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EXTENSION OF THE DRASIN–SHEA–JORDAN THEOREM

N. H. BINGHAM AND A. INOUE

Abstract. Passing from regular variation of a function f to regular variation
of its integral transform k ∗ f of Mellin-convolution form with kernel k is an
Abelian problem; its converse, under suitable Tauberian conditions, is a Taube-
rian one. In either case, one has a comparison statement that the ratio of f
and k ∗ f tends to a constant at infinity. Passing from a comparison statement
to a regular-variation statement is a Mercerian problem. The prototype results
here are the Drasin-Shea theorem (for non-netative k) and Jordan’s theorem
(for k which may change sign). We free Jordan’s theorem from its non-essential
technical conditions which reduce its applicability. Our proof is simpler than
the counter-parts of the previous results and does not even use the Pólya Peak
Theorem which has been so essential before. The usefulness of the extension is
highlighted by an application to Hankel transforms.

1. Introduction

In [BI1, BI2], we proved Mercerian results for Hankel transforms. In particular,

in [BI2] we introduced a method, a type of localization, which seems useful for

other problems, too. Here we apply the method to general integral transforms,

and thereby extend the theorems of Drasin-Shea [DS] and Jordan [J]. As an

application, we give a Mercerian result for Hankel transforms of non-monotone

functions.

We recall the setting. Given a measurable kernel k : (0,∞) → R, let

ǩ(z) :=

∫ ∞

0

t−zk(t)
dt

t

be its Mellin transform for z ∈ C such that the integral converges absolutely. For

suitable functions f, g : (0,∞) → R, the Mellin convolution is the function f ∗ g

given by

(f ∗ g)(x) :=

∫ ∞

0

f(x/t)g(t)
dt

t

for those x > 0 for which the integral converges absolutely. For ρ ∈ R, we write

Rρ for the class of functions f regularly varying (at infinity) with index ρ: f is

measurable, positive for large enough x, and

f(λx)/f(x) → λρ (x → ∞) ∀λ > 0;

1991 Mathematics Subject Classification. Primary 40E05; Secondary 44A15.
Key words and phrases. Mercerian theorem, regular variation, Hankel transform.

1



see [BGT] for background. We are concerned here with comparisons between the

asymptotic behaviour of the function f and that of its transform k ∗ f . The sim-

plest such results of this type are Abelian, and state that under suitable conditions

f(x) ∼ xρ�(x) (x → ∞) (1.1)

with l ∈ R0 implies

(k ∗ f)(x) ∼ cxρ�(x) (x → ∞), (1.2)

where

c = ǩ(ρ). (1.3)

Tauberian results supply a partial converse under suitable side-conditions (Taube-

rian conditions); see e.g. [BGT, Ch. 4] for a detailed treatment. In these circum-

stances, one has

(k ∗ f)(x)/f(x) → c (x → ∞). (1.4)

The question arises of whether one can obtain (1.1) — and so (1.2) — from

(1.4), with ρ as in (1.3). Such results are Mercerian in character; for a textbook

treatment, see e.g. [BGT, Ch. 5]. The prototypes are due to Drasin and Shea

([DS, Th. 6.2]; [BGT, Th. 5.2.1]), with k non-negative, and Jordan ([J, Th. 1, 1a];

[BGT, Th. 5.3.1]), where k can change sign.

This area of Mercerian theorems of Drasin-Shea-Jordan type has long suffered

from several outstanding problems. First, the proofs are long, complicated and

highly technical, and one seeks to simplify them as much as possible. Next, until

recently no such results were available for the important case where the integrals

defining ǩ and k ∗ f are only conditionally rather than absolutely convergent, as

is the case for Fourier and Hankel transforms, for example. In two recent works

[BI1, BI2] we succeeded both in simplifying the proofs of Drasin-Shea-Jordan

theorems and in extending them to Fourier and Hankel transforms.

Here we focus on a third long-standing problem: the need to rid Jordan’s

theorems [J] of various technical conditions which complicate their statements and

reduce their applicability. Our approach here was suggested by the observation

[BI1, §8.1] that in the Hankel case, for ρ small enough to give k ∗ f absolutely

convergent, one of Jordan’s theorems [J, Th. 1] nevertheless did not apply because

its conditions exclude kernels such as the Fourier and Hankel ones, which oscillate

infinitely often in sign. (However, Jordan’s second theorem [J, Th. 1a] applies to

some but not all Hankel cases; see §5 for details.) Our results succeed in solving

the problem raised there. The main specific contributions are:

(i) freeing Jordan’s theorem from its non-essential technical conditions;

(ii) eliminating the need to use Pólya peaks (see below for details);
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(iii) extending the results of [BI1, BI2] in the Hankel case with absolute con-

vergence (the motivating situation, as mentioned above) to non-monotone

functions.

This last is to be expected: monotonicity was used to ensure convergence in the

conditionally convergent case.

We recall ([BGT, §2.1.2]) the Matuszewska indices of a positive function f . The

upper Matuszewska index α(f) is the infimum of those α for which there exists a

constant C = C(α) such that for each Λ > 1,

f(λx)/f(x) ≤ C{1 + o(1)}λα (x → ∞) uniformly in λ ∈ [1, Λ],

the lower Matuszewska index β(f) is the supremum of those β for which, for some

constant D = D(β) > 0 and all Λ > 1,

f(λx)/f(x) ≥ D{1 + o(1)}λβ (x → ∞) uniformly in λ ∈ [1, Λ].

One says f has bounded increase, f ∈ BI, if α(f) < ∞, bounded decrease, f ∈
BD, if β(f) > −∞.

The upper order ρ(f) of a positive function f is defined by

ρ(f) := lim sup
x→∞

log f(x)

log x
.

2. Results

Theorem 1. Let k be a real kernel such that ǩ(z) converges absolutely for a <

	z < b. Assume also

ǩ(z) 
= ǩ(ρ) for 	z = ρ and z 
= ρ, (2.1)

|ǩ′(ρ)| + |ǩ′′(ρ)| > 0. (2.2)

Let f be non-negative, measurable, and locally bounded on [0,∞), vanish in a

neighbourhood of zero, have finite upper order ρ ∈ (a, b), and f ∈ BD ∪ BI. If

(k ∗ f)(x)/f(x) → c 
= 0 (x → ∞), (2.3)

then c = ǩ(ρ) and f ∈ Rρ.

For non-negative k, the theorem above coincides with that of Drasin and Shea

[DS] (see also [BGT, Th. 5.2.1]). The point of the theorem is that it dispenses with

some extra assumptions of Jordan [J] (see also [BGT, Th. 5.3.1]). These extra

conditions are of two kinds. The first one is that in an appropriate subinterval

of (a, b) the Mellin transform ǩ is monotone. The second one is the restriction

of the behaviour of k(t) for either large or small t. As Jordan wrote himself (in

[J, p. 180]), the second one does not seem to be so restrictive since few kernels
3



of normal interest fail to satisfy it. On the other hand, the first one can be quite

restrictive for some kernels (see §5).

The proof of Theorem 1 will be given in §3. As we indicated above, the key

to the proof is the localization technique introduced in [BI2]. The idea is simple.

There are two kinds of similar integral transforms f �→ E1 ∗ f and f �→ E2 ∗ f

(see §3) which have been already used in, e.g., [DS], [J] and [BI1]. Instead of such

separate use, we apply both transforms at the same time: f �→ E1 ∗E2 ∗ f . Then

this has the effect of localizing the problem completely, that is, it is enough to

restrict to the narrow strip ρ − ε < 	z < ρ + ε for ε > 0 small enough instead of

the intermediate strips ρ − ε < 	z < b or a < 	z < ρ + ε used in the previous

works. The usefulness of the idea is shown, for example, by the fact that, by

virtue of it, we can avoid the use of the Pólya Peak Theorem of Drasin and Shea,

which has been so essential before but does not work well enough in our problem

(see [DS], [BGT, §§2.5, 5.2.3]).

We apply Theorem 1 to Hankel transforms. There the kernel k to be considered

is

kν(x) := x−3/2Jν(1/x), (2.4)

where ν > −1
2

and Jν is the Bessel function. Here we treat only absolutely

convergent integrals. The Mellin transform ǩν(z) of kν converges absolutely for

−ν − 3
2

< 	z < −1 (so a = −ν − 3
2
, b = −1), and is given by Weber’s integral:

ǩν(z) = 2z+ 1
2
Γ(3

4
+ 1

2
ν + 1

2
z)

Γ(1
4

+ 1
2
ν − 1

2
z)

. (W)

We write Fν , or simply F , for the Hankel transform kν ∗ f of f :

Fν(x) :=

∫ ∞

0

kν(x/t)f(t)
dt

t
(0 < x < ∞). (2.5)

We note that, in the usual terminology, it is not Fν but x−1Fν(1/x) which is called

the Hankel transform of f :

x−1Fν(1/x) =

∫ ∞

0

(xt)1/2Jν(xt)f(t)dt (0 < x < ∞).

Theorem 2. Let −1/2 < ν < ∞. Let tν+ 1
2 f(t) ∈ L1

loc[0,∞), f be eventually

positive, have finite upper order ρ := ρ(f) ∈ (−ν − 3
2
,−1), f ∈ BD ∪BI, and let

f have Hankel transform Fν. If

Fν(x)/f(x) → c 
= 0 (x → ∞), (2.6)

then c = ǩν(ρ) and f ∈ Rρ.

The theorem above is an analogue of the results of [BI1, BI2]. The difference

is that in Theorem 2 the monotonicity assumption of [BI1, BI2] is weakened at
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the cost of absolute convergence of integrals. For example, if we consider Fourier

transforms of radial functions on Rn, then we naturally meet Hankel transforms

of order ν = 1
2
(n − 2), by Bochner’s theorem (see e.g. [BC, II.7, Th. 40]). In

such a situation, the monotonicity assumption of [BI1, BI2] will sometimes be too

strong.

Since we consider only absolutely convergent integrals here, we cannot include

the case ν = −1
2
, that is, the Fourier cosine transform. For, the Mellin trans-

form of the cosine kernel k−1/2(x) = (2/π)1/2x−1 cos(1/x) has no strip of absolute

convergence. To consider the cosine transform, it is indispensable to treat con-

ditionally convergent integrals as in [BI1, BI2]. On the other hand, the Fourier

sine transform has strips of both absolute and conditional convergence; our results

here apply only to the first, those of [BI1, BI2] to both.

As we have shown in [BI1, BI2], for all ν > −1
2
, ǩν satisfies both the conditions

(2.1) and (2.2). So for f as in Theorem 1, Theorem 2 is an immediate consequence

of Theorem 1. On the other hand, the Drasin-Shea theorem (the case k(·) ≥ 0)

cannot be applied to the kernel kν as it changes sign. Further, if ν is large enough,

then neither Theorem 1 nor Theorem 1a of Jordan [J] can be applied to kν (see

§5).

The vanishing of f near zero as in Theorem 1 will be too restrictive, and actually

is not assumed in Theorem 2. Since this is the point of the proof of Theorem 2

in §4, we discuss it briefly. Clearly, we could drop the vanishing of f near zero if

we were able to show∣∣∣∣
∫ 1

0

f(u)kν(x/u)
du

u

∣∣∣∣ = o(f(x)) (x → ∞). (2.7)

However, it seems difficult to prove this directly. In fact, we can show∣∣∣∣
∫ 1

0

f(u)kν(x/u)
du

u

∣∣∣∣ ≤ c1x
−(ν+ 3

2
)

for some c1 > 0, and the consequence f ∈ Rρ of Theorem 2 certainly implies

x−(ν+ 3
2
) = o(f(x)) as x → ∞. Unfortunately, we do not know how to prove

the last assertion directly, that is, without Theorem 2. For this reason, in the

proof of Theorem 2, we follow the line of [BI1] and use Theorem 1 to reduce its

complicated arguments rather than use the theorem directly.

3. Proof of Theorem 1

For brevity, we will as far as possible keep, step by step, to the proof of [BGT,

Theorem 5.2.1] (the Drasin-Shea theorem). By (2.3), f is eventually positive. We

note a crude but useful bound. For γ ∈ R, G : (0,∞) → R measurable such

that Ǧ(γ) converges absolutely, and f non-negative and measurable with bound
5



f(x) ≤ d(γ)xγ (x > 0), the Mellin convolution G∗f exists and satisfies the bound

|G ∗ f(x)| ≤ d(γ)xγ

∫ ∞

0

t−γ|G(t)|dt/t = d(γ)|G|̌ (γ)xγ (0 < x < ∞).

Steps 1 and 2 are exactly as those of the proof of [BGT, Theorem 5.3.1] (Jordan’s

theorem), so ǩ(ρ) = c. Here we can assume f ∈ BI instead of f ∈ BD; see [BGT,

§5.2.4].

Steps 3–5. By the Riemann-Lebesgue Lemma and Vitali’s theorem in complex

analysis [T1, §5.2], we may take ε > 0 so small that [ρ − 2ε, ρ + 2ε] ⊂ (a, b) and

that ǩ(z) takes the value ǩ(ρ) only at z = ρ in the strip ρ−2ε ≤ 	z ≤ ρ+2ε (see

[BGT, §5.1.3], Jordan [J, p. 191]). Write p1, p2 for ρ − ε, ρ + ε, and consider

E1(x) := I[1,∞)(x)xp1 , E2(x) := I(0,1](x)xp2 (0 < x < ∞).

The convergence strips of Ě1, Ě2 are {	z > p1}, {	z < p2}. Take γ ∈ (ρ, p2).

Then, by definition of ρ,

f(x) ≤ d(γ)xγ (0 < x < ∞)

for some d(γ) > 0. Write

F (x) := (k ∗ f)(x) (0 < x < ∞).

It is important to consider, instead of f and F themselves, the following regular-

ized versions:

h(x) := (E2 ∗ E1 ∗ f)(x), H(x) := (E2 ∗ E1 ∗ F )(x) (0 < x < ∞)

(since γ ∈ (p1,∞) ∩ (−∞, p2) ∩ (a, b), the crude bound above shows successively

that the integrals converge absolutely, whence Fubini’s theorem gives associativity

of the convolutions). Again by Fubini’s theorem,

H(x) = (E2 ∗ E1 ∗ (k ∗ f))(x) = (k ∗ h)(x) (0 < x < ∞). (3.1)

By the following integral representations

h(x) = xp2

∫ ∞

x

(E1 ∗ f)(t)dt/t1+p2 = xp1

∫ x

0

(E2 ∗ f)(t)dt/t1+p1,

x−p1h(x) is increasing and x−p2h(x) is decreasing. So

(xu)−p1h(ux)

x−p1h(x)
≤ 1 (0 < u ≤ 1, x > 0),

(xu)−p2h(ux)

x−p2h(x)
≤ 1 (1 ≤ u < ∞, x > 0).

Combining, we obtain the key estimate

h(ux)

h(x)
≤ max(up1, up2) (0 < u < ∞, 0 < x < ∞). (3.2)
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As in (5.2.2’) of [BGT], we have

(E1 ∗ F )(x)

(E1 ∗ f)(x)
=

∫ x

0
F (t)dt/t1+p1∫ x

0
f(t)dt/t1+p1

→ ǩ(ρ) (x → ∞)

(here we may use f ∈ BI instead of f ∈ BD to assure
∫ ∞
0

f(t)dt/t1+p1 = ∞). So

H(x)

h(x)
=

∫ ∞
x

(E1 ∗ F )(t)dt/t1+p2∫ ∞
x

(E1 ∗ f)(t)dt/t1+p2
→ ǩ(ρ) (x → ∞). (3.3)

We comment briefly on the need to introduce h. We will show by standard

Tauberian arguments (in Steps 6–10 below) that f ∈ Rρ follows from h ∈ Rρ.

Therefore (3.1) and (3.3) imply that the problem has been reduced to that of

h from that of f . The advantage here is the useful bound (3.2) on h which we

cannot expect the original function f to satisfy.

Now we can follow the standard arguments. Choose any sequence xn ↑ ∞. Con-

sider jn(u) := h(xnu)/h(xn). The functions u−p1jn(u) are increasing on (0,∞) and

by (3.2) uniformly bounded on compact u-sets in (0,∞). By Helly selection (of

the form as in Widder [Wi, Ch. I, Theorem 16.3] on each [0, N ], then diagonalis-

ing), we can find a sequence of integers n′ → ∞ such that jn′ converges pointwise

on (0,∞), to j, say. Then u−p1j(u) is increasing, j(1) = 1, and by (3.2)

j(u) ≤ max(up1, up2) (0 < u < ∞). (3.4)

From (3.1), for r > 0,

H(rxn′)

h(rxn′)
· h(rxn′)

h(xn′)
=

∫ ∞

0

h(rxn′/t)

h(xn′)
k(t)

dt

t
.

We now have suitably dominated convergence of the integrand by (3.2) (note that

p1, p2 ∈ (a, b)), and H(rxn′)/h(rxn′) → ǩ(ρ) by (3.3). So we obtain the following

integral equation for j:

ǩ(ρ)j(r) = (k ∗ j)(r) (0 < r < ∞). (3.5)

The equation (3.5) is the same type as those in [DS], [J].

Step 6. Write

φ(x) := j(ex)e−ρx, K(x) := k(ex)e−ρx (−∞ < x < ∞).

Choose c1, c2 such that 0 < ε < c1 < c2 < 2ε. Then by (3.4),

φ(x) ≤ max(e−εx, eεx) = eε|x|,
7



whence e−c1|x|φ(x) ∈ L2(R). On the other hand, e−c2|x|K(x) ∈ L1(R) as∫ ∞

−∞
e−c2|x||K(x)|dx ≤

∫ ∞

−∞
e−c2x|K(x)|dx

=

∫ ∞

0

t−(c2+ρ)|k(t)|dt

t
= |k|̌ (c2 + ρ) < ∞

by c2 + ρ ∈ (a, b).

We write the Fourier transform as

K̂(z) :=
1√
2π

∫ ∞

−∞
K(x)e−ixzdx.

Then

K̂(z) =
1√
2π

ǩ(ρ + iz) (|�z| ≤ c2). (3.6)

The equation (3.5) becomes

φ(x) =
1√

2πK̂(0)

∫ ∞

−∞
K(x − y)φ(y)dy (−∞ < x < ∞).

Here we note that √
2πK̂(0) = ǩ(ρ) = c 
= 0.

By (3.6), the transcendental equation K̂(z) = K̂(0) has a unique root z = 0 in the

strip |�z| ≤ c2, which is at most double by (2.2). By Theorem 146 of Titchmarsh

[T2],

φ(x) = a1 + a2x (x ∈ R)

for some a1, a2 ∈ C. That is,

j(x) = xρ(a1 + a2 log x) (0 < x < ∞).

Since j is real, so are a1, a2. As j(1) = 1, we have a1 = 1. Since j(·) ≥ 0, a2 = 0.

Thus j(x) ≡ xρ. Therefore the partial limit uρ of h(uxn)/h(xn) does not depend

on the sequence (xn) chosen. Thus h(ux)/h(x) → uρ as x → ∞, so h ∈ Rρ. Since

x−p1(E1 ∗ f)(x) =

∫ x

0

f(t)dt/t1+p1 ,

x−p1(E1∗f)(x) is increasing. So log((E1∗f)(x)/xp1), whence log((E1∗f)(x)/x1+p2),

is slowly decreasing (see [BGT, §1.7.6]). By the Monotone Density Theorem (see

also [BGT, §1.7.6]), we obtain E1 ∗ f ∈ Rρ from h ∈ Rρ.

Steps 7–10 are proved as in the proof of [BGT, Th. 5.2.1]. In them, we deduce

a sufficiently strong Tauberian condition on f to pass from E1 ∗ f ∈ Rρ to f ∈
Rρ. We note that the Tauberian condition f ∈ BI ∪ BD, which is one of the

assumptions, does not suffice for this purpose. The main idea here is due to

Drasin (see [J, p. 179]).
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4. Proof of Theorem 2

In this section, we write, for simplicity, F rather than Fν . We write f � g if

f = O(g) and g = O(f). We first show an analogue of [BGT, Proposition 2.10.3]

(an O-version of the monotone density theorem) which we will need later.

Proposition 4.1. Let U(x) =
∫ ∞

x
u(t)dt (x > 0), where u is measurable, even-

tually positive, and satisfies the weak Tauberian condition u ∈ BD ∪ BI. If

β(U) > −∞ and α(U) < 0, then

u(x) � U(x)/x (x → ∞).

The proof of Proposition 4.1 is quite similar to that of [BGT, Proposition

2.10.3], whence we omit the details.

Before going into details, we explain the proof of Theorem 2 in rough outline.

Recall that −1
2

< ν < ∞. We write, for X large enough and 0 < x < ∞,

f̃(x) := I[X,∞)(x)f(x), (4.1)

g̃(x) := (C ∗ f̃)(x), (4.2)

G̃(x) := (D ∗ f̃)(x), (4.3)

where

C(x) :=xν+ 1
2 e−x, (4.4)

D(x) := dν
xν+ 3

2

(1 + x2)ν+ 3
2

, dν :=
2ν+1Γ(ν + 3

2
)

π1/2
. (4.5)

We will obtain as in [BI1]

G̃(x) =(kν ∗ g̃)(x), (4.6)

G̃(x)/g̃(x) → c (x → ∞), (4.7)∫ ∞

X

f(t)tν+ 1
2 dt = ∞. (4.8)

We will also obtain g̃ ∈ BI and ρ(g̃) = ρ. By (4.8) and the monotone convergence

theorem,

xν+ 3
2 G̃(x) = dν

∫ ∞

X

tν+ 1
2 f(t)

{1 + (t/x)2}ν+ 3
2

dt → ∞ (x → ∞),

whence by (4.7) we have x−(ν+ 3
2
) = o(g̃(x)) as x → ∞. So (2.7) holds if we replace

f by g̃. So this time, by considering I[1,∞)g̃, we can apply Theorem 1 to obtain

g̃ ∈ Rρ. To deduce f ∈ Rρ from this, we will use Karamata’s Tauberian theorem.

For that, we will need some Tauberian condition on f . Here an extra complica-

tion, absent in [BI1, BI2], arises. For there, f was assumed to satisfy the strong

Tauberian condition of monotonicity, which is not available now. Fortunately,
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the desired Tauberian condition can be shown by the same arguments as in Steps

7–10 of the proof of [BGT, Theorem 5.2.1], whence the proof will be complete.

Now we are ready to prove Theorem 2.

Step 1. Since f ∈ BI ∪BD, by [BGT, Proposition 2.2.1] there exists X > 0 such

that f and 1/f are both positive and locally bounded on [X,∞). Define f̃ by

(4.1) with this X. Write, for x ∈ (0,∞),

F̃ (x) := (kν ∗ f̃)(x),

f̄(x) := I(0,X)(x)f(x),

F̄ (x) := (kν ∗ f̄)(x).

Pick γ ∈ (ρ,−1). Then there exists c1 ∈ (0,∞) such that

0 ≤ f̃(x) ≤ c1x
γ (0 < x < ∞), (4.9)

whence

|F̃ (x)| ≤ c1|kν |̌ (γ)xγ (0 < x < ∞).

On the other hand, since

Jν(x) ∼ (x/2)ν/Γ(ν + 1) (x → 0+),

Jν(x) ∼
√

2

πx
cos

(
x − (2ν + 1)π

4

)
(x → ∞)

(see Watson [Wa, 7.21]), there exists c2 such that

|kν(x)| ≤ c2x
−(ν+ 3

2
) (0 < x < ∞),

whence

|F̄ (x)| ≤ c2x
−(ν+ 3

2
)

∫ X

0

|f(t)|tν+ 1
2 dt.

As a consequence, for some c3 ∈ (0,∞),

|F (x)| ≤ c3{x−(ν+ 3
2
) + xγ} (0 < x < ∞)

(recall that F or Fν is defined by (2.5)).

Step 2. Let C and D be as in (4.4) and (4.5). Then as in the proof of [BI1,

Lemma 2], we have

(C ∗ F̄ )(x) = (D ∗ f̄)(x) (0 < x < ∞),

the integral converging absolutely. By (4.9), f̃ ∈ L1[0,∞), while C(x·) ∈ L1[0,∞)

for any x > 0. So Parseval’s formula (cf. [MO, Theorem III]) yields

(C ∗ F̃ )(x) = (D ∗ f̃)(x) (0 < x < ∞).

Combining, we obtain

(D ∗ f)(x) = (C ∗ F )(x) (0 < x < ∞), (4.10)

10



the integral converging absolutely.

Step 3. Define g̃ and G̃ by (4.2) and (4.3). We write G(x) := (D ∗ f)(x) for

0 < x < ∞. By (4.10),

G(x) = (C ∗ F )(x) (0 < x < ∞). (4.11)

As in [BI1, §3], we have (4.8), whence

G̃(x)/G(x) → 1 (x → ∞).

On the other hand, since 1/f is locally bounded on [X,∞), as in [BI1, §3], it

follows from (2.7) and (4.11) that

G(x)/g̃(x) → c (x → ∞),

whence (4.7) follows.

Step 4. Since |kν |̌ (γ) < ∞ and |C |̌ (γ) < ∞, it follows from (4.9) that

|kν | ∗ (|C| ∗ f̃)(x) ≤ c1|kν |̌ (γ)|C |̌ (γ)xγ < ∞.

Therefore, by Fubini’s theorem,

G̃(x) = (D ∗ f̃)(x) = ((kν ∗ C) ∗ f̃)(x)

= (kν ∗ (C ∗ f̃))(x) = (kν ∗ g̃)(x),

whence (4.6).

By the definition (4.2), x−(ν+ 1
2
)g̃(x) is decreasing, whence g̃ ∈ BI. As in [BI1,

Lemma 5], ρ(g̃) = ρ.

As we saw above, (2.7) holds if we replace f by g̃:∫ 1

0

g̃(t)kν(x/t)dt/t = o(g̃(x)) (x → ∞).

Therefore from (4.7) we have for ḡ := I[1,∞)g̃,

(kν ∗ ḡ)(x)/ḡ(x) → c (x → ∞).

By [BI1, Proposition 3] and [BI2, §5], the kernel kν satisfies the conditions (2.1)

and (2.2). Therefore, by Theorem 1, c = ǩ(ρ) and ḡ ∈ Rρ, whence g̃ ∈ Rρ.

Step 5. Write

U(x) :=

∫ ∞

x

f̃(t)t−(ν+ 3
2
)dt (0 < x < ∞).

Since

g̃(x) = xν+ 1
2

∫ ∞

0

e−xtd{U(1/t)},
11



by Karamata’s Tauberian theorem (cf. [BGT, Theorem 1.7.1’]) g̃ ∈ Rρ yields

U ∈ Rρ−ν− 1
2
. In particular, β(U) = α(U) = ρ − ν − 1

2
< 0. So if we write

q(x) := xν+ 1
2 U(x) (0 < x < ∞),

then Proposition 4.1 yields, for some M > 1 and Y > 0,

M−1 ≤ f(x)/q(x) ≤ M (x ≥ Y ).

As a consequence, f ∈ OR (see [BGT, §2.0.2] for the definition of OR).

Step 6. For any fixed B > 1,∫ B

0

f(u)kν(x/u)du/u = o(q(x)) (x → ∞).

For, as x → ∞,∣∣∣∣
∫ B

0

f(u)kν(x/u)du/u

∣∣∣∣ ≤ c2x
−(ν+ 3

2
)

∫ B

0

|f(t)|tν+ 1
2 dt = o(q(x)).

Then, as in Steps 7–9 of the proof of [BGT, Theorem 5.2.1], we obtain

lim
λ↓1

lim inf
x→∞

inf
σ∈[1,λ)

f(σx)/f(x) = 1,

which implies that log f is slowly decreasing. Thus, by the Monotone Density

Theorem, U ∈ Rρ−ν− 1
2

implies f ∈ Rρ, as desired. This completes the proof.

5. Remarks

In this section, we show that the kernel kν defined by (2.4) fails to satisfy the

conditions of Jordan [J, Theorems 1 and 1a] for some ρ if ν is large enough. Recall

the Mellin transform ǩν of our kernel kν from (W).

Write

Ψ(x) = Γ′(x)/Γ(x) (0 < x < ∞)

for the logarithmic derivative of the gamma function (digamma function). As is

well known,

Ψ(x) = −γ − 1

x
+ x

∞∑
n=1

1

n(x + n)
(0 < x < ∞),

where γ is Euler’s constant. Since Ψ′(x) =
∑∞

n=0(x + n)−2, Ψ is increasing on

(0,∞). Now

log 2 +
1

2
Ψ(1

2
) +

1

2
Ψ(1) = −γ < 0,

log 2+
1

2
Ψ(3

4
) +

1

2
Ψ(5

4
) = −γ − 2 log 2 + 2 > 0.

12



So we may define ν1 ∈ (1
2
, 1) by

log 2 +
1

2
Ψ(1

4
+ 1

2
ν1) +

1

2
Ψ(3

4
+ 1

2
ν1) = 0

(ν1 = 0.9616 · · · by calculation using Mathematica).

For x ∈ (−ν − 3
2
, ν + 1),

log ǩν(x) = (x + 1
2
) log 2 + log Γ(3

4
+ 1

2
ν + 1

2
x) − log Γ(1

4
+ 1

2
ν − 1

2
x),

whence

ǩ′
ν(x)/ǩν(x) = log 2 +

1

2
Ψ(3

4
+ 1

2
ν + 1

2
x) +

1

2
Ψ(1

4
+ 1

2
ν − 1

2
x).

So

ǩ′
ν(−1) = ǩν(−1)

{
log 2 +

1

2
Ψ(1

4
+ ν

2
) +

1

2
Ψ(3

4
+ 1

2
ν)

}
.

Since k oscillates infinitely often near zero (and also ǩν(−1) is finite), Jordan’s

Theorem 1 cannot be applied to kν at all. If ν ≤ ν1, then ǩ′
ν(−1) ≤ 0, whence by

[BI1, §5], ǩν is decreasing on (−ν − 3
2
,−1). Further, |ǩν((−ν − 3

2
)+)| = ∞. So

Jordan’s Theorem 1a applies to kν for all ρ ∈ (−ν − 3
2
,−1) if −1

2
< ν ≤ ν1.

On the other hand, if ν > ν1, then ǩ′
ν(−1) < 0, whence by [BI2, §5] there exists

b1 ∈ (−ν − 3
2
,−1) such that ǩν is decreasing on (−ν − 3

2
, b1] and increasing on

[b1,−1). So Jordan’s Theorem 1a still applies to kν if ν > ν1 and ρ ∈ (−ν − 3
2
, b1].

However, if ν > ν1 and ρ ∈ (b1,−1), then neither of Jordan’s theorems apply to

kν. Our Theorems 1 and 2 cover this last case.
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