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ON THE WORST CONDITIONAL EXPECTATION

AKIHIKO INOUE

Department of Mathematics
Faculty of Science

Hokkaido University
Sapporo 060-0810, Japan

E-mail: inoue@math.sci.hokudai.ac.jp

Abstract. We study continuous coherent risk measures on Lp, in particular, the
worst conditional expectations. We show some representation theorems for them,
extending the results of Artzner, Delbaen, Eber, Heath, and Kusuoka.

1. Introduction

The worst conditional expectations are important examples of coherent risk mea-
sures. Both concepts were introduced by Artzner et al. [1, 2]. There they defined
risks (such as market risks) axiomatically and provided a unified framework for the
analysis of them. In these two papers, the underlying probability space was supposed
to be finite. Subsequently Delbaen [3] extended the theory of coherent risk measures
to general probability spaces.

In [3], the space L∞ of all bounded real random variables or the space L0 of all
real random variables was taken as the space of risks X to be measured. However,
from the viewpoint of application, the assumption X ∈ L∞ seems to be inconvenient,
while the space L0 seems to be too large for a simple theory. In this paper, we take
the intermediate spaces Lp, in particular L1, as the spaces of risks. We can develop
a simple theory at the cost of restricting ourselves to the continuous coherent risk
measures on Lp.

Among such coherent risk measures, we are especially interested in the law invariant
ones. The worst conditional expectations are again important examples. In fact,
Kusuoka [4] proved that if the probability space was standard and nonatomic, then
all the law invariant coherent risk measures on L∞ with the “Fatou property” could
be represented by the worst conditional expectations. We extend this result to the
continuous, law invariant, coherent risk measures on Lp.

We refer to Nakano [5] where he also considers coherent risk measures on L1. He
uses them to measure the shortfall risks that appear in hedging contingent claims under
constraints on the initial capital.

Let (Ω,F , P ) be a probability space. For 1 ≤ p ≤ ∞, we write Lp for Lp(Ω,F , P )
and ‖ · ‖p for its norm. A mapping ρ : Lp → R is called a coherent risk measure if the
following conditions are satisfied:

(1) if X ≥ 0, then ρ(X) ≤ 0;
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(2) ρ(X1 + X2) ≤ ρ(X1) + ρ(X2);
(3) ρ(λX) = λρ(X) for λ ≥ 0;
(4) ρ(a + X) = ρ(X) − a for a ∈ R

(cf. [1]–[3]). We say that ρ is continuous if it is so in the norm ‖ · ‖p, or, equivalently,
there exists C ∈ (0,∞) such that |ρ(X)| ≤ C‖X‖p (see Lemma 2.1). From [3, Theorem
3.2] (see also [2, Proposition 4.1]), we obtain the following characterization.

Theorem 1.1. Let 1 ≤ p < ∞ and (1/p) + (1/q) = 1 (q = ∞ if p = 1). Then, for a
mapping ρ : Lp → R, the following conditions are equivalent:

(1) The mapping ρ is a continuous coherent risk measure;
(2) There exists a set G of nonnegative random variables g with E[g] = 1 such that

sup
g∈G

‖g‖q < ∞, (1.1)

ρ(X) = sup
g∈G

E[(−X)g] (X ∈ Lp). (1.2)

We refer to [5] for an analogue of this theorem for the lower semi-continuous coherent
risk measures on L1.

Let α ∈ (0, 1]. There are several possible definitions of the worst conditional expec-
tation ρα. In this paper, suggested by [3], we adopt the following one:

ρα(X) := sup
g∈G(α)

E[(−X)g] (X ∈ L1), (1.3)

where

G(α) :=

{
g :

g is a nonnegative random variable on (Ω,F , P )

such that E[g] = 1, ‖g‖∞ ≤ 1/α

}
. (1.4)

Notice that
ρ1(X) = E[−X ] (X ∈ L1).

We easily see that, for 1 ≤ p ≤ ∞ and α ∈ (0, 1], the worst conditional expectation ρα

defines a continuous coherent risk measure on Lp.
For 0 < α < 1, the worst conditional expectation WCEα in [2] is defined by

WCEα(X) := sup
{

1
P (A)

E[(−X)IA] : A ∈ F , P (A) > α

}
.

We easily see that WCEα also defines a continuous coherent risk measure on Lp with
1 ≤ p ≤ ∞. In fact, if P is atomless, then, for 0 < α < 1, WCEα and ρα coincide on
L∞ (see [3]), whence on L1.

To give an explicit representation of ρα(X) for X ∈ L1, we use an idea in statistical
hypothesis testing. Let X ∈ L1 and α ∈ (0, 1). We define two constants k = k(X, α) ∈
R and γ = γ(X, α) ∈ [0, 1] by

k := inf{z ∈ R : P (X > z) ≤ α}
and

γ :=




α − P (X > k)
P (X = k)

if P (X = k) > 0,

0 if P (X = k) = 0,

respectively. We define the random variable φ(X,α) (called the most powerful test) by

φ(X,α) := I(X>k) + γI(X=k). (1.5)

Notice that E[φ(X,α)] = α. Applying the Neyman–Pearson lemma, we prove the fol-
lowing theorem.
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Theorem 1.2. Let α ∈ (0, 1). Then, for X ∈ L1,

ρα(−X) =
1
α

E
[
Xφ(X,α)

]
. (1.6)

We say that a coherent risk measure ρ on Lp is law invariant if ρ(X) = ρ(Y ) for
every pair (X, Y ) of X, Y ∈ Lp with the same distribution. Since the expectation
on the right-hand side of (1.6) depends only on the distribution of X (and α), we
immediately obtain the following corollary.

Corollary 1.3. For α ∈ (0, 1], the worst conditional expectation ρα is law invariant
on L1, hence on Lp with 1 < p ≤ ∞.

It should be noticed that, in Corollary 1.3, there is no restriction on (Ω,F , P ). In
particular, it applies to those with atoms, such as discrete probability spaces. We may
regard this as one advantage of definition (1.3) with (1.4).

For a random variable X , we write FX for the distribution function of X ,

FX(x) := P (X ≤ x) (x ∈ R).

We denote by ZX the following Skorokhod representation of X :

ZX(x) := inf{z ∈ R : FX(z) > x} (0 < x < 1).

Then ZX is a non-decreasing, right continuous function on (0, 1). We write Leb for the
Lebesgue measure on ((0, 1),B(0, 1)). As is well known (see, e.g., [7, Section 3.12]), as
a random variable on ((0, 1),B(0, 1), Leb), ZX has the same distribution as X . Using
Theorem 1.2, we prove the following theorem.

Theorem 1.4. Let α ∈ (0, 1]. Then, for X ∈ L1,

ρα(−X) =
1
α

∫ 1

1−α

ZX(x)dx. (1.7)

Equality (1.7) is used as the definition of ρα on L∞ in Kusuoka [4]. Following his
method, we prove the following analogue of [4, Theorem 4].

Theorem 1.5. Let 1 ≤ p < ∞ and (1/p) + (1/q) = 1. We assume that

(Ω,F , P ) is a standard nonatomic probability space. (1.8)

Then, for a mapping ρ : Lp → R, the following conditions are equivalent:

(1) The mapping ρ is a continuous, law invariant coherent risk measure;
(2) There exists a set M of probability measures on ((0, 1],B(0, 1]) such that

sup
m∈M

∫
(0,1]

1
α

m(dα) < ∞ if p = 1, (1.9)

sup
m∈M

∫ 1

0

{∫
[1−t,1]

1
α

m(dα)

}q

dt < ∞ if 1 < p < ∞, (1.10)

ρ(X) = sup
m∈M

∫
(0,1]

ρα(X)m(dα) (X ∈ Lp). (1.11)

We prove Theorems 1.1, 1.2, and 1.4 in Section 2. In Section 3, we prove Theorem
1.5, and give an example showing that this assertion does not hold in general without
the assumption (1.8).
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2. Proofs of Theorems 1.2 and 1.4

Lemma 2.1. Let 1 ≤ p ≤ ∞. Then, for a coherent risk measure ρ : Lp → R, the
following conditions are equivalent:

(1) The coherent risk measure ρ is continuous;
(2) There exists C ∈ (0,∞) such that |ρ(X) − ρ(Y )| ≤ C‖X − Y ‖p for X, Y ∈ Lp;
(3) There exists C ∈ (0,∞) such that ρ(X) ≤ C‖X‖p for X ∈ Lp;
(4) There exists C ∈ (0,∞) such that |ρ(X)| ≤ C‖X‖p for X ∈ Lp.

Proof. It is clear that (2) implies (1), and (4) implies (3) trivially. Since ρ(0) = 0,
one can prove the implication (1) ⇒ (4) in the same way as the standard proof of
boundedness of continuous linear transformations. Suppose (3). Then ρ(X) − ρ(Y ) ≤
ρ(X − Y ) ≤ C‖X − Y ‖p, and similarly ρ(Y ) − ρ(X) ≤ C‖X − Y ‖p. Hence (2).

Proof of Theorem 1.1. (2) ⇒ (1) By Hölder’s inequality, we have

ρ(X) ≤ sup{‖g‖q : g ∈ G} · ‖X‖p.

Using this, we can easily prove (1).
(1) ⇒ (2) Let X ∈ L∞ and let Xn be a uniformly bounded sequence that decreases

to X a.s. Then Xn → X in Lp, and so, by the continuity of ρ, we have ρ(Xn) → ρ(X).
This implies that the restriction of ρ on L∞ has the Fatou property (see [3]). Therefore,
by [3, Theorem 3.2], there exists a set G of nonnegative random variables g with
E[g] = 1 such that ρ(X) = µ(X) for X ∈ L∞, where

µ(X) := sup
g∈G

E[(−X)g]. (2.1)

From this and Lemma 2.1, we see that there exists C ∈ (0,∞) such that

E[|X |g] ≤ C‖X‖p (g ∈ G, X ∈ L∞).

Following the standard method, we obtain (1.1) from this. Equality (2.1) now defines
a continuous coherent risk measure µ on L1, whence ρ and µ coincide on L1.

Proof of Theorem 1.2. First we assume that X ≥ C for some C ∈ R. Clearly we may
assume P (X > C) > 0. Set Y := X −C. Then ρα(−X) = ρα(−Y )+ C. We introduce
the following class of “randomized tests” φ:

Φ(α) :=

{
φ :

φ is a random variable on (Ω,F , P ) such that

0 ≤ φ ≤ 1 (P a.s.), E[φ] = α

}
.

Then from the definition of ρα it follows that

ρα(−Y ) =
E[Y ]

α
sup

{
EP1 [φ] : φ ∈ Φ(α)

}
,

where EP1 stands for expectation with respect to the probability measure P1 given by
dP1

dP
=

Y

E[Y ]
.

The Neyman-Pearson lemma (cf. [6, Chapter III, Section 3]) now gives

sup
{
EP1 [φ] : φ ∈ Φ(α)

}
= EP1

[
φ(Y,α)

]
or

ρα(−Y ) =
1
α

E
[
φ(Y,α)Y

]
.
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We have
k(Y, α) = inf{z : P (Y > z) ≤ α}

= inf{u : P (X > u) ≤ α} − C

= k(X, α) − C.

So
{X > k(X, α)} = {Y > k(Y, α)},
{X = k(X, α)} = {Y = k(Y, α)},

whence φ(X,α) = φ(Y,α). Combining,

ρα(−X) =
1
α

E
[
Y φ(Y,α)

]
+ C =

1
α

E
[
Y φ(X,α)

]
+

C

α
E

[
φ(X,α)

]
=

1
α

E
[
Xφ(X,α)

]
.

We now assume that X is an arbitrary element of L1. Write

Xn := XI(X≥−n) − nI(X<−n) (n = 1, 2, . . . ).

If a > −n, then

{Xn > a} = {X ≥ −n} ∩ {X > a} = {X > a}.
Thus if n > −k(X, α), then φ(X,α) = φ(Xn,α), and so

ρα(−Xn) =
1
α

E
[
Xnφ(X,α)

]
.

Since Xn → X as n → ∞ in L1 and 0 ≤ φ(X,α) ≤ 1, we have

E
[
Xnφ(X,α)

] → E
[
Xφ(X,α)

]
(n → ∞);

also the continuity of ρα implies that ρα(−Xn) tends to ρα(−X) as n → ∞. Thus
(1.6) follows.

Proof of Theorem 1.4. We may (and shall) assume 0 < α < 1. For X ∈ L1, write

YX(x) := inf{z ∈ R : FX(z) ≥ x} (0 < x < 1).

Then Leb(ZX = YX) = 1 (see [7, p. 35]). So, instead of (1.7), we may prove

ρα(−X) =
1
α

∫ 1

1−α

YX(x)dx. (2.2)

Since, as a random variable on ((0, 1),B(0, 1), Leb), YX has the same distribution as
X , Theorem 1.2 yields

ρα(−X) =
1
α

∫ 1

0

YX(x)φ(YX ,α)(x)dx.

Now

k(YX , α) = k(X, α) = inf{z ∈ R : FX(z) ≥ 1 − α} = YX(1 − α).

Define c ∈ [1 − α, 1] by

c := inf{x ∈ (0, 1) : YX(x) > YX(1 − α)} (:= 1 if the set is empty).

Then since YX is nondecreasing on (0, 1), we have

{x ∈ (0, 1) : YX(x) > YX(1 − α)} =

{
(c, 1) or [c, 1) if c < 1,

∅ if c = 1,

5



whence
α − Leb{x ∈ (0, 1) : YX(x) > YX(1 − α)} = c − (1 − α).

We also have
YX(x) = YX(1 − α) (1 − α ≤ x < c);

in particular, c = 1 − α if Leb{x ∈ (0, 1) : YX(x) = YX(1 − α)} = 0. Thus∫ 1

0

YX(x)φ(YX ,α)(x)dx

= YX(1 − α)γ(YX , α)Leb{x ∈ (0, 1) : YX(x) = YX(1 − α)} +
∫ 1

c

YX(x)dx

= YX(1 − α) {c − (1 − α)} +
∫ 1

c

YX(x)dx =
∫ 1

1−α

YX(x)dx,

whence (2.2).

3. Proof of Theorems 1.5

Proposition 3.1. Let 1 ≤ p < ∞ and X ∈ Lp. Write

Xn := −nI(X<−n) + XI(−n≤X≤n) + nI(X>n) (n = 1, 2, . . . ). (3.1)

Then ∫ 1

0

|ZX(t) − ZXn(t)|p dt → 0 (n → ∞).

Proof. We have

P (Xn ≤ z) =




0 (−∞ < z < −n),

P (X ≤ z) (−n ≤ z < n),

1 (n ≤ z < ∞).

Suppose 0 < x < P (X ≤ −n). Then ZX(x) ≤ −n. On the other hand, since
x < P (X ≤ −n) = P (Xn ≤ −n), we have ZXn(x) ≤ −n, hence = −n. Thus

|ZX(x) − ZXn(x)| ≤ |ZX(x)| (0 < x < P (X ≤ −n)).

Next we suppose P (X ≤ −n) ≤ x < P (X < n). Then since

lim
z↑n

P (X ≤ z) = P (X < n),

we see that P (X ≤ n − ε) > x for ε > 0 small enough. So

ZX(x) = inf{−n < z < n : P (X ≤ z) > x}.
On the other hand,

P (Xn ≤ −n) = P (X ≤ −n) ≤ x < P (X < n) = P (Xn < n),

so that, similarly

ZXn(x) = inf{−n < z < n : P (Xn ≤ z) > x}.
Since P (X ≤ z) = P (Xn ≤ z) for −n < z < n, it follows that

ZX(x) = ZXn(x) (P (X ≤ −n) ≤ x < P (X < n)).

Finally we suppose P (X < n) ≤ x < 1. Then, for any ε > 0, we have

x ≥ P (X < n) = P (Xn < n) ≥ P (Xn ≤ n − ε),
6



so that ZXn(x) ≥ n − ε. Since ε is arbitrary, we see that ZXn(x) ≥ n, hence = n.
Similarly, we have ZX(x) ≥ n. Thus

|ZX(x) − ZXn(x)| ≤ |ZX(x)| (P (X < n) ≤ x < 1).

Combining,∫ 1

0

|ZX(x) − ZXn(x)|p dx

≤
∫ P (X≤−n)

0

|ZX(x)|pdx +
∫ 1

P (X<n)

|ZX(x)|pdx → 0 (n → ∞).

Thus we obtain the proposition.

By assumption (1.8), we may (and shall) assume that

(Ω,F , P ) is equal to the Lebesgue space ((0, 1),B(0, 1), Leb). (3.2)

Then, for a random variable X on (Ω,F , P ), the Skorokhod representation ZX is again
a random variable on (Ω,F , P ). Now if X is nondecreasing and right continuous, then

X(t) = ZX(t) (0 < t < 1). (3.3)

Indeed, from the definition of ZX , we find that

P (X ≤ ZX(t)) ≥ t, P (X < ZX(t)) ≤ t (0 < t < 1).

The latter implies X(s) ≥ ZX(t) for t < s < 1, whence X(t) ≥ ZX(t). Similarly,
the former implies X(s) ≤ ZX(t) for 0 < s < t, whence X(t−) ≤ ZX(t). Since
X(t−) = X(t) a.s., we have X(t) = ZX(t) a.s. However, both X and ZX are right
continuous, whence (3.3).

For 1 ≤ q ≤ ∞, we define

Gq := {g ∈ Lq : g ≥ 0 (P a.s.), E[g] = 1} .

Recall that, for a random variable X , we denote by FX its distribution function.

Proposition 3.2. Let 1 ≤ p < ∞ and (1/p) + (1/q) = 1. Then, for X ∈ Lp and
g ∈ Gq,

E[ZXZg] = sup{E[Xf ] : f ∈ Gq, Ff = Fg}.
Proof. Write

µ(X) := sup{E[(−X)f ] : f ∈ Gq, Ff = Fg} (X ∈ Lp).

Then since ‖f‖q = ‖g‖q if Ff = Fg, the mapping µ : Lp → R defines a continuous
coherent risk measure on Lp. Define Xn by (3.1). Then Xn ∈ L∞, and so [4, Proposi-
tion 14] implies E[ZXnZg] = µ(−Xn). Now ‖X − Xn‖p → 0, so that the continuity of
µ implies µ(−Xn) → µ(−X). On the other hand, by Proposition 3.1, we have

lim
n→∞ E[ZXnZg] = E[ZXZg].

Thus the proposition follows.

Proposition 3.3. Let 1 ≤ p < ∞ and (1/p) + (1/q) = 1. Then, for a mapping
ρ : Lp → R, the following conditions are equivalent:

(1) The mapping ρ is a continuous, law invariant coherent risk measure;
7



(2) There exists a set H of nondecreasing, right continuous probability density func-
tions on (0, 1) such that

sup
h∈H

‖h‖q < ∞, (3.4)

ρ(−X) = sup
h∈H

E[ZXh] (X ∈ Lp). (3.5)

Proof. (2) ⇒ (1) Clearly ρ is law invariant. Define G by

G := {g ∈ Gq : Zg ∈ H} .

Then since Zh = h for h ∈ H , we see that {Zg : g ∈ G} = H . Thus

ρ(−X) = sup
g∈G

E[ZXZg].

Now if g ∈ G and Ff = Fg for f ∈ Gq, then f ∈ G. So by Proposition 3.2 we have

sup
g∈G

E[ZXZg] = sup
g∈G

sup{E[Xf ] : f ∈ Gq, Ff = Fg}. = sup
g∈G

E[Xg].

Moreover,
sup
g∈G

‖g‖q = sup
g∈G

‖Zg‖q = sup
h∈H

‖h‖q < ∞.

Thus ρ is a continuous coherent risk measure on Lp.
(1) ⇒ (2) The restriction of ρ on L∞ defines a law invariant, coherent risk measure

on L∞ with the Fatou property (see the proof of Theorem 1.1). So, by [4, Lemma 10],
there exists a set H of nondecreasing, right continuous probability density functions
on (0, 1) such that

ρ(−X) = sup
h∈H

E[ZXh] (X ∈ L∞). (3.6)

By Lemma 2.1, we can take C > 0 such that ρ(−X) ≤ C‖X‖p for X ∈ Lp.
Let h ∈ H . Then since Zh = h, it follows from [4, Proposition 14] that, for any

nonnegative X ∈ L∞,

E[Xh] ≤ E[ZXZh] = E[ZXh] ≤ ρ(−X) ≤ C‖X‖p.

This implies
E[|X |h] ≤ C‖X‖p (h ∈ H, X ∈ L∞).

From this, we obtain (3.4). So if we write

µ(X) := sup
h∈H

E[(−X)h] (X ∈ Lp),

then µ defines a continuous coherent risk measure on Lp. For X ∈ Lp, we define Xn

by (3.1). Then (3.6) implies ρ(−Xn) = µ(−ZXn) for n = 1, 2, . . . . If we let n → ∞,
then by Proposition 3.1 we obtain ρ(−X) = µ(ZX) or (3.5).

Proof of Theorem 1.5. We prove the implication (1) ⇒ (2). Let H be as in Proposition
3.3. For h ∈ H , we define

f(t) =




0 (−∞ < t < 0),

h(0+) (t = 0),

h(t) (0 < t < 1).
(3.7)
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Then, as in the proof of [4, Theorem 4], it follows from Theorem 1.4 that, for X ∈ Lp,

E[ZXh] =
∫

[0,1)

{∫ 1

x

ZX(t)dt

}
df(x) =

∫
[0,1)

ρ1−x(−X)(1 − x)df(x)

=
∫

(0,1]

ρα(−X)m(dα),

where m is the probability measure on (0, 1] defined by

m(dα) := αdf ◦ φ (3.8)

with φ(t) := 1 − t. Now if 1 < p < ∞, then

sup
m∈M

∫ 1

0

{∫
[1−t,1]

1
α

m(dα)

}q

dt =
∫ 1

0

h(t)qdt = ‖h‖q
q,

while if p = 1, then ∫
(0,1]

1
α

m(dα) = h(1−) = ‖h‖∞.

Thus (2) follows from Proposition 3.3.
The proof of the implication (2) ⇒ (1) is similar. For m ∈ M , we define the

nondecreasing, right continuous function h on (0, 1) so that (3.7) and (3.8) hold. We
prove representation (3.5) with (3.4) from (2), and apply Proposition 3.3 to obtain
(1).

Example 3.4. In this example, we show that Theorem 1.5 does not hold in general
without (1.8). We set Ω = {ω1, ω2} and F = {∅, Ω, {ω1}, {ω2}}. Choose p1, p2 so that
0 < p1 < p2 < 1, p1 + p2 = 1, and define the probability measure P on (Ω,F) by
P{ω1} = p1, P{ω2} = p2. Then two random variables on Ω have the same distribution
if and only if they are identical. Thus, on this probability space, all the coherent
risk measures are law invariant. Take g1 > 0 and g2 > 0 so that g1p1 + g2p2 = 1,
g1p1 > g2p2. We define ρ by

ρ(−X) := E[Xg] = X1g1p1 + X2g2p2,

where X(ωi) = Xi, g(ωi) = gi for i = 1, 2. Now suppose Theorem 1.5 (2) holds. Then
as in the proof of (2) ⇒ (1) in Theorem 1.5, we get representation (3.5). If we take
(0, 1) and (1, 0) as (X1, X2), then we obtain

g2p2 = sup
h∈H

∫ 1

p1

h(t)dt, g1p1 = sup
h∈H

∫ 1

p2

h(t)dt.

However this contradicts the assumption g1p1 > g2p2 since p1 < p2 and h ≥ 0 for
h ∈ H .
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