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Singularities of lightlike hypersurfaces in Minkowski

four-space

Shyuichi Izumiya∗, Marek Kossowski, Donghe Pei†

and

M. Carmen Romero Fuster‡

Abstract

We classify singularities of lightlike hypersurfaces in Minkowski 4-space via the
contact invariants for the corresponding spacelike surfaces and lightcones.

1 Introduction

The objective of this paper (and [5–9]) is to link the differential geometry of lightlike

hypersurfaces in Minkowski 4-space with the modern theory of Legendrian singularities.

Lightlike hypersurfaces are ruled 3-manifolds whose induced first fundamental forms are

positive semi definite. Extending these ruling lines defines a natural completion which

contains (nonimmersive) singular points. The generic intersection of such a hypersurface

with a spacelike 3-plane is an immersed 2-manifold which encodes the local differential ge-

ometry of lightlike hypersurfaces [9, 10]. However, this approach does not efficiently adapt

to more general spacetimes. As an alternative we will use Montaldi’s characterization of

submanifold contacts in terms of K-equivalent functions, which provides a technical link-

age to Legendrian singularity theory. As a consequence, we provide a local classification

of lightlike hypersurface singularities in terms of algebraic invariants (an R-algebra) and

differential geometric invariants (the lightcone indicatrix). In [3, 4] lightlike hypersur-

faces have been studied from the viewpoint of the general theory of relativity. In this
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paper we study the detailed differential geometric properties of lightlike hypersurfaces

(and corresponding spacelike surfaces).

In Section 2 we begin by describing Cartan’s frame method adapted to spacelike sur-

faces as well as lightlike hypersurfaces (See [7] for a more detailed discussion.) This is used

to define the lightcone indicatrix. In Section 3 we describe the (multivalued) Legendrian

distance squared function whose discriminant is a given lightlike hypersurface. The given

hypersurface is now the wave front set of this function, as described in Legendrian singu-

larity theory [1]. Section 4 applies Montaldi’s theorem to the description of generic contact

between a given lightcone and a spacelike surface. Singularities in the hypersurface are

now characterized as points of higher order contact. We can also consider the contact of

spacelike surfaces with other pseudo-spheres (i.e. hyperbolic spaces or de Sitter spaces).

However the most interesting case is to consider the contact with lightcones. Moreover,

from the point of view of physics, lightlike hypersurfaces are of importance because they

are models of different types of horizons studied in relativity theory [2, 14]. Therefore we

only consider the singularities of lightlike hypersurfaces in this paper. In Section 5 we

present the classification of lightlike hypersurface singularities and tangent lightcone indi-

catrices, which is based on the theory of Legendrian singularities [1, 19]. (See the appendix

for a brief description). As a source of examples and motivation, Section 6 indicates that

generic lightlike hypersurface singularities occur in the the level surfaces of solutions to

the eikonal PDE on Minkowski 4-space. Section 7 indicates how these methods can be

locally adopted to some curved spacetimes. Finally, we remark that many arguments in

this paper can be directly generalized to higher dimensional Minkowski spaces. However,

from the viewpoint of physics, Minkowski 4-space (i.e. space-time) is the most important

and we need much more pages for writing the higher dimensional cases, so that we only

consider 4-dimensional Minkowski space here.

We assume throughout the paper that all manifolds and maps are C∞ unless otherwise

stated.

2 Local differential geometry of spacelike surfaces

In [7] we introduced the basic geometric tools for the study of spacelike surfaces in

Minkowski 4-space. Here we briefly review a part of the theory relevant to this paper.

Let R4 = {(x1, x2, x3, x4) | x1, x2, x3, x4 ∈ R} be a cartesian 4-space. For any vectors

x = (x1, x2, x3, x4), y = (y1, y2, y3, y4) in R4, the pseudoscalar product of x and y is

defined by 〈x,y〉 = −x1y1 + x2y2 + x3y3 + x4y4. We call (R4, 〈, 〉) a Minkowski 4-space

and simply write it as R4
1 instead of (R4, 〈, 〉).

We say that a vector x in R4
1 \ {0} is spacelike, lightlike or timelike if 〈x,x〉 > 0,= 0
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or < 0, respectively. The norm of the vector x ∈ R4
1 is defined by ‖x‖ =

√
|〈x,x〉|.

Let X : U → R4
1 be a regular surface (i.e. an immersion), where U ⊂ R2 is an open

subset. We identify M = X(U) with U through the immersion X.

We call M a spacelike surface if the tangent plane TpM of M is a spacelike plane

(i.e. consists of spacelike vectors) for any point p ∈ M . In this case, the normal space

NpM is a timelike plane (i.e. Lorentz plane) (cf.[17]). Let {e3(x, y), e4(x, y)} be an

orthonormal frame of TpM and {e1(x, y), e2(x, y)} a pseudo-orthonormal frame of NpM ,

where p = X(x, y). Here, e1(p) is a timelike vector and ei, i = 2, 3, 4, are spacelike

vectors.

In order to establish the fundamental formula for a spacelike surface in R4
1, we define

some notions similar to those of Little [11]. As usual, define the forms ωi = δ(ei)〈dX, ei〉
and ωij = δ(ej)〈dei, ej〉, where

δ(ei) = Sign(ei) =





1, i = 2, 3, 4,

−1, i = 1.

Here 〈dX, ej〉 denotes the scalar product of the vector valued one-form dX and the vector

ej. Then we have dX =
4∑

i=1

ωiei and dei =
4∑

j=1

ωijej, i = 1, 2, 3, 4. We have the Codazzi

type equations:




dωi =
4∑

j=1

δ(ei)δ(ej)ωij ∧ ωj

dωij =
4∑

k=1

ωik ∧ ωkj,

where d denotes exterior differentiation. Also, we have

(*) ωij = −δ(ei)δ(ej)ωji.

In particular, ωii = 0 for i = 1, 2, 3, 4.

It follows from the fact 〈dX, e1〉 = 〈dX, e2〉 = 0 that

ω1 = ω2 = 0.

Therefore we have




0 = dω1 =
4∑

j=1

δ(e1)δ(ej)ω1j ∧ ωj = −
4∑

j=3

δ(ej)ω1j ∧ ωj = −ω13 ∧ ω3 − ω14 ∧ ω4,

0 = dω2 =
4∑

j=1

δ(e2)δ(ej)ω2j ∧ ωj =
4∑

j=3

δ(ej)ω2j ∧ ωj = ω23 ∧ ω3 + ω24 ∧ ω4.

By Cartan’s lemma, we can then write



ω13 = aω3 + bω4, ω14 = bω3 + cω4,

ω23 = eω3 + fω4, ω24 = fω3 + gω4
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for appropriate functions a, b, c, e, f and g. We define that 〈d2X, ei〉 = −〈dX, dei〉, i =

1, 2, then we have a vector-valued quadratic form:

−〈d2X, e1〉e1 + 〈d2X, e2〉e2 = (aω2
3 + 2bω3ω4 + cω2

4)e1 − (eω2
3 + 2fω3ω4 + gω2

4)e2,

which is called the second fundamental form of the spacelike surface. It follows from (*)

that

d




e1

e2

e3

e4


 =




0 ω12 ω13 ω14

ω12 0 ω23 ω24

ω13 −ω23 0 ω34

ω14 −ω24 −ω34 0







e1

e2

e3

e4


 ,

from which we also get the following equations:

d




e1 − e2

e1 + e2

e3

e4


 =




0 −ω12 ω13 − ω23 ω14 − ω24

ω12 0 ω13 + ω23 ω14 + ω24

ω13 − ω23

2

ω13 + ω23

2
0 ω34

ω14 − ω24

2

ω14 + ω24

2
−ω34 0







e1 + e2

e1 − e2

e3

e4


 .

On the other hand, we define

LCp =
{

x ∈ R4
1

∣∣∣ −(x1 − p1)
2 +

4∑
i=2

(xi − pi)
2 = 0

}

and

S2
+ = {x = (x1, x2, x3, x4) ∈ LC0 | x1 = 1},

where p = (p1, p2, p3, p4) ∈ R4
1. We call S2

+ the (future) spacelike unit sphere and LC∗p =

LCp \ {p} the lightcone with deleted vertex at p. We also define

LC∗+ = {x = (x1, x2, x3, x4) ∈ LC∗0 | x1 > 0 }

and call it a future lightcone at the origin. For any lightlike vector x = (x1, x2, x3, x4), we

have

x̃ =

(
1,
x2

x1

,
x3

x1

,
x4

x1

,

)
∈ S2

+.

Let e1 = (a1, a2, a3, a4) and e2 = (b1, b2, b3, b4). Clearly, we have

d(e1 ± e2) = d(a1 ± b1)(ẽ1 ± e2) + (a1 ± b1)d(ẽ1 ± e2).
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Finally, we get the following fundamental formula:

d




ẽ1 − e2

ẽ1 + e2

e3

e4


 =




0 −ω12 − d(a1 − b1)
a1 − b1

ω13 − ω23
a1 − b1

ω14 − ω24
a1 − b1

ω12 − d(a1 + b1)
a1 + b1

0 ω13 + ω23
a1 + b1

ω14 + ω24
a1 + b1

ω13 − ω23
2

ω13 + ω23
2 0 ω34

ω14 − ω24
2

ω14 + ω24
2 −ω34 0







ẽ1 + e2

ẽ1 − e2

e3

e4


 .

For a given normal vector v = ξe1+ηe2 ∈ NpM, we have dv = dξe1+ξde1+dηe2+ηde2

and hence

〈dv, e3〉 ∧ 〈dv, e4〉 = [(aξ + eη)(cξ + gη)− (bξ + fη)2]ω3 ∧ ω4

= [(ac− b2)ξ2 + (ec+ ag − 2bf)ξη + (eg − f 2)η2]ω3 ∧ ω4.

We define a function Kl as follows:

Kl(v)(p) = Kl(ξ, η)(p) = (ac− b2)ξ2 + (ec+ ag − 2bf)ξη + (eg − f 2)η2.

We also define the mean curvature vector H by

H(p) =
1

2
(a+ c)e1 − 1

2
(e+ g)e2

and

Hl(v)(p) = Hl(ξ, η)(p) = 〈H(p),v〉 =
1

2
(a+ c)ξ +

1

2
(e+ g)η.

We now consider a symmetric matrix

A± =

(
a± e b± f

b± f c± g

)
.

Let κ±i (p), i = 1, 2 be the eigenvalues of A± which we call principal lightcone curvatures

of M at p. By definition, we have

κ±1 (p)κ±2 (p) = detA = (ac− b2)± (ce+ ag − 2bf) + (eg − f 2) = Kl(1,±1)(p)

and

2Hl(1,±1)(p) = ±e± g + a+ c = κ±1 (p) + κ±2 (p).

We say that p ∈ M is an umbilic point if κ±1 (p) = κ±2 (p). An umbilic point is flat if

Kl(1,±1)(p) = 0. On the other hand, we define a pair of hypersurfaces

LH±
M : M × R −→ R4

1

by

LH±
M(p, u) = LH±

M(x, y, u) = X(x, y) + u ˜(e1 ± e2)(x, y),

where p = X(x, y). We call LH±
M the lightlike hypersurface along M.

In general, a hypersurface H ⊂ R4
1 is called a lightlike hypersurface if it is tangent

to a lightcone at any point. It is known that any lightlike hypersurface is given by the

construction above at least locally (cf. [10] and §6).
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3 Lorentzian distance-squared functions on

spacelike surfaces

In this section we introduce the notion of Lorentzian distance-squared functions on space-

like surfaces, which is useful for the study of singularities of lightlike hypersurfaces.

First we define a family of functions G : M × R4
1 −→ R on a spacelike surface M =

X(U) by

G(p,λ) = G(x, y,λ) = 〈X(x, y)− λ,X(x, y)− λ〉,
where p = X(x, y). We call G the Lorentzian distance-squared function on the spacelike

surface M. For any fixed λ0 ∈ R4
1, we write g(p) = Gλ0(p) = G(p,λ0) and have the

following proposition.

Proposition 3.1 Let M be a spacelike surface and G : M × R4
1 → R the Lorentzian

distance-squared function on M. Suppose that p0 6= λ0. Then we have the following:

(1) g(p0) = ∂g/∂x(p0) = ∂g/∂y(p0) = 0 if and only if p0 − λ0 = µ ˜(e1 ± e2)(p0) for

some µ ∈ R \ {0}.
(2) g(p0) = ∂g/∂x(p0) = ∂g/∂y(p0) = detH(g)(p0) = 0 (detH(g)(p0) is the determi-

nant of the Hessian matrix) if and only if

p0 − λ0 = µ ˜(e1 ± e2)(p0)

for some µ ∈ R\{0} which is the inverse of a non-zero principal curvature κ∓i (p0), i = 1, 2.

Proof. (1) The condition g(p) = 〈X(x, y)−λ0,X(x, y)−λ0〉 = 0 means that X(x, y)−
λ0 ∈ LC0. We can observe that dg(p) = 〈dX(x, y),X(x, y) − λ0〉 = 0 if and only if

X(x, y)−λ0 ∈ NpM. Hence g(p0) = dg(p0) = 0 if and only if p0−λ0 ∈ NpM ∩LC0. This

is equivalent to the condition that p0 − λ0 = µ ˜(e1 ± e2)(p0) for some µ ∈ R \ {0}.
(2) By a Lorentzian motion, we may assume that p0 is the origin of R4

1. We can choose

local coordinates such that X is given by the Monge form

X(x, y) = (f1(x, y), f2(x, y), x, y)

with f1x(0, 0) = f1y(0, 0) = f2x(0, 0) = f2y(0, 0) = 0, so that we have e1(p0) = (1, 0, 0, 0)

and e2(p0) = (0, 1, 0, 0). In this case we have

f1xx(0, 0) = −a(p0), f1xy(0, 0) = −b(p0), f1yy(0, 0) = −c(p0),

f2xx(0, 0) = e(p0), f2xy(0, 0) = f(p0), f2yy(0, 0) = g(p0).

Under the condition (1), we have the following calculations:

∂2g

∂x2
= gxx = 2(〈Xxx,X − λ0〉+ 〈Xx,Xx〉)

= 2(〈(f1xx , f2xx , 0, 0), µ ˜(e1 ± e2)(p0)〉+ 2〈(f1x , f2x , 1, 0), (f1x , f2x , 1, 0)〉),
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∂2g

∂x∂y
= gxy = 2(〈Xxy,X − λ0〉+ 〈Xx,Xy〉)

= 2〈(f1xy , f2xy , 0, 0), µ ˜(e1 ± e2)(p0)〉+ 2〈(f1x , f2x , 1, 0), (f1y , f2y , 0, 1)〉,

∂2g

∂y2
= gyy = 2(〈Xyy,X − λ0〉+ 〈Xy,Xy〉)

= 2〈(f1yy , f2yy , 0, 0), µ ˜(e1 ± e2)(p0)〉+ 2〈(f1y , f2y , 0, 1), (f1y , f2y , 0, 1)〉.

It follows that

gxx(0, 0) = −2µa(p0)± 2µe(p0) + 2,

gxy(0, 0) = −2µb(p0)± 2µf(p0),

gyy(0, 0) = −2µc(p0)± 2µg(p0) + 2.

Therefore,

detH(gλ)(p0) =

∣∣∣∣∣
−µa± µe+ 1 −µb± µf

−µb± µf −µc± µg + 1

∣∣∣∣∣ (p0) = 0

if and only if

(ac+ eg ∓ ag ∓ ce− b2 − f 2 ± 2bf)µ2 + (±e± g − a− c)µ+ 1 = 0,

which is equivalent to

Kl(1,∓1)µ2 − 2Hl(1,∓1)µ+ 1 = 0.

This means that µ 6= 0 and 1/µ is one of the lightcone principal curvatures κ∓i (p0). ¤

Thus Proposition 3.1 means that the discriminant set of the Lorentzian distance-

squared function G is given by

DG =
{

λ
∣∣∣ λ = X(p) + u ˜(e1 ± e2)(p), p ∈M,u ∈ R

}
,

which is the image of the lightlike hypersurface along M. Therefore a singular point of the

lightlike hypersurface is a point λ0 = X(p0) + u0
˜(e1 ± e2)(p0) at which u0 = −1/κ∓i (p0),

i = 1, 2.

We now explain the reason why such a correspondence exists from the point of view

of contact geometry. Let π : PT ∗(R4
1) −→ R4

1 be the projective cotangent bundle with

its canonical contact structure. We next review the geometric properties of this bundle.

Consider the tangent bundle τ : TPT ∗(R4
1) → PT ∗(R4

1) and the differential map dπ :

TPT ∗(R4
1) → TR4

1 of π. For any X ∈ TPT ∗(R4
1), there exists an element α ∈ T ∗(R4

1 such

that τ(X) = [α]. For an element V ∈ Tx(R4
1), the property α(V ) = 0 does not depend
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on the choice of representative of the class [α]. Thus we can define the canonical contact

structure on PT ∗(R4
1) by

K = {X ∈ TPT ∗(R4
1) | τ(X)(dπ(X)) = 0}.

Via the coordinates (v1, v2, v3, v4), we have the trivialization PT ∗(R4
1)
∼= R4

1×P 3(R)∗,

and call

((v1, v2, v3, v4), [ξ1 : ξ2 : ξ3 : ξ4])

homogeneous coordinates of PT ∗(R4
1), where [ξ1 : ξ2 : ξ3 : ξ4] are the homogeneous coordi-

nates of the dual projective space P 3(R)∗.

It is easy to show that X ∈ K(x,[ξ]) if and only if
∑4

i=1 µiξi = 0, where dπ̃(X) =∑4
i=1 µi∂/∂vi. An immersion i : L → PT ∗(R4

1) is said to be a Legendrian immersion

if dimL = 3 and diq(TqL) ⊂ Ki(q) for any q ∈ L. The map π ◦ i is also called the

Legendrian map and the set W (i) = imageπ ◦ i, the wave front of i. Moreover, i (or,

the image of i) is called the Legendrian lift of W (i). In the appendix, we give a quick

survey of the theory of Legendrian singularities . For additional definitions and basic

results on generating families, we refer to ([1], Chapter 21). By the preceding arguments,

the lightlike hypersurface LH±
M is the discriminant set of the Lorentzian distance-squared

function G. We have the following proposition (See the appendix for the definition of a

Morse family).

Proposition 3.2 Let G be the Lorentzian distance-squared function on M. For any point

((x, y),λ) ∈ G−1(0), G is a Morse family around ((x, y),λ).

Proof. Denote

X(x, y) = (X1(x, y), X2(x, y), X3(x, y), X4(x, y)) and λ = (λ1, λ2, λ3, λ4).

By definition, we have

G(x, y,λ) = −(X1(x, y)− λ1)
2 + (X2(x, y)− λ2)

2 + (X3(x, y)− λ3)
2 + (X4(x, y)− λ4)

2.

We now prove that the mapping

∆∗G =

(
G,

∂G

∂x
,
∂G

∂y

)

is non-singular at ((x, y),λ) ∈ G−1(0). Indeed, the Jacobian matrix of ∆∗G is given by




2(X1 − λ1) −2(X2 − λ2) −2(X3 − λ3) −2(X4 − λ4)

A 2X1x −2X2x −2X3x −2X4x

2X1y −2X2y −2X3y −2X4y


 ,
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where

A =




2〈X − λ,Xx〉 2〈X − λ,Xy〉
2(〈Xx,Xx〉+ 〈X − λ,Xxx〉) 2(〈Xx,Xy〉+ 〈X − λ,Xxy〉)
2(〈Xy,Xx〉+ 〈X − λ,Xyx〉) 2(〈Xy,Xy〉+ 〈X − λ,Xyy〉)


 .

Since X is an immersion, the rank of the matrix

(
2X1x −2X2x −2X3x −2X4x

2X1y −2X2y −2X3y −2X4y

)
.

is equal to two. Moreover, X −λ is lightlike, so that it is linearly independent of tangent

vectors Xx,Xy. This means that the rank of the matrix




2(X1 − λ1) −2(X2 − λ2) −2(X3 − λ3) −2(X4 − λ4)

2X1x −2X2x −2X3x −2X4x

2X1y −2X2y −2X3y −2X4y




is equal to three. Therefore the Jacobi matrix of ∆∗G is non-singular at ((x, y),λ) ∈
G−1(0). ¤

Since G is a Morse family, we can define a Legendrian immersion

L±G : Σ∗(G) −→ PT ∗(R4
1)

by

L±G(x, y,λ) = (λ, [(X1(x, y)− λ1) : (λ2 −X2(x, y)) : (λ3 −X3(x, y)) : (λ4 −X4(x, y))]),

where

Σ∗(G) = (∆∗G)−1(0) = {(x, y,λ) | λ = LH±
M(x, y, u) for some u ∈ R}.

We observe thatG is a generating family of the Legendrian immersion L±G whose wave front

is LH±
M (cf. the appendix). Therefore we might say that the Lorentzian distance-squared

function G on M gives a Minkowski-canonical generating family for the Legendrian lift

of LH±
M .

4 Contact with lightcones

In this section we describe Montaldi’s characterization of submanifolds contact in terms

of K-equivalence. It is then adapted to lightlike hypersurfaces and their indicatrices. We

begin with the following basic observations.
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Proposition 4.1 Let λ0 ∈ R4
1 and M a spacelike surface without umbilic points satisfying

Kl(1,∓1) 6= 0. Then M ⊂ LCλ0 if and only if λ0 is an isolated singular value of the

lightlike hypersurface LH±
M and LH±

M(U × R) ⊂ LCλ0 .

Proof. By definition, M ⊂ LCλ0 if and only if gλ0(x, y) ≡ 0 for any (x, y) ∈ U, where

gλ0(x, y) = G(x, y,λ0) is the Lorentzian distance-squared function on M. It follows from

Proposition 3.1 that there exists a smooth function µ : U −→ R such that

X(x, y) = λ0 + µ(x, y) ˜(e1 ± e2)(x, y).

Therefore we have

LH±
M(x, y, u) = λ0 + (u+ µ(x, y)) ˜(e1 ± e2)(x, y).

Hence we have LH±
M(U × R) ⊂ LCλ0 . Moreover, it follows that

∂LH±
M

∂u
= ˜(e1 ± e2)(x, y),

∂LH±
M

∂x
= µx(x, y) ˜(e1 ± e2)(x, y) + (u+ µ(x, y)) ˜(e1 ± e2)x(x, y),

∂LH±
M

∂y
= µy(x, y) ˜(e1 ± e2)(x, y) + (u+ µ(x, y)) ˜(e1 ± e2)y(x, y),

from which we obtain
(
∂LH±

M

∂u
∧ ∂LH±

M

∂x
∧ ∂LH±

M

∂y

)
= (u+ µ(x, y))2 ˜(e1 ± e2) ∧ ˜(e1 ± e2)x ∧ ˜(e1 ± e2)y.

By the assumption, we have

X − λ0 = µ(x, y) ˜(e1 ± e2)(x, y).

Since X − λ0 is lightlike and Xx,Xy are spacelike, X − λ0,Xx,Xy are linearly inde-

pendent. Therefore we have

0 6= (X − λ0) ∧Xx ∧Xy = µ(x, y)3 ˜(e1 ± e2) ∧ ˜(e1 ± e2)x ∧ ˜(e1 ± e2)y,

so that (
∂LH±

M

∂u
∧ ∂LH±

M

∂x
∧ ∂LH±

M

∂y

)
= 0

if and only if u+ µ(x, y) = 0 under the assumption that Kl(1,∓1) 6= 0. This means that

λ0 is an isolated singularity of LH±
M . The converse assertion is trivial. ¤

Motivated by the proposition above, we now consider the contact of spacelike surfaces

with lightcones in view of Montaldi’s theorem [15]. LetXi and Yi, i = 1, 2, be submanifolds

10



of Rn with dimX1 = dimX2 and dimY1 = dimY2. We say that the contact of X1 and Y1

at y1 is same type as the contact of X2 and Y2 at y2 if there is a diffeomorphism germ

Φ : (Rn, y1) −→ (Rn, y2) such that Φ(X1) = X2 and Φ(Y1) = Y2. In this case we write

K(X1, Y1; y1) = K(X2, Y2; y2). Since this definition of contact is local, we can replace Rn

by arbitrary n-manifold. Montaldi gives in [15] the following characterization of contact

by using K-equivalence.

Theorem 4.2 Let Xi and Yi, i = 1, 2, be submanifolds of Rn with dimX1 = dimX2 and

dimY1 = dimY2. Let gi : (Xi, xi) −→ (Rn, yi) be immersion germs and fi : (Rn, yi) −→
(Rp, 0) be submersion germs with (Yi, yi) = (f−1

i (0), yi). Then

K(X1, Y1; y1) = K(X2, Y2; y2)

if and only if f1 ◦ g1 and f2 ◦ g2 are K-equivalent.

Turning to lightlike hypersurfaces, we now consider the function G : R4
1 × R4

1 −→ R
defined by G(x,λ) = 〈x − λ,x − λ〉. Given λ0 ∈ R4

1, we denote gλ0(x) = G(x,λ0), so

that we have g−1
λ0

(0) = LCλ0 . For any (x0, y0) ∈ U, we take the point λ±0 = X(x0, y0) +

u0(ẽ1 ± e2)(x0, y0) and have

gλ±0
◦X(x0, y0)) = G ◦ (X × idR4

1
)((x0, y0),λ

±
0 ) = G(x0, y0,λ

±
0 ) = 0,

where u0 = −1/κ∓i (x0, y0), i = 1, 2. We also have relations

∂gλ±0
◦X

∂x
(p0) =

∂G

∂x
((p0),λ

±
0 ) = 0,

∂gλ±0
◦X

∂y
(p0) =

∂G

∂y
(p0,λ

±
0 ) = 0.

These imply that the lightcone g−1

λ±0
(0) = LCλ±0

is tangent toM = X(U) at p0 = X(x0, y0).

In this case, we call each LCλ±0
the tangent lightcone of M = X(U) at p0 = X(x0, y0).

We now describe the contacts of spacelike surfaces with lightcones. Let LHσ
M,i :

(U, (xi, yi)) −→ (LC∗+,v
σ
i ), i = 1, 2, be two lightlike hypersurface germs of spacelike

surface germs X i : (U, (xi, yi)) −→ (R4
1, pi), where σ = ±. We say that LHσ

M,1 and LHσ
M,2

are A-equivalent if there exist diffeomorphism germs φ : (U, (x1, y1)) −→ (U, x2, y2)) and

Φ : (R4
1,λ

σ
1 ) −→ (R4

1,λ
σ
2 ) such that Φ ◦ LHσ

M,1 = LMσ
M,2 ◦ φ. If both of the regular sets

of LMσ
M,i are dense in (U, (xi, yi)), it follows from Proposition A.2 of the appendix that

LHσ
M,1 and LHσ

M,2 are A-equivalent if and only if the corresponding Legendrian lift germs

are Legendrian equivalent. This condition is also equivalent to that two generating families

G1 and G2 are P -K-equivalent by Theorem A.3, where Gi : (U ×R4
1, ((xi, yi),λ

σ
i )) −→ R

denotes the Lorentzian distance-squared function germ of X i.

On the other hand, if we denote gi,λσ
i
(x, y) = Gi(x, y,λ

σ
i ), then we have gi,λ±i

(x, y) =

gλ±i
◦xi(x, y). By Theorem 4.1, K(X1(U), LCλσ

1
,λσ

1 ) = K(x2(U), LCλσ
2 ,λ

σ
2 ) if and only if

11



g̃1,λ1 and g̃2,λ2 are K-equivalent. Therefore, we can apply Proposition A.4 to our situation.

We denote by Qσ(X, (x0, y0)) the local ring of the function germ g̃λσ
0

: (U, (x0, y0)) −→ R,
where λσ

0 = LCσ
M((x0, y0), u0). We remark that we can explicitly write the local ring as

follows:

Q±(X, (x0, y0)) =
C∞(x0,y0)(U)

〈〈X(x, y), ẽ1 ± e2(x0, y0)〉 − 1〉C∞
(x0,y0)

(U)

,

where C∞(x0,y0)(U) is the local ring of function germs at (x0, y0).

Theorem 4.3 Let X i : (U, (xi, yi)) −→ (R4
1,X i((xi, yi))), i = 1, 2, be spacelike surface

germs such that the corresponding Legendrian lift germs are Legendrian stable. For σ =

+ or −, the following conditions are equivalent:

(1) The lightlike hypersurface germs LHσ
M1

and LHσ
M2

are A-equivalent.

(2) G1 and G2 are P -K-equivalent.

(3) g1,λ1 and g2,λ2 are K-equivalent.

(4) K(X1(U), LCλσ
1
,λσ

1 ) = K(X2(U), LCλσ
2 ,λ

σ
2 ).

(5) Qσ(X1, (x1, y1)) and Qσ(X2, (x2, y2)) are isomorphic as R-algebras.

Proof. The preceding arguments shows that (3) and (4) are equivalent. The other

assertions follow from Proposition A.4. ¤

Given a spacelike surface germ X : (U, (x0, y0)) −→ (R4
1,X(x0, y0)), we call

(X−1(LCλ±), (x0, y0))

the tangent lightcone indicatrix germ of X, where λ± = X(x0, y0) + u0
˜(e1 ± e2)(x0, y0)

and u0 = −1/κ∓i (x0, y0), i = 1, 2. As a corollary of Theorem 4.3, we have

Corollary 4.4 Under the assumptions of Theorem 4.3, if the lightlike hypersurface germs

LHσ
M1

and LHσ
M2

are A-equivalent, then tangent lightcone indicatrix germs

(X−1
1 (LCλ±1

), (x1, y1)) and (X−1
2 (LCλ±2

), (x2, y2))

are diffeomorphic as set germs.

Proof. Notice that the tangent lightcone indicatrix germ of X i is the zero level set of

gi,λi
. Since K-equivalence among function germs preserves the zero-level sets of function

germs, the assertion follows from Theorem 4.3. ¤
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5 Classification of singularities of lightlike hypersur-

faces

In this section we provide a generic classification of the singularities of lightlike hyper-

surfaces in R4
1. We consider the space of spacelike embeddings Embsp (U,R4

1) with the

Whitney C∞-topology. We also consider a function G : R4
1 × R4

1 −→ R defined by

G(v,λ) = 〈v − λ,v − λ〉, and claim that Gλ is a submersion at v 6= λ for any λ ∈ R4
1,

where Gλ(v) = G(v,λ). Given X ∈ Embsp (U,R4
1), we have G = G ◦ (X × idR4

1
). We also

have the `-jet extension

j`
1G : U × R4

1 −→ J `(U,R)

defined by j`
1G(u,λ) = j`gλ(u), where we write G(u,λ) = gλ(u). Consider the trivi-

alization J `(U,R) ≡ U × R × J `(2, 1). For any submanifold Q ⊂ J `(2, 1), we denote

Q̃ = U × {0} ×Q. Then we have the following proposition as a corollary of Lemma 6 in

Wassermann [18]. (See also Montaldi [16]).

Proposition 5.1 Let Q be a submanifold of J `(n− 1, 1). Then the set

TQ = {X ∈ Embsp (U,R4
1) | j`

1G is transversal to Q̃ }

is a residual subset of Embsp (U,R4
1). If Q is a closed subset, then TQ is open.

On the other hand, we have a stratification given by the set of K-orbits in J `(2, 1) \
W `(2, 1) (For the definition of W `(2, 1) and additional properties, refer to [5], Page 120).

As a consequence of the above proposition, we have the following theorem.

Theorem 5.2 There exists an open dense subset O ⊂ Embsp (U,R4
1) such that for any

X ∈ O, the germ of the Legendrian lift of the corresponding lightlike hypersurface LH±
M

at each point is Legendrian stable.

By the classification results on stable Legendrian mappings, we have the following

Corollary 5.3 There exists an open dense subset O ⊂ Embsp (U,R4
1) such that for any

X ∈ O, the germ of the corresponding lightlike hypersurfaces LH±
M at any point (x, y, u) ∈

U×R is A-equivalent to one of the map germs Ak (1 ≤ k ≤ 4) or D±
4 : where, Ak, D

±
4 -map

germ f : (R3, 0) −→ (R4, 0) are given by

(A1) f(u1, u2, u3) = (u1, u2, u3, 0),

(A2) f(u1, u2, u3) = (3u2
1, 2u

3
1, u2, u3),

(A3) f(u1, u2, u3) = (4u3
1 + 2u1u2, 3u

4
1 + u2u

2
1, u2, u3),

(A4) f(u1, u2, u3) = (5u4
1 + 3u2u

2
1 + 2u1u3, 4u

5
1 + 2u2u

3
1 + u3u

2
1, u1, u2),

(D+
4 ) f(u1, u2, u3) = (2(u2

1 + u2
2) + u1u2u3, 3u

2
1 + u2u3, 3u

2
2 + u1u3, u3),

(D−
4 ) f(u1, u2, u3) = (2(u3

1 − u1u
2
2) + (u2

1 + u2
2)u3, u

2
2 − 3u2

1 − 2u1u3, u1u2 − u2u3, u3).
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Proof. By Theorems 5.2 and A.3, the Lorentzian distance squared function G is a K-

versal deformation of gλ0 at each (x0, y0,λ0) ∈ U ×R. Therefore we can apply the generic

classification of K-versal deformations F (x, y,λ) of function germs up to 4-parameters [1].

For any F (x, y,λ), we define

Σ∗(F ) =
{

(x, y,λ)
∣∣∣ F (x, y,λ) =

∂F

∂x
(x, y,λ) =

∂F

∂y
(x, y,λ) = 0

}

(cf. the appendix). The normal forms are given by

F (x, y,λ) = xk+1 ± y2 + λ1 + λ2x+ · · ·+ λk−1x
k−1, 1 ≤ k ≤ 4,

F (x, y,λ) = x3 + y3 + λ1 + λ2x+ λ3y + λ4xy,

F (x, y,λ) = x3 − xy2 + λ1 + λ2x+ λ3y + λ4(x
2 + y2).

For example, if we consider the germ given by

F (x, y,λ) = x3 + y3 + λ1 + λ2x+ λ3y + λ4xy.

Then we get

Σ∗(F ) = {(x, y, 2(x3 + y3) + λ4xy,−3x2 − λ4y,−3y2 − λ4x, λ4) | (x, y, λ4) ∈ R3}.

Therefore the corresponding Legendrian map germ is

f(u1, u2, u3) = (2(u2
1 + u2

2) + u1u2u3, 3u
2
1 + u2u3, 3u

2
2 + u1u3, u3) (D+

4 ).

The other cases follow from similar arguments, so that we may leave the details to the

readers. ¤

By using the generic normal forms of generating families (i.e. Lorentzian distance

squared functions) and Corollary 4.4, we have the following

Corollary 5.4 There exists an open dense subset O ⊂ Embsp (U,R4
1) such that for any

X ∈ O, the germ of the corresponding tangent lightcone indicatrix at any point (x0, y0) ∈
U is diffeomorphic to one of the germs in the following list:

(1) {(x, y) ∈ (R2, 0) | x3 + y2 = 0 } (ordinary cusp)

(2) {(x, y) ∈ (R2, 0) | x4 ± y2 = 0 } (tachnode or point)

(3) {(x, y) ∈ (R2, 0) | x5 + y2 = 0 } (rhamphoid cusp)

(4) {(x, y) ∈ (R2, 0) | x3 − xy2 = 0 } (three lines)

(5) {(x, y) ∈ (R2, 0) | x3 + y3 = 0 } (line)

Proof. We have the same generic normal forms of generating families (i.e. Lorentzian

distance squared function germs) at each point as in the above corollary. By Corollary 4.4,
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the corresponding lightcone tangent indicatrix germs are diffeomorphic to the zero-level

set of the function germ F |R2 × {0} of the list. For example, if the normal form is given

by

F (x, y,λ) = x3 + y3 + λ1 + λ2x+ λ3y + λ4xy,

then we have F |R2×{0} = x3 +y3, so that the corresponding lightcone tangent indicatrix

germ is diffeomorphic to the set germ (4) in the above list. ¤

6 The eikonal equation

As indirect motivation we will show how the construction above is naturally encountered

in solutions to the Minkowski eikonal equation:

−
(
∂S

∂x1

)2

+

(
∂S

∂x2

)2

+

(
∂S

∂x3

)2

+

(
∂S

∂x4

)2

= 0.

If the solution has a form S(x1, x2, x3, x4) = x1 − U(x2, x3, x4), we have a solution of the

Euclidean eikonal equation:

(
∂U

∂x2

)2

+

(
∂U

∂x3

)2

+

(
∂U

∂x4

)2

= 1.

The graph of the solution U can be interpreted as a level set of S. If we consider a surface

in Euclidean space as an initial manifold of the above Euclidean eikonal equation, we can

obtain such a solution.

Let π : T ∗(R4
1) −→ R4

1 be the cotangent bundle overR4
1 and ((x1, x2, x3, x4), (p1, p2, p3, p4))

be the canonical coordinate system such that for a single valued solution S we have

pi = ∂S/∂xi. Therefore the above eikonal equation can be viewed as a family of cones in

T ∗(R4
1) given by the following equation:

H(x1,x, p1,p) =
1

2
(−p2

1 + p · p) =
1

2
(−p2

1 + p2
2 + p2

3 + p2
4) = 0,

where x = (x2, x3, x4) and p = (p2, p3, p4). The singularities of the hypersurface H−1(0)

correspond to the zero section R4
1×{0} of the cotangent bundle. Consider the 1-form on

T ∗(R4
1) given by

θ = −p1dx1 + p · dx,
where p·dx =

∑4
i=2 pidxi.We can show that θ|H−1(0) is a contact form on the nonsingular

part of H−1(0). If we consider a surface X(U) = M in Euclidean 3-space R3 = {x =

(0, x2, x3, x4) | x ∈ R4 } and the unit normal vector n(x, y), then the surface `(x, y) =

(0,X(x, y), 1,n(x, y)) in T ∗R4
1 lies in the hypersurface H−1(0). Since n(x, y) is the normal
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vector of M, we have `∗θ = n(x, y) · dX(x, y) = 0. This means that the surface `(x, y)

is an integral submanifold of θ|H−1(0). Moreover, the Hamiltonian vector field along the

surface `(x, y) is given by

XH = − ∂

∂x1

+ n(x, y) · ∂
∂x

.

It follows that we have a Cauchy problem for the level surface of a solution to the PDE

H(x1,x, p1,p) = 0 with the initial submanifold `(x, y). We can apply the characteristic

method to obtain the level hypersurface of a multi-valued solution which is a Legendrian

submanifold of H−1(0). In general, the level hypersurface of the solution to this Cauchy

problem is the lightlike hypersurface. To see this, consider the 3-dimensional submanifold

defined by

L(x, y, u) = (u,X(x, y) + un(x, y), 1,n(x, y))

in T ∗R4
1. Since n(x, y) is a unit vector, we have n(x, y) · dn(x, y) = 0, so that

L∗θ = −du+ n(x, y) · dX(x, y) + du+ n(x, y) · dn(x, y) = 0.

Therefore L is a Legendrian embedding. It is clear that ImageL ⊂ H−1(0). Moreover, if

we set e1(x, y) = (1, 0, 0, 0) and e2(x, y) = n(x, y), then we have the lightlike hypersurface

defined by

LH±
M(x, y, u) = X(x, y) + u(e1 ± e2)(x, y).

We remark that ˜(e1 ± e2)(x, y) = (e1 ± e2)(x, y) in this case. Therefore, the above Leg-

endrian embedding L is the Legendrian lift of the lightlike hypersurface LH±
M . Since the

simultaneity has no meanings in the theory of relativity, we might consider spacelike sur-

faces as initial submanifolds for the above Minkowski eikonal equation instead of surfaces

in Euclidean space. Moreover, we have examples of lightlike hypersurface which cannot

be constructed from a regular surface in R3 ([9, 10]).

On the other hand, the Minkowski eikonal equation defines a hypersurface H−1(0)×R
in the 1-jet space J1(R4

1,R) ∼= T ∗R4
1 × R on which the canonical contact structure is

given by dz − θ, where (x,x, p,p, z) is the canonical coordinate system of J1(R4
1,R). Un-

der this framework, the Legendrian lift of each lightlike hypersurface in H−1(0) gives a

non-characteristic initial data for the Cauchy problem of the Minkowski eikonal equa-

tion. Therefore we obtain the multivalued solution of the Cauchy problem by applying

the characteristic method which is a Legendrian submanifold of J1(R4
1,R) belonging to

H−1(0)×R. It follows that a general lightlike hypersurface can be considered as the level

set of a multivalued solution of the Minkowski eikonal equation.

We have another interpretation as follows: Observe that there is a natural spherical

blow up the 7-dimensional cone bundle { H = 0 } in T ∗R4
1 defined by

R4
1 × R× S2 −→ T ∗R4

1,
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where (x1,x, t, θ) 7−→ (x1,x, t(1, θ)), t ∈ R, θ ∈ S2. The characteristic line field and the

canonical 1-form θ pullback to the cylinder bundle with removable zero points. It follows

that the Cauchy problem can be extended to the initial submanifold which intersects the

zero section in { H = 0 } ∈ T ∗R4
1. Moreover, there exist C∞-foliations of R3 with mild

singularities which generate well posed initial data. For example, consider a foliation by

level surfaces f(x) = c possibly with critical points. Then the initial data

x −→ (0,x,
√

1− ‖dfx‖, dfx)

will generate a 4-dimension submanifold in { H = 0 } which is a family of multivalued

3-dimension Legendrian submanifolds in { H = 0 } (i.e. a multivalued solution) on

the complement of the critical points. For special cases of f(x) = c, this 4-manifold

has a C∞-immersive extension to the missing points. In any case each nonsingular level

surface f(x) = c generates a lightlike hypersurface as in the above paragraph. These

hypersurfaces are the “level 3-manifolds” of the multivalued solution.

7 Lightlike hypersurface singularities in curved space-

times

Let g denote a C∞-Lorentzian (pseudo) Riemannian metric on a neighbourhood of the

origin in R4. We may choose local normal coordinates ([17], Proposition 33) so that the

components gij of g satisfy

gij ≡ δijεj modM2,

where ε1 = −1 and εj = 1, j 6= 1. Recall that the conformal metric cg, 0 < c ∈ R has the

same unparametrized null geodesics as the original metric g. As in Section 2 the lightlike

hypersurfaces of g consist of two parameter families of null geodesics. It follows that a

lightlike hypersurface for cg is also lightlike for g. Hence via pullback over the dilation

dc : R4 −→ R4 , x 7−→ 1/
√
cx, for all c > 0, we see that g has the same lightlike

hypersurface singularities (near the origin in R4) as the metric

d∗c(cgij) = δij +
1

c
(4th order terms).

Thus, for sufficiently large c, we may use the generic nature of the results in Sections 4 and

5 to conclude that Corollary 5.3 is also valid for an open dense set of C∞ embeddings U −→
(R4, g). In other words, on a sufficiently small neighbourhood in any smooth Lorentzian

4-manifold, there exist stable lightlike hypersurface singularities as in Minkowski space.
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Appendix Generating families

Here we give a quick survey on the theory of Legendrian singularities mainly developed

by Arnol’d-Zakalyukin [1, 19]. Let F : (Rk × Rn,0) −→ (R,0) be a function germ. We

say that F is a Morse family if the map germ

∆∗F =

(
F,
∂F

∂q1
, . . . ,

∂F

∂qk

)
: (Rk × Rn,0) −→ (R× Rk,0)

is submersive, where (q, x) = (q1, . . . , qk, x1, . . . , xn) ∈ (Rk × Rn,0). In this case we have

a smooth (n− 1)-dimensional submanifold

Σ∗(F ) =
{

(q, x) ∈ (Rk × Rn,0)
∣∣∣ F (q, x) =

∂F

∂q1
(q, x) = · · · = ∂F

∂qk
(q, x) = 0

}

and the map germ ΦF : (Σ∗(F ),0) −→ PT ∗Rn defined by

ΦF (q, x) =

(
x,

[
∂F

∂x1

(q, x) : · · · : ∂F
∂xn

(q, x)

])

is a Legendrian immersion. Then we have the following fundamental theorem in the

theory of Legendrian singularities ([1] §20.7 [19], Page 27).

Proposition A.1 All Legendrian submanifold germs in PT ∗Rn are constructed by the

above method.

We call F a generating family of ΦF , and the corresponding wave front is W (ΦF ) =

πn(Σ∗(F )), where πn : Rk × Rn −→ Rn is the canonical projection.

We now introduce an equivalence relation among Legendrian immersion germs. Let i :

(L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian immersion germs. Then

we say that i and i′ are Legendrian equivalent if there exists a contact diffeomorphism germ

H : (PT ∗Rn, p) −→ (PT ∗Rn, p′) such that H preserves fibers of π and that H(L) = L′.

A Legendrian immersion germ into PT ∗Rn at a point is said to be Legendrian stable if

for every map with the given germ there is a neighbourhood in the space of Legendrian

immersions (in the Whitney C∞ topology) and a neighbourhood of the original point such

that each Legendrian immersion belonging to the first neighbourhood has in the second

neighbourhood a point at which its germ is Legendrian equivalent to the original germ.

Since the Legendrian lift i : (L, p) ⊂ (PT ∗Rn, p) is uniquely determined by the regular

part of the wave front W (i), we have the following simple but significant property of

Legendrian immersion germs:

Proposition A.2 Let i : (L, p) ⊂ (PT ∗Rn, p) and i′ : (L′, p′) ⊂ (PT ∗Rn, p′) be Legendrian

immersion germs such that regular sets of π ◦ i and π ◦ i′ are dense respectively. Then i, i′

are Legendrian equivalent if and only if wave front sets W (i),W (i′) are diffeomorphic as
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set germs. Here π : PT ∗Rn −→ Rn is the canonical projection of the projective cotangent

bundle.

This result has been firstly pointed out by Zakalyukin ([20], Assertion 1.1). In his

original assertion, he assume that the representatives of π◦i and π◦i′ are proper. However,

we remark that we can get rid of such an assumption. The assumption in the above

proposition is a generic condition for i, i′. In particular, if i and i′ are Legendrian stable,

then these satisfy the assumption.

We can interpret the Legendrian equivalence by using the notion of generating families.

We denote by En the local ring of function germs (Rn,0) −→ R with the unique maximal

ideal Mn = {h ∈ En | h(0) = 0 }. Let F,G : (Rk × Rn,0) −→ (R,0) be function

germs. We say that F and G are P -K-equivalent if there exists a diffeomorphism germ

Ψ : (Rk × Rn,0) −→ (Rk × Rn,0) of the form Ψ(x, u) = (ψ1(q, x), ψ2(x)) for (q, x) ∈
(Rk × Rn,0) such that Ψ∗(〈F 〉Ek+n

) = 〈G〉Ek+n
. Here Ψ∗ : Ek+n −→ Ek+n is the pull back

R-algebra isomorphism defined by Ψ∗(h) = h ◦Ψ .

Let F : (Rk × Rn,0) −→ (R,0) be a function germ. We say that F is a K-versal

deformation of f = F |Rk × {0} if

Ek = Te(K)(f) +

〈
∂F

∂x1

|Rk × {0}, . . . , ∂F
∂xn

|Rk × {0}
〉

R
,

where

Te(K)(f) =

〈
∂f

∂q1
, . . . ,

∂f

∂qk
, f

〉

Ek

.

(See [12].) The main result in the theory ([1], §20.8 and [19], THEOREM 2) is the

following:

Theorem A.3 Let F,G : (Rk × Rn,0) −→ (R, 0) be Morse families. Then

(1) ΦF and ΦG are Legendrian equivalent if and only if F, G are P -K-equivalent, and

(2) ΦF is Legendrian stable if and only if F is a K-versal deformation of F | Rk×{0}.

Since F and G are function germs on the common space germ (Rk × Rn,0), we do

not need the notion of stably P -K-equivalences under this situation (cf. [19], Page 27).

By the uniqueness result of the K-versal deformation of a function germ, we have the

following classification result of Legendrian stable germs (cf. [6]). For any map germ

f : (Rn,0) −→ (Rp,0), we define the local ring of f by Q(f) = En/f
∗(Mp)En.

Proposition A.4 Let F and G : (Rk×Rn,0) −→ (R, 0) be Morse families. Suppose that

ΦF and ΦG are Legendrian stable. The the following conditions are equivalent.

(1) (W (ΦF ),0) and (W (ΦG),0) are diffeomorphic as germs.

(2) ΦF and ΦG are Legendrian equivalent.
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(3) Q(f) and Q(g) are isomorphic as R-algebras,

where f = F |Rk × {0}, g = G|Rk × {0}.
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