}^{2}}=\frac{\tau_{j}(f) \tilde{\tau}_{j}\left(k_{j}\right)}{\left\|k_{j}\right\|_{\mu}^{2}}=\tau_{j}(f),(f \in A)
$$

Hence m_{j} is a representing measure for τ_{j}. Let $m=\sum_{j=1}^{n} m_{j} / n$ and let $\mu=\mu^{a}+\mu^{s}$ be a Lebesgue decomposition by m. Then $H^{2}\left(\mu^{a}\right) \cap I^{\perp}=H^{2}(\mu) \cap I^{\perp}$ and so $H^{2}\left(\mu^{s}\right) \cap I^{\perp}=\{0\}$ where μ^{a} and μ^{s} are divided by their total masses. Hence $S_{f}^{\mu}=S_{f}^{\mu^{a}} \oplus S_{f}^{\mu^{s}}=S_{f}^{\mu^{a}} \oplus 0$ and so $\left\|S_{f}^{\mu}\right\|=\left\|S_{f}^{\mu^{a}}\right\|$ for $f \in A$.
(3) Since $\operatorname{rank}\left(S_{f_{j}}^{\mu}\right)^{*}=1$, there exists $x_{j} \in H^{2}(\mu) \cap I^{\perp}$ such that $\left(S_{f_{j}}^{\mu}\right)^{*} \phi=\left\langle\phi, x_{j}\right\rangle k_{j}=\left(k_{j} \otimes x_{j}\right) \phi$, $\left(\phi \in H^{2}(\mu) \cap I^{\perp}\right)$. Then $\left\|S_{f_{j}}^{\mu}\right\|=\left\|\left(S_{f_{j}}^{\mu}\right)^{*}\right\|=\left\|k_{j} \otimes x_{j}\right\|=\left\|k_{j}\right\|_{\mu}\left\|x_{j}\right\|_{\mu}$. Let P be the orthogonal projection from $H^{2}(\mu)$ onto $H^{2}(\mu) \cap I^{\perp}$. Then

$$
\left\langle P f_{j}, \phi\right\rangle=\left\langle S_{f_{j}}^{\mu} 1, \phi\right\rangle=\left\langle 1,\left(S_{f_{j}}^{\mu}\right)^{*} \phi\right\rangle=\left\langle x_{j}, \phi\right\rangle\left\langle 1, k_{j}\right\rangle=\left\langle x_{j}, \phi\right\rangle, \quad\left(\phi \in H^{2}(\mu) \cap I^{\perp}\right)
$$

because $\left\langle 1, k_{j}\right\rangle=1$. Hence $P f_{j}=x_{j}$. Hence

$$
\left\|f_{j}+I\right\|_{\mu}=\left\|P f_{j}\right\|_{\mu}=\left\|x_{j}\right\|_{\mu}
$$

Hence $\left\|S_{f_{j}}^{\mu}\right\|=\left\|k_{j}\right\|_{\mu}\left\|f_{j}+I\right\|_{\mu}$. This completes the proof.

Let $G(\tau)$ denote the Gleason part of τ. If $G\left(\tau_{i}\right)=G\left(\tau_{j}\right)$, then we write $\tau_{i} \sim \tau_{j}$.
Proposition 3.3. Suppose that $\operatorname{dim} H^{2}(\mu) \cap I^{\perp}=n, I^{1}=\cap_{j \in N^{1}} \operatorname{ker} \tau_{j}, I^{2}=\cap_{j \in N^{2}} \operatorname{ker} \tau_{j}$, $N^{1} \cap N^{2}=\emptyset$ and $N^{1} \cup N^{2}=\{1,2, \ldots, n\}$. Let $\sharp N^{j}$ denote the number of elements in N^{j}. If $\tau_{j} \nsim \tau_{k}$ whenever $j \in N^{1}$ and $k \in N^{2}$, then $H^{2}(\mu)=H^{2}\left(\mu^{1}\right) \oplus H^{2}\left(\mu^{2}\right), H^{2}(\mu) \cap I^{\perp}=$ $\left(H^{2}\left(\mu^{1}\right) \cap\left(I^{1}\right)^{\perp}\right) \oplus\left(H^{2}\left(\mu^{2}\right) \cap\left(I^{2}\right)^{\perp}\right), S_{\phi}^{\mu}=S_{\phi}^{\mu^{1}} \oplus S_{\phi}^{\mu^{2}}$ and $\operatorname{dim} H^{2}\left(\mu^{j}\right) \cap\left(I^{j}\right)^{\perp}=\sharp N^{j}$, where $\mu=\frac{\mu^{1}+\mu^{2}}{2}, \mu^{1} \perp \mu^{2}$ and μ^{j} is a probability measure for $j=1,2$.

Proof. By (1) of Theorem 3.2, $H^{2}(\mu) \cap I^{\perp}=\operatorname{span}\left\{k_{1}, \ldots, k_{n}\right\}$. We may assume that $N^{1}=\{1,2, \ldots, l\}$ and $N^{2}=\{l+1, \ldots, n\}$. By (2) of Theorem 3.2, $m_{j}=\left\|k_{j}\right\|_{\mu}^{-2}\left|k_{j}\right|^{2} d \mu$ is a representing measure for τ_{j} for each $1 \leq j \leq n$. Put $\lambda^{1}=\frac{1}{l} \sum_{j=1}^{l} m_{j}$ and $\lambda^{2}=\frac{1}{n-l} \sum_{j=l+1}^{n} m_{j}$ then $\lambda^{1} \perp \lambda^{2}$ by definitions of N^{1} and N_{2}. Let $\mu=\mu_{0}^{1}+\mu_{0}^{2}$ be a Lebesgue decomposition with respect to λ^{1} such that $\mu_{0}^{1} \ll \lambda^{1}$ and $\mu_{0}^{2} \perp \lambda^{1}$. Put $\mu^{1}=\mu_{0}^{1} /\left\|\mu_{0}^{1}\right\|$ and $\mu^{2}=\mu_{0}^{2} /\left\|\mu_{0}^{2}\right\|$. This completes the proof.

4. Isometric representation

In this section, we assume that A / I is n-dimensional and semisimple. Hence there exist $\tau_{1}, \ldots, \tau_{n}$ in the maximal ideal space $M(A)$ of A such that $\tau_{i} \neq \tau_{j}(i \neq j)$ and $I=\cap_{j=1}^{n} \operatorname{ker} \tau_{j}$. For $1 \leq j \leq n$, there exist $f_{j} \in A$ such that $\tau_{i}\left(f_{j}\right)=\delta_{i j}$. Then $f_{j}+I$ is idempotent in A / I and $A / I=\operatorname{span}\left\{f_{1}+I, \ldots, f_{n}+I\right\}$. If S^{μ} is an isometric representation of A / I, then $\left\|S_{f_{j}}^{\mu}\right\|=\left\|f_{j}+I\right\|$ for $1 \leq j \leq n$. By (3) of Theorem 3.2, this implies that $\left\|f_{j}+I\right\|=\left\|k_{j}\right\|_{\mu}\left\|f_{j}+I\right\|_{\mu}$. Hence, if S^{μ} is an isometric representation of A / I, then $\left\|k_{j}\right\|_{\mu}=\left\|f_{j}+I\right\| /\left\|f_{j}+I\right\|_{\mu}$ for $1 \leq j \leq n$. Is the converse of this statement true? If $n=2$, then the answer will be given in Proposition 4.4.

Theorem 4.1. Suppose that $G\left(\tau_{i}\right) \cap G\left(\tau_{j}\right) \cap G\left(\tau_{l}\right)=\emptyset$ if i, j and l are different from each other. Then there exists an isometric representation S^{μ} of A / I.

Proof. By Proposition 3.3, if $G\left(\tau_{j}\right)=\left\{\tau_{j}\right\}$, for all $1 \leq j \leq n$, then there exists an isometric representation $S^{\mu^{i}}$ of A / I_{j} where $I_{j}=\operatorname{ker} \tau_{j}$, and $\mu^{i} \perp \mu^{j}$. If $\mu=\left(\mu^{1}+\ldots+\mu^{n}\right) / n$, then $H^{2}(\mu) \cap I^{\perp}=\left(H^{2}\left(\mu^{1}\right) \cap I^{\perp}\right) \oplus \ldots \oplus\left(H^{2}\left(\mu^{n}\right) \cap I^{\perp}\right)$ and $S_{f}^{\mu}=S_{f}^{\mu^{1}} \oplus \ldots \oplus S_{f}^{\mu^{n}}(f \in A)$. Therefore, the theorem is proved in the case when $G\left(\tau_{j}\right)=\left\{\tau_{j}\right\}$, for all $1 \leq j \leq n$. It is sufficient to prove the theorem when $\tau_{i} \sim \tau_{j}$ for some $i, j(i \neq j)$. Suppose $\tau_{2 k-1} \sim \tau_{2 k},\left(1 \leq k \leq n_{0}\right)$ and $G\left(\tau_{l}\right)=\left\{\tau_{l}\right\},\left(2 n_{0}+1 \leq l \leq n\right)$ for some n_{0}. Since $G\left(\tau_{i}\right) \cap G\left(\tau_{j}\right) \cap G\left(\tau_{l}\right)=\emptyset$, it follows that $\operatorname{dim} A / I_{i j}=2$ where $I_{i j}=I_{i} \cap I_{j}=\operatorname{ker} \tau_{i} \cap \operatorname{ker} \tau_{j}$. By Corollary 1 in [9], there is a probability measure $\mu^{i j}$ such that $\left\|S_{f}^{\mu^{j j}}\right\|=\left\|f+I_{i j}\right\|$ for all $f \in A$. By Proposition 3.3 , there are probability measures $\mu^{2 k-1,2 k},\left(1 \leq k \leq n_{0}\right)$ and $\mu^{l},\left(2 n_{0}+1 \leq l \leq n\right)$ such that $\mu=\left(\mu^{12}+\mu^{34}+\ldots+\mu^{2 n_{0}-1,2 n_{0}}+\mu^{2 n_{0}+1}+\ldots+\mu^{n}\right) /\left(n-n_{0}\right), H^{2}(\mu) \cap I^{\perp}=$
$\left(H^{2}\left(\mu^{12}\right) \cap I_{12}^{\perp}\right) \oplus \ldots \oplus\left(H^{2}\left(\mu^{2 n_{0}-1,2 n_{0}}\right) \cap I_{2 n_{0}-1,2 n_{0}}^{\perp}\right) \oplus\left(H^{2}\left(\mu^{2 n_{0}+1}\right) \cap I_{2 n_{0}+1}^{\perp}\right) \oplus \ldots \oplus\left(H^{2}\left(\mu^{n}\right) \cap I_{n}^{\perp}\right)$, $S_{f}^{\mu}=S_{f}^{\mu^{12}} \oplus \ldots \oplus S_{f}^{\mu^{2 n_{0}-1,2 n_{0}}} \oplus S_{f}^{\mu^{2 n_{0}+1}} \oplus \ldots \oplus S_{f}^{\mu^{n}}$ Hence S^{μ} is an isometric representation of A / I where $I=\left(\cap_{k=1}^{n_{0}} I_{2 k-1,2 k}\right) \cap\left(\cap_{l=2 n_{0}+1}^{n} I_{l}\right)$. This completes the proof.

For example, we consider when $n=3$ and $\tau_{1} \sim \tau_{2} \nsim \tau_{3}$. Let $I_{12}=I_{1} \cap I_{2}=\operatorname{ker} \tau_{1} \cap \operatorname{ker} \tau_{2}$. Then $\operatorname{dim} A / I_{12}=2$. By Corollary 1 in [9], there is a probability measure μ^{12} such that $\left\|S_{f}^{\mu^{12}}\right\|=\left\|f+I_{12}\right\|$ for all $f \in A$. Let $S^{\mu^{3}}$ be the isometric representation of A / I_{3} where $I_{3}=\operatorname{ker} \tau_{3}$. Let $\mu=\left(\mu^{12}+\mu^{3}\right) / 2$. Then $\mu^{12} \perp \mu^{3}, H^{2}(\mu) \cap I^{\perp}=\left(H^{2}\left(\mu^{12}\right) \cap I_{12}^{\perp}\right) \oplus\left(H^{2}\left(\mu^{3}\right) \cap I_{3}^{\perp}\right)$, $S_{f}^{\mu}=S_{f}^{\mu^{12}} \oplus S_{f}^{\mu^{3}}, \quad(f \in A),\left(S_{f}^{\mu^{12}}\right)^{*} k_{j}=\overline{\tau_{j}(f)} k_{j}, \quad(j=1,2)$, and $\left(S_{f}^{\mu^{3}}\right)^{*} k_{3}=\overline{\tau_{3}(f)} k_{3}$. Hence

$$
\left\|S_{f}^{\mu}\right\|=\max \left(\left\|S_{f}^{\mu^{12}}\right\|,\left\|S_{f}^{\mu^{3}}\right\|\right)=\max \left(\left\|f+I_{12}\right\|,\left|\tau_{3}(f)\right|\right)=\sup _{\nu \in(A / I)^{*},\|\nu\| \leq 1}\left|\int_{X} f d \nu\right|=\|f+I\| .
$$

Hence S^{μ} is an isometric representation of A / I where $I=I_{12} \cap I_{3}$. By the theorem of T.Nakazi (cf. [8]), $\left\|f+I_{12}\right\|$ can be written using $\rho_{1}=\sup \left\{\left|\tau_{1}(f)\right| ; f \in \operatorname{ker} \tau_{2},\|f\| \leq 1\right\}$.

Corollary 4.2. Let A be a uniform algebra and $I=\cap_{j=1}^{n} \operatorname{ker} \tau_{j}$ and $\tau_{i} \nsucc \tau_{j}(i \neq j)$. Then there exists an isometric representation S^{μ} of A / I, and $\|f+I\|=\max \left(\left|\tau_{1}(f)\right|, \ldots,\left|\tau_{n}(f)\right|\right)$.

Proof. Since $\tau_{i} \nsim \tau_{j}(i \neq j)$, there exist probability measures μ^{1}, \ldots, μ^{n} such that $\mu=\left(\mu^{1}+\ldots+\mu^{n}\right) / n, \mu^{i} \perp \mu^{j}(i \neq j), H^{2}(\mu) \cap I^{\perp}=\left(H^{2}\left(\mu^{1}\right) \cap I^{\perp}\right) \oplus \ldots \oplus\left(H^{2}\left(\mu^{n}\right) \cap I^{\perp}\right)$, $S_{f}^{\mu}=S_{f}^{\mu^{1}} \oplus \ldots \oplus S_{f}^{\mu^{n}}$. Since $\left(S_{f}^{\mu^{j}}\right)^{*} k_{j}=\overline{\tau_{j}(f)} k_{j}$, and $\left(S_{f}^{\mu^{j}}\right)^{*}$ is a rank 1 operator on $H^{2}(\mu) \cap$ $\left(\operatorname{ker} \tau_{j}\right)^{\perp}=\operatorname{span}\left\{k_{j}\right\}$, it follows that $\left\|S_{f}^{\mu^{j}}\right\|=\left\|\left(S_{f}^{\mu^{j}}\right)^{*}\right\|=\left|\tau_{j}(f)\right|$. Then

$$
\left\|S_{f}^{\mu}\right\|=\max \left(\left\|S_{f}^{\mu^{1}}\right\|, \ldots,\left\|S_{f}^{\mu^{n}}\right\|\right)=\max \left(\left|\tau_{1}(f)\right|, \ldots,\left|\tau_{n}(f)\right|\right)=\sup _{\nu \in(A / I)^{*},\|\nu\| \leq 1}\left|\int_{X} f d \nu\right|=\|f+I\| .
$$

This completes the proof.

Corollary 4.3. Let A be a uniform algebra and $I=\cap_{j=1}^{n} \operatorname{ker} \tau_{j}$ and $\tau_{i} \nsim \tau_{j}(i \neq j)$. Suppose that S^{μ} is an isometric representation of A / I. Then,
(1) $\mu=\sum_{j=1}^{n} \mu^{j}, \mu^{i} \perp \mu^{j}(i \neq j), \mu^{j} \ll m^{j}$ where μ^{j} is a positive measure and m^{j} is some representing measure for τ_{j}.
(2) $S_{f}^{\mu}=\sum_{j=1}^{n} \oplus S_{f}^{\mu^{j}}(f \in A)$ where μ^{j} is divided by its total variation and $S^{\mu^{j}}$ is an isometric representation of A / I_{j}, where $I_{j}=\operatorname{ker} \tau_{j}$.
(3) S_{f}^{μ} is an isometric representation of a diagonal $n \times n$ matrix for any f in A.

Proof. By the proof of (2) of Theorem 3.2 and Theorem 4.1, (1), (2) and (3) holds.

If A / I is 2 -dimensional and semisimple, then there exist τ_{1}, τ_{2} in $M(A)$ such that $\tau_{1} \neq \tau_{2}$ and $I=\operatorname{ker} \tau_{1} \cap \operatorname{ker} \tau_{2}$. For $j=1,2$, there exists $f_{j} \in A$ such that $\tau_{i}\left(f_{j}\right)=\delta_{i j}$. Then $f_{j}+I$ is idempotent in A / I and $A / I=\operatorname{span}\left\{f_{1}+I, f_{2}+I\right\}$. If $n=2$, then

$$
\rho_{1}=\sup \left\{\left|\tau_{1}(f)\right| ; f \in \operatorname{ker} \tau_{2},\|f\| \leq 1\right\},
$$

$$
\rho_{1}(\mu)=\sup \left\{\left|\tau_{1}(f)\right| ; f \in \operatorname{ker} \tau_{2},\|f\|_{\mu} \leq 1\right\}
$$

where $\|f\|$ denotes the supnorm of f in A and $\|f\|_{\mu}=\langle f, f\rangle_{\mu}=\left(f|f|^{2} d \mu\right)^{1 / 2}$. Then ρ_{1} is a Gleason distance between τ_{1} and τ_{2}, and $\left\|f_{1}+I\right\|=1 / \rho_{1}, \quad\left\|f_{1}+I\right\|_{\mu}=1 / \rho_{1}(\mu)$. The following proposition is essentially known (cf. Lemma 3 of [9]).

Proposition 4.4. If A / I is 2-dimensional and semisimple, then the following conditions are equivalent.
(1) S^{μ} is an isometric representation of A / I.
(2) $\left\|k_{1}\right\|_{\mu}=\rho_{1}(\mu) / \rho_{1}$.
(3) $\left\|k_{1}\right\|_{\mu}=\left\|f_{1}+I\right\| /\left\|f_{1}+I\right\|_{\mu}$.

Proof. By Theorem 3.2, (1) implies (3). By the above remark, (2) is equivalent to (3). It is sufficient to show that (3) implies (1). By Theorem 3.2, if (3) holds, then $\left\|S_{f_{1}}^{\mu}\right\|=\left\|f_{1}+I\right\|$. By the above remark, this implies $\left\|S_{f_{1}}^{\mu}\right\|=1 / \rho_{1}$. By the theorem of T.Nakazi (cf. [8]), if $I=\left\{f \in A ; \tau_{1}(f)=\tau_{2}(f)=0\right\}$, then

$$
\begin{aligned}
\|f+I\| & =\sqrt{\left|\frac{\tau_{1}(f)-\tau_{2}(f)}{2}\right|^{2}\left(\frac{1}{\rho_{1}^{2}}-1\right)+\left(\frac{\left|\tau_{1}(f)\right|+\left|\tau_{2}(f)\right|}{2}\right)^{2}} \\
& +\sqrt{\left|\frac{\tau_{1}(f)-\tau_{2}(f)}{2}\right|^{2}\left(\frac{1}{\rho_{1}^{2}}-1\right)+\left(\frac{\left|\tau_{1}(f)\right|-\left|\tau_{2}(f)\right|}{2}\right)^{2}}
\end{aligned}
$$

Since $\left\|S_{f_{1}}^{\mu}\right\|=1 / \rho_{1}$, it follows from the theorem of I.Feldman, N.Krupnik and A.Markus (cf. [5]) that

$$
\|f+I\|=\left\|\tau_{1}(f) S_{f_{1}}^{\mu}+\tau_{2}(f) S_{f_{2}}^{\mu}\right\|=\left\|S_{f}^{\mu}\right\|
$$

This completes the proof.
T. Nakazi and K. Takahashi [9] proved that there exists an isometric representation of A / I in the case when $\operatorname{dim} A / I=2$. The following theorem gives a concrete matrix representation of A / I.

Theorem 4.5. Suppose A / I is 3-dimensional and semisimple. If $\tau_{1} \sim \tau_{2} \not \nsim \tau_{3}$ and S^{μ} is an isometric representation of A / I, then A / I is isometric to $\left\{S_{f}^{\mu} ; f \in A\right\}=$ $\operatorname{span}\left\{S_{f_{1}}^{\mu}, S_{f_{2}}^{\mu}, S_{f_{3}}^{\mu}\right\}, S_{f}^{\mu}=\tau_{1}(f) S_{f_{1}}^{\mu}+\tau_{2}(f) S_{f_{2}}^{\mu}+\tau_{3}(f) S_{f_{3}}^{\mu}$, and

$$
\left(S_{f_{1}}^{\mu}\right)^{*}=\left(\begin{array}{ccc}
1 & x & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(S_{f_{2}}^{\mu}\right)^{*}=\left(\begin{array}{cll}
0 & -x & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(S_{f_{3}}^{\mu}\right)^{*}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

where

$$
x=\frac{-\left\langle k_{2}, k_{1}\right\rangle_{\mu}}{\sqrt{\left\|k_{1}\right\|_{\mu}^{2}\left\|k_{2}\right\|_{\mu}^{2}-\left|\left\langle k_{1}, k_{2}\right\rangle_{\mu}\right|^{2}}} .
$$

Proof. This follows from Lemma 2.1 and Theorem 4.1.

If $\mathcal{B} \subset B(H)$ and $\operatorname{dim} H=3$, then

$$
P_{1}=\left(\begin{array}{ccc}
1 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}
0 & -x & -x z \\
0 & 1 & z \\
0 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{ccc}
0 & 0 & x z-y \\
0 & 0 & -z \\
0 & 0 & 1
\end{array}\right)
$$

It follows from a 2 -dimensional case that if $y=z=0$, then \mathcal{B} is a Q-algebra.
If the following condition (1) implies (2) for any distinct points $\tau_{1}, \ldots, \tau_{n} \in M(A)$ and complex numbers w_{1}, \ldots, w_{n}, then we say that A / I satisfies the Pick property.
(1) $\left[\left(1-w_{i} \overline{w_{j}}\right) k_{j i} i_{i, j=1}^{n} \geq 0\right.$, where $k_{i j}=\left\langle k_{i}, k_{j}\right\rangle_{\mu}$, and $\tau_{j}(f)=\left\langle f, k_{j}\right\rangle_{\mu},(f \in A)$.
(2) There exists $f \in A$ such that $\tau_{j}(f)=w_{j},(1 \leq j \leq n)$ and $\|f+I\| \leq 1$.

The following proposition is essentially known.

Proposition 4.6. Let A / I be an n-dimensional semisimple commutative Banach algebra. Then $S^{\mu}: A / I \rightarrow B\left(H^{2}(\mu) \cap I^{\perp}\right)$ is isometric if and only if A / I satisfies the Pick property.

Proof. Suppose S^{μ} is isometric. For any $w_{1}, \ldots, w_{n} \in \mathbf{C}$, there exists an $f \in A$ such that $\tau_{j}(f)=w_{j},(1 \leq j \leq n)$. Suppose $\left[\left(1-w_{i} \overline{w_{j}}\right) k_{j i} i_{i, j=1}^{n} \geq 0\right.$. For any complex numbers $\alpha_{1}, \ldots, \alpha_{n}$, let $k=\sum_{j=1}^{n} \alpha_{j} k_{j}$. Then $\|k\|_{\mu}^{2}=\sum_{i, j=1}^{n} \overline{\alpha_{i}} \alpha_{j} k_{j i}$. Since $\left(S_{f}^{\mu}\right)^{*} k_{j}=\overline{\tau_{j}(f)} k_{j}$, $\left(S_{f}^{\mu}\right)^{*} k=\sum_{j=1}^{n} \alpha_{j} \overline{\tau_{j}(f)} k_{j}$. By (1),

$$
\|k\|_{\mu}^{2}-\left\|\left(S_{f}^{\mu}\right)^{*} k\right\|_{\mu}^{2}=\sum_{i, j=1}^{n} \overline{\alpha_{i}} \alpha_{j}\left(1-w_{i} \overline{w_{j}}\right) k_{j i} \geq 0
$$

Since $H^{2}(\mu) \cap I^{\perp}$ is spanned by k_{1}, \ldots, k_{n}, this implies that $\left\|\left(S_{f}^{\mu}\right)^{*}\right\| \leq 1$. Since S^{μ} is isometric, $\|f+I\|=\left\|S_{f}^{\mu}\right\| \leq 1$. Therefore A / I satisfies the Pick property. Conversely, suppose A / I satisfies the Pick property and $\left\|S_{f}^{\mu}\right\|=1$. Since $\left(S_{f}^{\mu}\right)^{*} k_{j}=\overline{\tau_{j}(f)} k_{j}$ and $\left\|\left(S_{f}^{\mu}\right)^{*}\right\|=1$, it follows that

$$
\sum_{i, j=1}^{n} \overline{\alpha_{i}} \alpha_{j}\left(1-\tau_{i}(f) \overline{\tau_{j}(f)}\right) k_{j i}=\|k\|_{\mu}^{2}-\left\|\left(S_{f}^{\mu}\right)^{*} k\right\|_{\mu}^{2} \geq 0
$$

and hence $\left[\left(1-\tau_{i}(f) \overline{\tau_{j}(f)}\right) k_{j i}\right]_{i, j=1}^{n} \geq 0$. By the Pick property, there exists $g \in A$ such that $\|g+I\| \leq 1$ and $\tau_{j}(g)=\tau_{j}(f),(1 \leq j \leq n)$. Therefore $\|f+I\|=\|g+I\| \leq 1=\left\|S_{f}^{\mu}\right\|$. Since the reverse inequality $\left\|S_{f}^{\mu}\right\| \leq\|f+I\|$ is always holds, $\left\|S_{f}^{\mu}\right\|=\|f+I\|$. This completes the proof.

5. Q-Algebras of a Disc Algebra

In this section, we assume that A is the disc algebra and $\operatorname{dim} A / I=3$. For $f \in A$, let $\|f+I\|=\|f+I\|_{A / I}$. Since $M(A)=\overline{\mathbf{D}}=\{|z| \leq 1\}$, for each $1 \leq j \leq 3, \tau_{j}$ is just an evaluation functional at a point of $\overline{\mathbf{D}}$ and so we write that $\tau_{1}=a, \tau_{2}=b$ and $\tau_{3}=c$, where a, b and c are in $\overline{\mathbf{D}}$. By Theorem 3.2, we may assume that a, b and c are in $\mathbf{D}=\{|z|<1\}$. Theorem 5.2 shows that the set of all 3 -dimensional semisimple Q-algebras of the disc algebra is a proper subset in the set of all 3-dimensional semisimple commutative operator algebras with unit on a Hilbert space of dimension 3. However Theorem 5.2 has not solved Problem 2 yet. We use Lemma 5.1 to prove Theorem 5.2. Let a, b, c be the distinct points in the open unit disc \mathbf{D}. Let $T(a, b, c)$ denote the subset of \mathbf{C}^{3} which consists of all $(x, y, z) \in \mathbf{C}^{3}$ satisfying

$$
\begin{aligned}
1+|x|^{2} & =\left|\frac{1-\bar{b} a}{a-b}\right|^{2}, \quad 1+|z|^{2}=\left|\frac{1-\bar{c} b}{b-c}\right|^{2} \\
1 & +|y|^{2}\left|\frac{a-b}{1-\bar{b} a}\right|^{2}=\left|\frac{1-\bar{a} c}{c-a}\right|^{2} .
\end{aligned}
$$

This implies that $x \neq 0, y \neq 0$, and $z \neq 0 . T(a, b, c)$ is characterized by saying that the absolute values of x, y, z are fixed and that their argument are arbitrary. In the following, we consider some inequalities of x, y, and z. For $j=1,2,3$, there exists $f_{j} \in A$ such that $\tau_{i}\left(f_{j}\right)=\delta_{i j}$. Hence, $f_{1}(a)=f_{2}(b)=f_{3}(c)=1$, and $f_{1}(b)=f_{1}(c)=f_{2}(a)=f_{2}(c)=f_{3}(a)=f_{3}(b)=0$.

Lemma 5.1. Let a, b, c be the distinct points in \mathbf{D}. Let $f \in A$. Let $I=\{g \in$ $A ; g(a)=g(b)=g(c)=0\}$. Let $d \mu=\frac{d \theta}{2 \pi}$.
(1) $S_{f}^{\mu}=f(a) S_{f_{1}}^{\mu}+f(b) S_{f_{2}}^{\mu}+f(c) S_{f_{3}}^{\mu}$, and

$$
\left(S_{f_{1}}^{\mu}\right)^{*}=\left(\begin{array}{ccc}
1 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(S_{f_{2}}^{\mu}\right)^{*}=\left(\begin{array}{ccc}
0 & -x & -x z \\
0 & 1 & z \\
0 & 0 & 0
\end{array}\right), \quad\left(S_{f_{3}}^{\mu}\right)^{*}=\left(\begin{array}{ccc}
0 & 0 & x z-y \\
0 & 0 & -z \\
0 & 0 & 1
\end{array}\right)
$$

for some $(x, y, z) \in T(a, b, c)$.
(2) $\|f+I\|=\left\|S_{f}^{\mu}\right\|, \quad(f \in A)$. That is, A/I is isometrically isomorphic to the 3-dimensional semisimple commutative operator algebra on $H^{2}(\mu) \cap I^{\perp}$ which is spanned by

$$
P_{1}=\left(\begin{array}{ccc}
1 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}
0 & -x & -x z \\
0 & 1 & z \\
0 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{ccc}
0 & 0 & x z-y \\
0 & 0 & -z \\
0 & 0 & 1
\end{array}\right),
$$

for some $(x, y, z) \in T(a, b, c)$.
Proof. $\quad H^{2}(\mu) \cap I^{\perp}$ is a 3 -dimensional Hilbert space which is spanned by

$$
k_{1}(z)=\frac{1}{1-\bar{a} z}, \quad k_{2}(z)=\frac{1}{1-\bar{b} z}, \quad k_{3}(z)=\frac{1}{1-\bar{c} z} .
$$

For orthonormal basis $\psi_{1}, \psi_{2}, \psi_{3}$ defined in Proposition 2.3,

$$
\psi_{1}(z)=\frac{\sqrt{1-|a|^{2}}}{1-\bar{a} z}, \quad \psi_{2}(z)=\gamma_{2} \frac{z-a}{1-\bar{a} z} \frac{\sqrt{1-|b|^{2}}}{1-\bar{b} z}, \quad \psi_{3}(z)=\gamma_{3} \frac{z-a}{1-\bar{a} z} \frac{z-b}{1-\bar{b} z} \frac{\sqrt{1-|c|^{2}}}{1-\bar{c} z},
$$

where

$$
\gamma_{2}=-\left(\frac{a-b}{1-\bar{a} b}\right)^{-1}\left|\frac{a-b}{1-\bar{a} b}\right|, \quad \gamma_{3}=\left(\frac{a-c}{1-\bar{a} c}\right)^{-1}\left|\frac{a-c}{1-\bar{a} c}\right|\left(\frac{b-c}{1-\bar{b} c}\right)^{-1}\left|\frac{b-c}{1-\bar{b} c}\right| .
$$

Since

$$
k_{2}-\left(k_{2}, \psi_{1}\right) \psi_{1}=\frac{(\bar{b}-\bar{a})(z-a)}{(1-\bar{b} a)(1-\bar{a} z)(1-\bar{b} z)},
$$

it follows that

$$
\left\|k_{2}-\left(k_{2}, \psi_{1}\right) \psi_{1}\right\|=\left|\frac{\bar{b}-\bar{a}}{1-\bar{b} a}\right| \frac{1}{\sqrt{1-|b|^{2}}} .
$$

Hence

$$
\psi_{2}=\frac{k_{2}-\left(k_{2}, \psi_{1}\right) \psi_{1}}{\left\|k_{2}-\left(k_{2}, \psi_{1}\right) \psi_{1}\right\|}=\gamma_{2} \frac{z-a}{1-\bar{a} z} \frac{\sqrt{1-|b|^{2}}}{1-\bar{b} z} .
$$

Since

$$
k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}=\frac{(\bar{a}-\bar{c})(\bar{b}-\bar{c})(z-a)(z-b)}{(1-\bar{c} a)(1-\bar{c} b)(1-\bar{a} z)(1-\bar{b} z)(1-\bar{c} z)},
$$

it follows that

$$
\psi_{3}=\frac{k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|}=\gamma_{3} \frac{z-a}{1-\bar{a} z} \frac{z-b}{1-\bar{b} z} \frac{\sqrt{1-|c|^{2}}}{1-\bar{c} z} .
$$

If we calculate x, y, z using the formulas in Proposition 2.3, then it follows that $(x, y, z) \in$ $T(a, b, c)$. Then

$$
x=\frac{-\left\langle k_{2}, k_{1}\right\rangle}{\sqrt{\left\|k_{1}\right\|^{2}\left\|k_{2}\right\|^{2}-\left|\left\langle k_{1}, k_{2}\right\rangle\right|^{2}}}=\frac{\frac{-\overline{-}}{1-\bar{b} a}}{\sqrt{\left(1-|a|^{2}\right)\left(1-|b|^{2}\right)}-\frac{1}{|1-\bar{a} b|^{2}}}=\gamma_{4} \frac{\sqrt{1-|a|^{2}} \sqrt{1-|b|^{2}}}{|a-b|},
$$

where

$$
\gamma_{4}=-\frac{1-\bar{a} b}{|1-\bar{a} b|} .
$$

Hence

$$
1+|x|^{2}=\left|\frac{1-\bar{b} a}{a-b}\right|^{2}
$$

Since

$$
-\left\langle k_{3}, \psi_{1}\right\rangle-\left\langle k_{3}, \psi_{2}\right\rangle x=\frac{\sqrt{1-|a|^{2}}}{1-\bar{c} a} \frac{1-\bar{a} b}{\bar{b}-\bar{a}} \frac{\bar{c}-\bar{b}}{1-b \bar{c}},
$$

it follows that

$$
y=\frac{-\left\langle k_{3}, \psi_{1}\right\rangle-\left\langle k_{3}, \psi_{2}\right\rangle x}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|}=\gamma_{5} \frac{1-\bar{a} b}{\bar{a}-\bar{b}} \frac{\sqrt{1-|a|^{2}} \sqrt{1-|c|^{2}}}{|a-c|}
$$

where

$$
\gamma_{5}=\left(\frac{a-b}{1-a \bar{b}}\right)\left|\frac{a-b}{1-a \bar{b}}\right|^{-1}\left(\frac{b-c}{1-\bar{b} c}\right)^{-1}\left|\frac{b-c}{1-\bar{b} c}\right| \frac{|1-\bar{c} a|}{1-\bar{c} a} .
$$

Since

$$
\left\langle k_{3}, \psi_{2}\right\rangle=\overline{\gamma_{2}} \frac{\bar{c}-\bar{a}}{1-a \bar{c}} \frac{\sqrt{1-|b|^{2}}}{1-b \bar{c}},
$$

it follows that

$$
z=\frac{-\left\langle k_{3}, \psi_{2}\right\rangle}{\left\|k_{3}-\left\langle k_{3}, \psi_{1}\right\rangle \psi_{1}-\left\langle k_{3}, \psi_{2}\right\rangle \psi_{2}\right\|}=\gamma_{6} \frac{\sqrt{1-|b|^{2}} \sqrt{1-|c|^{2}}}{|b-c|},
$$

where

$$
\gamma_{6}=\left(\frac{a-b}{1-\bar{a} b}\right)\left|\frac{a-b}{1-\bar{a} b}\right|^{-1}\left(\frac{c-a}{1-\bar{a} c}\right)^{-1}\left|\frac{c-a}{1-\bar{a} c}\right| \frac{|1-b \bar{c}|}{1-b \bar{c}} .
$$

Since $\left|\gamma_{2}\right|=\left|\gamma_{3}\right|=\left|\gamma_{4}\right|=\left|\gamma_{5}\right|=\left|\gamma_{6}\right|=1$, it follows that

$$
1+|y|^{2}\left|\frac{a-b}{1-\bar{b} a}\right|^{2}=\left|\frac{1-\bar{a} c}{c-a}\right|^{2}, \quad 1+|z|^{2}=\left|\frac{1-\bar{c} b}{b-c}\right|^{2}
$$

Hence, (1) follows. It is sufficient to prove (2). By the theorem of D.Sarason (cf. [2], p.125, [10], Vol.1, p.231, [11]), $\|f+I\|=\left\|S_{f}^{\mu}\right\|$. Then $\left(S_{f_{1}}^{\mu}\right)^{*} k_{1}=k_{1},\left(S_{f_{1}}^{\mu}\right)^{*} k_{2}=\left(S_{f_{1}}^{\mu}\right)^{*} k_{3}=0,\left(S_{f_{2}}^{\mu}\right)^{*} k_{2}=k_{2}$, $\left(S_{f_{2}}^{\mu}\right)^{*} k_{3}=\left(S_{f_{2}}^{\mu}\right)^{*} k_{1}=0,\left(S_{f_{3}}^{\mu}\right)^{*} k_{3}=k_{3}$, and $\left(S_{f_{3}}^{\mu}\right)^{*} k_{1}=\left(S_{f_{3}}^{\mu}\right)^{*} k_{2}=0$. By Proposition 2.3,

$$
\left(S_{f_{1}}^{\mu}\right)^{*}=\left(\begin{array}{ccc}
1 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(S_{f_{2}}^{\mu}\right)^{*}=\left(\begin{array}{ccc}
0 & -x & -x z \\
0 & 1 & z \\
0 & 0 & 0
\end{array}\right), \quad\left(S_{f_{3}}^{\mu}\right)^{*}=\left(\begin{array}{ccc}
0 & 0 & x z-y \\
0 & 0 & -z \\
0 & 0 & 1
\end{array}\right)
$$

Since $f-f(a) f_{1}-f(b) f_{2}-f(c) f_{3} \in I$ and $I\left(H^{2}(\mu) \cap I^{\perp}\right) \subset I H^{2}(\mu) \subset H^{2}(\mu) \cap I^{\perp}$, it follows that

$$
\left(S_{f}^{\mu}-S_{f(a) f_{1}+f(b) f_{2}+f(c) f_{3}}^{\mu}\right) \psi=S_{f-f(a) f_{1}-f(b) f_{2}-f(c) f_{3}}^{\mu} \psi=0, \quad\left(\psi \in I_{\mu}^{\perp}\right)
$$

Hence

$$
S_{f}^{\mu}=S_{f(a) f_{1}+f(b) f_{2}+f(c) f_{3}}^{\mu}=f(a) S_{f_{1}}^{\mu}+f(b) S_{f_{2}}^{\mu}+f(c) S_{f_{3}}^{\mu} .
$$

This completes the proof.

For example, if $(a, b, c)=\left(0, \frac{1}{2}, \frac{1}{3}\right)$ and $(x, y, z)=(-\sqrt{3}, 4 \sqrt{2},-2 \sqrt{6})$, then the algebra $\operatorname{span}\left\{P_{1}, P_{2}, P_{3}\right\}$ is isometrically isomorphic to A / I which is a Q-algebra of a disc algebra.

Theorem 5.2. Let a, b, c be the distinct points in \mathbf{D}. Let $f \in A$. Let $d \mu=\frac{d \theta}{2 \pi}$. Let $I=\{g \in A ; g(a)=g(b)=g(c)=0\}$. If a 3-dimensional semisimple commutative operator algebra \mathcal{B} on $H^{2}(\mu) \cap I^{\perp}$ is isometrically isomorphic to A / I, then \mathcal{B} is unitarily equivalent to the 3-dimensional commutative operator algebras with unit on a 3-dimensional Hilbert space H spanned by P_{1}, P_{2}, P_{3} such that

$$
P_{1}=\left(\begin{array}{ccc}
1 & x & y \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{ccc}
0 & -x & -x z \\
0 & 1 & z \\
0 & 0 & 0
\end{array}\right), \quad P_{3}=\left(\begin{array}{ccc}
0 & 0 & x z-y \\
0 & 0 & -z \\
0 & 0 & 1
\end{array}\right)
$$

where x, y, z satisfy $(1) \sim(3)$. $x y z \neq 0$,

$$
\begin{equation*}
\frac{1}{\sqrt{1+|y|^{2}}}<\frac{1}{\sqrt{1+|x|^{2}}}+\frac{1}{\sqrt{1+|z|^{2}}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
|y|>\frac{|x z|}{\sqrt{1+|z|^{2}}+1} \tag{3}
\end{equation*}
$$

Proof. By the theorem of B.Cole and J.Wermer (cf. [3]) and (2) of Theorem 2.4, we may assume that H is spanned by the orthonormal basis $\psi_{1}, \psi_{2}, \psi_{3}$ which are calculated in the proof of Lemma 5.1. By Lemma 5.1, there are complex numbers x, y, z satisfying $(x, y, z) \in$ $T(a, b, c)$. Since

$$
\begin{aligned}
& 1+|x|^{2}=\left|\frac{1-\bar{b} a}{a-b}\right|^{2}>1, \quad 1+|z|^{2}=\left|\frac{1-\bar{c} b}{b-c}\right|^{2}>1, \\
& 1+|y|^{2}\left|\frac{a-b}{1-\bar{b} a}\right|^{2}=\left|\frac{1-\bar{a} c}{c-a}\right|^{2}>1,
\end{aligned}
$$

(1) follows. Let

$$
\rho(z, w)=\left|\frac{z-w}{1-\bar{w} z}\right| .
$$

Then

$$
\rho(a, b)=\frac{1}{\sqrt{1+|x|^{2}}}, \quad \rho(b, c)=\frac{1}{\sqrt{1+|z|^{2}}}, \quad \rho(c, a)=\sqrt{\frac{1+|x|^{2}}{1+|x|^{2}+|y|^{2}}}>\frac{1}{\sqrt{1+|y|^{2}}} .
$$

Since $\rho(c, a) \leq \rho(a, b)+\rho(b, c)$, (2) follows. Let

$$
d(z, w)=\frac{1}{2} \log \frac{1+\rho(z, w)}{1-\rho(z, w)}
$$

Since $d(c, a) \leq d(a, b)+d(b, c)$,

$$
\frac{\sqrt{1+|x|^{2}+|y|^{2}}+\sqrt{1+|x|^{2}}}{\sqrt{1+|x|^{2}+|y|^{2}}-\sqrt{1+|x|^{2}}} \leq \frac{\sqrt{1+|z|^{2}}+1}{\sqrt{1+|z|^{2}}-1} \cdot \frac{\sqrt{1+|x|^{2}}+1}{\sqrt{1+|x|^{2}}-1} .
$$

Hence

$$
\frac{\sqrt{1+|x|^{2}}+1}{|y|}<\frac{\sqrt{1+|x|^{2}+|y|^{2}}+\sqrt{1+|x|^{2}}}{|y|} \leq \frac{\sqrt{1+|z|^{2}}+1}{|z|} \cdot \frac{\sqrt{1+|x|^{2}}+1}{|x|} .
$$

this implie (3). This completes the proof.

Example 5.3. In Example 2.5, \mathcal{B}_{0} is isometrically isomorphic to \mathcal{B}_{2}. Since $y_{0}=0$, it follows from Theorem 5.2 that \mathcal{B}_{2} is not isometrically isomorphic to a 3 -dimensional semisimple Q-algebra A / I where A is a disc algebra. Hence \mathcal{B}_{0} is also not isometrically isomorphic to a Q-algebra A / I. Therefore \mathcal{B}_{0} and \mathcal{B}_{2} is the example to show that the set of all 3-dimensional semisimple Q-algebra A / I where A is a disc algebra is smaller than the set of all 3 -dimensional commutative operator algebras with unit on a 3 -dimensional Hilbert space.

References

[1] F.Bonsall, J.Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
[2] B.Cole, J.Wermer, Pick interpolation, von Neumann inequalities, and hyperconvex sets, Complex potential theory (Montreal, PQ, 1993), 89-129, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, Kluwer Acad.Publ., Dordrecht, 1994.
[3] B.Cole, J.Wermer, Isometries of certain operator algebras, Proc. Amer. Math. Soc. 124 (1996), 3047-3053.
[4] S.W.Drury, Remarks on von Neumann's inequality, Lecture Notes in Mathematics, Vol.995, Springer, Berlin, 1983, pp.14-32.
[5] I.Feldman, N.Krupnik, A.Markus, On the norm of two adjoint projections, Integr. Eq. Oper. Theory 14 (1991), 69-90.
[6] J.Holbrook, Schur norms and the multivariate von Neumann inequality, Operator Theory: Advances and Applications. Vol.127, Birkhäuser 2001, 375-386.
[7] S.McCullough, V.Paulsen, C^{*}-envelopes and interpolation theory, Indiana Univ. Math. J. 51 (2002), 479-505.
[8] T.Nakazi, Two dimensional Q-algebras, Linear Algebra Appl. 315 (2000), 197-205.
[9] T.Nakazi, K.Takahashi, Two dimensional representations of uniform algebras, Proc. Amer. Math. Soc. 123 (1995), 2777-2784.
[10] N.K.Nikol'skii, Operators, Functions, and Systems, Vol. 1,2, Amer. Math. Soc., 2002.
[11] D. Sarason, Generalized interpolation in H^{∞}, Trans. Amer. Math. Soc. 127 (1967), 179203.

