Hydration of alkali ions from first principles molecular dynamics revisited

Takashi Ikeda
Synchrotron Radiation Research Unit, Quantum Beam Science Directorate (QuBS), Japan Atomic Energy Agency (JAEA), 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan

Mauro Boero
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Ibaraki 305-8577, Japan and CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Kiyoyuki Terakura
Division of Frontier Research, Creative Research Initiative “Sousei,” Hokkaido University, Kita 21, Nishi 10, Sapporo 001-0021, Japan

(Received 16 October 2006; accepted 29 November 2006; published online 16 January 2007)

Structural and dynamical properties of the hydration of Li+, Na+, and K+ in liquid water at ambient conditions were studied by first principles molecular dynamics. Our simulations successfully captured the different hydration behavior shown by the three alkali ions as observed in experiments. The present analyses of the dependence of the self-diffusion coefficient and rotational correlation time of water on the ion concentration suggest that Li+ (K+) is certainly categorized as a structure maker (breaker), whereas Na+ acts as a weak structure breaker. An analysis of the relevant electronic structures, based on maximally localized Wannier functions, revealed that the dipole moment of H2O molecules in the first solvation shell of Na+ and K+ decreases by about 0.1 D compared to that in the bulk, due to a contraction of the oxygen lone pair orbital pointing toward the metal ion.

I. INTRODUCTION

The importance of the hydration of metal ions stems from its fundamental role in a wide variety of chemical and biological systems. This issue dates back to the early 1930s, and since then a wide range of experiments have been performed by utilizing elaborate techniques to unravel the most important points, such as ion-water distance, hydration structure, dynamical properties of hydrated ions, etc. Such a wealth of knowledge can be found in well assessed monographs1–4 and review articles5,6 in major scientific journals.

In particular, alkali ions deserve special attention, especially sodium and potassium, since they are abundant in natural waters and play a special role in biochemistry. The concentration of Na+ and K+ in sea water amounts to about 460 and 10 mM, respectively.7 Analogously, the concentration of Na+ and K+ outside a mammalian blood cell is very close to what is found in sea water, whereas their concentrations are, in a rough approximation, reversed inside the cell. Due to these peculiarities, sodium and potassium ions are classified as major components of the human (and mammals) body, constituting about 1% of our weight, along with Mg and Ca ions.

Despite decades of efforts, the microscopic details concerning the solvation shells of these ions still escape accurate experimental investigations. Yet, in view of the emerging field of nanobiotechnology, their detailed atomistic picture is of fundamental importance. Experimental uncertainties in determining the hydration structure of Na+ and K+ are due to a number of reasons. One of these reasons is the ion-water distance, which is very close to the oxygen-oxygen distance in bulk water, especially for K+. This makes it very difficult to separate structure factors and pair correlation functions, as provided by x-ray and neutron diffraction experiments, of the different species. Another difficulty is represented by the inherent flexibility of the solvation shells of both ions. Water exchange is likely to occur between the first and second solvation shells at the rate of a few picoseconds or less. This indicates that the solvation shells of Na+ and K+ are not well defined, contrary, for instance, to the rather rigid hydration shell of Li+, whose experimental investigation is much less problematic.

In principle, molecular dynamics (MD) simulations can help to fill the gap represented by these experimental limitations and could provide an atomistic insight into the structure and dynamics of the solvation shell. In this respect, first principles MD, proposed by Car and Parrinello more than 20 years ago,8 is a well assessed method nowadays routinely used to complement experimental data and to predict a variety of physical and chemical properties (see, e.g., Ref. 9 and references therein). The major advantages rely on the fact that this approach is particularly suited for investigating fast phenomena accompanied by changes in the electronic structure; it does not require any predefined force fields but forces acting on the atoms are computed on the fly from quantum mechanics within the density functional theory (DFT) formulation.10

Since the pioneering first principles MD for the solvated Be2+ in water was reported,11 its application for ionic hydration has been extended to many metal ions including Mg2+ (Ref. 12), Al3+ (Ref. 13), Ca2+ (Ref. 14), etc. Former first principles MD simulations for Li+ (Ref. 15), Na+ (Refs. 16
and 17), and K⁺ (Ref. 18) successfully described the structure of first solvation shell of these alkali ions and also observed several water-exchange processes for Na⁺ and K⁺ in a simulation time of ~2 ps. However, such a very short time, affecting all previous simulations, prevented any estimate of dynamical quantities. Indeed, this is an issue that has been extensively discussed in recent works19-23 and that is now rather clear to the scientific community. Recent advancement in computer resources allows nowadays to perform simulations for a much longer time scale, namely one order of magnitude longer, than the past. This, in turn, enables us to estimate dynamical quantities such as self-diffusion coefficient, rotational correlation time, etc., at least at a semi-quantitative level.

In this work we studied systematically the structure of the hydration shells of Li⁺, Na⁺, and K⁺ using first principles MD. The self-diffusion coefficient and rotational correlation time of water molecules in aqueous solutions of the three alkali ions were then estimated to examine their dependence on the ion concentration, which is known to be peculiar to each ionic species. In particular, we focus on the relationship among molecular orientation, formation of hydrogen bonds, and polarization of water molecules. These features allow for a detailed inspection of the differences in the hydration of the three alkali ions.

The remainder of the paper is organized as follows. In Sec. II we describe the computational method including some technical details relevant to the present study. In Sec. III the structural properties of the first solvation shell and dynamics of water molecules in the aqueous solutions are discussed in detail and supported by an analysis of the polarization effect on hydration water molecules. Finally, in Sec. IV we draw some conclusions.

II. COMPUTATIONAL DETAILS

We performed Car-Parrinello8 MD simulations of alkali ions in liquid water at ordinary density (1.0 g/cm³) and temperature (T = 300 K) within DFT,10 including gradient corrections to the exchange-correlation functional after Hamprecht-Cohen-Tozer-Handy24 (HCTH). The performance of this particular functional for liquid water and solution systems has already been investigated and assessed in previous works.25-27 The valence-core interaction was described by norm-conserving Troullier-Martins pseudopotentials28 for Na, K, and O, a Goedecker-Teter-Hutter type pseudopotential30 for Li, and a von Barth-Car analytical pseudopotential31 for H. The pseudopotentials for Na and K were generated by including semicore states; the 2s and 2p semicore states of a sodium ion were treated as valence states and the core radius of 1.0 Å was used for pseudization of both the s and p channels. For potassium, the 3s and 3p states were also treated as valence states; core radii of 1.2, 1.2, and 1.5 Å were used for pseudization of s, p, and d channels, respectively. Valence orbitals were expanded in a plane wave (PW) basis set with an energy cutoff of 80 Ry. Periodic boundary conditions on the simulation cell were applied and the Brillouin zone was sampled at the Γ point only. The equations of motion were integrated with a time step of 4 a.u. (0.0968 fs) using a fictitious electron mass of 400 a.u.; these values of the simulation parameters have already been shown to be crucial to obtain reliable static and dynamical properties19-20 and to keep Car-Parrinello trajectories close to the Born-Oppenheimer surface.33 Our pseudopotential-based PW-DFT approach was validated by auxiliary all-electron calculations in order to provide a careful check of the ion-oxygen distances d and related hydration energies ∆E for M⁺H₂O complexes (M = Li, Na, and K). As shown in Table I, the PW-DFT results agree excellently with the corresponding estimate made with a standard quantum chemistry method at the MP2/6-311++G(d,p) level of theory.32

The dependence of dynamical quantities upon the concentration of the metal ions was examined by performing the two different simulations for each metal species. The first set of simulations were performed on systems consisting of one metal ion plus 63 water molecules in a periodically repeated cubic box of side L = 12.417 Å. The second set of calculations, instead, were done for an identical simulation cell containing two metal ions and 62 water molecules; namely, one of the solvent H₂O molecules was replaced by a second metal ion, thus doubling the ion concentration. Note that this replacement leads to the systematic decrease of the computed pressure with respect to the first set by 190 MPa in the case of Li⁺ to 90 MPa in the case of K⁺. We remark, however, that this decrease of the computed pressure is accompanied by the large fluctuations of ~300 MPa due presumably to the small system size. Therefore, the changes in pressure we estimated are on the verge of the accuracy of present PW-DFT calculations.34 The excess charge of both samples was compensated by a uniform background charge instead of adding a counterion explicitly. After equilibrating the system at 300 K for about 2 ps the trajectories were collected for 40 ps. All the simulations were done on a (N, V, T) canonical ensemble in which the temperature (T = 300 K) was controlled by a Nosé-Hoover thermostat35,36 and performed with the CPMD package.37

III. RESULTS AND DISCUSSION

A. Structural properties

One of the basic questions relevant to the characterization of the hydration of a metal ion is the (average) ion-water distance. This information is extracted both experimentally and computationally from the radial distribution functions
(RDF). For the case of Li\(^+\), the outcome of our simulation is summarized in Fig. 1 where the RDFs \(g_{\text{LiO}}(r)\), \(g_{\text{LiH}}(r)\), \(g_{\text{OO}}(r)\), and \(g_{\text{OH}}(r)\) are shown. The first peak of \(g_{\text{LiO}}(r)\) is located at 1.99 Å, about 0.1 Å longer than the Li–O distance in Table I; this turns out to be in good agreement with the available experimental data of Kameda et al. (1.96 Å).\(^{38}\) The second peak of \(g_{\text{LiO}}(r)\) is well separated from the first peak, which is noticeably different from the corresponding RDF of Na\(^+\) and K\(^+\) shown in Figs. 2(a) and 3(a), respectively. As far as sodium is concerned, we remark that the position of the first peak (2.40 Å, about 0.11 Å longer than the Na–O distance in Table I) of \(g_{\text{NaO}}(r)\) matches very well the experimental data of Skipper and Neilson\(^{39}\) (2.39 Å), and Kameda et al.\(^{40}\) (2.40 Å).

In the case of potassium, as shown in Fig. 3(a), the first peak of \(g_{\text{KCl}}(r)\) centered at 2.85 Å (about 0.2 Å longer than the K–O distance in Table I) is affected by a considerable broadening compared to the corresponding peak of \(g_{\text{LiO}}(r)\) and \(g_{\text{NaO}}(r)\). Both x-ray and neutron diffraction experiments\(^{41,42}\) for KCl aqueous solutions give a potassium-oxygen distance of 2.8 Å in rather good agreement with our theoretical result. Note that the first peak of \(g_{\text{KO}}(r)\) is located at almost the same position as the first peak of \(g_{\text{OO}}(r)\) shown in Fig. 3(c). As mentioned in the introduction, this coincidence represents a serious obstacle in extracting detailed information on the hydration of K\(^+\) from the experimental diffraction data. In this respect, simulations play a crucial role in disentangling the two contributions.

The coordination number \(N_{\text{coord}}\) of Li\(^+\) with H\(_2\)O molecules forming its first solvation shell does not undergo noticeable fluctuations, which originates from the well defined first peak of the corresponding RDF. As a consequence, \(N_{\text{coord}}\) takes the unambiguous value of 4.0. On the contrary, the determination of \(N_{\text{coord}}\) for the other two ions from the integrated radial distribution functions is more problematic due to the lack of a clear plateau in the running coordination number of Na\(^+\) and K\(^+\) with oxygen atoms, shown as dashed lines in Figs. 2(a) and 3(a), respectively. In an attempt at removing such ambiguities, hydration water molecules are identified in this work by adopting three different geometrical cut-off distances between the ion and water oxygen for Na\(^+\) and K\(^+\). The cutoff distances used were 3.1, 3.2, and 3.3 Å for Na\(^+\) and 3.6, 3.7, and 3.8 Å for K\(^+\). As can be inferred from Figs. 2(a) and 3(a), these values belong to the range in which \(g_{\text{NaO}}(r)\) and \(g_{\text{KCl}}(r)\) have their first minimum. The corresponding distributions of the instantaneous coordination

![FIG. 1. Radial distribution functions (a) \(g_{\text{LiO}}(r)\), (b) \(g_{\text{LiH}}(r)\), (c) \(g_{\text{OO}}(r)\), and (d) \(g_{\text{OH}}(r)\) for Li\(^+\) in liquid water. The dashed line in each panel represents the corresponding running coordination number \(n(r)\).](image1)

![FIG. 2. Radial distribution functions (a) \(g_{\text{NaO}}(r)\), (b) \(g_{\text{NaH}}(r)\), (c) \(g_{\text{OO}}(r)\), and (d) \(g_{\text{OH}}(r)\) for Na\(^+\) in liquid water. The dashed line in each panel represents the corresponding running coordination number \(n(r)\).](image2)
numbers n for Na$^+$ and K$^+$ are shown in Fig. 4. It is quite evident that the distribution of the instantaneous coordination number for K$^+$ is much more sensitive to the geometrical criteria adopted than that for Na$^+$. Therefore, K$^+$ requires special care in order to draw any sound conclusion about its hydration properties. The coordination number of Na$^+$ was estimated in this way turns out to be 5.2±0.1 in good agreement with x-ray data. The error bar ±0.1 corresponds to the estimated in this way turns out to be 5.2±0.1 in good agreement with x-ray data. Note that our estimated coordination number for Na$^+$ is smaller than that obtained by the majority of the classical molecular simulations are insufficient to describe the hydration of simple metal cations.

A typical average hydration structure of Na$^+$ and K$^+$ in the dominant coordination is shown in Fig. 5 along with the rather rigid hydration structure of Li$^+$. As shown in Figs. 5(a) and 5(b) the hydration structure of Li$^+$ and Na$^+$ can be assigned, respectively, as tetrahedral and distorted trigonal bipyramid (or square pyramidal) structure, while for K$^+$ the hydration structure cannot be characterized by a definite geometry. This observation suggests that the hydration of K$^+$ may be much more sensitive to the environment surrounding the ion than that of the other two cations.

The first solvation shell of water molecules around Li$^+$ is rather rigid and is preserved at least over the 40 ps time scale of our simulation. Nonetheless, these hydration waters cannot be distinguished from other water molecules of the solvent by a simple inspection of the intramolecular structure. Figure 6 shows the distribution of the OH bond length r_{OH} and HOH bond angle θ_{HOH} of hydration water molecules for Li$^+$ (top panels), Na$^+$ (middle panels), and K$^+$ (bottom panels). The water molecules composing the first solvation shell show basically the same distribution for both the OH bond length and the HOH bond angle as the rest of the solvent. The rather tiny differences that can be observed are in sharp contrast with the case of multivalent cations. For instance, a small multivalent cation such as Al$^{3+}$ displays a clear difference in r_{OH} and θ_{HOH} between H$_2$O molecules in the first solvation shell and bulk water.

A further insight is offered by the direction of the molecular dipole moments. Namely, the tilt angle ψ between the dipole vector of an H$_2$O molecule and an ideal reference vector pointing from the water oxygen to the metal cation—sketched in Fig. 7—is determined by a delicate balance between the ion-water interactions and the hydrogen bonds formed by water molecules belonging to the first and second solvation shells. The tilt angle ψ is found to take on average 141°, 134°, and 124° for Li$^+$, Na$^+$, and K$^+$, respectively, thus showing a clear tendency for the tilt angle ψ to decrease from Li$^+$ to K$^+$. A large amount of hydration water molecules having $\psi<90^\circ$ are also observed for K$^+$. The rather large tilting allows hydration water molecules to form three hydrogen bonds (H-bonds) per molecule with nearby H$_2$O monomers, as will be discussed in more detail in Sec. III C. One of these H-bonds is of the acceptor type, while the remaining two are donor type.

All the structural properties discussed above corroborate the general picture of a weaker hydration for K$^+$.
then infer that, from an energetics point of view, the ion-water interactions for K^+ are competitive with the H-bond formation as opposed to the stronger interactions in the case of Li^+.

B. Dynamical properties

The influence of the different hydration behavior of the alkali ions is remarkable when we consider dynamical properties, rather than the static average picture of the hydration structures. In particular, the self-diffusion coefficient and the rotational correlation time of water molecules in the presence of solute ions provide an evident influence of the solute on the behavior of the solvent.

Figure 8 shows the dependence of the mean square displacement (MSD) of H_2O molecules on the ion concentration for our simulated aqueous solutions. By increasing the ion concentration, water molecules become less diffusive in the case of Li^+, at variance with K^+, where their diffusivity definitely increases. The behavior of Na^+ in our simulation is qualitatively similar to that of K^+ but the concentration dependence is much weaker. In Table II the self-diffusion coefficients D_{theory} estimated from the slope of the MSD for water molecules and the metal ion are reported along with the experimental data D_{exp} measured on aqueous solutions of alkali chlorides at the concentration shown in parentheses. As a reference for further discussion, we have also calculated the self-diffusion coefficient of bulk water with the ordinary liquid density (1.0 g/cm3) by performing a 20 ps CPMD run on a 64 H_2O molecules system in the same simulation cell used for the alkali ion solutions and obtained D_{theory} = 1.41 $\times 10^{-5}$ cm2/s.44 Although our simulations underestimate the self-diffusion coefficient D of water molecules by a factor of about 2, they are able to reproduce rather well the qualitative aspects despite the absence of explicit counter anions in our simulation cell. In particular, the decrease (increase) of the self-diffusion coefficient upon high concentration of Li^+ (K^+) is correctly reproduced by the simulations if compared to D_{theory} for bulk water. However, we have to stress that the ion concentration dependence is likely to be overestimated pre-

![Figure 5](image1.png)
FIG. 5. Typical hydration structure for (a) Li^+, (b) Na^+, and (c) K^+. The hydration structure of Li^+ and Na^+ shown in (a) and (b) can be assigned as tetrahedral and distorted trigonal bipyramid (or square pyramidal) structure, respectively. The hydration structure of K^+ cannot be characterized by a definite geometry.

![Figure 6](image2.png)
FIG. 6. Distribution of the OH bond length r_{OH} (left) and the HOH bond angle θ_{HOH} (right) of hydration water molecules. For comparison, the corresponding distributions for the bulk are shown as dashed lines.

![Figure 7](image3.png)
FIG. 7. Distribution of the cosine of the tilt angle ψ between the dipole vector of hydration water molecule and the vector pointing from water oxygen to the metal ion. Open circles, squares, and triangles refer to the cases of Li^+, Na^+, and K^+ aqueous system, respectively.
sumably due to finite size effects induced by the small simulation box. As for the diffusion of the alkali ions, our rough estimate of the self-diffusion coefficients interestingly suggests that the diffusive motion of potassium ions is significantly enhanced at high concentrations.

The peculiar ion concentration dependence discussed above is also found in the reorientational motion of water molecules in alkali ion solutions. Figure 9 shows the orientational autocorrelation functions \(C_{HH}^{2}(t) = \langle P_{2}(\mathbf{e}(t) \cdot \mathbf{e}(0)) \rangle \) of solvent water molecules composing our solutions. Here, \(\mathbf{e} \) is a unit vector along the HH vector connecting two H atoms of the \(i \)th water molecule, and \(P_{2}(-) \) is the second Legendre function. Correlated with the diffusive motion, the reorientational motion of water molecules is suppressed for \(\text{Li}^{+} \) by increasing the ion concentration, while for \(\text{Na}^{+} \) and \(\text{K}^{+} \) it is enhanced. The rotational correlation time \(\tau_{2R} \) can be easily estimated from the decay rate of \(C_{HH}^{2}(t) \) and turns out to be 4.2, 4.6, and 4.8 ps for low concentration solutions of \(\text{Li}^{+} \), \(\text{Na}^{+} \), and \(\text{K}^{+} \), respectively. When we increased the concentration by adding one more metal ion, \(\tau_{2R} \) changed as 4.8, 3.1, and 3.3 ps for \(\text{Li}^{+} \), \(\text{Na}^{+} \), and \(\text{K}^{+} \), respectively. Note that the theoretical value of \(\tau_{2R} \) for bulk water, estimated in exactly the same way, is \(\tau_{2R} \approx 3.5 \) ps, which is roughly twice the values reported in the literature.6

In accordance to the underestimation of the self-diffusion coefficient \(D \) of water molecules, the rotational correlation time \(\tau_{2R} \) of water molecules is likely to be overestimated. Nonetheless, our simulations are able to capture the qualitative difference in the dynamics of the solvent \(\text{H}_{2}\text{O} \) molecules induced by the presence of solute alkali ions. More specifically, \(\text{Li}^{+} \) in water at ambient conditions suppresses the diffusivity and the rotational motion of water molecules, whereas \(\text{K}^{+} \) enhances these motions. Consequently, the residence time \(\tau_{res} \) of water molecules in the first shell of \(\text{K}^{+} \) (\(\tau_{res} \approx 10 \) ps) roughly estimated by following the prescription of Impey et al.45 is much smaller than that of \(\text{Li}^{+} \) (\(\tau_{res} > 40 \) ps). These confirm the structure-making (-breaking) effects of \(\text{Li}^{+} \) (\(\text{K}^{+} \)) postulated on the basis of experimental data.46 Our simulations also suggest that \(\text{Na}^{+} \) enhances the diffusive and rotational motions of water molecules in a way not too different from \(\text{K}^{+} \). This is in contrast with the usual classification of \(\text{Na}^{+} \) as a structure-breaker cation. This apparent discrepancy could be mainly attributed to the following two problems in the present simulation. One is that as shown by recent extensive studies,19,20,23 the first principles MD based on the present GGA level of theory gives the slightly overstructured oxygen-oxygen correlation function and slow dynamics of water molecules compared to experiment (see Table II). This aspect may bias metal ions toward structure breakers. Another is the absence of anions in our simulation systems. Anions will affect the water dynamics and also may modify the role of cations. Inclusion of anions in the simulation will be an important future subject.

TABLE II. Self-diffusion coefficients \(D \) of water and metal ions for our aqueous systems with one alkali ion (1M*) and two alkali ions (2M*) compared. The experimental values \(D_{\text{exp}} \) were taken for aqueous solutions of alkali chlorides at the concentration in unit of M shown in parenthesis. (One alkali ion and two alkali ions in the present simulation correspond to about 0.9 and 1.8 M, respectively.) The theoretical value \(D_{\text{theor}} \) for bulk water was estimated as \(1.41 \times 10^{-5} \) cm\(^2\)/s from the slope of the mean-square displacement given in Fig. 8.

<table>
<thead>
<tr>
<th>System</th>
<th>Particle</th>
<th>(D_{\text{theor}}) (10(^{-5}) cm(^2)/s)</th>
<th>(D_{\text{exp}}) (10(^{-5}) cm(^2)/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1M*</td>
<td>2M*</td>
</tr>
<tr>
<td>Li(^+) (aq)</td>
<td>Water</td>
<td>1.24</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td>Li(^+)</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Na(^+) (aq)</td>
<td>Water</td>
<td>1.47</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>Na(^+)</td>
<td>0.3</td>
<td>1.4</td>
</tr>
<tr>
<td>K(^+) (aq)</td>
<td>Water</td>
<td>1.41</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>K(^+)</td>
<td>1.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

*Reference 56.

Reference 57.
C. Electronic properties

It is well known that the electric dipole moment of water molecules is sensitive to the environment\(^\text{21,47-49}\); experimentally, the molecular dipole moment\(^\text{26}\) of H\(_2\)O is 1.85 D in the gas phase\(^\text{50}\) and \(\mu=2.9\pm0.6\) D in the normal liquid state\(^\text{51}\). This trend holds also for hydration water molecules as demonstrated in the recent theoretical studies for various aqueous solutions\(^\text{11,12,14,52}\). In this respect, first principles simulations have been able to reproduce the variations of \(\mu\), whereas classical polarizable force fields are often inadequate\(^\text{53}\). Figure 10 shows the distribution of the molecular dipole moment of water calculated from maximally localized Wannier function centers\(^\text{47,54}\) for our aqueous solution containing one alkali ion. In Fig. 10 the water molecules contained in our systems are classified into three groups: the hydration water molecules in the first solvation shell, the ones in the second shell\(^\text{55}\), and the others. It turns out that only those water molecules that belong to the first solvation shell have such a dipole moment as is generally different from the rest of solvent. The average value of \(\mu\) of water molecules in the first shell results in 2.96, 2.81, and 2.77 D for Li\(^+\), Na\(^+\), and K\(^+\), respectively. On the other hand, the rest of water molecules in all our simulations keep basically the same dipole moment of 2.89, 2.88, and 2.90 D for Li\(^+\), Na\(^+\), and K\(^+\), respectively. Thus, the dipole moment of water molecules forming the first solvation shell of the alkali ions certainly show the tendency to decrease going from Li\(^+\) to K\(^+\).

Analyses of our simulations reveal that the dipole moment of water molecules in the first shell of Na\(^+\) and K\(^+\) decreases by \(\sim0.1\) D compared to that in the bulk liquid water. This prominent feature arises from the charge redistribution on the oxygen atoms of hydration H\(_2\)O molecules. This charge redistribution phenomenon can be visualized in terms of the shift of the WFCs. In the left panel of Fig. 11 we compare the distribution of the O-WFC distance \(r_{O-WFC}\) for water molecules belonging to the first solvation shell of the metal ions with that in the bulk. It is rather evident that the centroid of Wannier functions corresponding to the bonding orbitals coincides almost perfectly with that for the bulk. Let us recall here the analysis in Fig. 7 concerning the tilting of the molecular dipole vector with respect to the oxygen-metal axis. This tilt allows hydration H\(_2\)O monomers to form on average three hydrogen bonds per molecule as shown schematically in Fig. 12. Consequently, only one of

Fig. 10. Distribution of molecular dipole moments of waters calculated from maximally localized Wannier function centers for (a) Li\(^+\), (b) Na\(^+\), and (c) K\(^+\) aqueous solutions. The water molecules contained in our systems are classified into the hydration water molecules in the first shell, in the second shell, and the others intended as the rest of the solvent.

Fig. 11. (Left) Distribution of the O-WFC distance \(r_{O-WFC}\) for water molecules in the first solvation shell of the alkali ion (solid line) and in the bulk (dashed line). The corresponding scatter graphs in the plane of \(r_{O-WFC}, r_{M-WFC}\) are shown in right panel, where \(M=\text{Li, Na, and K}\). A data accumulation leading to a high density in the distribution is seen in the regions marked with arrows.
and K^+ in ambient liquid water via first principles molecular dynamics. Our simulations were able to reproduce the available experimental data regarding the structural properties of the solvation. A geometrically well defined hydration structure could be assigned to Li^+ and Na^+, leading to tetrahedral and distorted trigonal bipyramidal (or square pyramidal) structure, respectively. On the other hand, the hydration of K^+ seems more floppy than that of the former cases and a definite geometry could not be found. Furthermore, we evidenced that the large tilting of the dipole vector of hydration water molecules with respect to the oxygen-metal axis enables hydration water molecules to form on average three hydrogen bonds per molecule. As a consequence, one of lone pair orbitals pointing at the metal cation displays a significant influence on the hydration water molecule of the alkali ion. Hydrogen bonds are indicated by dashed lines.

The lone pairs have a significant influence on (or is influenced by) the alkali ion. Hence, the water lone-pair orbital directed toward the metal ion results to be contracted by the weaker interaction than a normal H-bond typical of bulk water. This picture emerges from the distribution of WFCs mapped onto the space spanned by the two distances $r_{O\cdot\·
We also noticed that our first set of Li+ and K+ aqueous solutions shows the difference of computed pressure by about 270 MPa on average. However, the second peak of \(g_{2\theta}(r) \) whose position is known to be very insensitive to the small change in the boundaries.

The second shell corresponds to the second peak of RDF. More quantitatively, it is defined as the region given by \(3.0 \, \text{Å} \) for Li+, \(5.3 \, \text{Å} \) for Na+, and \(5.3 \, \text{Å} \) for Na+. The results of \(g_{2\theta}(r) \) for Na+ and K+ are insensitive to the small change in the boundaries.