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Preface 

Recently statistical physicists have extended their research fields to complex systems which have not 
been regarded as subjects of traditional physics. Statistical mechanics has originally been developed as 
a useful tool to investigate the various physical properties of condensed matters in which about 1023 

elements interact each other in the complicated fashion. In real life, there are a lot of similar situations, 
including social science such as economics, in which lots of simple elements interact each other and their 
collective behavior is sometimes beyond our expectation. 

Among such complicated systems, the brain has been one of the most attractive subject. In the real 
brain, there exist about 1012 neurons and each of them is connected with the other neurons of order 105 

by synaptic efficacy. For this highly complicated non-linear system, many researchers in the statistical 
mechanics community have partially succeeded in explaining some aspect of brain functions. They assume 
that the synaptic connections are randomly distributed and a single neuron is a binary threshold unit 
which takes + 1 or -1 in analogy with random spin systems like spin glasses. 

However, if success of statistical mechanics consists only in explaining some aspect of brain functions, 
or giving a way for understanding of macroscopic psychological phenomena from a microscopic point 
of view, we are obliged to think that researchers who have used statistical mechanics only changed 
their subjects and succeeded in giving an explanation for experiments of the new subjects. I think the 
success of statistical mechanics consists not only in giving an explanation of physiological experiments 
but in providing the engineers or information scientists, who need practical applications, with some 
mathematical concepts or ideas to construct a new type of computer machine based on the way of 
information processing in the real brain. Thus, statistical mechanics has two aspects of contribution to 
the brain science; 

• Explanation for physiological phenomena . 

• Providing mathematical foundation for constructing new type of information processing or opti­
mization. 

For a remarkable example of the former contribution, statistical mechanics has succeeded in showing 
a limitation of the learning ability of some specific models of the real brain (the so-called neural network 
model), which is one of the fundamental brain functions. As the statistical mechanical analysis for 
the machine learning has some advantages in comparison with the other approaches based on traditional 
mathematical statistics, we can obtain a deep understanding of the learning mechanism in a large network 
model (the size N goes to infinity) which has a particular structure. 

Learning is regarded as a process of finding a suitable parameter of the machine so as to make the 
machine adapt to the environment. Then, the success in learning is measured by the cost function which 
represents the degree of mis-adaptation to the environment. In the so-called supervised learning context, 
the environment to which the machine should be adapted is referred to as the input-output relations 
of the teacher machine. If the teacher and the student machines have the same structure, the learning 
corresponds to the producing a clone of the teacher machine. However, such a case is somewhat ideal 
in comparison with the real world. We should investigate more realistic cases in order to extract some 
knowledges of the learning in the real brain from the mathematical model system. Therefore, we take up 
a realistic learning situation in the sense that the structures of teacher and student machines are different. 
Fdr this case, we can not train the student machine so that the cost function becomes zero in principle. 

If we would like to make an artificial learning machine in this context, it is necessary for us to choose 
the learning algorithm which minimizes the cost function as quickly as possible. This is also a typical 
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problem of optimization. In general, the cost function has a lot of minima, like the energy landscape of 
spin glasses at low temperatures, and it is very difficult to apply the conventional method like a gradient 
decent to obtain the global minimum. In optimization for such a multi-valley cost function, one should 
prevent the system from being trapped in one of the local minima. Some mechanism of escaping from the 
local minimum is needed and thermal fluctuation is suitable for this purpose. The simulated annealing 
method is based on the thermal fluctuations and is regarded as one of the most effective heuristic methods 
for the problem of combinational optimization. 

These two keywords learning and optimization have attracted much attention of the researchers who 
work in the cross-disciplinary fields. 

In this thesis, the following problems concerning these two keywords are investigated III detail from 
a statistical mechanical point of view; 

• How does the neural network model in realistic situations learn from the environment? 

• What is the most effective strategy for the learning machine? 

• What is the optimal performance for a specific neural network model? 

• How do thermal fluctuations act effectively on problems of optimization? 

• What is the limitation for the optimization method based on thermal fluctuations? 

Most of the results we obtain in this thesis are rigorous or exact within our model system. 
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Chapter 1 

Introduction 

1.1 What is learning ? 

Let us consider a black box which produces an output yE~m after receiving an input xE~n according 
to some rule. It is convenient for us to suppose that the black box produces its output y according to 
some conditional probability p(ylx; 0) which means the probability of the output y on condition that an 
input x is received. A parameter OE~k is a kind of control parameter of the conditional probability. The 
integers m, nand k means the dimensions of outputs, inputs and parameters, respectively. Although we 
deal with the case of m = n = k = 1 in this subsection, it is easy for us to extend our discussions to 
the case of higher dimensions. We can regard x as an element which is extracted from some probability 
distribution p(x) and the detail of p(x) specifies the environment in which the black box is placed. 

Then, we call a pair of the conditional probability p(ylx; 0) and the distribution of inputs p(x), namely, 

S = (p(x),p(ylx; 0)), (1.1 ) 

system. If the shape of the conditional probability p(ylx; 0) is completely determined by the parameter 0, 
the parameter 0 specifies the black box perfectly and we call this parameter machine. After the machine 
o receives an input x form the distribution p(x), the machine 0 calculates the conditional probability 
p(ylx; 0) for the input x and produces the output y according to this probability p(ylx; 0). In contrast, let 
us suppose that input x and output yare fixed to some specific values yO and xO. Then it is obvious that 
the conditional probability p(ylx; 0) means the distribution of the machine 0 which is able to produce the 
set of an input-output relation (xO,yO). 

If one knows p(ylx; 0) and p(x), the statistical properties of the system are completely determined as 

P(x, y; 0) = P(ylx; O)P(x). (1.2) 

If the machine is determined by some function f(x; 0) instead of a conditional probability, we can easily 
extend our notation using the delta function as 

S = (p(x),8(y - f(x;O))). (1.3) 

x y 

Figure 1.1: The black box. Input x vs. output y relations of the box is determined by a conditional 
probability p(ylx; 0). 
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10 CHAPTER 1. INTRODUCTION 

Table 1.1: The two-dimensional data. 

For each case, we should bear in mind that it is possible for us to refer only to pairs of the inputs and 
outputs and we have no direct knowledge of the conditional probability p(ylx; 8), especially, the parameter 
8. Then, an interesting question arises. 

Is it possible for us to identify the mechanism of the black box, namely, the conditional probability 
p(ylx; 8) from only a set of input-output relations? Then, if we remember that the conditional probability 
is specified by the parameter 8, we can put the above question in another way; Can we specify the 
parameter 8 after referring to a set of input-output relations? 

Such a kind of question is a very general and important problem in the real world. For example, we 
sometime should fit experimental data of natural science, economics, etc. to a line or curve and derive 
a law from the data. In general, such a line or curve is specified by several parameters and we should 
estimate the suitable fitting parameters. In order to make our concept clear, we discuss the following 
simplest model. 

Let us suppose that we received the N experimental data (Xi, Yi), i = 1,···, N. For this case, we 
should regard that xi(i = 1,· ··,N) is input and Yi(i = 1,···,N) is output and the dimensions of the 
input and output are m = 1 and n = 1, respectively. In general, we do not know what mechanism or law 
exists behind the data, however, let us assume that these data are generated by the next simple relation; 

(1.4) 

where (J = (81 ,82 ) means the parameter and the dimension of this parameter is k = 2. Therefore, this 
system can be written formally as 

(1.5) 

Then, our problem is how we determine the parameter (J from a finite set of input-output relations 
(Xi, Yi), i = 1,···, N. This problem is called the linear regression problem. 

For this one-dimensional linear regression problem, we usually use the least square method as the 
strategy to obtain the parameter. We first consider the following quantity from the observable, namely, 
N input-output relations; 

N 

T((J) = L [Yi - (81Xi + 82)]2 (1.6) 
i=l 

According to the least square method, we determine the suitable parameter (J* so that T( (J) takes a 
minimum value at the suitable parameter. Therefore, we should perform 

8T((J) I = 0 
8(J (J. 

Then we obtain the suitable parameter as 

8* 1 

8* 2 

N 2:~1 XiYi - (2:~1 Xi)(2:~l Yi) 

N 2:~1 xt - (2:~1 xd2 

(2:f-1 xt)(2:f-1 Yi) - (2:f-1 Xi) (2:f-1 XiYi) 

N 2:~1 x: - (2:~1 Xi)2 

(1.7) 

(1.8) 

(1.9) 

and we can estimate that the data are produced by the relation Y = 8ix + 82. As a simple examination, 
we apply the least square method to the data which are listed in Table 1.1. After simple calculations, we 
obtain Y = lOx - 40. In Figure 1.2, we plotted the observed data listed in Table 1.1 and the line which 
was observed by the least square method. 
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Figure 1.2: The one-dimensional linear regression problem. The dots are observable data. The line 
y = lOx - 40 is the result of the least square method. 

Let us therefore define the machine learning as follows; 

Learning------------------------------------------------------------------------~ 

Finding the optimal value of parameter 0 of the system from a finite set of input-output relations. 

For the above one-dimensional linear regression problem, the optimal value of the parameter corresponds 
to (J* and the strategy to obtain the optimal value, namely, the least square method, is referred to as the 
learning algorithm. 

In the next section, we introduce neural network models as a typical example of learning systems. 

1.2 Neurql network model 

Neural networks were proposed not only as a model of the real brain functions but also as an alternative to 
von Neumann type computers to perform the task of processing input data into output data. McCullock 
and Pitts [1] introduced a simplest model for a single neuron as a binary threshold unit. Nowadays this 
model is called the perceptron. The unit (neuron) computes the weighted sum of its inputs (from other 
units) and produces +1 or -1 according to whether or not this sum is greater than an arbitrary specified 
threshold. One of the mathematical representations of the above statement is 

Y = f [Jox/vN - 0] (1.10) 

where x is an input on the N-dimensional sphere with radius 1. On the other hand, the parameter J 
is called synaptic weight vector on the N-dimensional sphere with radius -IN and 0 is some threshold 1. 

Therefore, for this neural network model, the dimension of input x is m = N and the dimension of the 
parameter J is also k = N and the dimension of output is n = 1. If we regard the above unit as the 
system with some conditional probability as we discussed in the previous section, (1.10) is represented as 

(1.11 ) 

where p(x) is a uniform distribution on the N-dimensional sphere Ixl = 1. 

IThere are several candidates for the scaling of vector J. One should choose the scaling so that the argument of the 
function f becomes'" O( 1) 0 
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y 

y 

u 

Figure 1.3: A single neuron model as a graded-response (solid line) and non-linear (broken line) unit. 

The above mathematical model is based on the next two features of a single neuron in the real brain; 

• A single neuron is connected with the other neurons of order,...., 105 . 

• A single neuron transfers the information as electric pulses and fires if the synaptic potential exceeds 
some threshold. 

The graded-response function f in the definition (1.10) is called the transfer function or the activation 
function. The non-linear version of the transfer function also has been considered, for a typical example, 
as 

y = sign [J.x/v'N - B] . (1.12) 

We illustrate the graded-response and non-linear unit of a single neuron in Figure 1.3. The graded­
response transfer function has the advantage of easy handling of mathematics. In contrast, the non-linear 
transfer function is robust with respect to some input noises. 

This input noise robustness of the non-linear transfer function is understood as follows. Let us first 
consider that some input noise 7] is added to the input vector x as x-+x + 7]. Then, the internal potential 
changes as J.x/.fN -B-+J.x/.fN -B+J'7]/.fN. For the graded-response transfer function, the output 
of the unit changes due to the input noise by 

(1.13 ) 

This takes a finite value as long as J'7]/.fN is non-zero. 
On the other hand, for the non-linear transfer function, the change of the output is given as 

sign (J.xv'N - B + J'7]/v'N) - sign (J.x/v'N - B) . (1.14) 

We should notice that this difference becomes zero as long as the signature function does not change. As 
the result, the unit with the non-linear transfer function is hard to be disturbed by the input noise. 

In addition, as it is easy to argue by analogy between the unit with ±1 output and Ising spin systems, 
the unit with the non-linear transfer function is familiar to statistical physicists. 

One of the remarkable abilities of the above neuronal units is the learning ability (or the adaptation 
ability). In order to deal with this learning ability, we regard the input x and the corresponding output y 
as the question and the answer respectively. Then, a perceptron can realize a set of the desired question­
answers by modifying its own synaptic weight J adaptively [1) .. 

If these pairs of questions and correct answers {y, x} (what we call examples or the training set) are 
generated by a different neural network, this fashion of learning is called the supervised learning and the 
network which gives examples is called the teacher or supervisor. The network which should adapt the 
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examples is referred to as the .9tudent or learner. The examples are sometimes regarded as teacher .9ignal.9. 
The student should modify his own synaptic weight J = (Jl ,"', J N) in order to rep rod uce the teacher 
signals correctly. 

For a single layer perceptron without threshold, the structure of the teacher is perfectly specified by 
its synaptic weight vector and transfer function. Therefore, if the teacher and student have the same 
structure, the student should find the correct weight (teacher weight) B = (Bl ,· .. ,BN ). 

Let us remember that the learning problem we discussed in the previous section, namely, the one­
dimensional linear regression problem, is different from this supervised learning problem in the sense 
that there does not exist the target vector for the one-dimensional regression problem. For the one­
dimensional linear regression problem, the signal or data (Xi, yd i = 1,"" N is presented explicitly, 
however, we cannot tell whether the modification of the fitting parameter (J is correct or not in principle. In 
contradiction to the supervised learning, such a learning without teacher signal, is called the un.9upervi.ged 
learning. In this thesis, we deal with the problems of the supervised learning. 

1.3 Several learning algorithms 

In order to achieve the good performance of learning from examples, a lot of learning algorithms have 
been proposed and improved. In this section, we introduce three typical learning algorithms. 

1.3.1 Perceptron learning algorithm 

In the early stage of the effort to construct the effective learning algorithm, Rosenblatt [2] proposed the 
so called perceptron learning algorithm. 

The perceptron learning algorithm states that for a single neuronal unit like (1.12), one can find a 
solution B from a training set e := {(yl, xl), (y2, x 2), . . " (yt, xt)} within a finite training time. 

The perceptron learning algorithm is described as follows. 

Percept ron Learning Algorithm ------------------------__... 

START Choose an arbitrary weight J. 

TEST For an arbitrary example (yk, :z:k) in e, test whether the unit satisfies the input-output 
relation or not. If the unit is correct, go to TEST. If the unit is wrong, go to next ADD. 

ADD Modify the weight of the unit as 

and back to TEST. 

For this algorithm, there is the following convergence theorem. 

Percept ron Convergence Theorem -------------------------...,. 

The perceptron learning algorithm can find the Mlution B at lea.9t within 0-2 time.9 modification.9, 

where, 0 = min(y,x)Ee'{Y'v} > 0 with v:=B·x (IBI = 1). 

Proof. 
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Figure 1.4: 6 is the minimum projection of the input vector to teacher's weight. 

At first, we rewrite the student weight J and the input vector:z: as J = (Jl,···,JN,B) and:z: = 
(Xl,'" xN, -1) respectively. Then, we can neglect the threshold B in the sign function. 

i) For arbitrary J, 

is satisfied because IB I = 1. 

B·J 
G(J)=W:::;1 

ii) Let us regard Ji as a weight vector after the i-th modification. 

Then, 

B·Ji+l B· (Ji + y.:z:) 

= B·Ji + y(B.:z:) 

~ B·Ji +6. 

Therefore, using this relation n-times, we obtain 

(1.15) 

(1.16) 

where we have used the initial condition J 0 = 0 2 . Next we calculate the square of J i+l and find 

IJi +1 12 IJi + y:z:12 

IJil2 + 2y(Ji':Z:) + 1 

< IJ i1
2 + 1 

where we have used y(Ji·:z:) < O. Therefore we obtain 

From (1.16) and (1.18), the function G(J n) should satisfy 

(1.17) 

(1.18) 

(1.19) 

2In this argument, we assume that the signature function sign(x) takes +1 if the argument of the function x is identically 
zero. 
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Y condition 

-1 -1 -1 -J1 - J2 - B < 0 
-1 +1 -1 -J1 + h - B < 0 
+1 -1 -1 J1 - J2 - B < 0 
+1 +1 +1 h + J2 - B > 0 

Table 1.2: The truth table of the AND logic 

Y condition 

-1 -1 -1 -h - h - B < 0 
-1 +1 +1 -J1 + h - B > 0 
+1 -1 +1 h - J2 - B > 0 
+1 +1 +1 J1 + J2 - B > 0 

Table 1.3: The truth table of the OR logic. 

iii) If we suppose that the number of modifications n is larger than 8-2
, namely, n > 8-2 , (1.15) and 

(1.19) contradict each other. • 

At the end of this subsection, we would like to mention the value 8. We first should notice that as Yk is 
the output of the teacher, Yk'X- is restricted to the upper half area of the N-dimensional sphere in which 
the teacher's weight B exists (see Figure 1.4). Then, 8k == B'(Yk'X-k) = Yk(B''X-k) represents a projection 
of an input 'X-k to the teacher's weight vector Band 8 = mind8d is the minimum projection. Therefore, 
if this value 8 is small, the region in which the target B should exist is large. On the other hand, if 8 
is large, the region in which the target should exist is small. As the result, the inverse of 8 or 8-2 is 
proportional to the times of modifications which we need to find the target in the restricted region 3 • 

1.3.2 Error-back propagation learning algorithm 

The perceptron learning algorithm is most general in the sense that it is guaranteed to converge to the 
solution of the given problem under the condition that such a solution exists. In order to explain that 
there exists a problem which a simple percept ron cannot solve, we would like to examine the several 
simple logical operations, namely, AND, OR and XOR( exclusive or). For the simplicity, we treat the case 
of two-dimensional perceptron. For this two-dimensional perceptron, the input-output relation is given 
by 

(1.20) 

We first examine whether the above two-dimensional perceptron (1.20) can realize the following AND 
logic. In Table 1.2, the condition means the required condition for us in order to satisfy the input-output 
relation (X1,X2'Y)' It is easy for us to choose a suitable solution (h,h,B) to satisfy the AND logic, 
namely, the four conditions in Table 1.2. We should choose (Jl, J2 , B) = (1,1,0.5). Therefore, the two­
dimensional perceptron can realize the AND logic and the perceptron learning algorithm we discussed in 
the previous section guarantees the convergence to the solution within a finite number of iterations. We 
next examine the OR logic using the same argument as the case of the AND logic. We listed the truth 
table in Table 1.3 of the OR logic (Xl, X2, y) and the corresponding required conditions. We can easily find 
a candidate of the solutions (J1 , J2 , B) = (1,1, -0.5). Therefore, we conclude that the two-dimensional 
perceptron can be trained by the perceptron learning algorithm so that the perceptron finds the solution 
of the OR logic within a finite time step. From the above results with respect to the AND logic and 
the OR logic, it seems that the perceptron can realize every input-output relation. However, it is worth 
while to examine the following XOR logic which is listed in Table 1.4. We can see that it is impossible 

3We sometimes refer to this region as version space. 
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Y condition 

-1 -1 -1 -J1 - h - B < 0 
-1 +1 +1 -h + J2 - B > 0 
+1 -1 +1 h - J2 - B > 0 
+1 +1 -1 J1 + J2 - B < 0 

Table 1.4: The truth table of the XOR logic. 

AND OR XOR 

o o o 
Xl Xl 

o 
Figure 1.5: The logic of the AND, OR and XOR. For the AND and the OR, we can divide the white 
circle (+ 1) and brack circle (-1) by a line. On the other hand, there does not exist such a line for the 
XORlogic. These circles are located at (1,1), (1,-1), (-1,1) and (-1,-1). 

to choose the parameter set (J1, J2, B) so as to satisfy the four conditions in Table 1.4. 
In order to understand the above case intuitively, we illustrate the situation in Figure 1.5. From this 

figure, we see that for the realizable tasks for the perceptron, namely, the AND logic and the OR logic, 
there exists the line J1X1 + J2X2 - B = 0 which divides the white circles (y = +1) from the black circles 
(y = -1). On the other hand, there are no such lines for the XOR logic. 

From this result, we are obliged to say that there exists a task which can not be solved by the 
perceptron. In other words, the power of the perceptron is limited. 

However, such types of difficulties were overcome by constructing a different type of network which 
has intermediate units. Let us consider the neural network which has the following architecture. The 
network has two intermediate units, each output of which is represented as 

Y1 . ((1) (1) ) sign J1 Xl + J2 X2 - B1 

Y2 sign (Ji2) Xl + J~2) X2 - B2) . 

The final output of the network is given by the following relation; 

y = sign (J1Y1 + hY2 - B) 

We illustrate the structure of the network in Figure 1.6. 

(1.21 ) 

(1.22) 

(1.23) 

The key point of our treatment to solve the XOR logic using this type of the network is translating 
the difficult XOR logic (Xl, X2, y) to a much easier logic (Y1, Y2, y) by controlling the parameters of 
the intermediate units (Ji1) ,J~1), B1), (Ji2), J~2), B2) and the parameter of the output unit (J1,J2, B). 
Namely, we should find the solution for the following Table 1.5. We illustrate the relation between the 
logic (Xl, X2, y) and the logic (Y1, Y2, y) in Figure 1. 7. From this figure, we see that there exists the line 
which divides the white circles and the black circles for the case of the logic (Y1, Y2, y). Thus, if we 
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Figure 1.6: The structure of the network which can solve the XOR logic. 

I Xl I X2 I Y II YI I Y2 I 
-1 -1 -1 -1 -1 
-1 +1 +1 +1 -1 
+1 -1 +1 +1 -1 
+1 +1 -1 +1 +1 

Table 1.5: The truth table of the XOR logic (XI,X2,Y) and the logic which can be solved by a simple 
perceptron (YI, Y2, y). 

X2 X2 

• 
0 • .-. . . 

~ I .... 

Xl Xl 

• 0 • 
Figure 1.7: The relation between the solvable logic (right) and the unsolvable logic (left). 
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z 

x 

Figure 1.8: A kind of multi-layer perceptrons. 

find the set of the parameter (Ji 1>, J~l) ,Ji2) , J~2), J1, J2, (h, O2,0) which satisfies the logic in Table 1.5 
with respect to (X1,X2,Y,Y1,Y2), we can construct the neural network which can solve the XOR logic. 

After some consideration, we can obtain one of the solutions as (J?), J~l), Ji2), JJ2), J1, J2, 01, O2,0) = 
(1,1,1,1, -1, 1,2). 

This type of networks is referred to as multilayer perceptrons. For the multi-layer perceptrons, the 
error back-propagation algorithm was proposed by Amari [3]. Here we show how the algorithm works. 
We first consider the network which is illustrated in Figure 1.8. The output z of the machine is given as 

(1.24) 

where M and N are the numbers of the intermediate units and input units, respectively. s = (Sl ... SN) 
is the weight vector between the output unit and intermediate units, and J = {Jij; i = 1,···, M, j = 
1,· .. , N} is the weight vector between inputs and intermediate units. For simplicity, let us represent a 
set of the weight vectors sand J as 9 = (s, J). Then, the input-output relations of the machine are 
formally represented as 

z = z(:z:; 9). (1.25) 

The teacher machine is specified by the weight 9T and its output is z(:z:, 9T)' Then, the loss function (or 
cost function) is defined as 

1 2 
l(:z:; 9) = 2' [z(:z:; 9) - z(:z:; 9T)] . (1.26) 

If the inputs :z: are extracted from a distribution p(:z:), the average loss function 4 for one example is 
defined as 

L(9) = LP(:z:)l(:z:; 9). 
:z: 

Using the average loss function, the following strategy may be useful 5; 

(J -+ 9 _ coL((J) 
{j(J . 

(1. 27) 

(1.28) 

4The unit which learns so that this type of loss function becomes minimum is called the AdaLine (Adaptive Linear 
Neuron). 

sThis type of update is called the off-line or batch mode. 
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where c is a small positive constant. 
If we define a small time step as f).t, the above algorithm can be written as 

8(t + f).t) = 8(t) - c {)~~). (1. 29) 

After taking a limit of small time st.ep f).t-+O, we obt.ain the next differential equation of the motion for 
the parameter 8 as 

{)8 {)L( 8) 
at = -fijJ' (1.30) 

In order to confirm that this algorithm works effectively, we take the derivative of L(8) with respect to 
time t as 

{)L(8) = ({)L(8)) ({)8) = -c ({)L(8))2 <0 
{)t {)8 {)t {)t-

(1.31) 

where we used (1.30). From this result, we conclude that the loss function L(8) monot.onically decreases 
according to the learning algorithm. In the above discussion, let us mention the following several points. 

Firstly, we assume that the graded-response transfer function f(x) increases monotonically, namely, 

df(x) 
--<0 for'l:fx. dx - (1.32) 

This condition guarantees that the loss function monotonically decreases by the error-back propagation 
learning algorithm (1.28) based on the gradient decent. 

Secondly, we assume that the transfer function f (x) is bounded as 

lim If(x)1 < 1. 
x-+±l 

(1.33) 

Although we mentioned that the non-linear transfer function has an advantage of the robustness for some 
input noise, this property of the non-linear transfer function is not suitable for constructing a learning 
machine based on the error-back propagation learning algorithm. Let us consider that for the intermediate 
unit with the non-linear transfer function sign(x), the weight vector changes from J to J + f).J. Then, 
the output of the intermediate unit is given by y == sign(J·x + f).J·x) and the derivative of this output y 
with respect to J is represented as 

{)y - = 8 (J.x + f).J·x) x 
{)J 

(1.34) 

where 8(x) means the Dirac's delta function. Therefore, the modification term appearing in the learning 
algorithm (1.28) becomes too sensitive only at J·x = -f).J·x (00 sensitivity) and insensitive otherwise 
( zero sensitivity). As the result, we conclude that the error-back propagation learning algorithm (1.28) 
does not work well if we choose the non-linear transfer function. Thus, we need the conditions (1.32) 
and (1.33) for the error-back propagation learning algorithm. One of the suitable candidates for the 
graded-response transfer function is, for example, 

1 
f(x) - ---,--..,....-:­

- l+exp(-,Bx) 
(1.35) 

where I' is a control parameter which has an analogy with the temperature as I' = T-1 and the above 
function goes to the signature function in the limit of 1'-+00. 

Thirdly, it is hard to calculate the modification term appearing in (1.28) because L( 8) depends on 
every example on p(x). In other word, at each step, we should check whether the output of the student 
coincides with that of the teacher or not for all examples. Therefore, we use the next strategy [3J as a 
substitute of (1.28) 6; 

8 -+8 _ 8l( x, 8) 
c {)8 . 

6This type of update is called the on-line mode. 

(1.36) 
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According to the distribution p(x), the above modification works stocha..'ltically and the algorithm is 
referred to as the stochastic descent algorithm [3J. The speed and accuracy of the convergence of the 
parameter e were investigated in detail by Amari [3J. 

For a three layer percept ron (Figure 1.8), the derivatives 0l/8si or 0l/8lij are calculated as 

r i := { Z ( x) - ZT ( x)} l' ( s . y) 

Ol Ol 8Yi _ -- = --- = riXj 
8lij 8Yi 8lij 

Ti:=risi/'(J.x). 

Using these results, the parameters sand J update as follows. 

(1.37) 

(1.38) 

(1.39) 

(1.40) 

(1.41) 

(1.42) 

From the update rules (1.41) and (1.42), the error of output z(x) - ZT(X) propagates from the output 
unit to the input units. Rumelhart et al [4J or other researchers [5, 6J re-discovered or re-formulated the 
above algorithm and called it the delta rule because 8 corresponds to ri or Ti in their notations. 

The choice of the learning rate C is also an important problem for the learning algorithm. The learning 
rule (1.36) updates stochastically every time the student receives an input x, and O(t) (t means time) does 
not converge to a specific value O(t-+oo) = 00 as long as the learning constant c is finite. As the result, 
O(t) fluctuates around some value. We should notice that if we consider the ensemble of the N (N -+(0) 
machines in which each machine updates according to the rule (1.36), the mean value of the parameter 
< O(t) > with respect to the distribution of the ensemble converges to 00 [72J 7. However, as long as we 
consider the learning processes of only one machine, the convergence of the parameter is not guaranteed. 
If we would like to obtain the convergence of the parameter O(t) for one machine, we should introduce 
the time dependent learning rate Ct instead of constant c. In addition, the learning rate should satisfy 
the following two conditions [73J; 

limct=O 
t ..... oo 

(1.43) 

and 
00 

L Ct = 00. (1.44) 
t=O 

The meaning of these two conditions are intuitively understood as follows. The first condition guarantees 
that after sufficient long time, the modification term goes to zero, the parameter 0 converges to some 
value. On the other hand, as the second condition means that the sum of the modification terms diverges 
to infinity, the second condition (1.44) guarantees that the parameter 0 can reach any place of the whole 
parameter 0 space after infinite time steps. 

One of the candidates for learning rate Ct which satisfies the above two conditions (1.43) and (1.44) 
is c"-' l/(to + tp (J~1) and this rate behaves c,,-,t--Y in the limit of t-+oo 8. 

One of the remarkable applications of the back propagation learning algorithm is the NET-talk by 
Sejnowski and Rosenberg [7J. They succeeded in training a neural network by the back propagation 
algorithm so that the trained network produces correct phoneme codes from corresponding English text 
character codes. They assumed that the pronouncement for a specific character which is an element of 
the word is determined by the three characters in front and behind of the character. For example, the 
character W appearing in the word NETWORK should be determined by NET and ORK. Taking this 
assumption into account, they tried to construct the neural network which is illustrated in Figure 1.9 and 
make this machine learn the rule of the pronouncement. This neural network consists of the input layer, 

7 The deviation of the parameter with respect to the distribution of the ensemble < (B( t)- < B( t) »2 > is also guaranteed 
to converge to some value. 

8This type of time dependent learning rate is referred to as the t-'-annealing. 
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/w/ 

Figure 1.9: The learning machine NET-talk. 

the intermediate layer and the output layer. The input layer has 7 units and each of the unit contains 
29 neurons which correspond to 26 alphabets and ",", ".", "?" . Each neuron takes +1 if they coincides 
with one of the seven words and takes -1 otherwise. Therefore, an input signal consists in 29x7 = 203 
neurons, and among them, only 7 neurons N- E T . W· 0 . R· K take + 1 and the rest takes -1 9 and the 
output signal means the pronouncement /w / for the word Was the input. After 1024 words of English 
(inputs) and phoneme (outputs) are presented as examples, the network changed its own structure so 
that the network pronounces 95% of the examples correctly. In addition, they gave 10,000 new examples 
which did not belong to the training examples to the trained network. Surprisingly, the trained network 
produced correct answers for 85% of new examples. This result implies that the network can construct 
the complicated representations of information which is beyond our expectations by learning from a finite 
set of examples. Importance of their result has been increased not only because they showed a successful 
application of the back propagation learning algorithm but also because their result motivated a lot of 
researchers to investigate to what extent the network can generalize. 

1.3.3 Boltzmann machine 

For the recurrent networks (see Figure 1.10), Hinton and Sejnowski [8] introduced the Boltzmann machine 
algorithm. In general, the Boltzmann machine consists of three parts, namely, input units, output units 
and hidden units. In Figure 1.10, we represent the states of input, output and hidden units by Xr, Xo 
and XH, respectively 10 . For simplicity of the following discussions, let us denote a set of the three kinds 
of state by x, n~mely, x = (xr,Xo,XH). Then, the state of the the machine updates according to the 
following probability; 

1 
g(x· - +1) - --~--:--:-

, - - 1 + exp( -2f3hi ) 
(1.45 ) 

where hi = 2: j JijXj and f3 is the inverse temperature given as f3 = liT. It is important for us to bear 
in mind that the Boltzmann machine has the next two remarkable features; 

• Each unit updates asynchronously . 

• The weight matrix is symmetric, namely, Jij = Jji for all i,j. 

Although the symmetric synaptic weight seems to be in contradiction with the function of synaptic 
efficacy in the real brain, this feature guarantees that the stochastic process (1.45) produces the following 

9This type of the information cording in which the ratio of the +1 neurons to the -1 neurons is extremely small is called 
the sparse coding. 

10 The role of the hidden unit is to help the visible unit (the input-output unit) to realize the difficult task for the network. 
This role is similar to that of the units in the intermediate layer of the feed-forward neural network. 
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Figure 1.10: Conceptual figure of recurrent neural network. 

equilibrium distribution with respect to the network state x. 

p(x) = exp[-,BH(x)] 
Z 

where z == :Ex e- fJH and H is the following Lyapunov function 

(1.46) 

(1.47) 

If the local minima of H(x) is located at x a , Xb and xc, these three states are inclined to appear and each 
probability for the appearance is proportional to p(x a ), p(Xb) and p(xc). For this network, if the weight 
matrices hj change, the equilibrium distribution of the state p( x) also changes. Then, the problem which 
we would like to solve by the above Boltzmann machine is what the best strategy is for us to modify the 
weight Jij in order to bring the distribution p(x) close to the given distribution q(x). The distribution 
q(x) means the environment and the machine learns so as to adapt itself to the environment. Then, 
the student modifies his weight matrix Jij so as to approximate the given distribution q( x) by p( x) as 
correctly as possible. 

We should notice that as each element xi(i = 1", N) of the vector x produced by the distribution 
q( x) takes a binary value ±1 and x has a constraint :Ex q( x a ) = 1, the maximum number of the possible 
configurations is 2N - 1. On the other hand, the the number of configurations of x which can be realized 
by the Boltzmann machine with the weight matrices Jij is equal to the number of the elements of matrices 
of Jij, namely, N(N - 1)/2. As the result, our goal is not to obtain the distribution q(x) exactly but to 
approximate the distribution q(xa) as precisely as possible. 

In order to measure the distance between p(x) and q(x), we introduce the next Kullback-Leibler 
distance (KL divergence); 

D(p;q) = ~q(X)IOg;~:~. (1.48) 

We easily see that the KL divergence is a kind of the cost function and becomes zero if p( x) coincides 
with q(x). 

Then, the Boltzmann machine learning algorithm is given as 

J aD(p;q) 
ij + C aJi; 



1.4. WHAT IS GENERALIZATION? 23 

--t J ij + c,B[< XiXj >q - < XiXj >1'J 
--t Jij + c,B [XiXj- < XiXj >pJ, (1.49) 

where < ... >1' or < ... >q denote the average over the distribution p(x) and q(x). We should notice 
that if x is extracted from q(x), XiXj becomes < XiXj >q on average. The term - < XiXj >p corresponds 
to the Hebbian un-learning in the associative memory. Using (1.49), we can modify the weight of the 
network so that the network puts the distribution of output p(x) close to q(x). It is clearly understood 
that if the distribution of the network p(x) becomes the distribution of the environment q(x), namely, 
p(x) = q(x), the modification term in (1.49) goes to zero and the machine stops learning. However, we 
need the equilibrium distribution to calculate the update rule (1.49) every time the weights are modified. 
Unfortunately, the time to reach the equilibrium state of Jij is very long in general. Therefore, in order 
to obtain the equilibrium distribution as quickly as possible, we should control the temperature T(t) in 
(1.45) effectively. The scheduling of the temperature is not only a problem of machine learning but also 
problems in the optimization by simulated annealing [9J. 

1.4 What is generalization ? 

1.4.1 PAC learning 

These algorithms we introduced in the previous section succeeded and have been applied to lots of 
problems in engineering. However, if the size of the networks becomes large and the machines have 
complicated structures, it is impossible to present all of the examples to the student network. In general, 
the student can not refer to all examples ((yP, x P), P = 00) which is produced by the teacher. Therefore, 
the student should estimate or predict the structure of the teacher from a finite set of examples ((yP, x P ), 
P < 00) as correctly as possible. Actually, as we mentioned in the previous section, Sejnowski and 
Rosenberg [7J showed that the network which was trained by a finite number of examples has an ability 
to answer the new examples to some degree. 

As the result, the goal of learning has been shifted from identifying the structure of the teacher 
network perfectly to estimating the teacher network approximately. This concept of the machine learning, 
namely, approximating the parameters of teacher, instead of identifying them perfectly, is called the 
probably almost correct (PAC) learning 11 [lOJ. 

1.4.2 Generalization error and learning curve 

The point of machine learning is that the quality of a given learning algorithm should be evaluated in 
terms of how. often the student makes mistakes for new examples (what we call the test sets), which do 
not belong to the training set, after learning a finite set of examples. 

We call the abilities of the student networks, namely, the power of answering the new questions 
correctly the generalization abilities. It is important for us to bear in mind that this generalization 
ability should be distinguished from the training ability which is the ability of answering the training set 
only. 

In practice, the most natural measure for generalization abilities is the generalization error which is 
the probability of disagreement between the teacher output and the student output for a new example. 

As this probability can be regarded as a function of the number of examples, we call this relation 
between the generalization error and the number of examples the learning curves. For a rather specific 
situation in which the structure of the student and the teacher is same, the distance between the synaptic 
weight of the teacher (what we call the target) and the weight of the student is reflected to the general­
ization error. If the student vector becomes to coincide with the target, the generalization error becomes 
zero. We call the weight space of the student which shrinks to some value the version space. We illustrate 
a typical example of version space in Figure 1.11. 

11 Some people call PAC learning as an abbreviation of probably approximately correct learning. 
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Solution 

Version Space 

Figure 1.11: Conceptual figure of the version space. In general, the verSlOn space shrinks ( 
VI -t V2-t 113 -t ... ) according to some specific learning rule. When the student finds a solution, the vol­
ume of the version space becomes zero if the task of the teacher is realizable. How fast the version space 
shrinks depends on the learning algorithm. 
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T 

+ 

Figure 1.12: Learning of a decision boundary. The student network who estimates the parameter () (=/:. ()o) 
makes a mistake for an examples falling in the shaded area. As the distance between the nearest neighbor 
of examples is O(p-l), the generalization error behaves asymptotically as Eg rv p-l. 

1.4.3 Learning a threshold parameter 

In Figure 1.12, we show a simple case of machine learning. Let us consider that the teacher and the 
studeI1t have the same structure and they are specified by their threshold parameters ()o (teacher) and 
() (student). The inputs x are extracted from a one-dimensional uniform distribution within [0,1]. The 
output of the machines is +1 if the number x is bigger than the threshold and -1 otherwise. Let us 
suppose that the student estimates the parameter as () (=/:. ()o) after training from a finite number of 
examples. Then, the student makes a mistake for a new example which falls on the shaded area in Figure 
1.12. Therefore, there exists a probability of disagreement between the student and teacher as long as the 
shaded area exists. The generalization error Eg for this case of learning the decision boundary () decays 
to zero asymptotically (P-+oo, P : number of examples) as 

P - 1 
Eg rv • (1.50) 

This result is easily understood because the error of the student is proportional to the distance between 
arbitrary two inputs rv 1/ P. 

1.4.4 Vapnik-Chervonenkis bounds for generalization 

Baum and Haussler [11,12] introduced the Vapnik-Chervonenkis (VC) dimension [13] into the framework 
of PAC learning and estimated to what degree the error for a new example can be small after P examples 
are given. They discussed tlhe case in which a single layer percept ron without threshold (1.12) learns 
from a single percept ron of the same type. In this subsection, we briefly review the VC theory for the 
learning of a simple perceptron. Let us consider an ensemble A(J) of the simple perceptrons. Moreover, 
consider an unspecified teacher perceptron with the weight vector B. As we mentioned in the previous 
subsection, the purpose of the learning is to approximate the teacher B as precisely as possible with a 
simple perceptron J E A( J) on the basis of a training set which is represented by the teacher perceptron 
B. For every percept ron J of A(J), one can evaluate the training error Et(P) which is defined as the 
number of training examples for which the output of the student disagrees with the teacher output. 
Another quantity of importance is the generalization error Eg of the student, defined as the probability 
of disagreement with the teacher on a randomly chosen example from the teacher. It is obvious that the 
average value of the training error is precisely the generalization error, namely, < Et(P) >= Eg • 

The key point of the Vapnik-Chervonenkis. theory is to evaluate how the fluctuations of the training 
error Et(P) around the generalization error Eg decreases as the number of training examples P increases 
(see Figure 1.13). The VC theory provides a bound for the probability that a training set is chosen such 
that the maximum deviation between Et(P) and Eg exceeds a threshold value € > 0, namely, 

(1.51) 



26 CHAPTER 1. INTRODUCTION 

where m(P) is defined as the maximum number of different classificat.ions induced on P patterns by a 
simple percept.ron J. In t.he condition (1.51), we consider the maximum difference between the t.raining 
error and t.he generalization error over all perceptrons J E A( J). In other words, we choose the worst 
student. for every particular choice of a training set. As the result, t.he VC-bound (1.51) is valid for any 
student.. 

Alt.hough we have to estimate the m(P) in order t.o calculate the VC-bound (1.51), t.he explicit result 
was obt.ained by Cover [14]. His result is represented as follows. 

{ 
2p if P~N 

m(P) = 2 "N -1 C if P>_N 
L.Jk=O P-1 k 

(1.52) 

It is important. for us to bear in mind that all the possible classifications can be implemented for P~N, 
but not. so for P > N. This N is referred to as the VC-dimension dye for t.he class of a simple perceptron. 

From (1.52), one obtains the following condition; 

m(P) ~ pdvc + 1 = pN + 1. (1.53) 

Using this condition, we can estimate the VC-bound (1.51) as follows. 

(1.54 ) 

If we assume that the above upper bound 4 exp(Nlog(2P) - €2 P /8) is smaller than a small positive 
constant 6, namely, 4 exp(Nlog(2P) - €2 P /8) < 6, the following condition on N is obtain. 

N < €2 P - 8log(4/6) 
8log(2P) 

In the limit of P, N -+00, we finally obtain the condition on P as 

P 
8NlogN 

> 2 • 
€ 

(1.55 ) 

(1.56) 

This result means that in order to make the error smaller than €, one needs at least P examples which 
are larger than 8NlogN / €2. We should notice that this is the result of the worst case analysis and the 
above estimation is nothing but a lower bound for the generalization ability. Recently several authors 
succeeded in deriving the condition for the lower bound (1.56) by calculating the training error and the 
generalization error using the replica method. [15, 16]. 

1.4.5 Unrealizable task 

The situation in which the structure of the student agrees with that of the teacher is rather ideal. In the 
real world, students and teachers have different constructions. Therefore, it is of great importance for 
us to investigate such cases. For machine learning, it is important to improve the learning scheme and 
minimize the generalization error even if it is impossible to exactly reproduce input-output relations of 
the teacher. 

If the student is inferior to the teacher, the rule (or task) of the teacher is referred to as an unrealizable 
rule in opposition to a realizable rule. On the other hand, if the student is superior to the teacher, the 
teacher's rule is called the over-realizable rule. 

We should not forget that the task of the teacher becomes unrealizable also due to some noises. In 
order to tell the former case from the latter, one sometimes refers to the former case as unrealizable rule 
due to structural mismatch. 

For example, if the teacher output is reversed with some probability (which is referred to as an output 
noise) or if the input signal contains some noises (which is referred to as an input noise), the task of the 
teacher becomes unrealizable. 

For the output noise, the generalization error asymptotically decays to the minimum value €min as 

€g I'V €min + p-1 (1.57) 
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Figure 1.13: The fluctuation of the training error around the generalization error. 

and 

for the input noise [17, 18, 19, 20]. 

P -2/3 
Eg rv Emin + 

27 

(1.58) 

In contrast, the behaviors of the generalization error for the structural mismatch cases have been open 
questions. Only a few papers have appeared concerning learning of unrealizable rules for the structural 
mismatch cases, on the soft committee machine [21] and the problem for small number of examples [22]. 
This is because the method of the traditional mathematical statistics, which has been a main tool for 
parameter estimations, is hard to be applicable to the case of unrealizable tasks. In addition, it is difficult 
for us to apply the VC theory to the problem of unrealizable classes. 

In this thesis, we investigate the problem of the structural mismatch cases using the statistical me­
chanical approach which was first introduced by Levin, Tishby and Solla [23]. Gyorgyi and Tishby [24] 
applied this method to the learning problem of neural network model. The statistical mechanical ap­
proach [12, 26, 27] is applicable even to the cases of the unrealizable rule. 

As a typical situation of the structural mismatch problems, we take up the teacher and the stu­
dent machines as follows. The student machine is a single layer perceptron whose synaptic weight 
vector is specified as J = (h, .. ·,JN)E'iRN and his output S is represented as S(u) = sign(u) with 
u:=v'1V(J·:z:)/IJI. On the other hand, the teacher is also a single layer percept ron with the coupling 
vector B = (BI,···,BN)E'iRN but his transfer function (or activation function) is non-monotonic (or 
reversed wedge type) as Ta(v) = sign[v(a - v)(a + v)] with v:= (B·:z: )/IBI (see Figure 1.14). 

The variables u or v are called the internal potentials or the local fields. We should notice that the 
structure of the student machine becomes to agree with the teacher when the width of the reversed wedge 
a goes to 00. 

We would like to emphasize that the output of the teacher's machine corresponds with that of a kind of 
a multi-layer perceptron which is usually called the K = 3 parity machine. This parity machine has three 
hidden units and each unit consists of a single layer perceptron with couplings B = (BI ,···, BN) E'iRN 
and each transfer function is represented as YI = sign(a - v), Y2 = sign(-v) and Y3 = sign(-a - v). 
The final output of the machine is given as a product of the outputs of the three hidden machines, 
YIY2Y3 (see Figure 1.15). This type of the machine has stronger abilities than the machines with a 
conventional monotonic transfer function [28, 29, 31]. In addition, for the recurrent type of the networks 
with symmetric weights, instead of the feed-forward networks, several authors have reported that the 
non-monotonicity of the transfer function improves the retrieval properties of the networks [32, 33, 37]. 
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Figure 1.14: The non-monotonic transfer function. If the width of the reversed wedge a goes to 00, the 
function corresponds to the monotonic one and the task of the teacher becomes realizable. 

Input layer 

Figure 1.15: The K = 3 parity machine. The outputs of the three hidden units are Yl = sign( a - v), 
Y2 = sign( -v) and Y3 = sign( -a - v). The final output of this machine is given as YIY2Y3. 
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In our learning system, a single layer percept ron as a student learns from a multi-layer perceptron 
as a teacher who has greater abilities than the student. In general, it is hard to treat analytically the 
learning systems in which the machines belong to a class of multi-layer perceptrons. However, in our 
model system, as we treat a kind of maps for multi-layered perceptrons, it is easy for us to carry out the 
analysis. 

1.4.6 Two modes of machine learning 

In this thesis, we investigate our system according to the following two types of learning modes. The first 
one is referred to as the off-line learning or the batch learning. In this off-line learning mode, the student 
receives a finite number of examples at the same time and changes his own weight vector after learning the 
whole set of examples perfectly (memorize) or until he reaches some error tolerance. On the other hand, 
the other one is referred to as the on-line learning. In the on-line learning, the student changes his own 
weight using only the recent example. Therefore, the student does not have to memorize all the examples 
and one can save not only the training times but also memories on the computer hardware. However, if 
we devoted ourselves to improving the speed of training, the accuracy of the result is inclined to become 
worse. Therefore, we should improve the on-line learning algorithms. In this thesis, we investigate the 
generalization ability for the structural mismatch case according to the above two learning modes. 

1.5 Optimization problem 

We saw that the back propagation algorithm has succeeded and many researchers have improved the 
algorithm so that the network can obtain the high generalization ability as fast as possible. However, 
there is an essential difficulty in the back propagation algorithm. If the cost function we want to minimize 
has a simple structure, namely, the landscape of energy has a single valley, it is easy to find the minimum 
by the back propagation algorithm. Unfortunately, for a lot of practical problems we would like to solve 
by neural network, the cost function has lots of minima. Therefore, as the back propagation is based on 
the gradient descent, learning may stop in one of the local minima. This is referred to as the problem of 
local minima. This problem of local minima is not only the problem of the back propagation learning but 
also the difficulty for many other research fields appearing in physics, chemistry, operations research and 
so on. In these problems, our goal is minimizing the cost function (or the energy function, the objective 
function, etc.). Usually, these cost functions have very complicated structures and have a various number 
of local minima. These problems are specified by three classes of the difficulties to solve. In the next 
section, we explain these three classes by taking up a simple combinational optimization problem. 

1.5.1 The NP, P and NP-complete problems 

If the dimension of the solution space is N, the number of candidates of a solution ( number of local 
minima) is of order'"'"' eN or NL Among these problems, if one can find an algorithm to solve the problem 
within a time of polynomial order with respect to system size N using the deterministic algorithm, 
we refer to this problem as polynomial (P). This problem P is a sub-class of the problem, named the 
Non-deterministic polynomial (NP). We call the problem NP if the problem can be solved by the non­
deterministic algorithm within a time of polynomial order. In the problem NP, there is the most difficult 
problem to solve, what we call, NP-complete. The problem of NP-complete can be solved by the non­
deterministic algorithm within the polynomial time. Therefore, this problem of NP-complete belong to 
the class of NP. However, for this problem of NP-complete, we can not find the algorithm which can solve 
the problem faster than the polynomial time by the deterministic algorithm. 

Let us make the intuitive concepts of the NP, P and NP-complete more clear. For this purpose, we 
take up the so-called knapsack problem. The knapsack problem we examine is defined as follows. 
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The knapsack problem ---------------------------_..... 

The positive real variables b, al, a2,· .. aN are given. Then the goal of the problem is to find a 
sub-sum of al, a2,··· aN which satisfies EiEA ai = b, A~{1,··· N}. 

For this problem, it is obvious that there exist 2N ways for the sub-sum of al, ... aN (each of the 
sub-sums is determined according to whether the sub-sum contains ai (i = 1,··" N) or not). Therefore, 
for the worst case, we need the steps of O(2N) in order to find the solution. 

If there exists an algorithm to solve the problem within O(2Nk) (k:constant) time steps, we can say 
that the problem belongs to the class of the EXPTIME (exponential time). In contrast, if there exists 
an algorithm to solve the problem within O(Nk) time steps, the problem belongs to the class, which is 
called the P (deterministic polynomial time). We should notice that P~EXPTIME. 

Although the knapsack problem can not be solved within a polynomial time by the deterministic 
algorithm, it becomes possible for us to solve the problem within a polynomial time if we prepare at most 
2N calculating machines and each of which calculate the problem by the following algorithm. 

The non-deterministic algorithm for the knapsack problem ------------....... 

(1) sum-O 
(2) INPUT b 
(3) WHILE Qa={al,···,aN };i0 DO 
(4) INPUT ak E Qa 

(5) EITHER sum ..... sum + ak OR sum ..... sum 
(6) IF b = sum THEN 
(7) END 

It important for us to bear in mind that the maximum number of the steps to proceed with the 
instructions (3)""'" (6) appearing in the above algorithm is O(N). Therefore, we can confirm that at least 
one of the 2N machine can obtain the solution of the knapsack problem within the O(N) time steps using 
this parallel algorithm. The key point of the above algorithm is the parallel calculations by the O(2N) 
independent machines. 

This procedure is also understood intuitively as follows. At first, a machine proceeds the EITHER­
OR instruction in the above algorithm. Then, the machine produces the new two machines, namely, the 
machine which is made by the procedure sum ..... sum+ak, and another machine is given by the procedure 
sum--+sum. Next, each of these two machines proceed the EITHER-OR instruction, as the result, each 
of the two machines produces the new two machines. Therefore, the whole procedure forms the tree 
structure of the machines which is illustrated in Figure 1.16. In this figure, we see that although the 
number of the deepest descendants is 2N , the number of generation is N. Therefore, we conclude that the 
most excellent machine can find the solution of the problem within O(N) steps. This algorithm is referred 
to as the non-deterministic algorithm. In contrast, the algorithm in which only one machine calculates 
at most all 2N candidates is called the deterministic algorithm. We can say that the knapsack problem 
is solvable within a polynomial time if we use the non-deterministic algorithm, although the problem can 
not be solved within a polynomial time by the deterministic algorithm. Therefore, the problem which 
can be solved within a polynomial time by the non-deterministic algorithm is referred to as the NP (the 
non-deterministic polynomial). It is obvious that the P is a subset of the NP, namely, P~NP. 

Next, we consider the transformation machine. This machine produces new input f(x) from the input 
x (for example, b, al,'" aN in the knapsack problem) within the time steps ofthe polynomial of lxi, where 
Ixl denotes the size of input ( for example, N in the knapsack problem). This function f is referred to 
as the polynomial time computable function. If the necessary and sufficient condition for the existence of 
a solution for the problem A in the input x space corresponds to the necessary and sufficient condition 
for the existence of a solution for the problem B in the new input space I(x), the relation between the 
problem A and the problem B is referred to as that the problem A is polynomial time reducible to the 
problem B. 



1.5. OPTIMIZATION PROBLEM 31 

N 

Figure 1.16: The tree structure. The number of the deepest descendants of the tree is 2N and the number 
of generations is N. From this figure, we see that the parallel algorithm can solve the problem within 
O(N) steps. 

Then, we can say that if the problem A is polynomial time reducible to the problem B and we can 
solve the problem B by the deterministic algorithm within a polynomial time (namely, solvable by P), 
the problem A also can be solved by P. Therefore, we can say that the problem B is more difficult than 
the problem A, because if we can solve the problem B within a polynomial time steps, the problem A is 
guaranteed to be solved by P. 

We show that this statement is correct as follows. As the problem A is polynomial time reducible to 
the problem B, there exists the polynomial time computable function f and the necessary and sufficient 
condition for the existence of a solution for the problem A in the original input x space corresponds to 
the necessary and sufficient condition for the existence of a solution for the problem B in the translated 
input f(x) space. As we mentioned, the function f(x) is calculated from x within the polynomial time 
steps of Ixl, there exists a constant k and the following condition holds. 

If(x)l::; Ixl k (1.59) 

On the other hand, as the problem B can be solved by the P, we can check whether the problem B has a 
solution in the input space f(x) or not within the polynomial time with respect to the size of the input 
space If(x W, where I is a constant. As the result, ifthere exists a solution for the problem B in the input 
space f(x), there also exists a solution for the problem A in the input space x. In contrast, if we can 
not find a solution for the problem B in the input space f(x), we also can not obtain a solution for the 
problem A in the input space x. The above decision takes 

(1.60) 

time steps, that is, we check the existence of the solution for the problem A within the polynomial time 
of Ixl. Summarizing the above argument, we can conclude that the problem A can be solved by the 
polynomial time step of size of input space Ixl. 

Next, let us suppose that there are three problems A, Band C. If the problem A is polynomial 
time reducible to the problem B, and the problem B is polynomial time reducible to the problem C, the 
problem A is polynomial time reducible to the problem C. Therefore, the relation of the problem A, B 
and C is translational to one another. 

On the bases of the above arguments, we can say that if a problem X is the NP-complete, the problem 
X should satisfy the following two conditions . 

• The problem X can be solved by NP. 
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Figure 1.17: Relation between P and NP . 

• Every problem which can be solved by NP is polynomial time reducible to the problem X. 

Let us suppose that we can solve the NP-complete problem X within a polynomial time by the deter­
ministic algorithm, namely, the problem X is P. Then, as every problem which can be solved by NP is 
polynomial time reducible to the problem X, these problem can be solved by P. Therefore, the condition 
NP ~ P holds and as the result we can conclude 

NP=P. (1.61) 

On the other hand, if it is impossible for us to solve the problem X by the P, the condition X E NP-P is 
satisfied and we can conclude 

NP-:j;P. (1.62) 

No one has been able to give the proof for deciding which is correct of NP=P and NP#P. We illustrated 
the relations between the NP, P and NP-complete in Figure 1.17. Most of the problems in which the 
variable takes discrete value belongs to the problem class NP-complete [38]. 

1.5.2 Traveling salesman problem 

One of the famous NP-complete problems is the so-called traveling salesman problem (TSP). Let us 
suppose that there are N cities and the distance between arbitrary two cities i and j is represented by 
dij. Then, the problem is defined as follows. What is the shortest closed way for the tourist to take under 
the condition that the tourist must visit each city only once. Suppose that there are N cities. Then, 
the number of closed paths is of order'" (N - 1)!. On the other hand, it takes about N steps for us to 
calculate the cost for one closed path. As the result, the calculation time for the TSP is about", NL 
Therefore, it is obvious that the TSP belongs to the class NP. In addition, as it is possible for us to show 
that every problem which belongs to the NP is polynomial time reducible to the TSP, we are obliged 
to say that the TSP is a problem of class NP-complete. Although at present, there is no deterministic 
algorithm to solve the TSP within polynomial time, we cannot conclude that the condition NP#P holds 
because there is no rigorous proof for this statement. In order to define the problem mathematically, let 
us introduce the variable ni,a which takes 1 if the tourist visits the i-th city after a - 1 other cities and 
o otherwise. The total distance of trip is written as 

(1.63) 
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We should minimize I:- under the next two conditions; 

2: ni,a = 1 for Vi (1.64) 
a 

2: ni,a = 1 for Va (1.65) 

The first condition mea.ns that the tourist must visit each town only once during his trip. The second 
condition seems rather trivial and this condition restricts the tourist should be staying in a single city a.t 
any given time. Taking these conditions into account by introducing a Lagrange multiplier /, the cost I:­
is rewritten as 

1-£ = I:- + ~ [2:(1 - 2;:: ni,a? + 2;::(1 - 2: n i,a)2]. 
a t 1. a 

(1.66) 

Therefore our problem is how we should minimize the above cost function (1.66). Besides of TSP, there 
are various combinational optimization problems which belong to the problem class NP complete, for 
example, the weighted matching problem [43], the graph bipertitioning problem [45] , etc .. 

For the traveling salesman problem, Hopfield and Tank tried relaxing the variable appearing in the 
cost function, namely, they replaced the discrete variables ni,a with the continuous variables [40, 41, 43]. 
To this relaxation of the original problem, they applied the gradient descent method. However, as the 
problem size N becomes large (this is the practical case), the number of local minima of the cost becomes 
large and their method which depends on the gradient descent fails to obtain the optimal solution. 

As no one has found a deterministic algorithm to solve such problems within polynomial time, a time 
of exponential order must be needed and usually we are obliged to use a heuristic strategy which strongly 
depends on each problem. 

1.5.3 Simulated annealing 

At present, the only general method for us to avoid this kind of difficulties may be simulated the annealing 
method [9] or the Boltzmann machine [8]. 

Therefore, we should investigate not only the learning algorithm for the specific learning systems 
but also the performance of this general method which may be applicable to other various cases of 
combinational optimization problems. According to this algorithm, the present state chooses a candidate 
for the new state and accepts the new state with probability 1 if the cost of the new state is lower than 
that of the old state. The problem is the case in which the cost of the new state is higher than that of 
the old state. If we do not accept the new state at all, this procedure coincides with the gradient decent 
method and we can not escape from the local minima. Therefore, we need some mechanism in order to 
escape from one of the local minima. For this purpose, we assume that the movement from the state with 
the lower cost function to the state with the higher cost function is allowed to some degree. Thanks to this 
stochastic hill-climbing processes, one can escape from a local minimum. As the acceptance probability, 
one usually use the next Metropolis type of the transition probability; 

p = min [1, exp( -~E IT)] (1.67) 

where ~E is the change in the cost function and T is a parameter analogous to the temperature. As 
we mentioned in the brief review of the Boltzmann machine learning, it is an essential question for us 
to consider how fast the system should be cooled down in order to obtain the global minimum without 
being trapped in the local minima. It is obvious that if one cools down the system too quickly, one fails to 
obtain the global minimum due to trapping in one of local minima. One the other hand, if one decreases 
the temperature too slowly, it is difficult for us to apply the method to the practical problems although 
this schedule guarantees that we obtain a ground state of the system. 

In order to understand this intuitively, let us consider the two level system which is illustrated in Figure 
1.18. This energy landscape has two minima, namely, the local minium A and the global minimum B. If 
we choose the initial state at random and use the gradient decent method from the initial state, we obtain 
the energy A and B with equal probability PA = PE = 1/2 on condition that two basins of attraction 
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Figure 1.18: Energy landscape with the two minima (the global minimum is B). Thanks to the thermal 
fluctuation, the state can escape from the local minimum A. 

for the minima A and B have the same size. Now, we should vibrate the system so as to obtain the 
probabilities PA and PB which satisfy PB 4::.PA , or if possible, PA = 0 and PB = 1. For this purpose, 
if we vibrate the system with a large amplitude, the processes A-+B and B-+A occur with the same 
frequencies, and as the result, PA = PB is obtained. In contrast, if the system is fluctuated with a small 
amplitude, it is guaranteed the probabilities PA = 0 and PB = 1, although it takes too long time. The 
most effective way to vibrate the system for us to obtain the probabilities PA = 0 and PB = 1 is decreasing 
the amplitude of the fluctuation from large amplitude to zero sufficient slowly. In this argument, the 
amplitude of the fluctuation corresponds to the temperature in the physical systems. Therefore, it is 
obvious that one of the essential points for this method is how one controls the temperature from high 
temperature to zero. 

Geman and Geman [46], who are applied mathematicians, proved that one should employ the tem­
perature schedule T( t) roJ c/logt to obtain the global minimum with probability unity. They used the 
transition probability which is proportional to the Boltzmann factor (1.67). The residual energy de­
creases to zero as roJ l/logt using their temperature schedule. However, there is a possibility for us to 
obtain a faster convergence to the global minimum using a different temperature scheduling for other 
types of transition probability. This seems a very interesting open question. A part of this thesis is 
devoted to the examinations to answer the above important question. 

1.6 Overview of this thesis 

This thesis is composed of seven chapters. 
In the next chapter 2, we introduce our model system as a typical example for the structural mismatch 

case and show general properties of the generalization error. For our model system, the best possible 
value of the generalization error and the optimal overlap between the teacher and student are represented 
explicitly as a function of the width of reversed wedge a. Therefore, our main goal is finding or improving 
learning algorithms so as to obtain the theoretical lower bound of the generalization error as fast as 
possible for all a values. 

In chapter 3, in order to investigate the generalization error in the off-line mode, we introduce the 
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statistical mechanical formulations to calculate the learning curves using the replica trick which is origi­
nally applied to the random spin systems like spin-glasses [48J and recently used by the researchers who 
investigate the various complex systems [49, 50, 51J. Several interesting behaviors of the learning curves 
are revealed. For example, for some values of the parameter a, the solution of the saddle point equation 
becomes thermodynamically unstable and the generalization error shows a first order phase transition. In 
other words, for this parameter region of the teacher, the student suddenly acquires the excellent general­
ization ability. For a small range of parameter a, the generalization error converges to its minimum value 
as rv p-2/3 (P ; number of examples). This exponent of decay has not been known by the researcher 
working in the traditional statistics community. As we use a specific approximation when we estimate 
the saddle point of the free energy, namely, the replica symmetric (RS) ansatz, we check the validity of 
the solution by two different ways. We first investigate the fluctuation around the RS solution (order 
parameters), namely, we calculate so-called the Almeida-Thouless (AT) line [52J for our model system. 
We show rigorously that the AT line coincides with the critical storage capacity of the student network. 
As the critical storage capacity is finite, we should handle the asymptotic analysis with kid gloves. In 
order to see the validity of the asymptotic form of the generalization error, we also perform the computer 
simulation for the two-dimensional version of our model system. We find that our result is valid at least 
concerning the exponent of the learning curves. 

In chapter 4, we investigate the model system according to the on-line learning mode. In this learning 
mode, the learning processes and the corresponding generalization error can be described by coupled 
differential equations with respect to two relevant macroscopic order parameters, namely, the length of 
the student weight vector and the overlap between teacher and student. We investigate the learning 
processes of the student who is trained by the conventional perceptron, Hebbian and AdaTron (Adaptive 
perceptron) learning algorithms and calculate the learning curves for both small example region (P rv O( 1)) 
and asymptotic region (P ....... 00) respectively. We reveal that each of these conventional three learning 
algorithms can not obtain the theoretical lower bound of the generalization error for a specific range 
of parameter a and for such a range, learning of the student fails and the learning dynamics stops at 
some fixed point. In order to overcome this difficulty, we also try to modify these conventional learning 
algorithms using various ways (optimization of the learning rate, the weight decay term, query and so 
on) so that the dynamics escapes from fixed points. We also compare the generalization performances of 
the off-line learning with those of the on-line learning. 

In chapter 5, in order to investigate the performance of the learning of a non-monotonic perceptron, 
we devote this chapter to considering the case in which a non-monotonic perceptron learns from a non­
monotonic perceptron in the on-line learning mode. We find that even for this realizable case, the student 
sometimes can not generalize the task of the teacher for small a. We call this phenomenon anti-learning. 
In order to avoid the anti-learning, we consider several learning algorithms. Especially, we introduce 
the learning function in the learning dynamics and optimize the function using the well-known Bayes 
formula. 

In chapter 6, we test a different type of transition probability from the Boltzmann-Gibbs one with the 
optimal temperature scheduling and give a rigorous proof of the faster convergence to the global minimum. 
One of the candidates for the transition probability was introduced by Tsallis and Stariolo [54J. We prove 
weak ergodicity of the inhomogeneous Markov process generated by the generalized transition probability 
of Tsallis and Stariolo [54J with power-law decay of the temperature. We thus have a mathematical basis 
to conjecture convergence of simulated annealing processes with the generalized transition probability to 
the minimum of the cost function. An explicitly solvable example in one dimension is analyzed in which 
the generalized transition probability leads to a fast convergence of the cost function to the optimal value. 
We also investigate how far our arguments depend upon the specific form of the generalized transition 
probability proposed by Tsallis and Stariolo [54J. It is shown that a few requirements on analyticity of 
the transition probability are sufficient to assure fast convergence in the case of the solvable model in one 
dimension. 

In the last chapter 7, we summarize all the results obtained in this thesis. 
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Chapter 2 

The Model System for Unrealizable 
Rule 

This chapter is devoted to introducing our model system and generic properties of the generalization 
error. 

Our problem is defined as follows. The teacher signal is provided by a single-layer perceptron with an 
N-dimensional weight vector B and a non-monotonic (reversed wedge) transfer function 

Ta(v) = sign [v(a - v)(a + v)] (2.1) 

where v=VN'(B.x )/IBI, x is the input vector normalized to unity, a is the width of the reversed wedge, 
and sign denotes the sign function. The student is a simple perceptron with the weight vector J whose 
output is 

S(u) = sign(u) (2.2) 

where u= VN'(J,x)/IJI. In this thesis we assume that the components of x are drawn independently 
from a uniform distribution on the N-dimensional unit sphere. The student can learn the rule of the 
teacher perfectly if and only if a = 00. For finite a, the student fails to reproduce examples correctly. 
In fact, as we mentioned in Introduction, the non-monotonic perceptron may be regarded as a variant of 
parity machine which has a structure quite different from a simple perceptron. Gardner's capacity of the 
non-monotonic associative memory dramatically increases according to statistical-mechanical calculations 
[28, 29, 31]. It should also be added here that the associative memory of the Hopfield-type with a non­
monotonic transfer function can store more patterns than the conventional Hopfield model [32, 33, 37]. 

In order to evaluate the achievement oflearning by a student, it is convenient to introduce the following 
two order parameters. One is the overlap between Band J 

B·J 
R= IBIIJI 

and the other is the norm of the student weight vector 

(2.3) 

(2.4) 

As a consequence of the central limit theorem, the random variables u and v obey the normal distribution 

(2.5) 

The generalization error Eg , or the student probability of producing a wrong answer, can be obtained 
by integrating the above distribution over the region satisfying Ta(v)#S(u) in the two-dimensional u-v 

37 
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Figure 2.1: Generalization error as a function of the overlap R for a = 00, 2.0, 1.0, 0.5 and O. For a = 00 

where the student and the teacher have the same structure, the generalization error decreases to zero as 
the student is trained so that R goes to 1. On the other hand, for a = 0 (student's output is the inverse of 
teacher's), the generalization error decays to zero as the student is trained so that R goes to -1 instead 
of 1. 

space. After simple calculations we find 

fg=.E(R) =21
00 

DvH (A) +2 r DvH (~) 
a 1 - R2 1o 1 - R2 

where H(x) = j.,oo Dv and Dv=.dvexp(-v2/2)/V'iii. The above expression can be rewritten as 

where 

E(R) = iOoo DtQ(R: t) 

Q(R: t) =. i: Dz [e(-z.J1 - R2 - Rt - a) + e(z.J1- R2 + Rt) 

- e (z.J 1 - R2 + Rt - a)] . 

(2.6) 

(2.7) 

(2.8) 

In Figure 2.1 we plot E( R) (= fg) for several values of the parameter a. From this figure, we see that 
for a = 00 (the learnable limit), fg goes to zero when R approaches 1. In contrast, for a = 0, fg goes 
to zero when R reaches -1. This result is trivially expected because for a = 0 the teacher input-output 
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Figure 2.2: The global minimum of E(R). From the definition of E(R), this corresponds to the optimal 
value of the generalization error fopt. 

relation is completely the opposite of that of the student. In the parameter region between a = 0 and 
a = 00, the generalization error shows highly non-trivial behavior. The critical value R* of the order 
parameter is defined as the point where E(R) is locally minimum. Explicitly, 

2log2 - a2 

2log2 

which exists for a S acl = .j2log 2 = 1.18. The local minimum value Elocal = E(R*) is 

100 (.)2l0g2 - a
2 

) 
Eloca1 = 2 a Dv H a v 

+2 loa Dv H ( _ .)2l0g
a
2 - a

2 
v) . 

(2.9) 

(2.10) 

We plot in Figure 2.2 the value of the global minimum of E(R) which means the smallest possible 
generalization error irrespective of learning algorithms. In Figure 2.3, we show the value of R which gives 
the global minimum. We notice that for a < ac2 == 0.80, E(R = R*) = Elocal is also the global minimum. 
On the the other hand, for a> ac2, the global minimum shifts to E(R = 1). In addition, these two figures 
tell us that the optimal generalization error is obtained by training the student weight vector J so that 
R goes to 1 for a > ac2. Therefore, for a> ac2, the student achieves the optimal generalization ability by 
mimicking the teacher vector, J = B. This critical value ac2 is given by the condition E(R = 1) = Elocal. 

Explicitly, 

H(a) = 100 

DvH ( .)2lo~ - a
2 
v) 

+ loa Dv H ( _ .)210:2 - a\ ) (2.11) 
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Figure 2.3: The optimal order parameter R which gives the global minimum, namely, the optimal gener­
alization error Eopt. The system shows a discontinuous phase transition at a = ac2 = 0.80 from the phase 
described by R = 1 to the phase described by R = R*. 

On the other hand, for a < ac2, the optimal generalization cannot be achieved even if the student 
succeeds in finding B completely. In this curious case, the optimal generalization is obtained by training 
the student so that the student finds his weight vector which satisfies R = R* instead of R = 1. This 
is a very interesting situation because conventional learning theories have mainly put their focus upon 
constructing or improving learning algorithms to find the teacher vector as efficiently as possible. 

Another remarkable feature is that this system shows a first order phase transition at a = ac2 from a 
phase described by R = 1 to a phase characterized by R = R*. At a = ac2 the generalization error has 
the maximum value as seen in Figure 2.2. 



Chapter 3 

Off-Line Learning 

In this chapter, we investigate the learning properties in the off-line (or batch) mode. In the next section 
3.1, we explain the statistical mechanical formulation for calculating the learning curves. In section 
3.2, we introduce the minimum error algorithm to find a target and calculate the learning curves in 
the framework of statistical mechanics. In particular, the asymptotic behavior of the learning curves is 
investigated analytically. In section 3.3, we examine the computer simulation for the two-dimensional 
version of our model system in order to check the validity of the analytical calculations. In section 3.4, 
we discuss the validity of our approximation which is used in section 3. Section 5 is devoted to summary. 

3.1 Statistical mechanics 

In the off-line learning, the student receives a set of examples ~P == {(y}", X 1"); JL = 1,'" P} at the same 
time. Then, the cost function (or the energy function) is defined as the frequency of disagreement of 
teacher and student outputs. As a simple selection of the cost function, we use the next Gardner-Derrida 
cost function [55, 56]; 

P 

E(JI~P) = :L e (-Ta(vl")·S(ul")) (3.1) 
1"=1 

where e(x) is the Heviside step function. There are several cost functions [57] except for the Gardner­
Derrida cost function, for example, the perceptron cost function [2, 58], the relaxation cost function [59, 58] 
or the AdaTron cost function [60]. In the fields of statistics or mathematical engineering, the the graded­
response transfer functions have been used because this type of transfer functions is suitable for dealing 
with mathematically. For these grade-response transfer functions, the cost function (what we call the 
AdaLine cost function) [61] is also defined as 

(3.2) 

where the graded-response transfer function f has been selected as tanh(u) or the error function erf(u). 
In the off-line learning, the student should continue to learn until he reaches to some error torelance 

1. It must be noticed that J is a dynamical variable and can move during the training process according 
to some rule. Therefore, we should construct a learning algorithm so that this dynamical variable adapts 
to a rule of the teacher. In contrast, the training set eP consists of quenched random variables and once 
the training set is given, the variables are frozen and do not move during the training. The shape of the 
complicated energy landscape is caused by the quenched random variables. In order to find a solution 
J * which gives some error tolerance of the cost function, one usually uses the gradient decent method in 

1 This error tolerance is decided by the learning system. For the unrealizable task, we can not make the cost function 
zero in principle and we should set the torelance for the student. 

41 
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Energy 

State 

Figure 3.1: A typical energy landscape of the cost function. There exist a lot of local minima. If one 
applies the gradient decent method from an arbitrary initial state, one is trapped in a local minimum 
and cannot obtain the global minimum. 

the weight space defined as 

(3.3) 

In general, the cost function E(JI~P) has a lot of local minima as we show in Figure 3.1. If the number 
of examples P is of order N, namely, P = aN, and the size of the problem N is extremely large N-+oo, 
the landscape of the cost function has a very complicated structure like spin glasses at low temperature 
(see Figure 3.1). Therefore, if one uses the gradient decent method (3.3), the present state is trapped in 
a local minimum and fails to obtain the global minimum. In order to escape from these local minima, we 
add a white noise 1] to the right hand side of equation (3.3) and obtain the next relaxational Langevin 
equation; 

(3.4) 

where 1] has a variance 
<1Ji(t)7Jj(t'»= 2T8ijC5(t-t'). (3.5) 

The above dynamics is inclined to decrease the cost function, but occasionally the cost function may 
increase due to the thermal noise. Obviously, at T = 0, the noise term drops out and the gradient decent 
is recovered. 

The statistical mechanics tells us that the above stochastic dynamics converges to the Gibbs-Boltzmann 
distribution of the weight vector J; 

p(J) = exp [-,BE(JI~P)] 
Z 

(3.6) 

where ,B == T-1 and Z is the normalization factor. In Figure 3.2 we illustrate the shape of the above 
distribution for the cases of high temperature (left) and low temperature (right). From these figures we 
see that as the temperature decreases the distribution becomes to have a sharp peak around the solution 
J.. Therefore, if we decrease the temperature as slowly as possible, it may be possible to obtain the 
optimal distribution which has a delta peak at the solution J. 2 • 

The above situation is also understood intuitively as follows. At first we prepare a lot of (",O(N)) 
independent student networks. Then, these networks change their weights according to the stochastic 

2n is well known that one can obtain the global minimum with probability unity if the system is cooled down according 
to the schedule T", l/logt. This is explained in detail in chapter 6. 
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Figure 3.2: The distributions of the weight vector. The solid line is the energy landscape of the cost 
function. The broken lines are two cases of the distribution. The left is a high temperature case and the 
right is a low temperature case. 

process (3.4). When the temperature is high, the networks which have various weights are produced. 
However, as the system is cooled down, we can obtain the networks which are close to the most excellent 
student with the solution weight J. and almost all of the networks become the most excellent student 
when the temperature comes to zero effectively. 

Although we have restricted ourselves to the case of continuous weight, it is possible for us to extend 
the above algorithm to the case of discrete weight. In such a case we should use the discrete time Monte 
CaIro simulation instead of (3.4), namely, one should consider the stochastic process according to the 
next transition probability (what we call the Metropolis sampling); 

(3.7) 

where J' means the state into which an arbitrary node of J is flipped. 
In the next section, we apply this statistical mechanical analysis to our model system. 

3.2 Replica calculations of learning curves 

In this section we calculate the generalization abilities of the student using statistical mechanics, especially, 
the replica method. 

In the off-line learning scenario, we need not information about the weight length of the student. 
As we explain in the next chapter, the length of the student weight vector reflects the number of the 
presented examples. Therefore, if we would like to investigate the dynamical processes of the learning in 
detail, we need the information about the dynamical behavior of the student weight vector. For example, 
if the length of the student weight vector monotonically increases in proportion to the increases of the 
presented examples, we can conclude that there do not exist the local minima or the fixed points, and 
the teacher task is realizable for the student. In addition, if the length of the student weight vector stops 
growing or decreases although the teacher continues to present the new examples, we can see that the 
task of the teacher is unrealizable for the student. 

On the other hand, for the off-line learning we investigate as follow, as we treat the equilibrium 
properties on condition that a finite number of examples is given, we do not have to mention the dynamical 
properties of the length of the student weight. In addition, it is convenient for us to treat the normalized 
student weight when we use the concept of the version space. 

For these reasons, in this chapter we fix the length as I = IJI/-/N = 1 and the weight of the student 
is normalized as IJI = -/N. 
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As we saw in the previous section, the number of false predictions on the given set of examples ~P, 
namely, the cost function ([55, 56]) is rewritten as 

p 

E(JI~P) = :L 8( -Yp.· Up.), (3.8) 
p.=1 

where up. == (J. xp.)/ffi and YIL==Ta(vIL ) with vlL = (B·xIL)/IBI. We call the learning algorithm 
following this strategy the minimum error algorithm. The cost function (3.8) is identical to that of 
Gardner and Derrida and the learning process of the minimum error algorithm is investigated by their 
analysis as follows [55, 56] 3. From the energy defined by equation (3.8), the partition function with the 
inverse temperature (3 is given by 

Z((3) = J dJ8(IJI2 - N) exp[-(3E(JI~p)] 
p 

= J dJ 8(IJ12 - N) II [e- fJ + (1 - e- fJ )8(YIL . Up.)]. 
p.=1 

(3.9) 

Minimization of E(JI~P) corresponds to the limit (3 -+ 00 in the Gibbs-Boltzmann distribution and we 
focus on this limit hereafter. 

3.2.1 Below Q c 

Let us remind that a simple perceptron with N input units at most stores Pc = 2N random patterns by 
choosing the optimal weight vector. This result was first obtained by Cover [14] using the combinational 
mathematics. Recently, Gardner succeeded in calculating this maximum number of the storage patterns 
for a simple perceptron by the replica method. Let us define the critical storage capacity of the network 
as Q c == Pcl N. We translate the above statement into the problem of supervised learning, in which a 
simple perceptron as the student learns from the same type of the network as the teacher, as follows. 

If we regard that the random patterns are produced by the teacher network, it is impossible for the 
student to make the cost function, which consists in more than Q c = 2 examples, zero in principle. 
The above statement is also rewritten as follows. The student can not find the solution weight in his 
version space if the size of the training set exceeds Q c = 2. The reason why this limitation exists for 
this teacher-student learning scenario is that there is no correlation between the teacher weight and the 
student weight. Let us consider the extreme case in which the teacher weight coincides with that of 
the student. It is obvious that the student can store all examples which were produced by the teacher. 
Therefore, if we translate the above fact into the problem of information storage for a simple perceptron, 
we can say that the critical storage capacity of the student perceptron is infinity, namely, Q c = 00 It is 
important for us to remember that the solution exist in the version space as long as the student has the 
same structure as the teacher. Although we mentioned about the realizable case, the above argument 
can be extended to the unrealizable problem. As we explained in the introduction, the critical storage 
capacity of a simple perceptron with the non-monotonic transfer function is larger than that of a simple 
perceptron. The critical storage capacity for the non-monotonic perceptron is calculated as Q c = 10.5 
within the replica symmetric assumption. Therefore, for our model system, the student can not reproduce 
a part of the input-output relations even if the student has the same weight as that of the teacher. In 
other words, it is impossible for us to find the solution in the version space if the size of the training set 
which was produced by the non-monotonic teacher exceeds the critical storage capacity of the student 
Q c = 2. However, there remain some weights which completely reproduce the input-output relations 
among the training set ~ P until the ratio Q = PIN increases up to some critical capacity Q c even if 
teacher relation is unrealizable. This enables us to calculate the learning curve below Q c by evaluating 
the logarithm of the Gardner- Derrida volume VGD = Z (00) through the replica formula 

In VGD ~ln Z(oo)>>ep 1. ~zn(oo)>>ep -1 (3.10) 
-N = N =N hm , n-+O n 

3 Although we use the Gardner-Derrida cost function, it is also possible to apply the other cost functions to our model 
system. However, in order to derive a typical behavior of the learning curves, it is enough to examine the Gardner-Derrida 
cost function. 
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where « ... »~p represents the average over the example set eP . zn( 00) is the simultaneous partition 
function of n-replicated systems sharing the same random variables eP and becomes a function of order 
parameters 

Ra 
B·Ja = N 
J a · J b 

qab ---
N 

where a = 1, ... ,n and b = 1, ... ,n are the indices which represent replicated systems. 
Under the replica symmetric (RS) ansatz 

Ra=R, 

we can show (see Appendix A) that the equation (3.10) is evaluated as 

{ Joo ( R ) 1 q - R2 } 
ext{R,q} 2a -00 DUJ .;q: t In3(q: t) + "2 ln(l- q) + 2(1- q) , 

where n(R : t) is defined as in equation (2.8) and 

3(q: t) == 1: Dz0(y'i"=qz + yqt). 

From the identities for the arbitrary function F(t) 

~ Joo Dt an (~ : t) aF(t) , 
R -00 at.;q at 
~ Joo D a3( . )aF(t) to q.t a ' 2q -00 t t 

we find that equation (3.15) yields the following set of saddle point equations 

2a 1: Dt n x (~) x (~t) 

2a i: Dtn x (i r = 

R2 

1- q' 

q(q_R2 ) 

(1 _ q)2 ' 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

where Ft represents the abbreviation of the partial derivative of a function F with respect to t. By solving 
the saddle point equations (3.19) and (3.20), we can investigate the learning process below a e • 

As the number of the examples increases, the number of the candidates of the solution, which is able 
to reproduce the examples perfectly, decreases. From the definition of the critical storage capacity, for 
the critical number of examples a e , there only exists a solution J * in the version space and the volume 
of the version space shrinks to zero. Therefore, at the critical storage capacity a e , the solution J * should 
be independent of the replica index. Taking this assumption into account, we obtain the condition on 
the order parameter qab at the critical storage capacity as follows. 

(3.21 ) 

Taking this limit q -+ 1 in the saddle point equations (3.19) and (3.20), we obtain a couple of equations 
which determine a e as 

-2ac 1°00 Dttnt(Rc : t) = Rc2, (3.22) 

2ac 1°00 Dtt2 n(Rc : t) = 1- Rc2, (3.23) 
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Figure 3.3: The critical storage capacity a c as a function of the width of the reversed wedge a. 

where Rc is the value of R at the critical capacity a c • Here, we have used the relation 

St q 
-;::;-,.... --t8(-t), 
.::. 1-q 

(3.24) 

which is valid in the limit q -+ 1. The critical storage capacity a c and the critical overlap Rc which are 
obtained from these equations are plotted as functions of a in Figures 3.3 and 3.4. From Figure 3.3, we 
see that the critical storage capacity of the student takes a minimum value a c = 2 at a = ac2 = .J210g2. 
We also see from Figure 3.4 that the critical overlap which gives a c becomes zero at a = ac2. From 
these results, it is obvious that at a = ac2, there is no correlation between the weights of teacher and 
student. As the results, for the student, the teacher signal seems to be random data. Therefore, a c at 
a = ac2 corresponds to the critical storage capacity of a simple perceptron, what we call the Gardner 
capacity [55]. On the other hand, when a = 00, namely, Ta = S, the student can reproduce all teacher's 
input-output relations perfectly and as a result, the storage capacity a c diverges. 

3.2.2 Beyond Q c 

The solution of equations (3.19) and (3.20) disappears for a > a c • This reflects the fact that beyond a c 

there is no weight which completely reproduces the input-output relations among eP . This makes the 
Gardner-Derrida volume VGD shrink to zero. Therefore, we can not investigate the learning process by 
evaluating eq. (3.10). Instead, the free energy 

_ f = lim «In Z(f3)>>ep 
= lim lim «zn(f3)>>ep - 1 

fJ-+oo N f3 fJ-+oo n-+O nN f3 (3.25) 

gives us a solution for a > a c . 

«zn(f3)>>ep also becomes a function of order parameters Ra and qab. Under the RS ansatz (3.13) 
and (3.14), it can be shown (see Appendix A) that equation (3.25) with finite f3 is evaluated as 

{ 
2a Joo (R) ~ 1 q - R2 } 

ext{R,q} 73 -00 Dtn ..;q: t In'::'fJ(q: t) + 2f3 ln(1- q) + 2f3(1- q) , (3.26) 

where 

(3.27) 
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Figure 3.4: The critical overlap Rc which gives the critical storage capacity a c as a function of the width 
of the reversed wedge a. 

In the limit f3 ---- 00, a non-trivial result is obtained only when q ---- 1 keeping x == f3(1 - q) finite. Then, 
equation (3.26) becomes 

{ [/

0 t2] 1 R2 } 
ext{R,x} -2a _ooDtn(R:tH8(-t-ffx)+2x 8 (t+ffxn + ~x ' 

which yields the following saddle point equations 

-2a /0 Dt t nt(R : t) 
-v'2X 

2a/O Dtt2n(R:t) 
-v'2X 

= 

In the derivation of equation (3.28), we have used the relation 

which is valid in the limit f3 ---- 00 and q ---- 1. 

(3.28) 

(3.29) 

(3.30) 

(3.31 ) 

Before proceeding further, we mention the stability of the RS solution obtained from the saddle 
points equations (3.29) and (3.30). Unfortunately, our RS solution becomes thermodynamically unstable 
for a > a c • We show this condition on the stability of the RS solution, that is, the AT line is exactly 
identical to the critical storage capacity a c in Appendix B using the same technique as Bouten [62]. 

Therefore, we have to take the replica symmetry breaking (RSB) into account in order to obtain a 
stable solution. However, it is much more involved to compute RSB solutions and such a computation 
is beyond the scope of this thesis. In addition, Whyte and Sherrington showed that the one-step RSB 
solution is also unstable for the problem of storing random patterns and it is conjectured that any finite 
step of RSB is not sufficient in order to obtain a thermodynamically stable solution [63, 64, 65]. For these 
reasons, we here only present unstable RS solutions hoping that they are still good approximations and 
discuss their validity by comparing them with the results obtainable in a low-dimensional version of the 
present problem in the next section. 

By solving the saddle points equations (3.29) and (3.30), we found that the feature of the learning is 
classified into the following five types depending on a. 
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Figure 3.5: The order parameter R as a function of a for the case of a> aco .-v1.53. 

(1) a = 00, 0 (realizable cases) 

The teacher becomes realizable for a = 00 because the teacher is identical to the student with R = 1 
(J = B). In addition, the teacher is also realizable for a = O. This is because for a = 0 its input­
output relation is completely opposite to that of a = 00, which means the student with R = -1 (J = 
-B) exactly mimics the teacher. For these special values of a, a c becomes infinity and the learning is 
described by equations (3.19) and (3.20) even in the limit a --+ 00. The solution of these equations is 
thermodynamically stable and the learning curve is identical to that obtained in a realizable problem 
[24, 75] which has the asymptote 

(3.32) 

This is consistent with the universal scaling observed in general realizable problems[76]. 

(2) a > aco .-v 1.53 

In this parameter region, we found that the order parameter R monotonically increases to 1 as a --+ 00 

(Figure 3.5). On the other hand, x once decreases from 00 to some value, and after that, approaches up 
to a2 /2 in the limit a --+ 00 (Figure 3.6). 

In order to investigate how fast R and x converge to these limiting values, we expand equations (3.29) 
and (3.30) with small parameters c = 1 - Rand D.x = a2 /2 - x. This yields the following equations 

a .-v 1, 

a 

where H(x) == J.,= dtexp[-t2 /2l/.;2ir and these imply the following scalings 

D.x 

-2 a , 

(lna)1/2a-1. 

From equations (2.7) and (2.8), we found the relation 

E(1 - c) - E(R = 1) .-v 0(c1
/

2
). 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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Figure 3.6: The parameter x as a function of a for the case of a> aco rv1.53. 

As we showed in Chapt.er 2, E(R = 1) is the minimum value of c:(R) for this paramet.er region. Substi­
tuting equation (3.35) into equation (3.37), we obtain the learning curve 

-1 f.g - f.min rv a , (3.38) 

which is identical to the scaling law discovered in the problem of learning disrupted by output noise [17J. 

(3) aco > a > ac1 

A discontinuous transition from the poor generalization phase to the good generalization phase is observed 
at a rv 0(1) in this parameter region. In Figures 3.9, 3.10, 3.11 and 3.12, we plot R, x, f and f. g = E(R) 
for a = 1.3 as functions of a, respectively. 

We can observe that there are three solutions for 12.5 < a < asp rv 24.2. For a < ath rv 14.7, the 
solution which has the smallest R among the three has the lowest free energy and therefore is the globally 
stable solution. As a is increased beyond ath, the solution which has the largest R becomes the global 
minimum offree energy. Namely, a thermodynamic phase transition takes place at a = ath' Nevertheless, 
the solution with the smallest R persists until the spinodal point asp is reached. The solution with the 
middle R is the local maximum of free energy and represents an unstable solution. A similar transition 
is also reported by Engel and Reimer in a problem that a non-monotonic percept ron learns the same 
type of non-monotonic perceptron, although teacher's rule is realizable in their problem [77J. In the 
limit a --+ 00, R approaches +1 which achieves the global minimum of the generalization error in this 
parameter region. The asymptotic behavior of the learning curve is identical to equation (3.38). 

(4)ac1>a>ac2 

The discontinuous transition from the poor generalization phase to the good generalization phase is 
observed similarly to the previous subsection (3). However, the spinodal point asp becomes infinity for 
a < ac1, which means that the quasi stable solution beyond ath persists even in the limit a --+ 00. 

This is easily understood by the following consideration. In thermodynamical systems, physical quan­
tities correspond to the minimum point of the free energy which consists of energy and entropy. In our 
system, the energy (3.8) increases with a, although the effect of the entropy in the free energy is not pro­
portional to a. Therefore, in the limit a --+ 00, it is expected that properties of the system are determined 
almost only by the energy. As a result of the central limit theorem, the energy is nearly proportional to 
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Figure 3.7: Learning curves as a function for the case of a > aco "" 1.53. 
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Figure 3.8: Free energy for the case of a > aco "" 1.53. 
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Figure 3.9: The order parameter R for the case of aco > a> acl (a = 1.3). 
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Figure 3.10: The parameter x for the case of aco > a> acl (a = 1.3). 
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Figure 3.11: Free energy f for the case of aco > a > acl (a = 1.3). 
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Figure 3.12: Generalization error fg for the case of aco > a > acl (a = 1.3). First order phase transition 
is observed at a = ath. Going beyond this threshold, the student suddenly acquires the excellent 
generalization ability. 
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Figure 3.13: The order parameter R for the case of acl > a> ac2 (a = 1.0). 
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the generalization error E(R) for a:»1. This implies that R obtained from the saddle point equations 
(3.29) and (3.30) in the limit a -+ 00 is identical to the extremal points of E(R). For a > acb R = 1 
is the unique minimum point of E(R). Hence, other solutions of the SP equations should disappear as 
a -+ 00 even if they exist for a rv 0(1), which explains why asp is finite for acl < a < aco. On the other 
hand, for ac2 < a < acl, c:(R) has two extremal points R = R_(a) and R = R+(a) besides R = 1 which 
remains the global minimum of c:(R). This suggests that the SP equations have three solutions in the 
limit a -+ 00 corresponding to the three extremal points of c:(R), i.e. R = 1, R_(a) and R+(a), which 
means that asp is infinity. 

The solutions for a = 1.0 are plotted in Figures 3.13, 3.14, 3.15 and 3.16. In these figures, we find 
three solutions which all persist in the limit a -+ 00. One solution (solution (I)) starts from a c = 2.05 
and reaches the local minimum of E(R) as 

solution (I) { 
R -+ R_(a), 
x -+ 0, 

(3.39) 

in the limit a -+ 00. 

On the other hand, other two solutions emerge at a rv 16. One of them (solution (II)) approaches the 
local maximum of E(R) as 

solution (II) (3.40) 

in the limit a -+ 00. This solution corresponds to the local maximum of the free energy and therefore 
unstable. The last one (solution (III)) is another (local) minimum of the free energy approaching the 
global minimum of E(R), R = 1 as 

solution (III) { 
R -+ 1, 
x -+ a2 /2, (3.41) 

in the limit a -+ 00. 

For a < ath rv 47, the solution (I) is the global minimum of the free energy. As a increases beyond a c , 

the solution (III) becomes the global minimum of the free energy, which means that a thermodynamical 
transition from the solution (I) to the solution (III) takes place at ath. Hence, we obtain R -+ 1 as 
a -+ 00, which achieves the global minimum of E(R) for this parameter region of a. The asymptotic 
learning curve of this solution obeys the same power law as equation (3.38). 
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Figure 3.14: The parameter x for the case of acl > a > ac2 (a = 1.0). 
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Figure 3.15: Free energy f for the case of acl > a > ac2 (a = 1.0). 
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Figure 3.16: Generalization error Eg for the case of acl > a > ac2 (a = 1.0). Eg shows discontinuous phase 
transition. Spinodal point asp has gone to infinity. 

In addition to the globally stable solution (III), we now have a locally stable solution (I) in the limit 
a -+ 00. R of this solution approaches R_(a) which locally minimizes E(R). In order to investigate how 
fast R and x converge as equation (3.39), we expand equations (3.29) and (3.30) with respect to small 
parameters e = R - R_(a) and x. After some algebra, we obtain the following equations. 

which suggest the scalings 

X 3/ 2 

2a--
3J7r 

e "" a-1/ 3 , 

x"" a-2 / 3 • 

From eqs. (2.7) and (2.8), it is found that the relation 

E(R_(a) + e) - E(R_(a)) "" O(e2
), 

holds for small e. Substituting equation (3.44) into equation (3.46), we obtain the scaling 

-2/3 
Eg - El.min "" a , 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

where El.min = E( R_ (a)). It should be remarked that this scaling form is identical to the exponent which 
was discovered in the problem of learning disrupted by input noise [17], although El.min is not the global 
but the local minimum of generalization error (Figure: 3.15). 

(5) ac2 > a > 0 

In this parameter region, E(R) is minimized not at R = 1 but at R = R_ (a). As a result, the solution 
(I) obtained in the previous subsection (5) remains the global minimum of free energy until a -+ 00. As 
the result, the thermodynamic transition from the solution (I) to the solution (III) disappears and the 
learning curve decays smoothly to its minimum as 

-2/3 
Eg - Emin "" a , (3.48) 
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Figure 3.17: The order parameter R for the case of ae2 > a> 0 (a = 0.5). 

where Emin = E(R_(a)) is the minimum value of E(R) in this parameter region. We plot the order 
parameters RRS, XRS, the generalization error Eg and the free energy iRS in Figures 3.13, 3.14, 3.15 and 
3.16. 

Remark that equation (3.48) suggests that the exponent of the learning curve in the limit a --+ 0 is 
different from that of a = 0 (realizable case) in equation (3.32). In contrast, as for the other realizable 
case a = 00, the exponents of learning curves for a --+ 00 are the same as that of a = 00. This implies 
that the non-monotonic teacher with small a is more difficult for a simple perceptron to learn than that 
with large a. 

3.3 Simulations for the two-dimensional case 

In this section, we discuss the validity of the results obtained under the RS ansatz in the previous section. 
Firstly, we comment on the critical values of a, i.e. aeo, ael and ae2. acO rv 1.53 is the point below which 
a discontinuous transition appears in the learning curve. This value is intrinsic of the RS ansatz and 
therefore will be changed if we proceed to RSB calculations. However, we conjecture that ael, which 
is defined as the point below which asp becom~s infinity, and ae2, which is defined as the point below 
which ath becomes infinity, will be unchanged by RSB calculations because they result from changes in 
the shape of c(R) which is independent of the ansatz on the replica calculations. 

Secondly, we mention the critical values of a, i.e. a e , ath and asp. a c is the point at which q --+ 1. In 
our case, this value is identical to aAT beyond which the RS solution becomes unstable (see Appendix 
B). Therefore, this is invariant if we take the RSB into account. However, ath and asp will be changed 
by RSB calculations because they are intrinsic of the RS solution. 

Finally, we discuss the asymptotic behaviors of learning curves. In the previous section, we found two 
types of asymptotic learning curves with exponents 1 and 2/3 for unrealizable cases. Although they are 
unstable RS solutions, the two exponents 1 and 2/3 are consistent with those obtainable without using 
the replica method in a two-dimensional version of the present problem as follows. This suggests that 
our results are good approximations even if they are not exact. 

Let us consider the following two-dimensional learning problem. In this problem, the teacher is a 
two-dimensional non-monotonic perceptrons with the weight B = (Bl' B2 ) which returns the output 

(3.49) 



3.3. SIMULATIONS FOR THE TWO-DIMENSIONAL CASE 57 

0.8 

0.6 

0.4 

0.2 

................ 
",.,..:::: ................................. . 

o+-----.-----~----~~~~~~ 
o 20 40 60 80 100 

ex 

Figure 3.18: The parameter x for the case of ac 2 > a > 0 (a = 0.5). 
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Figure 3.19: Free energy f for the case of ac2 > a > 0 (a = 0.5). 
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Figure 3.20: Generalization error Eg for the case of ac2 > a > 0 (a = 0.5). 

for a two-dimensional input x. Here, Ta(x) is defined as Ta(x) = sign[x(a-x)(a+x)] and it is assumed that 
IBI = 1. On the other hand, the student is a two-dimensional simple perceptron with weight J = (J1 , J2 ) 

(Figure 3.21). In order to acquire a good generalization ability, this student learns from a given set of 
examples eP = {(Xp,Yl);f-L = 1,···,P} in which the inputs xp are assumed to be independently and 
identically drawn from the two-dimensional Gaussian distribution exp[-(x12 + X2 2)/2l/(27r), following 
the error minimum algorithm (Figure 3.21). 

From the two-dimensional nature of the problem, the system can be specified by a single parameter 
¢ which is the angle between Band J. In Figure 3.22, we plot the number of false predictions on a 
realization of eP , Ep , versus ¢ together with its expectation < Ep(¢) >= P x c(¢) for a = 1.0. We 
should notice that c(¢) is calculated analytically. Let us consider the conditional probability PT(+lIB) 
which means the probability that the teacher output takes +1 on condition that the angle between the 
output x and the teacher weight B is B. The PT(+lIB) is easily calculated as 

PT(+lIB) = 2 - 2H C:sB) - e(cosB). (3.50) 

It is obvious that PT ( -liB) = 1 - PT ( +lIB). For the same inputs x, the probability for the student is 
given as 

Ps(+lIB) = e(cos(IB - ¢I)), 

and Ps(-lIB) = 1- Ps(+lIB). Therefore, c(¢) is calculated as 

1171" d¢) = - dB[PT(+lIB)Ps(-lIB)+PT(-lIB)Ps(+lIB)]. 
7r 0 

(3.51) 

(3.52) 

Here, c( ¢) is the generalization error as a function of ¢. In the figure, we only plot the graphs for positive 
¢ because these graphs are statistically symmetric under the reverse operation ¢ +-+ -¢. 

From this figure, it is found that Ep(¢) takes a global minimum at ¢ = O. At the same time, Ep(¢) is 
locally minimized around ¢ = ¢. '" 2.13, which is the local minimum point of c(¢). Let us estimate how 
these (local) minimum points fluctuate around ¢ = 0 or ¢ = ¢. by the following consideration. A similar 
method was once applied to explain the asymptotic learning curve of a stochastic learning problem [18]. 

Ep(¢) is the number of examples which satisfy the condition that Yp = 1 and B· xp < 0 or Yp = -1 
and B . xp > 0 (f-L = 1,2"", P). First, we evaluate how the expectation of Ep( ¢) increases around 
¢ = 0, and ¢ = ¢ •. From Figure 3.22, we find that this increases as 

< Ep(¢) - Ep(O) >'" P x I¢I, (3.53) 
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Figure 3.21: The two-dimensional learning problem. From the two-dimensional nature of the problem, 
the system is specified by a single angle ¢ 
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broken line stands for the expectation < Ep(¢) >= Pxc:(¢), where c:(¢) is the generalization error. 
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around ¢> = O. On the other hand, < Ep(¢» > quadratically increases around the local minimum ¢> = ¢>*, 
as 

(3.54) 

Next, we estimate the fluctuation of eqs. (3.53) and (3.54). Suppose ¢> moves from ¢> = 0 to ¢> = 7r. 

Every time decision the boundary of J, namely, borderline which is perpendicular to J comes across an 
input x,.. (1 < J.L < P), Ep(¢» increases or decreases discontinuously by 1. Around ¢> = 0, Ep(¢» almost 
always increases because positive and negative examples are clearly separated around the boundary 
B . x = O. This means that the fluctuation of equation (3.53) is very small and the minimum point 
fluctuates of the order of p-1 which is a rough estimate of width between two neighboring examples. 
Therefore, we obtain 

f. g - f.min rv d¢» - c:(0) rv I¢>I rv P-I, (3.55) 

which has the same exponent 1 as that of equation (3.38). 
In contrast, Ep(¢» increases or decreases almost randomly around ¢> = ¢>*. This motion of Ep(¢» is 

analogous to that of a random walk if we regard ¢> as time. From this analogy, we obtain the following 
relation with respect to the fluctuation of equation (3.54) 

(3.56) 

The balance between equations (3.54) and (3.56), namely, the following condition 

(3.57) 

determines the fluctuation of the (local) minimum point of Ep(¢» around ¢> = ¢>*. This gives the scaling 
I¢> - ¢>*I rv p-1/ 3 , which yields the learning curve 

(3.58) 

which shares the same exponent 2/3 with equations (3.47) and (3.48). 
In order to confirm the above discussion, we performed numerical experiments for a = 1.0 (large a) 

where ¢> = 0 is the global minimum of c:(¢», and for a = 0.1 (small a) where ¢> = ¢>* = 2.13 globally 
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mmlmlzes c(¢). The numerically obtained data exhibit the following behaviors. As the number of 
examples P increases, the parameter obtained by learning converges to the global minimum of c:( ¢), 
namely, to 0 for a = 1.0 and to ¢* for a = 0.1. The average of the generalization error c: taken over 1000 
sets of examples is plotted in Figure 3.24. This figure indicates scaling relations Eg - Emin rv O(P-'Y) for 
both cases. The exponents obtained from the least square method are I = 1.01 ± 0.01 for a = 1.0 and ,= 0.68 ± 0.02 for a = 0.1, which are highly consistent with our theoretical predictions I = 1 for large 
a and 2/3 for small a. 

3.4 Summary 

The results obtained in this chapter are summarized as follows. It is clear that our non-monotonic 
perceptron is realizable for the two limiting values of a, a = 0 and +00. In these two special cases, the 
learning curve obeys the scaling law 

-1 
Eg '" a (3Jj9) 

Except for these values of a, the behavior of learning is found to be classified into the following four 
categories depending on a: For a > aco rv 1.53, the learning curve smoothly decays to its minimum and 
its asymptote obeys the relation 

+ -1 
Eg '" Emin a . (3.60) 

For aco > a > ac1 = 1.17, a discontinuous transition from the poor generalization phase to the good 
generalization phase takes place at some value of a = ath '" 0(1) and the quasi stable solution disappears 
at the spinodal point a = asp> ath. The asymptotic learning curve has the form of equation (3.60). 
For ac1 > a > ac2 = 0.8, the discontinuous transition from the poor generalization phase to the good 
generalization phase also takes place at some value of a = ath '" 0(1). However, the spinodal point 
asp becomes infinity and the quasi stable solution persists even in the limit a -+ 00. This quasi stable 
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solution exhibits the slow convergence; 
-2/3 

"-g "'''-min + a 
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(3.61) 

in the asymptotic region a» 1, although the asymptotic form of the globally stable solution obeys eq. 
(3.60). For ac2 > a > 0, the discontinuous transition disappears and the learning curve decays to its 
minimum smoothly exhibiting the slow convergence (3.61) in the asymptotic region. These results suggest 
that the scaling relations obtained in the problems of learning from noisy examples [17] generally appear 
in the problem of learning unrealizable rules as well. We should also address that the globally stable 
solution obtained by the minimum error algorithm realizes the optimal generalization error in the limit 
a -+ 00 for an arbitrary a. 

The above results are obtained by using the replica method under the replica symmetric (RS) ansatz. 
Unfortunately, it is known that the RS solution of the zero-temperature learning with the Gardner-Derrida 
cost function becomes thermodynamically unstable when the teacher's rule is unrealizable [24, 22, 62]. 
Furthermore, it is conjectured that any finite step of replica symmetry breaking is not sufficient to obtain 
a thermodynamically stable solution [63]. Nevertheless, we have a conjecture that our results offer a good 
approximation at least qualitatively because the same exponents of asymptotic learning curves, 1 and 
2/3, are also obtainable without using the replica method in a two-dimensional version of our learning 
model. 



Chapter 4 

On-Line Learning 

4.1 Background 

In the previous chapter, we discussed the learning properties of our model system by the off-line learning 
scenario. As we mentioned in detail, in the off-line learning mode, the student network does not change 
his weight vector J until the cost is minimized so that statistical mechanical equilibrium with respect to 
the dynamical variable J is obtained. The cost function has a lot of local minima in proportion to the 
P = a.N "" O(N) examples and it takes tremendous times ("" O(N) --+ 00 in the thermodynamical limit 
N --+(0) to minimize the cost. It is hard for us to apply the memory-based off-line learning algorithms 
to the situations in engineering, for example, robotics [66, 67], signal processing like an Independent 
Component Analysis(ICA) [68, 69, 70, 71] or other adaptive systems. In these practical situations, the 
student machine should adapt his own parameters to the environment (in our context, the weight of the 
teacher or threshold) which changes slowly or quickly. For such cases, it is impossible for the student to 
gather and memorize a set of examples and changes his parameter a little bit every time the environment 
changes. It is also hard to suppose that the fashion of information processing in real brain is in the off-line 
mode. 

In general, we should use two different criteria in estimating the performance of learning, namely, 
sample complexity and time complexity. 

In short, these two criteria are summarized as follows. 

Two criteria of success in learning --------------------------...,. 

Sample complexity The number of necessary examples to obtain some generalization ability. 

Time complexity Computational times for a specific training. 

Until the 1990s, most of the researches with respect to the generalization of machine learning have 
traditionally been devoted to the off-line learning mode considering the sample complexity only. In this 
context, the time complexity has been neglected. Taking the time complexity into account, recent progress. 
in this field has been directed toward the on-line learning scheme where the weights of the student are 
updated after presentation of each example. The current weights are modified at the next step of learning 
according to the difference between the present student output and the teacher signal. During learning 
processes, an example is used only once and not repeatedly presented. Such a learning process can be 
regarded as dynamics if we identify the number of presented examples with time. 

The foundation of on-line learning was established in 1967 by Amari [3]. He discussed the learning 
algorithm based on the stochastic descent and investigated the distribution of the weight vector and es­
timated the mean value and standard deviation of the weight around the target vector [3, 72]. Recently, 
Heskes and Kappen [74] succeeded in investigating the learning processes in the on-line mode by repre­
senting the stochastic process of weight vector by the macroscopic order parameter which is well-defined 

63 
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in the thermodynamical limit, namely, N -+ 00 and P -+ 00. 

Theoretical investigation of the on-line learning has the advantage of mathematical simplicity. In 
on-line learning, the typical behavior of the learning process and the generalization error are described 
by a few order parameters. 

Using this on-line learning scheme, a lot of interesting learning problems have been investigated, such 
as multi-layer neural networks (con1l11ittee machine [21, 78) and parity machine [80)), learning from noisy 
data (output noise [81,82) and input noise [82)), learning from clustered input examples [83), and learning 
from a time-dependent rule [82). Recently, Barkai, Seung and Sompolinsky [81) investigated the on-line 
learning of a single-layer percept ron from noisy examples in which the teacher signal is inverted at a 
rate of p for each example (output noise). For this case they concluded that the optimal prediction error 
behaves asymptotically as €g "" p+(2p/7ra)1/2, where a is the number of presented examples per size of the 
input space. Kim and Sompolinsky [84, 85, 86) reported that the prediction error decays as €g "" P + Aa-1 

by the on-line Gibbs algorithm. They also investigated the case of the on-line Gibbs learning with input 
noise and concluded that the generalization error converges to its minimum value as €g "" €min + Aa-1 / 2 • 

The effects of noise have also been investigated for parity machines [80) and optimized learning [82). In 
these studies, the teacher and the student networks have the same structure, and the student cannot 
learn the rule perfectly due to output noise. 

In this chapter we study the learning properties of our model system using the on-line learning algo­
rithm. For the realizable case (a-+oo), several authors reported that the asymptotic form of the learning 
curve given by the on-line algorithm is €g (a) "" a-1/ 3 for the perceptron learning [81), €g (a) "" a-1/ 2 for 
the Hebbian learning [82) and €g "" a-I for the AdaTron learning [98). 

On the other hand, it is still an open question how the learning curve depends on the width a of the 
reversed wedge and how difficult it is for the student to predict the teacher rule. We investigate these 
problems under various conditions in this chapter. 

This chapter is composed of nine sections. The perceptron, Hebbian and AdaTron learning algorithms 
in the on-line scheme are investigated in the next section 4.2. For each learning scheme, we calculate the 
asymptotic behavior of the learning curve in the realizable limit a -+ 00 as well as for the unrealizable 
case of finite a. In section 4.3 we investigate the effects of output noise on learning processes. In 
sections 4.4 and 4.5 we introduce the optimal learning rate for the student and calculate the optimal 
generalization error. The optimal learning rate obtained in section 4.4 contains an unknown parameter 
for the student, namely, the width a of the reversed wedge of the teacher transfer function. This is 
somewhat contradictory to the idea of learning because the learning process depends upon the unknown 
teacher parameter. Therefore, in section 4.6 we introduce a learning rate independent of the unknown 
parameter and optimize the rate -to achieve a faster convergence of the generalization error. In section 
4.7, we allow the student to ask queries under the Hebbian learning algorithm. It is shown that learning 
is accelerated considerably if the learning rate is optimized. In section 4.8 we optimize the learning 
dynamics by a weight-decay term to avoid an over-training problem in the Hebbian learning for some 
parameter range observed in section 4.2. The last section contains summary and discussions. 

4.2 Dynamics of noiseless learning 

We now investigate the learning dynamics with specific learning rules. The noiseless case with constant 
learning rate is treated in this section. 

4.2.1 Perceptron learning 

We first investigate the perceptron learning 

J'm+I = J'm - 6(-Ta (v)S(u))sign(u):z: ( 4.1) 

where 6 is the step function and m stands for the discrete time step of dynamics or the number of 
presented examples. The synaptic weight vector of the student is modified by the amount -sign( u):z: 
if his answer is incorrect. It is straightforward to obtain the recursion equations for the overlap R'm = 
(J'm·B)/IJ'mIIBI and the length of the student weight vector l'm = IJ'mI/VN. In the limit N-+oo, 
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these two dynamical quantities become self-averaging with respect to the random training data x. For 
continuous time a = m/N in the limit N-+oo, m-+oo with a kept finite, the evolutions of R and I are 
given by the following differential equations: 

dZ 
da 

dR 
da 

~ [E~R) _ F(R)Z] 

Z~ [- ~ E(R) + (F(R)R - G(R)) Z] 

(4.2) 

(4.3) 

where E(R) = «1» R, F(R) = «usign(u)>>R and G(R) 
stand for the averaging with respect to the distribution PR 

«vsign(u)>>R' The brackets « .. '»R 

( 4.4) 

In Appendix C, we explain the derivation of the above differential equations with respect to Z and R for 
the general weight functiOI,t f(Ta (v), u). In Appendix C, we explain the derivation of the above differential 
equations with respect to Z and R for the general weight function f(Ta(v),u). 

Hence the definition of E(R) coincides with that of the generalization error, E(R) = Eg , as used in 
the previous section. The other quantities F(R) and G(R) are evaluated in a straightforward manner as 

R 1 
F(R) = --(1- 2l\) +-

v"Fff v"Fff 
(4.5 ) 

and 
1 R 

G(R) = --(1- 2l\) +-
v"Fff v"Fff 

(4.6) 

Numerical analysis of differential equations 

We have numerically solved equations (4.2) and (4.3). The resulting flows of Rand Z are shown in 
Figure 4.1 for a = 00 under several initial conditions. This figure indicates that R reaches 1 (perfect 
generalization state) in the limit of a -+ 00 and 1-+ 00 for any initial condition. For finite a, however, 
behavior of the flow strongly depends on the initial condition. If we take a large 1 as the initial value, the 
perfect generalization state (R = 1) is achieved after 1 decreases at intermediate steps. As 1 represents 
stiffness against change of the direction of the student vector, approach to the perfect generalization state 
cannot start until the stiffness decreases to some extent. If we choose initial R close to 1 and small 1, 
the perfect generalization is achieved after a decrease of R is observed. Similar phenomena have been 
reported in the K = 2 parity machine [SO]. The generalization error is shown later in Figure 4.4 as a 
function of a for the initial condition (R,I) = (0.01,0.10). 

Next we display the flows of Rand 1 for unrealizable cases, for example, a = 2.0 and a = 0.5 in 
Figures 4.2 and Figure 4.3 respectively. It is seen that there exists an a-dependent fixed point (Ro,lo) 
and the flow is attracted into this fixed point. The generalization of the student halts at this fixed 
point even if the flow of Rand 1 starts from R = 1 and large 1. In Figure 4.4 we plot the generalization 
error for these unrealizable cases. This figure suggests that the generalization error converges to a finite 
value Emin very rapidly, presumably exponentially, if a is finite. In the next subsection we investigate the 
asymptotic behavior in detail to confirm these qualitative observations. 

Asymptotic analysis of the learning curve 

Let us first check the asymptotic form of the generalization error for the realizable case (a = (0) [S7]. As 
the order parameter R increases monotonically near R = 1 as seen in Figure 4.1, we scale the parameters 
as R = 1- € and 1 = 1/8 in order to see the behavior of the differential equations (4.2) and (4.3) for small 
E and 8 in the limit a -+ 00. Then E(R), F(R) and G(R) are scaled as E(E) = Eg "" v'2i/7f, F(E) ""€/v"Fff 
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Figure 4.1: Flows of the order parameter R and I for the realizable case (a = 00) by the perceptron 
learning. If one starts from large I, the student begins to generalize after the length of the weight vector 
I decreases to some value. White points are the results of the computer simulations for the system 
size N = 2000. In each time step, the student receives P = 100 examples. The results of theory and 
simulation show the excellent matches. 
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Figure 4.2: Flows of the order parameters Rand 1 for the unrealizable case (a = 2.0). The flows are 
attracted to a fixed point. 
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attracted to a fixed point. 
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and G(E) "-' - e/V21r. These scaling forms are easily obt.ained. For example, the scaling form of E(R) is calculated as follows. We first define E1(R) and E2 (R) as 

E(R) = fa Dv erfc ( Rv ) + 100 

Dv erfc ( - Rv ) )0 J2(1 - R2) a J2(1 - R2) 
- E1(R) + E2 (R) (4.7) 

Using the scaling relation R = 1 - e and e--+O, El is rewritten as 

1&. dt = ;;;::- 2';€erfc(t) 
o V 27r 

~ {[terfc(t)lg~ + 12:; tdte-%} 

V2c 
(4.8) 

By similar calculations, E2 is rewritten as E2(e) "-' 2H(a) and this goes to zero in the limit of a--+oo. From these two results of El and E2 , we obtain the scaling form with respect to E(R) as E(e) "-' 2H(a) + V2c/7r"-'V2c/7r (a--+oo). 
Substituting these asymptotic expressions into the differential equations (4.2) and (4.3), we obtain 

d8 
da 

de 
da = 

Taking the ratio of these two equations, we find 

d8 _ -8 + ..fi€ 8 
de - 8 - 2.j1(€ . 

(4.9) 

(4.10) 

(4.11) 
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If we assume 8»,jE or 84;.,jE, the above differential equation leads to 8", e-e in contradiction to 1814;.l. 
Therefore, 8 and yE are of the same order and we assume the relation 8 = 2ViF,jE + bEe. Substitution of 
this relation into equation (4.11) leads to c = 3/2 and b = -ViF/2. Consequently, the relation between E 

and 8 is 
0= 2VU(1- E). ( 4.12) 

Inserting this equation into equation (4.10) we get E = (1/3v'2)2/3 a -2/3 and 8 = 2ViF(1/3v'2)1/3 a -1/3. 
Substituting this E into the asymptotic form of E(R), we can confirm the asymptotic form of the gener­
alization error [S7] as 

€ = v'2 (_1_) 1/3 a- 1 / 3 • 

g 7r 3v'2 
( 4.13) 

Similar results were obtained in the two-layer K = 2 parity machine [SO]. 
We next investigate the unrealizable case of finite a. We expand various quantities near the fixed 

point as 

R(E) Ro +E 
1( E) = 10 + 1 

E(E) = Eo - Et£ 
F(E) Fo - F1E 

G(E) Go - G1E ( 4.14) 

where 

Eo 2100 

DvH (v- Rov 2) +2 r DvH ( ~) 
a 1 - Ro Jo V 1 - Ro 

(4.15) 

7r v~~ Rij [1 - 2 exp ( - -2(:-1-~-,2 m=2<7)) ] ( 4.16) 

Fo 
Ro 1 

- -v'2-ff-7r (1- 2~) + -v'2-ff-7r ( 4.17) 

1 
--v'2-ff-7r (1- 2~) (4.1S) 

Go 
1 Ro 

- -v'2-ff-7r (1 - 2~) + -v'2-ff-7r (4.19) 

1 
- v'2-ff' ( 4.20) 

Then the differential equations (4.2) and (4.3) are linearized around the fixed point (Ro, 10) as 

(4.21) 

where 

(4.22) 

(4.23) 

( 4.24) 

(4.25) 
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Let us recall that Eo, Fo, Go and Zo should satisfy the following fixed point condition according to 
equations (4.2) and (4.3): 

o 

o 

(4.26) 

( 4.27) 

These two conditions lead to Go = 0 and therefore from equation (4.19), we obtain the fixed point of R 
as 

Ro = (1 - 2t.). ( 4.28) 

Substituting this Ro into E(R), we get the minimum value of the generalization error Eo = €min(a). 
In Figures 2.3 and 2.2, we show Ro and Eo = €min(a) as functions of a. Figure 2.3 indicates that the 
learning for a = acl =V2log2, which is obtained from the condition Ro = 0, is equivalent to a random 
guess, €min(acl) = 0.5. 

N ext we investigate the linearized differential equations in the vicinity of the fixed point (Ro, Io) in 
the limit of large a. For large a we find 

All ~ _it.3/ 2 + O(t.2) (4.29) 
7r 

A12 (_1 __ ~ ) + O(t.1/2) 
~ 27r 

( 4.30) 

A21 16 (~ - _1_) t.2 + O(t.) 
7r ~ 

(4.31 ) 

A22 ( 1 2) 1/2 - -+- t. +O(t.). 
27r ~ 

(4.32) 

Therefore, the eigenvalues of the matrix A are estimated as 

(4.33) 

Since I All I ~ IA221, we conclude that for large a (or small t.), the generalization error decays toward 
the minimum value 

E(R) ~ 2H(a) ~ ~r (~) t.3
/
4 (4.34) 

as 

(4.35) 

In the limit t. = 0 (the realizable case), the eigenvalue vanishes and the generalization error becomes to 
decay to zero as "'a- 1/ 3 • 

4.2.2 Hebbian learning 

In the Hebbian rule the dynamics of the student weight vector is 

(4.36) 

This recursion relation of the N-dimensional vector J is reduced to the evolution equations of the order 
parameters as 

dl 

da 

dR 
da 

~ [~+ 2R (1 _ 2t.)Z] 
I 2 ~ 

= ~ [_ R + _2_(1_ 2t.)(1- R2)Z] . 
12 2 ~ 

( 4.37) 

( 4.38) 
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Figure 4.5: Flows of Rand 1 for a = 00,2.0 and 0.5 by the Hebbian learning. For the cases of a = CX) and 
2.0, R reaches 1 and 1 goes to 00. On the other hand, for a = 0.5, R reaches -1 as 1 goes to 00. 

Numerical analysis of differential equations 

In Figures 4.5 and 4.6 , we plot the flows in the R-I plane and the generalization error for a = 00, 2.0 
and a = 0.5. Here we started the dynamics with the initial condition (.R;nib1inid = (0.01,0.1). Figure 
4.5 shows that R reaches 1 for large a. On the other hand, R approaches -1 for small a. In order to find 
this bifurcation point near R = 0, we approximate equation (4.38) ar.ound R", 0 as 

dR 2 
-~-(1-2~). 
dex ..J'ii 1 

( 4.39) 

If the parameter a satisfies a > ac1 = yf2log 2 = 1.18, the derivative dR/ dex is positive, and consequently 
R increases and eventually reaches 1 in the limit ex--+oo. On the other hand, if a < acl, R reaches -1 as 
ex--+oo. Figure 4.6 shows how the generalization error behaves according to the width a of the reversed 
wedge. We learn from this figure that for a = 0.5« acl), €g has a minimum at some intermediate ex. 
When the generalization error €g passes through this value, €g begins to increase toward the limiting 
value €min(a) = 1 - 2H(a). Therefore, if the student learns excessively, he cannot achieve the lowest 
generalization error which is located at the global minimum of E(R) = €g (over-training, see Figure 2.1) 
[88, 27]. This curious behavior may be understood as follows. 

The Hebbian couplings have equal strengths for all the examples. However, for small a, the teacher 
changes his opinion frequently, and the examples presented some time ago destroy the most recent and 
important information for generalization. From Figure 2.1 we see that R must pass through a local 
minimum of E(R) at R = R* in order to go to the state R = -1. If the parameter a satisfies a < ac2 = 
0.80, this local minimum is also the global minimum. Therefore, if a < acl, although the generalization 
error decreases until R reaches R*, it begins to increase as soon as R passes through the minimum point 
R = R* and finally reaches a larger value at R = -1. When the parameter a lies in the range ac2 < a < 
acl, the global minimum is located at R = 1. However, since R goes to -1 for a < acl (see equation 
(4.39)), the generalization error increases monotonically from 0.5 (random guess) to 1- 2H(a)(> 0.5) for 
the parameter range ac2 < a < acl. We can regard this as a special case of over-training. From this fact, 
we can conclude that over-training appears for a < acl' 
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Figure 4.6: Generalization error Eg for a = 00,2.0 and 0.5 by the Hebbian learning. For a = 00 and 
2.0, the generalization error converges to the optimal value 2H(a). However, in the case of a = 0.5, the 
generalization error begins to increase when the student learns too much (over-training). 

Asymptotic analysis of the learning curve 

For the realizable case a = 00, we scale the differential equations as R = 1 - e: and 1 = 1/8 and obtain 

d8 __ 2_82 ( 4.40) 
da ~ 
de: 1 2 4 

(4.41 ) ~ -8 - --e:8. 
da 2 ~ 

With the same technique as in the previous section, we obtain the asymptotic form of the generalization 
error in the limit a--+oo as 

1 1 
E - ----
g-~..;a. 

( 4.42) 

which is a well-known result [89). 
We next investigate the l¥lrealizable case of finite a . Simple manipulations as before show that for 

a > acl the stable fixed point is at R = 1 and the differential equations (4.37) and (4.38) yield the 
generalization error 

1 1 
Eg = ~(1- 2b.)..;a. + 2H(a). ( 4.43) 

The limiting value 2H(a) is the best possible value. On the other hand, for a < acl, we should use the 
scaling relation R = e: - 1 and 1 = 1/8 because the order parameter R decreases monotonically toward 
-1. The corresponding generalization error turns out to be 

( 4.44) 

for a < acl. The coefficients of 1/..;a. in equations (4.43) and (4.44) diverge as a --+ acl. signalling a 
crossover between the two types of asymptotic forms. The rate of approach to the asymptotic value, 
1/..;a., in equations (4.43) and (4.44) agrees with the corresponding behavior in the Gibbs learning of 
unrealizable rules [84). 
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4.2.3 AdaTron learning 

In t.his subsection we investigat.e the generalization ability of student trained by the on-line AdaTron 
learning algorit.hm with examples generated by the above-mentioned non-monotonic rule. The AdaTron 
learning is a powerful method for realizable rules both in on-line and off-line modes in the sense that this 
algorithm gives a fast decay, proportional to 0:-1 , of the generalization error [98, 60, 83], in contrast to 
the 0:- 1/ 3 and 0:- 1/ 2 decays of the perceptron and Hebbian algorithms. We investigate the performance 
of the AdaTron learning algorithm in the unrealizable situation and discuss the asymptotic behavior of 
the generalization error. 

The on-line training dynamics of the AdaTron algorithm is 

Jm+1 = Jm - g(0:)u8(-Ta(v)S(u))x. (4.45 ) 
,'/ 

Using the same technique as the previous subsections, the evolutions of R and I are given by the following 
differential equations: 

where 

with 

dl 

do: 
dR 
do: 

g2EAd 
-2-1- -gEAd 

Rg2 EAd gEAdR - GAd 

212 + I 

H (u R) == H ( a - RU) H ( Ru ) _ H ( a + Ru ) 
a , viI - R2 + viI - R2 Jf=R2 

and 

4;.uvTa(V )8( -Ta(v)S(U))» 

1 2 3/2 [ ( a
2 

) ] -(1 - R ) 2 exp - - 1 
7r 2(1- R2) 

+ If Ra( y\ - R2)t::. [1 - 2H ( ~ )] + REAd. 

Equations (4.46) and (4.47) determine the learning process. 

Realizable case 

( 4.46) 

(4.4 7) 

(4.48) 

( 4.49) 

( 4.50) 

We first consider the case of g(o:) = 1 and a = 00, the realizable rule. We investigate the asymptotic 
behavior of the generalization error when R approaches 1, R = 1 - c:, c:-+O and 1 = 10 , a constant. From 
equations (4.48) and (5.36), we find EAd.-v cc:3 / 2 and GAd .-v (c - 2V2/7r) c:3 / 2 with c = 8/(3V27r). Then 
equation (4.47) is solved as c: = (2/k)20:-2 with 

(4.51) 

Using this equation and E(c:) = fg.-v vl27rC:/7r, we obtain the asymptotic form of the generalization error 
as 

fg = E(R) .-v .j2£ = 2V2 .!.. 
7r 7rk 0: 

(4.52) 

The above expression of the generalization error depends on 10, the asymptotic value of 1, through k. 
Apparently 10 is a function of the initial value of I as shown in Figure 4.7. A special case is 10 = 1/2 in 
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R 

Figure 4.7: R-l trajectories of the AdaTron learning for the learnable case a = 00. The fixed point depends 
on the initial value of 1 = l init . For the special case of linit = 0.5, the flow of I becomes independent of a. 

which case 1 does not change as learning proceeds as is apparent from Eq. (4.46) as well as from Figure 
4.7. Such a constant-1 problem was studied by Biehl and Riegler [98] who concluded 

3 
€g =-

2a 
( 4.53) 

for the AdaTron algorithm. Our formula (4.52) reproduces this result when 10 = 1/2. If one takes 10 as 
an adjustable parameter, it is possible to minimize €g by maximizing k in the denominator of equation 
(4.52). The smallest value of €g is achieved when 10 = 7rc/2V2, yielding 

4 
€g = 3a (4.54) 

which is smaller than equation (4.53) for a fixed l. We therefore have found that the asymptotic behavior 
of the generalization error depends upon whether or not the student weight vector is normalized and that 
a better result is obtained for the un-normalized case. We plot the generalization error for the present 
realizable case with the initial value of linit = 0.1 in Figure 4.8. We see that the Hebbian learning has 
the highest generalization ability and the Ada'fron learning shows the slowest decay among the three 
algorithms in the initial stage of learning. However, as the number of presented patterns increases, the 
Ada'fron algorithm eventually achieves the smallest value of the generalization error. In this sense the 
Ada'fron learning algorithm is the most efficient learning strategy among the three in the case of the 
realizable rule. 

Unrealizable case 

For the unrealizable case, there can exist only one fixed point 10 = 1/2. This reason is, for finite a, 
EAd appearing in equation (4.46) does not vanish in the limit of large a and E Ad has a finite value for 
a=/=oo. For this finite EAd , the above differential equation has only one fixed point 10 = 1/2. In contrast, 
for the realizable case, EAd behaves as E Ad '" c c3/ 2 in the limit of a-4OO and thus dl / da becomes zero 
irrespective of I asymptotically. We plot trajectories in the R-l plane for a = 2 in Figure 4.9 and the 
corresponding generalization error is plotted in Figure 4.10 as an example. From Figure 4.9 we see that 
the destination of 1 is 1/2 for all initial conditions. Figure 4.10 tells us that for the unrealizable case 
a = 2, the AdaTron learning has the lowest generalization ability among the three. We should notice 
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Figure 4.8: Generalization errors of the AdaTron, perceptron and Hebbian learning algorithms for the 
learnable case a = 00. The initial value of 1 is linit = 0.1 for all algorithms. The AdaTron learning shows 
the fastest convergence among the three. 
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Figure 4.9: R-1 trajectories of the AdaTron learning for the unlearnable case a = 2. All flows of 1 converge 
to the fixed point at 10 = 1/2. 
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Figure 4.10: Generalization errors of the AdaTron, percept ron and Hebbian learning algorithms for the 
unlearnable case a = 2. The AdaTron learning shows the largest residual error among the three. 

that the generalization error decays to its asymptotic value, the residual error Emin, as Eg - Emin rv a-1/ 2 

for the Hebbian learning and decays exponentially for percept ron learning [37]. The residual error of the 
Hebbian learning Emin = 2H(a) is also the best possible value of the generalization error for a > ac2 as 
seen in Figure 4.11. In Figure 4.12 we also plot the generalization error of the AdaTron algorithm for 
several values of a. For the Ada'fron learning of the unrealizable case, the generalization error converges 
to a non-optimal value E(Ro) exponentially. 

For all unrealizable cases, the R-I flow is attracted into the fixed point (Ro, 1/2), where Ro is obtained 
from 

( 4.55) 

The solution Ro of the above equation is not the optimal value because, as we mentioned in Chap­
ter 2, the optimal value of the present learning system is Rapt = 1 for a > ac 2 and Rapt = R. = 
-y'(2Iog2 - a 2 )/2Iog2 for a < ac2 [90]. 

From Figures 4.11 and 4.10, we see that the residual error Emin of the Ada'fron learning is larger 
than that of the conventional perceptron learning. Therefore, we conclude that if the student learns from 
the unrealizable rules, the on-line Ada'fron algorithm becomes the worst strategy among three learning 
algorithms as we discussed above although for the realizable case, the on-line Ada'fron learning is a 
sophisticated algorithm and the generalization error decays to zero as quickly as the off-line learning [91]. 

4.3 Learning under output noise in the teacher signal 

We now investigate the problem of learning in the presence of output noise. The output of the teacher 
is inverted randomly with a rate>. (:9/2) for each example. This problem has been investigated for a 
simple perceptron by the non-normalized [82] and normalized [81] perceptron algorithms, and for the 
K = 2 parity machine by the least action algorithm [80]. Here we show that the width a of the reversed 
wedge plays essentially the same role as output noise in the teacher signal. In this section, we take up 
the perceptron learning and Hebbian learning algorithms. 
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Figure 4.11: Best possible value of the generalization error and the residual error for Hebbian, perceptron 
and AdaTron learning algorithms. 
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4.3.1 Perceptron learning 

According to references [80, 81, 82J, the effect of output noise is taken into account in the differential 
equations (4.2) and (4.3) by replacing E(R), F(R) and G(R) with E)..(R), F)..(R) and Ch(R) as follows 

E)..(R) = (l-A)E(R)+AEC(R) (4.56) 

F)..(R) = (1- A)F(R) + AFC(R) (4.57) 

Ch(R) = (l-A)G(R)+AGC(R) (4.58) 

where EC(R) = «l»R' FH = «sign(u)u»R and GR = «sign(u)v»R with the average defined as 

(4.59) 

Here!lc is the region in the u-v plane satisfying Ta(v) = S(u). The derivation of equations (4.57),(4.58) 
and (4.58) is understood as follows. Although, we express the average « .. '»R as equation (4.4), we can 
rewrite this expression using 8( -Ta(v)S(u)) as follows. 

E(R) 

F(R) 

G(R) 

= «8( -Ta(v)S(u))» 

«8( -Ta(v)S(u))sign(u)u» 

= «8( -Ta(v)S(u))sign(u)v» 

( 4.60) 

(4.61 ) 

( 4.62) 

( 4.63) 

Therefore, if the teacher output Ta(v) is inverted with the rate A, The factor 8( -Ta(v)S(u)) appearing 
in the equations (4.61), (4.62) and (4.63) leads to the next expression on average. 

8( -Ta(v)S(u)) ---; (1- A)8( -Ta(v)S(u)) + A8(Ta(v)S(u)) (4.64 ) 

Therefore, using this relation, for example, E(R) under the output noise of the teacher can be written as 
follows. 

EC(R) = A«8( -Ta(v)S(u))» + (1 - A)«8( -Ta(v)S(u))» 

= (1 - A)E(R) + AEC(R). 

After simple calculations, we obtain 

Numerical analysis of differential equations 

( 4.65) 

( 4.66) 

(4.67) 

( 4.68) 

In Figures 4.13 and 4.14 we plot the flows of Rand 1 for the realizable case with noise revel A = 0.01 and 
0.20 respectively. We also plot the flows of R and I for unrealizable case a = 2.0 with same noise revel 
as the realizable case in Figures 4.15 and 4.16. Naturally the generalization ability deteriorates as the 
noise level A approaches 1/2. Even when a = 00 and a ---; 00, a A-dependent fixed point appears and the 
perfect generalization is impossible. In Figures 4.17 (a = 00) and Figure 4.18 (2.0), we plot generalization 
errors corresponding to each flow. 

Asymptotic analysis of learning curve 

We study in this subsection the asymptotic behavior of the learning curve in the limit of small noise level 
A«1. For the realizable case a = 00, we define c by the relation R = 1-c to get the differential equations 

(4.69) 
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Figure 4.13: Flow of Rand 1 for the learnable case a = 00 with noise level>' = 0.01. Due to the presence 
of noise, the flow of R is attracted to a fixed point Ro = (1 - 2>.). Then the generalization stops. 
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Figure 4.14: Flow of Rand 1 for the learnable case a = 00 with noise level>' = 0.20. Due to the presence 
of noise, the flow of R is attracted to a fixed point Ro = (1 - 2>.). Then the generalization stops. 
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Figure 4.15: Flow of R and I for the unrealizable case a = 2 with noise level>' = 0.01. Due to the presence 
of noise, the flow of R is attracted to a fixed point Ro = (1 - 2>.). Then the generalization stops. 
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Figure 4.16: Flow of R and I for the unrealizable case a = 2 with noise level>' = 0.20. Due to the presence 
of noise, the flow of R is attracted to a fixed point Ro = (1 - 2>.). Then the generalization stops. 
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Figure 4.17: Generalization error for the learnable case a = 00 with output noise). = 0.01 and), = 0.2. 

Eg 

0.5-y-------------------, 

0.4 

0.3 

, 
" 

A=O.Q1 -

" 
A=O.20 ••••. 

.......... _-... _-_ ..... __ .... _ ..... _ ..... _ ..... _. 

0.2-t------,r-------r---..,.----i 
o 10 20 30 40 

a 

Figure 4.18: Generalization error for the learnable case a = 2.0 with output noise). = 0.01 and), = 0.2. 
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de 
da = 

where only the leading terms with respect to >. have been left. The fixed point (co, 10 ) is given as 

( 
1 -1/2) (co, 10) = 2>., 2.J27r>' . 

Let us investigate how fast this fixed point is approached. We set 

e = eo(l-e) 
10 (1 - 1) 

and linearize the differential equations around (co, 10 ) to obtain 

d1 

da 
de 
da 

From the eigenvalues of the coefficient matrix, we obtain the asymptotic solution 

co 

10 [1+0(e-S>.3/z",)] 

co [1 + O(e-8>.3/Z",)]. 

(4.70) 

(4.71 ) 

( 4.72) 

(4.73) 

(4.74) 

(4.75) 

Therefore, the generalization error Eg converges to a finite value exponentially, exp( -8>.3/2a ). The 
limiting value of the generalization error is 

E(R = 1- 2>.) = ':>.1/2. 
7r 

(4.76) 

It is important to bear in mind that the above results hold only for small noise level (>'~::1). 
According to Biehl et al [82], it is useful to distinguish two performance measures of on-line learning, 

the generalization error Eg and the prediction error Ep. The generalization error Eg is the probability 
of disagreement between the student and the genuine rule of the teacher as we have discussed. On the 
other hand, the prediction error Ep is the probability for disagreement between the student and the noisy 
teacher output for an arbitrary input. In the present case, the prediction error Ep and generalization error 
Eg satisfy the relation 

Ep = >. + (1- 2>')Eg. (4.77) 

We next investigate the unrealizable case of large but finite a for small noise level. We can derive 
the linearized differential equations around the fixed point (Ro, 10) by replacing Eo, E1 and so on in 
subsection 4.2.1 with Eo(>'), E1 (>.) etc using the same relation as equation (4.14) 

E(>.) = Eo(>') - E1(>.)e 
F(>.) = Fo(>') - F1(>.)e 
G(>.) Go(>') - G1(>.)e 

R = Ro(>.) + e 

10(>') + 1. ( 4.78) 

Then 

(4.79) 

(4.80) 
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Po (A) 
4 2 4 2 2 

-(A - A ) + -(1- 2A) + O(t. ) 
.j2; .j2; 

PI (A) 
1 2(1-2A) 

-(1- 2A)-
.j2; .j2; 

Go (A) 0 

Gd A) 
1 

= - .j2; 

and 

RO(A) = (1- 2t.)(1 - 2A) 

lo LO(A) + Ll(A)t. + O(t.2) 

where 
L (A) = .j2;[A + (1 - 2A)I(a, A)) 

o 8(A-A2) 

and 
L (A) = (1- 2A) + 47r(1 - A)2[A + (1- 2A)I(a, A)) 

1 47r(A-A2) 

with 

I(a,).)==2 to DvH (- (riv) +2 r DvH (riv). Ja 2 ).-A2 Jo 2 )._).2 

83 

(4.81 ) 

( 4.82) 

( 4.83) 

( 4.84) 

( 4.85) 

(4.86) 

( 4.87) 

(4.88) 

(4.89) 

It is worth noting that as t.( == e-a2 /2) and), appear in Ro in the same form, and therefore the width a 
of the reversed wedge and the output noise level have the same effect on the generalization ability. 

Substituting Eo, El etc into the differential equations (4.2) and (4.3) for small ). (:9/2) and keeping 
only the leading order terms with respect to ). and t., we obtain 

dl 

da. 

de 
da. 

= 

= 

(4.90) 

(4.91) 

where I(a,).) appearing in Eo().) was approximated in the limit of ),-+0 by (2/7r).1/2 + 2H(a). In order 
to compare the realizable and unrealizable cases, it is useful to re-scale the variables 

(4.92) 

in equations (4.90) and (4.91). Using this transformation, we rewrite equations (4.90) and (4.91) as 

dl 

da. 

:: = (_4).1/2 + 2A -1/2 t.) 1 + (-2), -1/2 - ).1/2 t.) e. 

( 4.93) 

(4.94) 

The eigenvalues of the matrix composed of coefficients on the right-hand side of the above linearized 
differential equations are 

( 4.95) 

In the limit t.-+O and ),-+0, we may keep only L. Then the generalization error converges to (2/7r).1/2 + 
2H(a) exponentially as exp(-La.) for large a and small A. The prediction error is given by Ep = 
A + (1 - 2A)Eg . 
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Figure 4.19: Generalization error for the learnable case a = 00 with output noise>. = 0.01 and 0.20 by 
the Hebbian learning. . 

4.3.2 Hebbian learning 

Using the same technique as in the perceptron learning problem, we obtain the next differential equations 
of the order parameters 

dl 

do: 

dR 
do: 

= 1 [1 2R ] - - + -(1 - 2~)(1- 2>.)l 
1 2 ..f2if 

1 [R 2 2 ] - -- + -(1- 2~)(1- 2>.)(1- R)1 . 
12 2 ..f2if 

Numerical analysis of differential equation 

( 4.96) 

( 4.97) 

We plot the generalization error for a = 00,2.0 and a = 0.5 in Figures 4.19, 4.20 and 4.21, respectively, 
by solving these differential equations numerically. We saw in the previous section that the over-training 
appears if a < acl = v'210g2. The student cannot achieve the minimum error €min if he learns too much. 
Figure 4.21 indicates the existence of the number of learning steps 0: at which d€g/ do: = 0 holds. Beyond 
this point, over-training appears, and this critical value of 0: increases as the noise level>. increases. This 
result may be understood as follows. 

For small >. (e.g. >. = 0.01), €g once reaches a minimum as a function of 0: and then begins to increase 
(over-training). This means from Figure 2.1 that R passes through R. corresponding to the minimum 
of E(R). For larger>. (e.g. >. = 0.20), however, there appears no minimum in €g as 0: increases. This 
implies in terms of Figure 2.1 that R becomes stuck at an intermediate R before it reaches R •. 

Asymptotic analysis of the learning curve 

The asymptotic form for the noisy case can be derived simply by replacing (1 - 2~) in the asymptotic 
form of the noiseless case with (1 - 2~)(1 - 2>.). Accordingly, we get the generalization error for a > 
ac1 = v'210g2 as 

1 1 
€g = ..f2if(1- 2~)(1 - 2>.) va + 2H(a) ( 4.98) 

and for a < ac1 as 
1 1 

€g = v'61f(1 - 2~)(1 _ 2>.) va + 1 - 2H(a). (4.99) 
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Figure 4.20: Generalization error for the learnable case a = 2.0 with output noise>. = 0.01 and 0.20 by 
the Hebbian learning. 
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Figure 4.21: Generalization error for the learnable case a = 0.5 with output noise>. = 0.01 and 0.20 by 
the Hebbian learning. 
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As we saw in the previous subsection, the prediction error obeys the relation 

(4.100) 

Therefore we get the prediction error for a > acI as 

1 1 
lOp = tn= C, + 2(1 - 2>.)H(a) + >. 

v27r(I- 2.6.) va 
( 4.101) 

and for a < acI as 
1 1 

lOp = ~ C, + (1 - 2>.)(1 - 2H(a)) + >.. 
v67r(I- 2.6.) va 

(4.102) 

From equations (4.98) and (4.99), we see that the width a of the reversed wedge expressed in terms of 
.6. = e- a2

/
2 and the output noise>. have the same effect on the asymptotic generalization ability. In 

the non-monotonic Hopfield model [32, 33, 34, 35, 36, 37] which works as an associative memory, the 
parameter .6. also plays as the output noise. If we embed patterns by the Hebb rule in the network, the 
capacity of the network drastically deteriorates for small a. From equations (4.98) and (4.99), we see 
that the coefficients of 1/ va in the generalization error diverges when .6. = >. = 1/2 

4.4 Optimization of learning rate 

We have so far investigated the learning processes with a fixed learning rate. In this section we consider 
optimization of the learning rate to improve the learning performance. It turns out that the perceptron 
learning with optimized learning rate achieves the best possible generalization error in the range a 2: acl' 

We first introduce the learning rate g(a) in our dynamics. As an example, the learning dynamics for 
the perceptron algorithm is written using this parameter as 

JTn+I = JTn - g(a) 0( -Ta(v)S(u)) sign(u) x. (4.103) 

This optimization procedure is different from the technique of Kinouchi and Caticha [97]. They investi­
gated the on-line dynamics with a general weight function j(Ta(v),u) as 

(4.104) 

and chose j (Ta, u) so that it maximizes the increase of R per learning step. 1 

In contrast, our optimization procedure adjusts the parameter g(a) keeping the learning algorithm 
unchanged. This procedure is somewhat similar to simulated annealing processes with the annealing 
schedule corresponding to the choice of g(a) [46,93, 94]. 

4.4.1 Perceptron learning 

Trajectory in the R-l plane 

In this section, we show that the trajectories in the R-I plane can be derived explicitly for the optimal 
learning rate gopt(a). Using the same techniques as in the previous two sections, we can readily obtain 
the differential equations with the learning rate g( a) as 

dl 

da 
dR 
da 

= 

= 

g(a)2 E(R)/2 - g(a)F(R)l 
I 

-RE(R)g(a? /2 + g(a) [F(R)R - G(R)] I 
[2 

L(g(a)). 

(4.105) 

(4.106) 

1 We use this technique for optimizing the function f in the next chapter for the case in which a non-monotonic perceptron 
as a student learns from a non-monotonic percept ron as a teacher (realizable task). 
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Figure 4.22: The trajectories in the R-l plane with the optimal learning rate by the perceptron learning 
a = 00 We choose the initial condition as (Rinit, linid = (0.01,0.10), (0.01, LOO) and (0.01,2.00). In all 
cases, the student goes to the state of R = 1 after infinite learning steps under any initial condition. As 
R reaches 1, 1 decreases. 

Now we choose the parameter g to maximize L(g(a)) with the aim to accelerate the increase of R 

( ) 
_ [F(R) R - G(R)]l 

gopt a - RE(R) . 

Substituting this g into equations (4.105) and (4.106) we obtain 

dl 

da 

dR 
da 

= 
[F(R) R - G(R)] [F(R) R + G(R)]l 

2R2E(R) 

[F(R) R - G(R)]2 
2RE(R) 

It is possible to eliminate a from these equations by taking their ratio 

dR 
dl 

[F(R) R - G(R)] R 
[F(R) R + G(R)]l . 

Using equations (4.5) and (4.6) we obtain the trajectory in the R-l plane as 

(1 + R)-(1+A)/A(l - R)(l-A)/A R = cl 

where A = 1 - 2~ and c is a constant. 

(4.107) 

(4.108) 

(4.109) 

(4.110) 

(4.111) 

In Figures 4.22, 4.23 and 4.24, we plot the above trajectory for a = 00, 2.0 and 0.5, respectively, by 
adjusting c to reproduce the initial conditions (~nit' linit) = (0.01,0.10), (0.01, LOO) and (0.01,2.00). 
These figures indicate that the student goes to the state of R = 1 after infinite learning steps (a--+oo) for 
any initial condition. However, we may notice that the final value of 1 strongly depends on the parameter 
a. If a is small (e.g., 0.5), 1 increases indefinitely as a --+ 00. On the other hand, for larger a, 1 is seen to 
decrease as a goes to 00. We investigate this a-dependence of 1 in more detail in the next subsection. 

We plot the corresponding generalization error in Figures 4.25, 4.26 and 4.27. From these figures, we 
see that for a = 00 and 2.0, the generalization ability is improved significantly. However, for a = 0.5, the 
generalization ability becomes worse than that for g = 1 (the unoptimized case). This may be explained 
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Figure 4.23: The trajectories in the R-I plane with the optimal learning rate by the perceptron learning 
a = 2.0 We choose the initial condition as (.R;nit,linit) = (0.01,0.10), (0.01, 1.00) and (0.01,2.00). In all 
cases, the student goes to the state of R = 1 after infinite learning steps under any initial condition. As 
R reaches 1, I decreases. 
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Figure 4.24: The trajectories in the R-I plane with the optimal learning rate by the perceptron learning 
a = 0.5 We choose the initial condition as (.R;nitl1inid = (0.01,0.10), (0.01, 1.00) and (0.01,2.00). In all 
cases, the student goes to the state of R = 1 after infinite learning steps under any initial condition. As 
R reaches 1, I increases. 
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Figure 4.25: Generalization error for with the optimal learning rate gopt. For a = 00, 109 goes to the 
optimal value. 

Eg 

0.5,----------------, 

0.4 

0.3 

0.2 

0.1 

g=) -
g =g opt ••••• 

0+----,----,----,----1 
o 10 20 30 40 

ex. 

Figure 4.26: Generalization error for with the optimal learning rate gopt. For a = 2, 109 goes to the 
optimal value. 
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Figure 4.27: Generalization error for with the optimal learning rate gopt. For a = 0.5, Eg goes to a worse 
value than that of g = 1. If we select a negative value as the initial condition of R for a = 0.5, the 
generalization error converges to 1 - 2H(a)(> 0.5). 

as follows. In Figure 4.11, we see that the optimal overlap Ropt, which gives the optimal generalization 
error E~Pt in the limit a-+oo, is 1 for a > ac2 = 0.80. However, for a < ac2, the optimal overlap is not 
1 but Ropt = R*. Within the procedure of optimal learning discussed above, the overlap R is forced 
to increase toward 1 for any positive initial overlap R > O. This can be seen directly by approximating 
(4.109) around R = 0 as 

dR (1- 2.6.)2 [2 
da = 2?f R' (4.112) 

On the other hand, if we select a negative R as the initial condition, R reaches -1 and we get the 
generalization error 1 - 2H(a) in the limit of a-+oo. However, this is not the optimal value. Therefore, 
by this approach the student cannot realize the best possible weight which satisfies Ropt = R*. 

We note that the above optimal learning rate g(a) = [F(R)R - G(R)]lj RE contains the parameter 
a unknown to the student. Thus this choice of g(a) is not perfectly consistent with the principles of 
supervised learning. We will propose an improvement on this point in section 4.6 using a parameter-free 
learning rate. For the moment, we may take the result of the present section as a theoretical estimate of 
the best possible optimization result. 

ASYIllptotic analysis of the learning curve 

Let us first investigate the realizable case .6. = 0 using the scaling R = 1- c. In this case, the asymptotic 
forms of c 1, Eg and g are obtained from the same analysis as in the previous section 

8 
c 

a 2 

c e _16;",2 ( 4.113) 

an 

4 
(4.114) Eg = ?fa 

1 
g(a) = 2..;2; - (4.115) 

a 
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e- l6 / a2 

= 2c~---
a 

( 4.116) 

where c is a constant depending on the initial condition. The decay rate to vanishing generalization error 
is improved from a- l / 3 for the unoptimized case [81] to a-l. This a-l-law is the same as in the off-line 
(or batch) learning [91, 95]. We also see that I approaches c as R reaches 1. 

We next investigate the unrealizable case ~#O. The asymptotic forms of E, I and €g are 

E = 27r H(a) 1 
(1-2~)2a 

ca-2l>/(l-2l» 

€ = V2 J27rH(a) _1_ + 2H(a) 
g 7r 1 - 2~ ..;a. 

and the optimal learning rate gopt is 

27rH(a) ~ 

J2H(a) + y'27raH(a) (1 - 2~) a 

27rH(a) a-2l>/(l-2l» 
c~====~--==~~-----------------

J2H(a) + y'27raH(a) (1 - 2~) a 
.j'i; a-2l>/(l-2l» 

c-I-_-2-~- -----a----

(4.117) 

(4.118) 

( 4.119) 

From the asymptotic form of I, we find that I diverges with a for a < ac1 = y'210g2 and goes to zero 
for a > acl as observed in the previous subsection. It is interesting that, for a exactly equal to acl, gopt 

vanishes as seen from equations (4.5), (4.6) and (4.107) and so does di/da and dR/da. The present type 
of optimization does not make sense in this case. 

For a > ac2 = 0.80, the generalization error converges to the optimal value 2H(a) as a-1/ 2 • This 
is the same exponent as that of the Hebbian learning as we saw in the previous section. For a < ac2, 

in order to get the optimal configuration of the student weight vector with R = R*, which gives the 
optimal generalization error, we must stop the on-line dynamics before the system reaches the state 
R = -1. Accordingly, the method discussed in this section is not useful for the purpose of improvement 
of generalization ability for a < ac2. 

4.4.2 Hebbian learning 

Trajectory in the R-I plane 

The Hebbian learning with learning rate g(a) is 

The corresponding differential equations are 

dl 

da 

dR 

da 

= 

= 

(4.120) 

(4.121) 

(4.122) 

Using the same technique as in the previous subsection, we find the optimal learning rate for the Hebbian 
learning g~Pt (a) as 

(4.123) 
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Figure 4.28: The trajectory in the R-I space for the Hebbian learning with the optimal learning rate. 

where EH(a) = 1, FH(a) = 2R(1 - 26.)/.j27i and GH(a) = 2(1 - 26.)/.j27i. Substituting g~pt(a) into 
equations (4.121) and (4.122), we obtain 

dR (FH R - GH)2 
= 

da REH 
(4.124) 

dl (FH R - GH)(FH R + GH)1 
da 2R2EH 

(4.125) 

The ratio gives 

dR (FHR - GH ) R 

dl (FHR + GH ) I 
1- R2 R 

= 1 + R2 Z· ( 4.126) 

We thus obtain the R-I trajectory as 
R 

(1 _ R2) = cl ( 4.127) 

where c is a constant determined by the initial condition. It is very interesting that this trajectory is 
independent of a. We plot this result in Figure 4.28. 

ASYIIlptotic analysis of the learning curve 

The asymptotic forms of various quantities for a > acl of the Hebbian learning are 

7r 1 
c = 4(1 - 26.)2 ~ 

= ca (4.128) 

and 

1 1 
(4.129) €g = - + 2H(a) 

.j27i(1 - 26.) via 
g(a) c. (4.130) 
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Accordingly, for a > acl, t.he asympt.ot.ic form of the generalizat.ion error is the same as for g = 1, the 
unoptimized case. However, for the parameter region a < acl, the generalization ability of the student 
det.eriorat.es by introducing t.he optimal learning rate if we select t.he initial condition satisfying R > O. To 
see this, we note from equation (4.124) that dR/da is approximated around R = 0 as G~/R. Therefore 
if we start t.he learning dynamics from R > 0, the overlap R goes to 1 and the generalization error 
approaches 2H(a) which is not acceptable at all because it exceeds 0.5. On the other hand, for a < acl, 
the generalization error approaches 1 - 2H(a), not the optimal value, as 

1 1 
fg = V21f(1 _ 2~) va + 1 - 2H(a). (4.131) 

Thus an over-training appears. We must notice that the prefactor of the generalization error changes 
from 1/v'6if in equation (4.44) to 1/V21f in equation (4.131) by introducing the optimal learning rate. 
Therefore the optimization by using the learning rate g(a) is not very useful for the Hebbian learning. 

4.4.3 AdaTron learning 

In the previous subsection, we saw that the on-line AdaTron learning fails to get the best possible value 
of the generalization error for the unrealizable case and its residual error fmin is larger than that of 
the conventional perceptron learning or Hebbian learning. We show that it is possible to overcome 
this difficulty using the time dependent learning rate g(a). In order to determine g using the above 
strategy, we maximize the right hand side of equation (4.47) with respect to g( a) and obtain gopt = 
(EAdR - GAd)/REAd. Using this optimal learning rate, equations (4.46) and (4.47) are rewritten as 
follows 

dl 
da 
dR 

da 

_ (EAd R - GAd)(EAd R + GAd) 1 
2R2EAd 

(EAdR - GAd)2 

2REAd 

(4.132) 

(4.133) 

For the realizable case, we obtain the asymptotic form of the generalization error from equations 
( 4.132) and (4.133) by the same relation R = 1 - c:, c:-+O as we used for the case of g = 1 as 

4 
fg =-. 

3a 
( 4.134) 

This is the same asymptotic behavior as that obtained by optimizing the initial value of 1 as we saw in 
subsection 4.2.3. 

Next we investigate the unrealizable case. The asymptotic forms of EAd and EAdR- GAd in the limit 
of a-+oo are obtained as 

and 
4ac:~ 

EAd R - GAd"" - --. 
V21f 

Then we get the asymptotic solution of equation (4.133) with respect to c:, R = 1 - c:, as 

(4.135) 

(4.136) 

27r H(a) + V21f a ~ 1 
c: = -. (4.137) 

4a2~ a 

As the asymptotic behavior of E(R) is obtained as E(R) = fg = 2H(a) + V'iE/7r [37], we find the 
generalization error in the limit of a-+oo as follows 

..f2 
fg = 2H(a) +-

7r 
27rH(a) + V21fa~ 1 

4a2~ fo' (4.138) 
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where 2H(a) is the best possible value of the generalization error for a > ac2. Therefore, our strategy 
t.o optimize the learning rate succeeds in training t.he student to obtain the optimal overlap R = 1 for 
a> ac2. 

For the perceptron learning, this t.ype of optimization failed to reach the theoretical lower bound 
of the generalization error for a exactly at a = acl = V210g2 in which case the generalization error is 
€g = 1/2, equivalent to a random guess bec~use for a = acl the optimal learning rate vanishes [37]. In 
contrast, for the AdaTron learning, the optimal learning rate has a non-zero value even at a = ac1. In 
this sense, the on-line AdaTron learning with optimal learning rate is superior to the perceptron learning. 

4.5 Optimized learning with output noise 

We next investigate the generalization ability of optimized learning under output noise. In this section, we 
restrict ourselves to the case of the percept ron and Hebbian learnings because the result of the AdaTron 
learning is almost same as the perceptron learning. 

4.5.1 Perceptron learning 

The realizable case with output noise was investigated by Barkai et al [81]. They assumed the form of 
the learning rate as g( a) '" TJa- z and optimized TJ and z to obtain the asymptotic form of the prediction 
error as 

(4.139) 

We here discuss the optimization of the realizable and unrealizable cases in the presence of output noise. 

Trajectory in the R-I plane 

U sing the same technique as in the previous section, we find the optimal learning rate as g( a) = (F R -
G)/ RE and the trajectory as 

(1- R)-Cl+A,\)/A,\ (1 + R)CI-A,\)/A,\ = cl (4.140) 

where A>. == (2), - 1)~, and c is a constant depending on the initial condition. In Figure 4.29 we plot 
this trajectory for a = 2.0 and the noise levels). = 0,0.10 and 0.20. We also show the corresponding 
generalization error in Figure 4.30. 

Asymptotic analysis of the learning curve 

For a = 00 the order parameter R monotonically increases, and hence we use the scaling relation R = I-c. 
We insert this definition into E, F etc in equation (4.58) to obtain 

FR- G (1 - 2).)/fc 

RE { ..fi€} (1 - c) ). + (1 - 2),)--;- . (4.141) 

Substituting these expressions into the differential equations (4.108) and (4.109) and integrating them, 
we obtain the asymptotic forms of c, I and the prediction error €p as 

c = 11'). 1 
(1 - 2).)2 a 

ca-4>./2Cl-2>.) ( 4.142) 

(4.143) 
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Figure 4.29: The trajectory of Rand 1 of the optimal perceptron learning with output noise is plotted 
for the cases of a = 2.0 and ,\ = 0,0.10 and 0.20. 
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Figure 4.30: The generalization error corresponding to the previous figure. 
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where the generalization error is obtained by the relation Ep = >. + (1 - 2>' )Eg. This agrees with the result 
of Barkai et al [81]. The optimal learning rate is given as 

(1 - 2>.) y'2/7r c -4,\/2(1-2,\) 
c a 

(1- c){>. + (1- 2>.)J2E/7r} 
y'27f a-4 ,\/2(1-2>.) 

c-------
1 - 2>' a 

(4.144) 

From this and equation (4.119), we see that the output nOIse level>' plays the same role as ~ = e- a2
/
2 

plays in the noiseless case. The asymptotic form of 1 indicates that 1 goes to 0 for any initial condition. 
For the unrealizable case, using the same scaling relation as in the realizable case R = 1 - c, we can 

derive the asymptotic forms of E, 1 and the prediction error Ep as 

and 

7r(2H(a) + >. - 4H(a)>.) 1 
(1- 2>.)2(1 - 2~)2 fo. 

ca -[1-2(1-2~ )(1-2,\)] /2( 1-2.\) (1-2~) 

= 2H( ) + >. _ 4H(a)>. + y'2(2H(a) + >. - 4H(a».)_1 
Ep a J7[(1 _ 2~) fo.. 

(4.145) 

(4.146) 

The generalization error Eg is obtained by the relation Ep = >. + (1 - 2>')Eg. The optimal learning rate is 

.j'ii 1 

(1 - 2>.)(1 - 2~) a 
y'27f a-[1-2(1-2'\)(1-2~)]/2(1-2'\)(1-2~) 

c (1 _ 2>.)(1 - 2~) a 
(4.147) 

The functional dependence of Ep and gopt on a is similar to the realizable case in equations (4.143) and 
(4.144). 

4.5.2 Hebbian learning 

For the Hebbian learning algorithm, the effect of noise appears in the optimized differential equations in 
the form (1- 2>')(1- 2~). Hence all the relevant quantities can be derived simply by replacing (1- 2~) 
with (1 - 2~)(1 - 2>.). Consequently, we easily see that the R-Z trajectory, the learning rate and the 
generalization error all have the same form as those in the noiseless case. As we showed in the noiseless 
case, the present type of optimization for the Hebbian learning does not work very effectively. 

4.6 Optimal learning without unknown parameters 

As we mentioned in section 4.5, the generalization error obtained there is the theoretical (not practical) 
lower bound because the optimal learning rate gopt contains a parameter a unknown to the student. 
In this section we propose a method to avoid this difficulty for the perceptron and AdaTron learning 
algorithms. 

4.6.1 Perceptron learning 

Noiseless case 

For the noiseless case we choose the learning rate g as 

k 
g =-1 

a 
(4.148) 
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which is nothing but t.he asymptotic form (4.115) of the previous optimized learning rate in section 
4.5. Substituting this int.o equation (4.109) and using the scaling relation R = 1 - e, we obtain for the 
realizable case 

( 4.149) 

We assume e as e = Clan and determine C and n so that these satisfy equation (4.149). We then find 
n = 2 and 

k2 

C= 47l'(v'2'1T-k)2' 
(4.150) 

The constant k is determined to minimize C. The result is k = 2v'2'1T for which C = 8. Consequently, 
we get e = 81a2 and 

4 
109 = - (4.151) 

7l'a 

which agrees with the result of Barkai et al [81J. 
We next investigate the asymptotic generalization error for the unrealizable case. We assume g(a) = 

kIla as before and substitute it to equation (4.109) to find 

de k2 H(a) {2 ke 
- da ':::!. - a 2 + V ;- (1 - 2~) ~. ( 4.152) 

The general solution is 

k2 H (a) 1 (k ) bk 
e= +A -

bk -1 a a 
( 4.153) 

where b= J2/7l'(1- 2~). The first term dominates asymptotically if bk > 1. In this case, we have 

2k2 H(a) 1 
bk - 1 7l'.ja' 109 = 2H(a) + 

The second term on the right-hand side is minimized by choosing 

v'2'1T 
k = 1- 2~ 

( 4.154) 

(4.155) 

which satisfies bk > 1 as required. Equation (4.154) makes sense for ~ > 2Vlog2 if k is chosen as above. 
When bk < 1, the asymptotic form of the generalization error is 

10 = 2H(a) + V2A v'2'1T 
( ) 

bk/2 

g 7l' a 
( 4.156) 

This formula is valid for b > 0 or a < acl. Similar crossover between two types of asymptotic forms was 
reported in the problem of one-dimensional decision boundary [18J 

Noisy case 

Next we investigate the noisy case. If there IS noise, unknown parameters for the student are not only 
the width a of reversed wedge but also the noise level >.. We therefore first assume the learning rate 
9 = kila. Using (4.148), the differential equation of e = 1- R is 

de k2 2 ke 
- - ':::!. - - (2H(a) + >. - 4H(a)>.) + -(1- 2~)(1- 2>.)-. 

da 2a2 v'2'1T a 
(4.157) 

The general solution is 

e = (k2/2)(2H(a) + >. - 4H(a)>.) ~ + A (~) #<1-2ll.)(1-2A)k 

[J2/7l'(1- 2~)(1- 2>.)k - 1] a a 
(4.158) 
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where A is a constant. If we choose k so that it satisfies J2/,7r(I- 2t:.)(1- V.)k > 1, the prediction error 
decays to the minimum value 2H(a) + >. - 4H(a)>. as 

(k 2/2) (2H(a) + >. - 4H(a)>.) 1 

[J2/7r(1 - 2t:.)(1 - 2>.)k - 1] VC:. (4.159) 

If we set t:. = 0, this agrees with the result of Barkai et al [81] for the realizable case. On the other hand, 
if J2/7r(I- 2t:.)(1 - 2>.)k < 1, 

_ J2A (k)(1-2t:.)(1-2A)k1v'h 
Ep - Emin + -- -

7r a 
( 4.160) 

which is slower than a-1/2 . 

When the student knows the noise level>' but does not know t:., we can choose k = J2if/(I- 2>.). 
Then, the convergence of equation (4.159) is achieved for a > 2.Jlog2. The convergence of equation 
(4.160) is observed for a < 2.Jlog2. When the student knows neither>' nor t:., the convergence depends 
upon the value of 2(1- 2>.)(1- 2t:.)k. 

4.6.2 AdaTron learning 

In the previous section, we saw that the AdaTron learning is able to obtain the theoretical lower bound 
of the generalization error for a > ac2 by introducing the optimal learning rate gopt. In this subsection, 
we construct a learning algorithm without the unknown parameter a using the asymptotic form of the 
optimal learning rate in the AdaTron learning. 

Realizable case 

For the realizable case, the optimal learning rate is estimated in the limit of a-+oo as 

_ EAd R - GAd I ,...., ~l 
gopt - REAd - 2 . (4.161) 

This asymptotic form of the optimal learning rate depends on a only through the length I of student's 
weight vector. We therefore adopt g(a) proportional to 1, g(a) = TJ I, also in the case of the parameter­
free optimization and adjust the parameter TJ so that the student obtains the best generalization ability. 
Substituting this expression into the differential equation (4.47) for R and using R = 1 - [ with [-+0, we 
get 

(4.162) 

where we have set 

F(TJ)== 2V2TJ _ _ 4_TJ2. 
7r 3V27r 

( 4.163) 

This leads to [ = (F(TJ)/2)-2 a -2. Then, the generalization error is obtained from Eg = ../'i€/7r as 

2V2 1 
E ----

g - 7rF(TJ) a' 
( 4.164) 

In order to minimize Eg , we maximize F(TJ) with respect to TJ. The optimal choice of TJ in this sense is 
TJopt = 3/2 and we find in such a case 

4 
Eg = 3a' 

This is the same asymptotic form as the previous a-dependent result (4.134). 

(4.165) 
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Unrealizable case 

Next we consider the unrealizable case. The asymptotic form of the learning rate we derived in the 
previous section for the unrealizable case is 

( 4.166) 

where we used equation (4.137) to obt.ain the right-most equality and we set. the a-dependent. prefactor 
of I as 71. Using this learning rate (4.J6) and the asymptotic forms of EAd(R = 1 - E,E--+O) and 
G Ad(R = 1 - E, E--+O) as EAd '" 2H(a) + 2/,rra6. and GAd'" 4a6.E/...j'i; + EAd in the limit of a--+oo, we 
obtain the differential equation with respect to E from equation (4.47) as follows 

dE 1 [ ~ 1 71
2 

4a E - = - 2H(a) + -a6. - - 71-6.-. 
da 2 -rr a 2 ...j'i; a 

( 4.167) 

This differential equation can be solved analytically as 

E = 71
2 

(2H(a) + j'f:;;a6.) 1 + A (!l.)4af),..,,/';;;;;, 

2 (4a6.'f//..;z:;r - 1) a a 
( 4.168) 

where A is a constant determined by the initial condition. Therefore, if we choose 71 to satisfy 4a6.'f/ /..;z:;r-
1 > 0, the generalization error converges to the optimal value 2H(a) as 

Eg 
..fii 

2H(a)+-
-rr 

71 2H(a) +-
-rr 

2H (a) + j'f:;;a6. 1 

4a6.'f//vIz; - 1 fo.. 
(4.169) 

In order to obtain the best generalization ability, we minimize the prefactor of 1/ fo. in the second term 
of equation (4.169) and obtain 

( 4.170) 

For this 71, the condition 4a 6. 71 / viz; - 1 > 0 is satisfied. In general, if we take 71 independent of a, the 
condition 4a6.'f/ /..;z:;r -1 > 0 is not always satisfied. The quantity b == 4a6. / viz; takes the maximum value 
4/ ,j2-rre at a = 1. Therefore, whatever value of a we choose, we cannot obtain the a-1/ 2 convergence if 
the product of this maximum value 4/,j2-rre and 71 is not larger than unity. This means that 71 should 
satisfy 71 > ,j27re/4 -::::.1.033 for which the first term of equation (4.168) dominate asymptotically, yielding 
equation (4.169), for a non-vanishing range of a. In contrast, if we choose 71 to satisfy b 71 - 1 < 0, the 
generalization error is dominated by the second term of equation (4.168) and behaves as 

J2A ('f/)2af),..,,/';;;;; 
Eg=2H(a)+-- - . 

-rr a 
( 4.171) 

In this case, the generalization error converges less quickly than (4.169). For example, if we choose 71 = 1, 
we find that the condition b 71 > 1 cannot be satisfied by any a and the generalization error converges as 
in equation (4.171). If we set 71 = 2 (> ,j2-rre/4 = 1.033) as another example, the asymptotic form of the 
generalization error is either equation (4.169) or equation (4.171) depending on the value of a. 

4.7 Hebbian learning with queries 

We have so far assumed that the student is trained using examples drawn from a uniform distribution 
on the N-dimensional sphere SN. It is known for the realizable case [96] that selecting training examples 
out of a limited set sometimes improves the performance of learning. We therefore investigate in the 
present section how the method of Kinzel and Rujin [96] works for an unrealizable rule. 
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J 

u=o 

Figure 4.31: Queries lie on the borderline u = 0. 

4.7.1 Learning with queries under fixed learning rate 

The learning dynamics we choose here is nothing but the Hebbian algorithm 

( 4.172) 

In section 4.3, the student was trained by inputs x uniform on SN. In the present section we follow 
reference [96] and use selected inputs which lie on the borderline, J·x = ° or u = 0, at every dynamical 
step (see Figure 4.31). The idea behind this choice is that the student is not confident for inputs just 
on the decision boundary and thus teacher signals for such examples should be more useful than generic 
inputs. 

We use the following conditional distribution, instead of PR(U, v) in equation (2.5), in order to get 
the differential equations 

Using this distribution, we obtain the next differential equations with respect to 1 and R. 

d1 2 

-=1 
da 

dR = ~ [ fi v' 1 - R2 {1 _ 2 exp (_ a
2 

) } - Rj. 
da 1 V -; 2 (1 - R2) 21 

( 4.173) 

( 4.174) 

(4.175) 

We plotted the generalization error for several values of the width a of reversed wedge, in Figures 4.32 
(a = (0), 4.33 (a = 2.0) and 4.34 (a = 1.0), by numerical integration of the above differential equations. 
From these figures we see that the generalization ability of student is improved both for realizable and 
unrealizable cases. In particular for a = 1.0, the problem of over-training observed in subsection 4.2 is 
avoided. In order to investigate the asymptotic form of the generalization error, we solve the differential 
equations in the limit of a--+oo. Equation (4.174) can be solved easily as 

1 =.;n. 

For the realizable case a--+oo, using R = 1 - e and e--+O, we get 

de 2 1 
-.;n----­

da -..ji 2.;n· 

(4.176) 

( 4.177) 
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Figure 4.32: Generalization error of the Hebbian learning with queries for a = 00. 
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Figure 4.33: Generalization error of the Hebbian learning with queries for a = 2.0. 
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Figure 4.34: Generalization error of the Hebbian learning with queries for a = 1.0. Over-training disap­
peared and the generalization error converges to its optimal value. 

This can be solved as E = 71"/( 160). The generalization error is 

1 1 
E ----

g - 2J21r va· (4.178) 

The numerical prefactor has been reduced by a half compared to the result of the conventional Hebbian 
learning (4.42). 

For finite a, equation (4.175) has fixed points at Ro = ±1 and 

2log2 - a2 

2log2 
(4.179) 

The latter fixed point exists only for a < acl = v'2log 2. Thus, if a > acl, IRI eventually approaches 1, 
and the exponential term in equation (4.175) can be neglected. This implies that the asymptotic analysis 
for the realizable case applies without modification. The resulting asymptotic form of the generalization 
error is 

1 1 
Eg = rr>= r;: + 2H(a). 

2y 271" yO 
( 4.180) 

If a < acl, the system is attracted to the fixed point Ri -) according to the expansion of the right-hand 
side of equation (4.175) around R = 0, 

dR Iff - ~ - -(1 - 2L\) 
do I 71" 

(4.181) 

which is negative if a < acl. It is remarkable that Ri-) coincides with R* which gives the global minimum 
of E(R) for a < ac2 = 0.80. Therefore, for a < ac2, the present Hebbian learning with queries achieves the 

best possible generalization error. In the range ac2 < a < acl, R = R~-) = R* is not the global minimum 
of E(R) but is only a local minimum. However, as seen in Figure 4.34 , over-training has disappeared in 
this region by introducing queries. 

The asymptotic behavior for a < acl is found to be 

161og2y'21og2 - a2 
[ 1] 

Eg = Eopt - a2 1 - Q(2, "2log2) 
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[ 
810g2 ] 

xexp - ,fiia V210g2 - a2 .jQ. (4.182) 

where Q( x, y) is the incomplete gamma function and the asymptotic value is optimal for a < acl: 

Eopt = E(R.) 

21= Dv H ( J 4lo
g! -2a

2 

v) + 21
a 

Dv H ( 

4.7.2 Optimized Hebbian learning with queries 

J 4log2 - 2a2 
) v . 

a 
( 4.183) 

We next introduce the parameter 9 into the Hebbian learning with queries and optimize 9 so that R goes 
to 1 as quickly as possible. As discussed in section 4.4, this strategy works only for a > ac2 since R = 1 
is not the optimal value if a < ac2. The on-line Hebbian learning is now written as 

( 4.184) 

Using the distribution PR(vlu = 0), we obtain differential equations 

( 4.185) 

I ~: = 9 I! J 1 - R2 { 1 - 2 exp ( 2 (1 ~ R2)) } - g2 :z . (4.186) 

The right-hand side is maximized with respect to 9 by 

9 = gopt = ~ I! J 1 - R2 { 1 - 2 exp ( - 1 ~2R2 ) } . (4.187) 

If a = 00, equation (4.186) is then written as 

do: R7r 
(4.188) 

with the solution 

R = V1 - cexp(- 2:) (4.189) 

where c is a constant. The generalization error decays to zero as 

...;c 0: 
Eg = -exp( --) 

7r 7r 
(4.190) 

where c is determined by the initial condition. This exponential decrease for the realizable case is in 
agreement with reference [97) where the optimization of the type of equation (4.104) was used together 
with queries. The asymptotic forms of the order parameter I and optimal learning rate gopt are 

( 4.191) 

(4.192) 

where c' is determined by the initial condition. 
Next we investigate the case of finite a. Using the same asymptotic analysis as in the realizable case, 

we obtain the asymptotic form of generalization error Eg as 

...;c 0: 
Eg = 2H(a) + - exp (--). 

7r 7r 
(4.193) 
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The limiting value 2H(a) is the theoretical lower bound for a > ac2 = 0.80. We therefore have found a 
method of optimization to achieve the best possible generalization error with a very fast, exponential, 
asymptotic approach for a > ac2. This convergence is faster than the result by Kim and Sompolinsky 
[84, 85, 86] who used the Gibbs on-line algorithm. 

The present method of optimization does not work appropriately for a < ac 2 because R = 1, to which 
the present method is designed to force the system, is not the best value of R in this range of a. 

It is worth investigating whether the exponent of decay changes or not by using a parameter-free 
optimal learning rate as in section 4.6. If a > acl, there exists only one fixed point R = 1. Therefore, 
the a-dependent term exp( _a2 /(1- R2)) in equation (4.187) does not affect the asymptotic analysis. We 
may, therefore, reasonably conclude that the asymptotic form of the generalization error does not change 
by the optimal learning rate without the unknown parameter a. 

4.8 Avoiding over-training by a weight-decay term 

We showed in section 4.3 that the over-training appears for the unrealizable case a < acl by the Hebbian 
learning. If a < acl, the flow of R goes to -1 for any initial condition passing through the local minimum 
of E(R) at R = R.. Consequently, the generalization ability of the student decreases as he learns 
excessively. In order to avoid this difficulty, we must stop the dynamics on the way to the state R = -1. 

The teacher output is frequently reversed for small a. Thus, as we mentioned in section 4.3, an example 
presented by the teacher sometime ago may invalidate the information of the most recent example which 
is most important for the student to generalize. To overcome this difficulty, we may use the on-line 
dynamics with a weight-decay term or a forgetting term. Recently, Biehl and Schwarze [88] investigated 
the generalization ability of learning of a time-dependent rule by the Hebbian algorithm with a weight­
decay term - AJ / N. They optimized A so that the fixed point Roo = Ro has the maximum value. In their 
system, as the student and his teacher have the same structure, the perfect generalization is achieved if 
R goes to 1. Using this optimization, they succeeded to overcome the over-training and obtained a better 
generalization ability. Our situation is slightly different from their case. We must train the student so 
that he reaches R = R. instead of R = 1. We nevertheless try their method expecting that our difficulties 
mentioned above may be avoided. 

The on-line dynamics by the Hebbian rule is modified with the weight-decay term as 

The differential equations for R and I are then 

dl 

da 

dR 
da 

1 [1 2R 2] - - + -(1- 2.6.)1- Al 
1 2 ~ 

1 [R 2 2 ] - --+-(1-2.6.)(I-R)1. 
12 2 ~ 

The fixed point (Ro, 10 ) of these equations is 

10 

2(1 - 2.6.) 

V7l'A + 4(1- 2.6.)2 

V7l'A + 4(1 - 2.6.)2 

~A 

( 4.194) 

(4.195) 

(4.196) 

(4.197) 

( 4.198) 

In order to get the optimal value, we choose Ro so that it agrees with R. which gives the global minimum 
of E(R) for a < acl' From this condition, we obtain the optimal Aopt as 

and 

4a2 (1 - 2.6.)2 
Aopt = 7l'(2log2 _ a2) 

V2log2-a2 ~ 
10 = 2( A) Y 7l'10g2. 2a 1- 2u 

( 4.199) 

(4.200) 



4.9. SUMMARY 

Eg 

0.5..,----------------, 
A=O-

A=A Opl ••••• 

0.4 

0.3 -

0.2+-----,,-----,---,-----j 
o 10 20 

a 
30 40 

105 

Figure 4.35: Generalization error of the Hebbian learning with a weight-decay term for a = 0.5. Over­
training disappeared and generalization error converges to its optimal value. 

Using this A opt , we solve the differential equations numerically and plot the result in Figure 4.35 for 
a = 0.5« acI}. We see that the over-training disappears and the generalization error converges to the 
optimal value. 

We next investigate how fast this convergence is achieved. For this purpose, we linearize the differential 
equations around the fixed point (Ro, 10): 

du =Au 
do. 

where u = (l,E) and matrix elements of A are given as 

All 

Al2 = 

2( A)2 [1l'(210g2-a
2

) +4] -2a 1- 2L.l 
1l'(21og2 - a2 ) 

1 
y'27r(1- 2b.) 

8a6 (1- 2b.)3 

21l'y'27rlog2 (21og2 - a2 ) 

_ [~+ 2log2 - a
2

] 

2 a2 

where All, A 12 , A 22»A21 . Therefore the eigenvalues are). = All, A 22 . Consequently, we obtain 

EO {I + 0 [exp( -.2a
2
(1- 2b.? (1l'~~~~~g; :2~2~ 4) a.)] } 

10 {I + 0 [exP(-2a
2
(1- 2b.)2 (1l'~~~~~g; :2l2~ 4) a.)]}. 

(4.201) 

( 4.202) 

(4.203) 

( 4.204) 

(4.205) 

(4.206) 

(4.207) 

We warn here that Aopt in equation (4.199) depends on a which is unknown to the student. Therefore, 
the result obtained in this section gives the theoretical upper bound of the generalization ability. 

4.9 Summary 

We have analyzed the problem of on-line learning by the perceptron, Hebbian and Ada'fron algorithms. 
The teacher transfer function is non-monotonic and its non-monotonicity is controlled by the width a of 
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the reversed wedge. If a = 00, the rule is realizable, but is unrealizable when a is finite. We saw that 
for the realizable case, the asymptotic decay of the generalization error is proportional t.o a- l / 3 for the 
perceptron learning, to a- l / 2 for the Hebbian learning and to a-l for the AdaTron learning. For the 
AdaTron learning, the generalization error decay to zero as Eg = 3/(2a) if we fix t.he length of the student 
wight vector as 1 = J I Vii = 1/2 as Biehl and Riegler reported [98J. However, if we allow t.he t.ime 
development of the length of the st.udent weight vector, t.he asymptotic behavior of the generalization 
error shows dependence on the initial value of l. When the student starts the training process from the 
optimal length of the weight vector l, we can obtain the generalization error Eg = 4/(3a) which is a little 
faster than 3/(2a). As the student is able to know the length of its own weight vector in principle, we 
can get. the better generalization ability Eg = 4/(3a) by a heuristic search of the optimal value of 1. 

For the unrealizable case, the generalization error decays exponentially to a finite value E(Ro) with 
Ro = 1 - 2t!. in the case of the perceptron learning. For the AdaTron learning, the generalization error 
also exponentially converges to a non-optimal residual value which is larger than that of the perceptron 
learning. For the Hebbian learning, the generalization error decays to 2H a), the best possible value, 
as 1/J27r(1- 2t!.)2a for a > ac1 and t.o 1- 2H(a) with II 67r(1- 2t!.)2a for a < ac1. In this latter 
parameter region a < acl, we observed the phenomenon of over-training. 

We also investigated the learning under output noise for the case of the perceptron and Hebbian 
learning algorithms. For the realizable case of the perceptron algorithm, the order parameters Rand 
I are attracted toward a fixed point (Ro,lo) asymptotically with an exponential law. As a result, the 
generalization error decays to a finite value exponentially. On the other hand, for t.he unrealizable case of 
the perceptron learning, the generalization error decays exponentially to a finite value E( (1- 2t!. )(1- 2>.)). 
For the Hebbian learning, t.he generalization error decays to 2H(a) in proportion to lifo for a > acl 
and t.o 1 - 2H (a) with also proportionally to 1 I fo for a < acl. 

For both noisy and noiseless cases of the perceptron and Hebbian learning and for noiseless case of 
the AdaTron learnings, we introduced the learning rate g(a) in the on-line dynamics and optimized it to 
maximize dRlda. By this treatment we obtained a closed form trajectory of Rand 1. The generalization 
ability of the student has been shown to increase for a > ac2 = 0.80 in the case of the perceptron 
and AdaTron learning algorithms. For the unrealizable case, the generalization error decays to the best 
possible value 2H(a) in proportion to II fo and the corresponding prediction error of perceptron learning 
decays to 2H(a) + >. - 4H(a)>. by a similar law. For the Hebbian learning, both in noisy and noiseless 
cases, the asymptotic generalization ability did not change by this optimization procedure. 

Unfortunately, in the parameter range a < ac2, we found it impossible to obtain an optimal per­
formance for the perceptron and AdaTron learnings within our procedure of optimization. The reason 
is that we improved the dynamics of on-line learning so that the overlap between the student and the 
teacher approaches 1 or -1 as rapidly as possible by introducing an optimal learning rate gopt. Therefore, 
using this procedure, the student weight vector cannot converge to the optimal solution J* which satisfies 
R = R* for a < ac2. This is the same difficulty as in the over-training of the Hebbian learning. In order 
to avoid this problem, we must stop the dynamics on the way to R = -1. As an idea to overcome this 
difficulty, we investigated the on-line dynamics with a weight-decay term for the Hebbian learning. Using 
this method, we could eliminate the over-training, and the generalization error converges to the optimal 
value exponentially. However, our procedure depends on information about the unknown parameter a. 

We then introduced a new learning rate independent of the unknown parameter a. We assumed 
g(a) = kiia and optimized k so that the generalization error decays to the minimum value as quickly as 
possible. As a result, for the noiseless unrealizable case of a> acl the prefactor was somewhat improved 
although the exponent of decay did not change. Using the same technique, we investigated the noisy case 
and found that if the student does not have the information about the noise level >., the prefactor of the 
generalization error becomes larger than that of the student who knows the teacher noise level. 

We also investigated the Hebbian learning with queries. If the student is trained by the Hebbian 
algorithm using inputs on the decision boundary, his generalization ability is improved except in the 
range ac2 < a < acl. This is a highly non-trivial result because this choice of query works well for the 
unrealizable case where the student does not know the structure of the teacher. We next introduced the 
optimal learning rate in the on-line Hebbian learning with queries and obtained very fast convergence of 
generalization error. For a > acb the generalization error converges to its optimal value exponentially. 

We have observed exponential decays to limiting values in various situations of unrealizable rules. This 
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fast convergence may originate in the large size of the asymptotic space; if the liming value of R is unity, 
only a single point in the J-space, J = B, is the correct destination of learning dynamics, a very difficult 
task. If, on the other hand, R approaches Ro « 1), there are a continuous number of allowed student 
vectors, and to find one of these should be a relatively easy process, leading to exponential convergence. 

re 
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Chapter 5 

Learning Processes in 
Non-Monotonic Perceptrons 

In this chapter we study the on-line learning process and the generalization ability of this non-monotonic 
perceptron, namely, a student as a non-monotonic perceptron learns from a teacher as a non-monotonic 
perceptron, by various learning algorithms. 

This chapter is organized as follows. In the next section we introduce our model system and derive 
the dynamical equations with respect to two order parameters for a general learning algorithm. One is 
the overlap between the teacher and student weight vectors and the other is the length of the student 
weight vector. In section 1, we introduce our model system and explain the generic properties of the 
generalization error. In section 2, we investigate the dynamics of on-line learning in the non-monotonic 
perceptron for the conventional perceptron learning and Hebbian leaning algorithms. We also investigate 
the asymptotic form of the differential equations in both small and large a limits and get the asymptotic 
behavior of the generalization error. In section 3, we investigate the AdaTron learning algorithm and 
modify the conventional AdaTron algorithm. In this modification procedure, we improve the weight 
function of the AdaTron learning so as to adopt it to the situation according to the range of a. In section 
4, we optimize the learning rate and the general weight function appearing in the on-line dynamics. As 
the weight function contains the variables unknown for the student, we average these variables over the 
distribution function, which contains unknown variables for the student, using the Bayes formula. Section 
5 contains concluding remarks. 

5.1 The model system and dynamical equations 

We investigate the generalization ability of the non-monotonic perceptrons for various learning algo­
rithms. The student and teacher perceptron are characterized by their weight vectors, namely J E ~N 
and BE ~N with !B! = 1, respectively. For a binary input signal :cE {-I, +l}N, the output is calculated 
by the non-monotonic transfer function as follows: 

Ta(v) = sign [v(a - v)(a + v)) (5.1) 

for the teacher and 

Sa(u) = sign [u(a - u)(a + u)) (5.2) 

for the student, where we define the local fields of the teacher and student as v:::v'N(B.:c)/!B! and 
u::: v'N(J.:c )/!J!, respectively. The on-line learning dynamics is defined by the following general rule for 
the change of the student vector under presentation of the mth example; 

(5.3) 

109 
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Well-known examples are the perceptron learning, f = -Sa(U) 0( -Ta(v)Sa(u)), the Hebbian learning, 
f = Ta(v), and the Ada'I'ron learning, f = -u 0( -Ta(v)Sa(u)). 

We rewrite the update rule, equation (5.3), of J as a set of differential equations introducing the dy­
namical order parameter describing the overlap between the teacher and student weight vectors Rm == (B.Jm)/IJl 
and another order parameter describing the norm of the student weight vector zm == IJm I/,;N. By taking 
the overlap of both sides of equation (5.3) with B and by squaring both sides of the same equation, we 
obtain the dynamical equations in the limit of large m and N keeping a == miN finite as 

dl 1 2 
da = 2Z4:.f (Ta(v),u) + 2NTa(v),u)uI» (5.4) 

and 

dR 1 R 
da = 124:. - "2 f2(Ta(v), u) - (Ru - v)f(Ta(v), u)l». (5.5) 

Here 4:. ... » denotes the average over the randomness of inputs 

4:. ... »== j jdUdV(",)PR(u,v) (5.6) 

with 
1 [ (u2 + v2 - 2RUV)] 

PR(u,v) == Vf=R2 exp - ( R2) . 27r 1 - R2 2 1-
(5.7) 

As we are interested in the typical behavior under our training algorithm, we have averaged both sides 
of equations (5.4) and (5.5) over all possible instances of examples. The Gaussian distribution (5.7) has 
been derived from the central limit theorem. 

The generalization error, which is the probability of disagreement between the teacher and the trained 
student, is represented as f. g = 4:.0 ( -Ta (v )Sa( u) )>>. After simple calculations, we obtain the general­
ization error as 

100 ( a + Rv ) 100 

(( a Rv) ) E(R)==f.g = 2 Dv H Vf=R2 + 2 Dv H -~ 
a 1- R2 a 1- R2 

+2 rDvH(~)-21°ODvH(~) J 0 1 - R2 a 1 - R2 

_ 2 r Dv H ( a + Rv ) + 2 r Dv H ( a - Rv ) 
Jo "';1 - R2 Jo "';1 - R2 

(5.8) 

where we have set H(x) = J.,oo Dt with Dt==dtexp(-t2/2)1.j'ii. 
We would like to emphasize that the generalization error obtained above (5.8) is independent of the 

specific learning algorithm. In Figure 5.1, we plot E(R) = f.g for several values of a. This figure tells us 
that the student can acquire a perfect generalization ability if he is trained so that R converges to 1 for 
all values of a. We have confirmed also analytically that E(R) is a monotonically decreasing function of 
R for any value of a. 

5.2 Hebbian and Perceptron learning algorithms 

5.2.1 Hebbian learning 

We first investigate the performance of the on-line Hebbian learning f = Ta(v). We get the differential 
equations for I and R as follows 

dl 
da 
dR 
da 

= 

= 

[
1 2R ] - + -(1- 2~)1 II 
2 .j'ii 

(5.9) 

[
R2( 2] 2 --- 1-2~)(1-R)1 II. 
2 .j'ii 

(5.10) 
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Figure 5.1: Generalization error as a function of the overlap R for the several value of a. The student 
should be trained so that the overlap goes to 1. 
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To determine whether or not R increases with a according to a, we approximate the differential equation 
for R around R = 0 as 

dR 2 1 
- = -(1- 260)-. 
da V2if [2 

(5.1l) 

Therefore we use R = 1 - E for a > ac == .J210g2 and R = E - 1 for a < ac . When a> ac , we obtain 

1 1 + 260 1 
E - -- --

9 - V2if 1 - 260 fo (5.12) 

and 

1= /f(1 -26o)a. (5.13) 

On the other hand, for a < ac we obtain 

1 1 + 260 1 
Eg = 1+ -- --V2if 1 - 260 fo (5.14) 

and 

[ = -/f(1- 26o)a. (5.15) 

We see that the Hebbian learning algorithms lead to the state R = -1 for a < ac . 

5.2.2 Percept ron learning 

We next investigate the on-line perceptron learning f = -Sa(u)0(-Ta(v)Sa(u)) by solving the next 
differential equations numerically; 

dZ 
da 
dR 
da 

[~E(R) - F(R) ZlIZ 

= [-~E(R)R + (F(R)R - G(R))ZJ/[2 

(5.16) 

(5.17) 

where F(R) = «0( -Ta(v)Sa(u))Sa(u)u~ and G(R) = «0( -Ta(v)Sa(u))Sa(u)v~. Using the distri­
bution (5.7) we can rewrite these functions as 

F(R) 

G(R) 

(1- R) (1 _ 260) 
V2if 

= -F(R) 

(5.18) 

(5.19) 

where 60 == exp( _a2 /2). In Figure 5.2 we plot the change of Rand 1 as learning proceeds under various 
initial conditions for the case of a = 00. We see that the student can reach the perfect generalization 
state R = 1 for any initial condition. The R-l flow in the opposite limit a = 0 is shown in Figure 5.3. 
Apparently, for this case the student reaches the state with the weight vector opposite to the teacher, 
R = -1, after an infinite number of patterns are presented. From equations (5.1) and (5.2), we should 
notice that the case of a = 0 is essentially different from the case of a simple perceptron. 

Since the two limiting cases, a = 00 and a = 0, follow different types of behavior, it is necessary 
to check what happens in the intermediate region. For this purpose, we first investigate the asymptotic 
behavior of the solution of equations (5.16) and (5.17) near R = ±1 for large a. Using the notation 
R = 1 - E, E-l-O, the asymptotic forms of E(R), F(R) and G(R) are found to be 

E(R) ~ .j2c (1 + 260) 
7r 

F(R) ~ ~(1- 260) 

G(R) ~ - !-::(1 - 260). 
v27r 

(5.20) 

(5.21 ) 

(5.22) 
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Figure 5.2: Trajectories of the R-l flows for a = 00. All R-l flows converges to the state R = 1 after 
infinite number of examples are presented. 

0.8 

0.6 

0.4 

0.2 

o 

-0.2 

-0.4 

-0.6 

-0.8 

R 

'-~""" ........................ . 
, I \ ..... 
\ \. 

-~ ~. .. ", ... 
#~"'# '''~ • .. "" ............ ...... 

...... .. .... 
..... --._#_.-. .::::..~:.-:.::::::=::.~::::.:~:~. 

-1+-------.-------r------,------~ 
o 4 8 12 16 

I 

Figure 5.3: Trajectories for the R-l flow for a = O. All R-l flows converges to the state R = -1. Therefore, 
the corresponding generalization error does not converges to the ideal value of zero for this case. 
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Substituting these expressions into the differential equations (5.16) and (5.17), we obtain 

and 

[= [ (1 + 2ll) ] 2/3 a-2/3 

3/2(1 - 2ll)2 

1 = _1_ (1 + 2ll) [3/2(1 - 2ll )2]1/3 a 1 / 3 • 

2-.fo 1 - 2ll (1 + 2ll) 

Therefore, the generalization error is obtained from equation (5.20) as 

E = (1+2ll)/2 [ (1+2ll) ]1/3 a-1 / 3 . 

9 7r 3/2(1-2ll)2 

(5.23) 

(5.24) 

(5.25 ) 

The asymptotic form of l, equation (5.24), shows that II should satisfy 2ll < 1 or a > a c . The 
assumption of R = 1 - [ with [-+0 thus fails if a < ac . This fact can be verified from Eq. (5.17) 
expanded around R = 0 as 

dR 2 1 
- ~-(1- 2ll)-. 
da.j2; P 

(5.26) 

For a < ac , R decreases with a. Therefore, we use the relation R = c - 1, [-+0, instead of R = 1 - c for 
a < ac . We then find the asymptotic form of the generalization error as 

and 1 goes to infinity as 

E _1+[1+2ll]_1_ 
9 - 1 - 2ll . ./27ra 

2 
1 = --(1- 2ll)a. 

.j2; 

(5.27) 

(5.28) 

These two results, equations (5.25) and (5.27), confirm the difference in the asymptotic behaviors between 
the two cases of a = 0 and a = 00. 

We have found that the Hebbian and the conventional perceptron learning algorithms lead to the 
state R = -1 for a < ac = ./2log2. This anti-learning effect may be understood as follows. If the student 
perceptron has learned only one example by the Hebb rule, 

Then the output of the student for the same example is 

Sa=O(u) -sign(u) 

-sign (J.:c) 

= -Ta=o(v). 

(5.29) 

(5.30) 

This relation indicates the anti-learning effect for the a = 0 case. Similar analysis holds for the perceptron 
learning. 

5.2.3 Generalized percept ron learning 

In this section, we introduce a multiplicative factor lui" in front of the perceptron learning function, 
f = -lul"0( -Ta(v)Sa(u))Sa(u), and investigate how the generalization ability depends on the parameter 
,. In particular, we are interested in whether or not an optimal value of, exists. The learning dynamics 
is therefore 

(5.31 ) 
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The case of , = 0 corresponds to the conventional perceptron learning algorithm. On the other hand, 
the case of, = 1 and a--+oo corresponds to the conventional AdaTron learning. Using the above learning 
dynamics, we obtain the differential equations with respect to 1 and R as 

dZ 
da 

dR 
da = 

~ [EGiR) -lFG(R)] 

Z~ [- ~ EG(R) + (FG(R)R - GG(R))Z] , 

where EG(R), FG(R) and GG(R) are represented as 

EG(R) 

FG(R) 

GG(R) 

= 

«u2'Ye( -Ta(v)Sa(u) )~, 

«lul'Y+1e( -Ta(v)Sa(u))Sa(u)~ 

«lul'Ye( -Ta(v )Sa(u))Sa(u)v~. 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

Let us first investigate the behavior of the R-l flow near R = O. When R is very small, the right-hand 
side of Eq. (5.33) is found to be a ,-dependent constant: 

dR 2!(-y-1) (' 1) - = r - + - (1 - 2il), 
da 7rl 2 2 

(5.37) 

where r(x) is the gamma function. As the right hand side of equation (5.37) is positive for any, as long 
as a satisfies a > ac , R increases around R = 0 only for this range of a. Thus the generalized perceptron 
learning algorithm succeeds in reaching the desired state R = 1, not the opposite one R = -1, only 
for a > ac , similarly to the conventional perceptron learning. Therefore, in this section we restrict our 
analysis to the case of a > a c and investigate how the learning curve changes according to the value of T-

Using the notation R = 1 - e (e--+O), we obtain the asymptotic forms of EG, FG and GG as follows. 

EG 
1 1 

C1e'Y+2 + C2e2 (5.38) 

FG 1+2 C3e 2 - C4e (5.39) 

GG ~ 
C3 1+2 (5.40) ---e 2 +C4e 

,+1 

where Cl == 22'Y+l/2r(, + 1)/7r(2, + 1), C2 == 4a2'Y il/ -/27r, C3 == 2'Y+3/2r(f + ~ )/7r(' + 2) and C4 == 2ila'Y /.J21r. 
We first investigate the case of il;fO (finite a), namely, C2,C4;f0. The differential equations (5.32) and 
(5.33) are rewritten in terms of e and 8 = 1/1 as 

d8 
da 
de 
da 

= - 8; [c1 e'Y+! + c2e!] + 82 [C3e1+t - C4e] 

8; [c1e'Y+t + c2et] - 8 [(~: ~) C3el+t - 2C4e] . 

(5.41 ) 

(5.42) 

As , = 0 corresponds to the perceptron learning, we now assume ,;f0. When, > 0, the terms containing 
C1 and C3 can be neglected in the leading or?er. Dividing equation (5.41) by equation (5.42), we obtain 

d8 8 [-C28e1/2 /2 - C4e] 

de = [c28e1/2/2 + 2c4e] . 
(5.43) 

If we assume 8e1/2~e or 8e1/2«e, equation (5.43) is solved as 8 = exp( -e), which is in contradiction to 
the assumption 181«1. Thus, we set 

" 4C4 1/2 b c 
u = --e + e 

C2 
(5.44) 

and determine band c(> 1/2). Substituting (5.44) into (5.43), we find b = 8C4/C2 (C2,C4 > O)and C = 3/2. 
The negative value of 8 = 1/1 is not acceptable and we conclude that R does not approach 1 when, > O. 
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Next we investigate the case of, < O. Using the same technique as in the case of, > 0, we obtain 

(5.45) 

(5.46) 

and 

= (5.4 7) 

We notice that, should satisfy -1 < , < 0, because the prefactor of the leading term of 8, namely, 
(2C3/C1)(, + 2)/(, + 1), must be positive. As the prefactor of the generalization error increases mono­
tonically from, = -1 to , = 0, we obtain a smaller generalization error for, closer to -1. 

Next we investigate the case of a-+oo, namely C2, C4 = O. We first assume 1-+10 in the limit of a-+oo. 
In this solution, dl/da = 0 should be satisfied asymptotically. Then, from equation (5.41), the two terms 
€"Y+t and €1+t should be equal to each other, namely, €"Y+t = €1+t, which leads to , = 1. The learning 
dynamics (5.31) with a-+oo and, = 1 is nothing but the AdaTron learning which has already been 
investigated in detail [99]. The result for the generalization error is 

if we choose lo as lo = 1/2, and 

3 
Eg = 2a' 

4 
Eg= -. 

3a 
if we optimize 10 to minimize the generalization error. 

(5.48) 

(5.49) 

We next assume l-+oo as a-+oo. It is straightforward to see that € has the same asymptotic form as 
in the case of ~#O and, < O. Thus we have 

(5.50) 

where 12(,) is defined as 

(5.51 ) 

and, can take any value within -1 < , < o. 
From the above analysis, we conclude that the student can get the generalization ability a-I if and 

only if a-+oo and, = 1 (AdaTron). For other cases the generalization error behaves as a- 1/ 3 , the same 
functional form as in the case of the conventional perceptron learning, as long as the student can obtain 
a vanishing residual error. Therefore the learning curve has universality in the sense that it does not 
depend on the detailed value of the parameter ,. 

5.3 AdaTron learning algorithm 

5.3.1 AdaTron learning 

In this subsection, we investigate the generalization performance of the conventional AdaTron learning 
f = -u8(-Ta(v)Sa(u)) [98]. The differential equations for 1 and R are given as follows: 

dl 

da 

dR 
da 

= 

= 

(5.52) 

(5.53) 
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Figure 5.4: Trajectories for the conventional AdaTron learning. Except for the case a = 00, the trajec­
tories converge to the state 1 = 1/2. 

where EAd(R) = «u2 8( -Ta(v)Sa(u))» and GAd(R) = «uv8( -Ta(v)Sa(u))». After simple calcula­
tions, we obtain 

EAd(R) = 2 (100 

+ [oJ Duu
2 

H (~) 

+ 2 (loa + I:) Duu
2 

[H (~) - H (~)] (5.54) 

and 

At first, we check the behavior of R around R = O. Evaluating the differential equation (5.53) around 
R = 0, we obtain 

dR = .! (~ _ ~) 2 
da l7r 2 

(5.56) 

From this result we find that for any value of a, the flow of R increases around R = O. In Figure 5.4, we 
display the flows in the R-l plane for several values of a by numerical integration of equation (5.53). This 
figure indicates that the overlap R increases monotonically, but R does not reach the state R = 1 if a 
is finite. This means that the differential equation (5.53) with respect to R has a non-trivial fixed point 
R = Ro( < 1) if a < 00, which is the solution of the non-linear equation GAd(R) = 0 since 1 = 1/2 is 
clearly the fixed point from equation (5.52) and Figure 5.4. Therefore, we conclude that for a = 00 and 
a = 0, we obtain the generalization error as Eg '" a-I, but the generalization error converges to a finite 
value exponentially for finite a. 
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5.3.2 Modified AdaTron learning 

In the previous subsection, we found that the on-line AdaTron learning fails to obtain the zero residual 
error for finite a. In this subsection, we modify the AdaTron learning as f = 0( -Ta(v)Sa(u))h(u)l with 

{ 

a-u (u>~) 
h( u) = -u (- % < u < %) 

-a - u (u < -%) 
(5.57) 

and see if the generalization ability of our non-monotonic ~ystem is improved. The motivation for the 
above choice comes from the optimization of the learning algorithm to be mentioned in the next section. 
Details of derivation of equation (5.57) are found in Appendix B. Then the differential equation with 
respect to R is obtained as follows. 

dR R2 
da = -?:EMA(R) - RFMA(R) + GMA(R) (5.58) 

where EMA(R) = «h2(u)0( -Ta(v)Sa(u))», FMA(R) = «uh(u)0( -Ta(v)Sa(u))» and GMA(R) = 
«vh(u)0(-Ta(v)Sa(u))». To see the asymptotic behavior of the generalization error, we evaluate the 
leading-order contribution as R approaches 1, R = 1 - €, as 

EMA 
2V2 3 

(5.59) -(1 + 2~)€2 
7!' 

FMA 
2V2 2 3 

(5.60) -- (1 + 2(1 - a )~) €2 
7!' 

GMA 
4V2a2~ ~ 

(5.61 ) €2. 
7!' 

Substituting these expressions into the differential equation (5.58), we obtain €1/2 = V27!'/(1 + 2~)a-l 
and the generalization error as 

V2(1 + 2~) 1 2 
1:.9 = €2 = -. (5.62) 

7!' a 
We should notice that the above result is independent of a and the generalization ability of the student 
is improved by this modification for all finite a. 

5.4 Optimized learning 

5.4.1 Optimization of the learning rate 

In the present subsection, we improve the conventional perceptron learning by introducing a time­
dependent learning late [90, 99]. We consider the next on-line dynamics; 

(5.63) 

Using the same technique as in the previous section, we can derive the differential equations with 
respect to Z and R as follows. 

dl 

da 
dR 
da 

T [~g(a)2 E(R) - g(a)F(R)Z] 

z; [-~ E(R)g(a? + g(a)(F(R)R - G(R))Z] 

_ L(g(a)). 

(5.64) 

(5.65) 

The optimal learning rate gopt(a) is determined so as to maximize L(g(a)) to accelerate the increase of 
R. We then find 

[F(R)R - G(R)]1 
gopt = RE(R) . (5.66) 
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Substituting this expression into the above differential equations, we obtain 

dl [F(R)R - G(R)][F(R)R + G(R)]l 
dR 2R2E(R) 

(5.67) 

dR [F(R)R - G(R)j2 
= 

dl 2RE(R) 
(5.68) 

We can obtain the asymptotic form of E (= 1 - R), 1 and Eg with the same technique of analysis as in the 
previous section; 

and 

[
2V2(1 + 2~)]2 -2 

4 (1-2~)2 a, 

[ ( 
1+2~ )4 -4] 

exp -16 (1- 2~)2 a , 

Therefore, the generalization ability has been improved from a- 1/ 3 for g = 
learning rate gopt(a) behaves asymptotically as 

2.y'27r -1 ( (1 + 2~ )4 -4) gopt = (1 _ 2~) a exp -16 (1- 2~)2 a . 

(5.69) 

(5.70) 

(5.71) 

1 to a-I. The optimal 

(5.72) 

The factor F(R)R - G(R) of gopt appearing in equation (5.66) is calculated by substituting F(R) and 
G(R) in Eqs. (5.18) and (5.19) as F(R)R - G(R) = (1- R2)(1- 2~)/.y'27r. Thus, at a = ac = V210g 2, 
the optimal learning rate vanishes. Therefore our formulation does not work at a = ac • 

As the optimal learning rate gopt changes the sign at a = ac , from the arguments in subsection 5.2, 
we can see why the optimal learning rate can eliminate the anti-learning. 

In relation to this phenomenon at a = V210g2, Van den Broeck [100, 101] recently investigated the 
same reversed-wedge perceptron which learns in the unsupervised mode from the distribution 

exp(_,,2) 
P(v)=2 .y'27r2 [6(v-a)+6(v+a)6(-v)] 

271" 
(5.73) 

with v = VN(B·::c)/IBI. For small a, he found R(a) rv Va < v >2 for the optimal on-line learning, 
where < ... > denotes the average over the distribution (5.73). Then he showed that at a = V210g2, 
the distribution (5.73) leads to < v >= 0 and consequently R(a)=:O. From this result, he concluded that 
as long as < v >= 0 holds, any kind of on-line learning necessarily fails and the corresponding learning 
curve has a plateau. It seems that a similar mechanism may lead to a failure of the optimal learning at 
a = V210g2 in our model. 

5.4.2 Optimization of the weight function using the Bayes formula 

In this subsection we try another optimization procedure by Kinouchi and Caticha [92]. We choose the 
optimal weight function f(Ta(v), u) by differentiating the right hand side of equation (5.5) with the aim 
to accelerate the increase of R 

r=~(v-Ru). 
R 

(5.74) 

It is important to remember that 1* contains some unknown information for the student, namely, the 
local field of the teacher v. Therefore, we should average 1* over a suitable distribution to erase v from 
1*. For this purpose, we transform the variables u and v to u and z 

v = zV1 - R2 + Ru. (5.75) 
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Then, the connected Gaussian distribution PR(U, v) is rewritten as 

We then obtain 

1 u2 z2 
PR(u, v) = ..J1=R2exp( --2 ) exp( --2 ). 

27r 1 - R2 

Vl- R2 
< r >= R l < z > 

(5.76) 

(5.77) 

where < ... > stands for the averaging over the variable v. SUbstituting this into the differential equation 
(5.5), we find 

dR (1- R2) 
_ = « < z >2 ». 
dO'. 2R 

(5.78) 

Let us now calculate < z >. For this purpose, we use the distribution P(zly, u). This quantity means 
the posterior probability ofz when y and u are given, where we have set y=Ta(v). This conditional 
probability is rewritten by the Bayes formula 

P(z)P(ylu, z) 
P(zly, u) = J dz P(z)P(ylu, z)' 

from which we can calculate < z > as 

Here P(ylu, z) is given as 

<z> J dzzP(zly,u) 

= 
J dzzP(z)P(ylu,z) 

J dz P(z) P(ylu, z) 

J z Dz P(ylu, z) 
= J Dz P(ylu, z) . 

P(ylu, z) y 9(zVl - R2 + Ru) 

- y 9( z VI - R2 + Ru - a) 

+ y9(-zVI-R2-Ru-a) 
1 

+ 2(1 - y) 

from the distribution y = Ta(v). Then, the denominator of equation (5.79) is calculated as 

J Dz P(ylu, z) y J Dz 9(zVl- R2 + Ru) 

y J Dz9(zVI-R2+Ru-a) 

+ y J Dz9(-ZVI-R2-Ru-a)+~(I-Y) 
= Q(ylu), 

(5.79) 

(5.80) 

(5.81 ) 

(5.82) 

where Q(ylu) means the posterior probability of y when the local field of the student u is given. As we 
treat the binary output teacher, we obtain from equation (5.82) 

Q(±I\u) = H( Ru) H( a - Ru )±H( a + Ru ). 
=F VI _ R2 =F VI _ R2 VI _ R2 

(5.83) 

In Figures 5.5 (R = 0.5) and 5.6 (R = 0.9), we plot Q( +1\u) for the cases of a = 4.0,2.0,1.0 and a = 0.5. 
From these figures, we find that for any a Q(+I\u) seems to reach (Ta(u) + 1)/2 as R goes to +1. Using 
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Figure 5.6: Shape of!l( +1Iu) for R = 0.9. Wee see that for any a, !l( +1Iu) seems to reach (Ta(u) + 1)/2 
as R goes to +1. 
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Figure 5.7: Learning curves of perceptron, optimized percept ron and Baysian optimization algorithms 
for a = 00. The Baysian optimization algorithm is the best among three. 

the same technique, we can calculate J D z z P(yiu, z) and obtain 

J V1- R2 {) 
DzzP(yiu,z) = R {)un(Yiu ). (5.84) 

Substituting this into the right hand side of dR/da., equation (5.78), we obtain 

(5.85) 

where « ... » stands for the averaging over the distribution P(y, u) = J Dz P(yiu, z)P(u)P(z). Per­
forming this average, we finally obtain 

dR _ (1 - R2) 100 

D ';:;' (R ) 
da. - 47rR -00 U~a ,u (5.86) 

where 

[ 
A2 A2 A2 ] 2 

exp( -1) - exp( -1) - exp( -1) 
x 

[H( -AI) - H~A2) + H(A3) + H(AI) + H(~2) - H(A3)] 
(5.87) 

and Al == RU/V1 - R2, A2 == (a - Ru)/V1 - R2, A3 == (a + Ru)/V1- R2. We plot the generalization 
error by numerically solving equations (5.16), (5.17), (5.67), (5.68), and (5.86) for the cases of a = 00 in 
Figure 5.7 and a = 1.0 in Figure 5.8. From these figures, we see that for the both cases of a = 00 and 
a < 00, the generalization error calculated by the Bayes formula converges more quickly to zero than by 
the optimal learning rate gopt (a.). 

Recently, Simmonetti and Caticha [102] introduced the on-line learning algorithm for the non-overlapping 
parity machine with a general number of nodes K. In their method, the weight vector of the student in 
each hidden unit is trained by the method in Ref. [92]. In order to average over the internal fields of 
teacher in the differential equation with respect to the specific hidden unit k of the student, they need the 
conditional probability which depends not only on the internal field of the unit k but also on the internal 
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Figure 5.8: Learning curves of perceptron, optimized percept ron and Baysian optimization algorithms 
for a = 1.0. The Baysian optimization algorithm is the best among three. 

field of the other units (i#k). This fact shows that their optimal algorithm is non-local. In our problem, 
the input-output relation of the machine can be mapped to those of a single layer reversed-wedge per­
ceptron. Therefore, it is not necessary for us to use the information about all units and our optimizing 
procedure leads to a local algorithm. 

In order to investigate the performance of the Bayes optimization, we have calculated the asymptotic 
form of the generalization error from equation (5.86) and the result is 

1 2 
c:"2 = -;-:--::--7"-:-::::-

(1 + 2~)Co: (5.88) 

for c: = 1 - R, where 
_ 1 100 exp( _t2

) 

C = 7r3/ 2 -00 dt H(t) . (5.89) 

The generalization error is then given by equation (5.20) as 

00 2$ ..!. '" 0.883 1 
Eg = 1-00 dtexp( _t2 )/ H(t) 0: 0: 

(5.90) 

This asymptotic form of the generalization error agrees with the result of Kinouchi and Caticha [92]. We 
notice that this form is independent of the width of the reversed wedge a. 

We next mention the physical meaning of 3 a (R, u) appearing in the differential equation (5.86). As 
the rate of increase dR/do: is proportional t.o 3 a (R,u), this quantity is regarded as the distribution of 
the gain which determines the increase of R. Therefore, 3 a (R, u) yields important information about 
the strategy to make queries. A query means to restrict the input signal to the student, u, to some 
subspace. Kinzel and Rujan suggested that if the student learns by the Hebbian learning algorithm from 
restricted inputs, namely, inputs lying on the subspace u = 0, the prefactor of the generalization error 
becomes a half [96]. In the present formulation (5.86), a query-making can be incorporated by inserting 
appropriate delta functions in the integrand. The learning process is clearly accelerated by choosing the 
peak position of 3 a (R, u) as the location of these delta functions. We plot the distribution 3 a (R, u) for 
a = 2.0 in Figure 5.9, a = 1.0 in Figure 5.10 and a = 0.8 in Figure 5.11. From these figures, we learn 
that for large a (= 2.0), the most effective example lies on the decision boundary (u = 0) at the initial 
training stage (small R). However, as the student learns, two different peaks appear symmetrically and 
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in the final stage of training, the distribution has three peaks around u = 0 and u = ±a. On the other 
hand, for small a (= 0.8), the most effective examples lie at the tails (u = ±oo) for the initial stage. In 
the final stage, the distribution has two peaks around u = ±a. Therefore it is desirable to change the 
location of queries adaptively. In Figures 5.12 and Figure 5.13, figure 5.14, we plot the cross-sections of 
Figures 5.9, Figure 5.10 and Figure 5.11 at R = 0.2 and = 0.8 respectively. 

5.5 Summary 

We have investigated the generalization abilities of a non-monotonic perceptron, which may also be 
regarded as a multilayer neural network, a parity machine, in the on-line mode. We first showed that 
the conventional perceptron and Hebbian learning algorithms lead to the perfect learning R = 1 only 
when a > ac = ..j2log2. The same algorithms yield the opposite state R = -1 in the other case a < a c . 

These algorithms have originally been designed having the simple perceptron (a = 00) in mind, and 
thus are natural to give the opposite result for the reversed-output system (aIVO). In contrast, the 
conventional Ada'fron learning algorithm failed to obtain the zero residual error for all finite values of a. 
For the unlearn able situation (where the structures of the teacher and student are different), Inoue and 
Nishimori reported that the Ada'fron learning converges to the largest residual error among the three 
algorithms [99]. It is interesting that the Ada'fron learning algorithm is not useful even for the learnable 
situation. 

In order to overcome this difficulty, we introduced several modified versions of the conventional learning 
rules. We first introduced the time-dependent learning rate into the on-line percept ron learning and 
optimize it. As a result, the generalization error converges to zero in proportion to a-1 except at 
a = ..j210g2 where the learning rate becomes identically zero. We next improved the conventional Ada'fron 
learning by modifying the weight function so that it changes according to the value of the internal potential 
u of the student. By this modification, the generalization ability of the student dramatically improved 
and the generalization error converges to zero with an a-independent form, 2a-1 • 

We also investigated a different type of optimization: We first optimized the weight function f(Ta( v), u) 
appearing in the on-line dynamics, not the rate g. Then, as the function f contains the unknown variable 
v, we averaged it over the distribution of v using the well-known technique of the Bayes statistics. This 
optimization procedure also provided other useful information for the student, namely, the distribution 
of most effective examples. Kinzel and Rujan [96] reported that for the situation in which a simple 
perceptron learns from a simple percept ron (the a = 00 case), the Hebbian learning with selected ex-
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amples (u = 0) leads to faster convergence of the generalization error than the conventional Hebbian 
learning. However, we have found that for finite values of a, the most effective examples lie not only on 
the boundary u = 0 but also on u = ±a. Furthermore, we could learn that for small values of a and at 
the initial stage of learning (R small), the most effective examples lie on the tails (u = ±oo). As the 
learning proceeds, the most effective examples change the locations to u = ±a. This information is useful 
for effective query constructions adaptively at each stage of learning. 

re 
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Chapter 6 

Optimization by Simulated 
Annealing 

6.1 Annealing schedule 

Simulated annealing has been a powerful tool for combinatorial optimization problems [9, 103, 104]. 
To find the minimum of a cost function, one introduces a stochastic process similar to Monte Carlo 
simulations in statistical mechanics with a control parameter corresponding to the temperature to allow 
the system to escape from local minima. By gradually decreasing the temperature one searches for 
increasingly narrower regions in the phase space closer to the optimal state, eventually reaching the 
optimal state itself in the infinite-time limit. 

A very important factor in such processes is the annealing schedule, or the rate of decrease of temper­
ature. If one lowers the temperature too quickly, the system may end up in one of the local minima. On 
the other hand, a very slow decrease of temperature ~ould surely bring the system to the true minimum. 
However, such a slow process is not practically useful. One therefore has to determine carefully how fast 
to decrease the temperature in simulated annealings. On this problem, Geman and Geman [46] proved 
that the decrease of temperature as T = constf log t, with the proportionality constant roughly of the 
order of the system size, guarantees convergence to the optimal state for a wide class of combinatorial 
optimization problems. This inverse-log law is still too slow for most practical purposes. Nevertheless 
this result serves as a mathematical background of empirical investigations by numerical methods. 

There have been a few proposals to accelerate the annealing schedule by modifying the transition 
probabilities used in the conventional simulated annealing. Szu and Hartly [105] pointed out for a problem 
defined in a continuum space that occasional non-local samplings significantly improve the performance, 
leading to an annealing schedule inversely proportional to time T = constft. This non-local sampling 
corresponds to modification of the generation probability (or, more precisely, the neighbourhood) to be 
defined later. Tsallis and Stariolo [54] proposed to modify the acceptance probability generalizing the 
usual Boltzmann form in addition to the generation probability (which they call the visiting distribution). 
Numerical investigations show faster convergence to the optimal state by annealing processes using their 
generalized transition probability or its modifications [54, 106]. Szu and Hartley and Tsallis and Stariolo 
proved that the modified generation probabillty assures convergence to the optimal state under a power­
low decrease of the temperature as a function of time. However there has been no mathematically rigorous 
argument on the convergence under the generalized acceptance probability of Tsallis and Stariolo. 

We prove in the present chapter that the inhomogeneous Markov process generated by the generalized 
transition (acceptance) probability of Tsallis and Stariolo actually satisfies the property of weak ergodicity 
under an annealing schedule inversely proportional to the power of time. Rigorously speaking, weak 
ergodicity (which roughly means independence of the probability distribution from the initial condition) 
itself does not immediately guarantee the convergence to the optimal state. Nevertheless our result is 
expected to be close enough to this final goal because the probability distribution would depend upon 
the initial condition if the annealing schedule is not appropriately chosen. 

Various definitions are given in the next section. The proof of our main theorem appears in section 
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6.3. An example of fast convergence by the generalized transition probability is discussed in section 6.4 
for a parameter range not covered by the theorem in section 6.3. In section 6.5 we investigate if we may 
further generalize the transition probability in the case of the simple model discussed in section 6.4. The 
final section is devoted to discussions on the significance of our result. 

6.2 Inhomogeneous Markov chain 

Let us first list up various definitions to fix notations. We consider a problem of combinatorial optimiza­
tion with the space of states denoted by S. The cost function· E is a real single-valued function on S. The 
goal of a combinatorial optimization problem is to find the minimum (or minima) of the cost function. 
For this purpose we introduce the process of simulated annealing using the Markov chain generated by 
the transition probability from state x( E S) to state y( E S) at time step t: 

G(x, y; t) = { P(x, y)A(x, y; T(t)) 
1 - Ez(:;t:z:) P(x, z)A(x, z; T(t)) 

(x =I y) 
(x = y) , (6.1) 

where P( x, y) is the generation probability 

{ 
> 0 

P(x,y) =0 
(y E S:z:) 
( otherwise) 

(6.2) 

with S:z: the neighbourhood of x (the set of states that can be reached by a single step from x), and 
A(x, y; T) is the acceptance probability. In the case of the generalized transition probability, the acceptance 
probability is given as [54] 

A(x,y;T) min{l,u(x,y;T)} 

( 
E(y) - E(X)) l/(l-q) 

u(x,y;T) = 1+(q-1) T (6.3) 

where q is a real parameter. For technical reasons we have to restrict ourselves to the region q > 1 in 
this and the next sections. This acceptance probability reduces to the usual Boltzmann form in the limit 
q -- 1. The present Markov chain is inhomogeneous, i.e., the transition probability (6.1) depends on the 
time step t. 

We choose the annealing schedule, or the t-dependence of the parameter T (the temperature), as 

b 
T(t) = (t+2)c (b,c> 0,t=0,1,2, ... ). (6.4) 

To analyze the inhomogeneous Markov chain generated by the above transition probability, we intro­
duce the transition matrix G(t) with the element 

[G(t)]:z:,y = G(x, y; t). (6.5) 

Let us write the set of probability distributions on S as P. A probability distribution p( E P) may be 
regarded as a vector with the component [P]:z: = p(x)(x E S). The probability distribution at time step 
t, starting from an initial distribution Po (E P) at time s, is 

p(s, t) = PoG(s, t) = poG(s)G(s + 1)··· G(t - 1). (6.6) 

The coefficient of ergodicity is defined as 

a(G) = 1- min (2:: min{G(x,z),G(y, z)}lx,y E S}. (6.7) 
zES 

We shall prove in the next section the property of weak ergodicity for the present Markov chain, which 
means that the probability distribution function after sufficiently long time becomes independent of the 
initial condition: 

Vs ~ 0: lim SUp{IIP1(S,t) - P2(s,t)1I1 P01,P02 E P} = 0 
t-+oo 

(6.8) 
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where Pl (s, t) and P2 (s, t) are the probability distributions with different initial conditions POl and P02: 

The norm is defined by 

Pl (s, t) 
P2(S,t) 

P01G(S,t) 

= P02G(S, t). 

Ilpll = L Ip(x)l· 
xES 

(6.9) 

(6.10) 

(6.11) 

Although we focus our attention on weak ergodicity in the present chapter, it may be useful as a reference 
to recall the definition of .~trong ergodicity: 

3r E P, 'Vs 2: 0: lim sup{lIp(s, t) - rill Po E P} = O. 
t-+oo 

(6.12) 

The following theorems give criteria for weak and strong ergodicity [103, 104J: 

Theorem 1 (Condition for weak ergodicity) An inhomogeneous Markov chain is weakly er­
godic if and only if there exists a strictly increasing sequence of positive numbers 

to < tl < ... < ti < ti+l < ... 

such that 

L(l- a(G(ti, ti+l))) = 00. (6.13) 
i=O 

Theorem 2 (Condition for strong ergodicity) An inhomogeneous Markov chain is strongly er­
godic if it satisfies the following conditions: 

1. it is weakly ergodic 

2. there exists Pt E P('Vt 2: 0) such that Pt = ptG(t) 

3. Pt satisfies 
= 
L IIpt - PHlll < 00. (6.14) 
t=O 

6.3 Weak ergodicity 

We prove in the present section that the condition in Theorem 1 is satisfied by the present inhomogeneous 
Markov chain generated by the generalized transition probability. The argument closely follows that for 
the conventional Boltzmann-type transition probability [46, 103, 104]. We need the following Lemma for 
this purpose. 
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LeIIlllla 1 (Lower bound on the transition probability) The elements of the transition ma­
trix satisfy the following bounds. For off-diagonal elements, 

( 
(q _ l)L) l/(l-q) 

P(x,y»O=>Vt?:O:G(x,y;t)?:w 1+ T(t) , 

and for diagonal elements, 

. ( (q _ l)L) l/(l-q) 
Vx E S - Sm,3tl > 0, Vt?: tl : G(x,x;t) ?: w 1 + T(t) 

where Sm is the set of locally maximum states 

Sm = {xix E S, Vy E S", : E(y) :s E(x)}, 

L denotes the maximum change of the cost function by a single step 

L = max{IE(x) - E(y)11 P(x, y) > O} 

and w is the minimum value of P(x,y) 

w = min{P(x,y) I P(x,y) > O,x,y E S}. 

Proof· 
First we prove (6.15). When E(y) - E(x) > 0, we have u(x,y;T(t)):s 1 and thus 

G(x,y;t) P(x,y)A(x,y: T(t)) 

?: w min{l,u(x,y;T(t))} 

wu(x,y;T(t)) 

( 
(q _ l)L)l/(l-q) 

> w 1 + T(t) 

If E(y) - E(x) :s 0, u(x, y; T(t)) ?: 1 and therefore 

G(x,y;t) ?: w min{l,u(x,y;T(t))} 

= w 

( 
(q _ l)L) l/(l-q) 

> w 1 + T(t) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21 ) 

We next prove (6.16). Since xES - Sm, there exists a state z E S", satisfying E(z) - E(x) > O. For 
such a state z, 

lim u(x,z;T(t)) = 0 
t-+oo 

( 6.22) 

and consequently 
lim min{l,u(x,z;T(t))} = O. 

t-+oo 
(6.23) 

Then min{l,u(x,z;T(t))} can be made arbitrarily small for sufficiently large t. More precisely, there 
exists tl > 0 and 0 < E < 1 such that 

Vt?: h: min{l,u(x,z;T(t))} < E. (6.24) 

We therefore have 

LP(x,y)A(x,y;T(t)) = P(x,z)min{l,u(x,z;T(t))}+ L P(x,y)min{l,u(x,y;T(t))} 
yES yES-{z} 
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< P(X,Z)E+ L P(x,y) 
YES-{z} 

= -(1 - E)P(X, z) + 1. 

The diagonal element of (6.1) thus satisfies 

G(x,x;t) > (l-E)P(x,z) 

( 
(q _ l)L) l!(l-q) 

> w 1 + T(t) 

where we have used that the last factor can be made arbitrarily small for sufficiently large t. I 

133 

(6.25) 

(6.26) 

We use the following notations in the proof of weak ergodicity. The minimum number of state 
transitions to reach y from x (or vice versa) is written as d( x, y). One can then reach any state from x 
wi thin k (x) steps: 

k(x) = max{d(x, y)ly E S}. (6.27) 

The minimum of k(x) for xES - Sm is denoted as R, and the state giving this minimum value is x*: 

R = min{k(x)lx E S - Sm} 

x· argmin{k(x)lx E S - Sm}. 

(6.28) 

(6.29) 

Theorem 3 (Weak ergodicity) The inhomogeneous Markov chain defined in Section 6.2 is weakly 
ergodic if 0 < c S (q - 1) / R. 

Proof· 
Consider a transition from state x to x*. According to the definition (6.6) of the double-time transition 

matrix, we have 

(6.30) 

From the definitions of x* and R, there exists at least one sequence of transitions to reach x* from x 
within R steps such that 

(6.31) 

If we keep only such a sequence in the summation of (6.30) and use Lemma 1, 

G(x, x*; t - R, t) > G(x, Xl; t - R)G(XI' x2; t - R + 1) ... G(XR-I, XR; t - 1) 

R ( (q _ l)L ) I!CI-q) 

> gw 1+ T (t-R+k-1) 

R( . (q_1)L)R!CI-q) 
> w 1+ T (t-1) (6.32) 

Then the coefficient of ergodicity satisfies 

a(G(t - R,t)) = 1- min{Lmin{G(x,z;t - R, t),G(y,z; t - R,t)}lx,y E S} 
zES 

< 1 - min{min{G(x, x*; t - R, t), G(y, x*; t - R, t)}lx, YES} 

< 1 - w R 1 + ..:..;qo.,---=-..,-( 
( _ l)L)R!CI-q) 

T(t - 1) 
.(6.33) 
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E 

x 

Figure 6.1: Energy landscape of the parabola potential. 

We now use the annealing schedule (6.4). There exists a non-negative integer ko such that the following 
inequalities hold for all k 2: ko: 

1 - a(G(kR - R, kR)) 

(6.34) 

It is clear from (6.34) that the summation 

00 00 

'2)1- a(G(kR - R, kR))) 2: L (1 - a(G(kR - R, kR))) (6.35) 
k=O k=ko 

diverges if c satisfies 0 < c ~ (q - 1)/ R. This proves weak ergodicity according to Theorem 1. I 

Remark. The arguments developed in Sections 6.2 and 6.3 break down for q < 1. For instance, the 
acceptance probability (6.3) becomes imaginary for sufficiently small T if E(y) - E(x) > 0 and q < 1. 
Nevertheless Theorem 3 does not exclude the possibility that the present Markov chain is weakly 
ergodic for q < 1 or that it is strongly ergodic for arbitrary q. 

6.4 Example for q < 1 

It is instructive to investigate a simple solvable model with the parameter q < 1 because the general 
analysis in the previous section excluded this range of q for technical reasons. The one-dimensional 
model discussed by Shinomoto and Kabashima [93] is particularly suited for this purpose. 

They considered the thermal diffusion process of an object in a one-dimensional space. The object is 
located on one of the discrete positions x = ai, with i an integer, and is under the potential E(x) = x2 /2 
(see Figure 6.1). 

Roppings to neighboring positions i + 1 and i-I take place if thermal fluctuations allow the object to 
climb over the barriers with height B for the process i -+ i-I and height B + D.i for i -+ i + 1 (see Figure 
6.2), where D.i is the difference of the potentials at neighbouring locations D.i = E (a(i + 1)) - E(ai). By 
adaptively optimizing the temperature at each give time, they found that the energy y = (E(x)) (the 
expectation value of the potential) decreases as y '" B/logt. The optimum annealing schedule Topt(t) 
was shown to have this same asymptotic behavior as a function of t. We show in the present section that 
the generalized transition probability with q = 1/2 leads to a much faster convergence of the energy. 
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B 

Figure 6.2: Local structure of the parabola potential. 

The problem is defined by the master equation describing the time evolution of the probability Pi 
that the object is at the ith position at time t: 

= ( B) l/(l-q) ( B + 6.. ) l/(l-q) 
1+(q-1)T Pi+1+ 1+(q-1) T .-1 Pi-1 

( 
B+6..)1/(1-q) ( B)1/(1-q) 

1 + (q - 1) T' Pi - 1 + (q - 1) T Pi· (6.36) 

It is straightforward to show that this master equation reduces to the following Fokker-Planck equation 
in the continuum limit a -+ 0 

(6.37) 

where 

,(T) 
1 ( B) q/(1-q) 

= T 1+(q-1)T (6.38) 

D(T) = (1+(q_1)~)1/(1-q) (6.39) 

We have rescaled the time unit by 1/a2 as in [93]. In Appendix F, we explain the derivation of the 
Fokker-Plank equation in detail. . 

Our aim is to find the fastest possible asymptotic decrease of the expectation value of the potential 
defined by 

y = J dxE(x)P(x, t) (6.40) 

by adaptively changing T as a function of time. Differentiating both sides of the definition (6.40) and 
using the Fokker-Planck equation (6.37), we obtain the following equation describing the time evolution 
of y: 

dy 
dt = -2,(T)y + D(T). (6.41 ) 
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The temperature is adaptively optimized by extremizing this right hand side with respect to T, yielding 

2yB + (1 - q)B2 

2y+B 
= (1 - q)B + 2qy + O(y2). 

The evolution equation (6.41) then has the form 

.J!.. = __ _q_ yl/(l-q). d 2 
( 

2 
)

q/(l-q) 

dt B 1- q 

The solution is 

y = Bq/(l-q) C ~ q) l/q C(l-q)/q. 

The optimum annealing schedule (6.42) is now 

Topt '" (1 - q)B + const· C(1-q)/q. 

The asymptotic behavior of the average position can be calculated in the same way. The result is 

(x) = J dx xP(x, t) 

const. C 1/ 2q • 

(6.42) 

(6.43) 

(6.44) 

(6.45 ) 

(6.46) 

It is useful to restrict of the value of q to avoid unphysical behavior of the generalized transition 
probability in the present one-dimensional problem. One of the transition probabilities in the master 
equation (6.36) 

( 
B+t:J."_ )l/(l-q) 

1+(q-1) ,1 
T 

(6.47) 

reduces for T = (1 - q)B + O(y) to 

(
a2 _ 2ax ) l/(l-q) 

2B + O(y) (6.48) 

This quantity must be a small positive number for any x and sufficiently small (but fixed) a. This 
requirement is satisfied if 

1 
q = 1 - - (n = 1, 2, ... ). 

2n 

Consistency of the other transition probabilities in (6.36) is also guaranteed under (6.49). 
The fastest decrease of the energy is achieved when q = 1/2. With this value of q, 

y B t-1 

4 

Topt B + B C 1 

2 4 
(x) const. t-1. 

(6.49) 

(6.50) 

(6.51) 

(6.52) 

It may be useful to remark that the non-vanishing value (1 - q)B of the temperature (6.45) in the 
infinite-time limit does not cause troubles. What is required is not an asymptotically vanishing value 
of the temperature but that the probability distribution does not change with time in the infinite-time 
limit. This condition is satisfied if T = (1 - q)B as is apparent from (6.37) with (6.38) and (6.39). 

The results (6.50) and (6.51) show asymptotic relaxations proportional t~ t-1 which is much faster 
than those for the conventional transition probability, B / log t [93]. 
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6.5 More general transition probability 

A natural question may arise on how far the arguments in the previous sections depend on the specific 
form of the acceptance probability (6.3). We investigate this problem for the one-dimensional model 
treated in the preceding section. 

The master equation is now generalized to 

dFi =/(B)p. I (B+Lli-1)p. _/(B+Lli)p._/(B)p. dt T t+1 + T t-1 T ' T ,. (6.53) 

The same Fokker-Planck equation (6.37) is derived in the limit a -+ 0 with the following parameters 

,(T) = - ~2!' (~) 

D(T) = 1(;). 
The expectation value of the potential obeys the same evolution equation as in (6.41): 

dy 2y ,(B) (B) (1) dt = -2,(T)y + D(T) = 1'1 T +1 T == £ T . 

Minimization of £( v)( v = 1 IT) with respect to T for given y leads to 

2vyBI"(Bv) + (2y + B)/'(Bv) = O. 

The solution of this equation for v gives the optimal annealing schedule 

1 
- =v=g(y). 
Topt 

Assuming analyticity of g(y) as y -+ 0, we write (6.58) as 

v = Cl + C2Y + O(y2). 

(6.54) 

(6.55) 

(6.56) 

(6.57) 

(6.58) 

(6.59) 

It is required that the system stops its time evolution as y -+ 0 and v -+ C1. We then have I(BcI) = 0 
from (6.56) assuming Cl is finite. (This condition of C1 < 00 is not satisfied by the conventional acceptance 
probability in which 1/v = T -+ O( C1 -+ 00) as y -+ 0.) It is also necessary that the minimization condition 
(6.57) is satisfied in the same limit, leading to !,(BC1) = O. These two conditions on I and I' are satisfied 
if I(Bv)(= I(Bcl + BC2Y)) and its derivative behave for small y 

I(Bv) rv C3Y\ !,(Bv) rv _ c4yk-l. (6.60) 

Here k > 1 and C3, C4 > O. The minus sign in front of C4 comes from the observation that an increase of 
the inverse temperature v = liT means a decrease of the energy y and therefore the differentiations by 
v and y should be done with the opposite sign (i.e. C2 < 0). 

The evolution equation (6.56) then has a form 

dy k 

dt = -CsY (6.61) 

with positive Cs if 2CIC4 > C3' This equation is solved as 

y = (cs(k - 1)t)-1/(k-1) . (6.62) 

This shows a power decay of the expectation value of the cost function. 
It is useful to set a restriction on k as in the preceding section for q. The following acceptance 

probability for y -+ 0 should be positive for any x: 

(6.63) 
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where we have used (6.60). This requirement is satisfied if k is a positive even number k = 271,. The 
energy (6.62) then decays as 

Y '" t- I , t- I /3, t- I/5, ... , (6.64) 

the same formula as in the preceding section. In fact the argument in section 6.4 is recovered if we choose 

f(v) = (1 + (q - l)v)I/(I-q) . (6.65) 

In this way the fast decrease of the energy has been obtained for a very general acceptance probability 
distribution function satisfying certain analyticity conditions. 

6.6 Discussion 

We have proved weak ergodicity of the inhomogeneous Markov process generated by the generalized 
transition probability under certain conditions on the parameters. For technical reasons we were unable 
to prove strong ergodicity, or more strongly, convergence to the optimal distribution function. We could 
not show that the condition (6.14) of Theorem 2 is satisfied by the present inhomogenous Markov chain. 
However, it is unlikely that the property of convergence to the optimal state does not hold because weak 
ergodicity alone already means that the state of the system asymptotically becomes independent of the 
initial condition; it is most likely that such an asymptotic state is the optimal one as mentioned in section 
6.l. 

It is appropriate to comment on the computational complexity here. The time tl necessary for 
the temperature (6.4) to reach a small specified value b is obtained by solving the relation b/t'l '" b 
(c = (q - 1)/ R) for tl: 

tl '" exp (:~ log ~) . (6.66) 

Here we have set R = kIN with N the system size because R defined in (6.28) is roughly of this 
order of magnitude in many cases. For example, in the problem of spin glasses, one can reach any 
spin configuration by flipping at most N spins. The corresponding time for the conventional simulated 
annealing is 

(
k2N) t2 '" exp -b- (6.67) 

which has been obtained from k2N / log t2 '" b. A comparison of (6.66) with (6.67) reveals that the 
coefficient of N in the exponent has been reduced from l/b to log l/b by using the generalized transition 
probability. In this sense, tl ~ t 2 • Since we have proved Theorem 3 under very general conditions 
on the system (which would include problems with NP completeness), it is not possible to reach a low 
temperature state in polynomial time. The best we could archive is an improvement of the coefficient in 
the exponent. 

One should be careful that the rapid decrease of the temperature does not immediately mean a rapid 
decrease of the cost function. This aspect can be checked by comparing the acceptance probability (6.3) 
at T = b 

(
b) I/(q-I) 

uI(t)(T=b)= (q-1)~E 

with the corresponding one for the conventional transition 

u2(T = b) = ",exp(-~E/b). 

(6.68) 

(6.69) 

Since UI(tl)>> U2(t2) if ~E/b» 1, we see that the generalized transition probability at a given temper­
ature has a larger value to include transitions into states with high values of the cost function than in the 
case of the conventional one at the same temperature. Thus expectation value of the cost function may 
be larger under the generalized transition probability than under the conventional Boltzmann form at the 
same temperature if one waits sufficiently long until thermal equilibrium is reached. This phenomenon 
has actually been observed in a numerical investigation under a slightly different (but essentially similar) 
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situation [107]. Therefore, if the expectation value of the cost function is observed in a numerical simu­
lation to indeed decrease rapidly under the generalized transition probability, it would be not only for 
the rapid decrea.'le of the t.emperature but also because the relaxation time is shorter. The conventional 
transition probability may give a larger possibility for the system to stay longer in local minima with 
high values of the cost. function. A mathematical analysis of this propert.y of quick relaxation by t.he 
generalized t.ransition probabilit.y is beyond the scope of t.he present thesis. However, one may naively 
expect it to happen from t.he larger probability to climb over high barrier as discussed above. 

It should be remarked that Theorem 3 with the annealing schedule (6.4) does not give a practically 
useful prescription of simulated annealing. In actual numerical simulations one rarely use such annealing 
schedules as (6.4) obtained from worst-case estimates. Even exponentially fast decreases of the tempera­
ture often give satisfactory results in the conventional and generalized methods (see [106] and references 
in [54]). The significance of Theorem 3 is that convergence (in the sense of weak ergodicity) has anyhow 
been proved with the annealing schedule (6.4) under the generalized transition (acceptance) probability 
where only empirical numerical investigations have been carried out without mathematical guarantee of 
convergence under any annealing schedule. re 
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Chapter 7 

Summary and Concluding Remarks 

In this thesis we investigated two topics about the keywords, learning and optimization from a statistical 
mechanical point of view. In this chapter, we summarize our results. 

Firstly we investigated the generalization abilities of a simple perceptron in the context of supervised 
learning. We took up the realistic learning situation in which structures of the teacher and student are 
different. Especially, we investigated the situation in which a simple perceptron learns a task of the 
non-monotonic (or reversed-wedge) perceptron. As the teacher machine has greater abilities than the 
student, this task is unrealizable for the student. Difficulties of learning for the student continuously 
change by controlling the width of the reversed wedge a. The case of a-+oo is special and for this case 
the task of the teacher becomes realizable. 

For this case of structural mismatch in supervised learning, we first investigated the generalization 
abilities of the student in the off-line (or batch) learning scenario in chapter 3. In this learning mode, we 
chose the Gardner-Derrida cost function which means the number of disagreements between the training 
sets and student outputs. From this cost function, we calculated the free energy using the standard 
statistical mechanical procedure with the replica trick. This free energy corresponds to the so-called 
Gardner volume if the number of examples is smaller than the critical capacity of the student. We 
estimated the saddle point of the free energy using the replica symmetric ansatz and obtained the saddle 
point equation for all values of a. Results are summarized as follows. 

For the large a region, namely, the case in which a satisfies a > aco ...... 1.53, the generalization error 
decreases monotonically to its theoretical lower bound and the asymptotic form of the generalization 
error behaves as Eg ...... Emin + a-I. For the parameter region aco > a > acI ...... 0.8, we found that the 
generalization error shows a discontinuous phase transition at a ...... ath = 14.7 and at this point the student 
machine suddenly obtains a high generalization ability. For this parameter region, we also investigated 
the asymptotic behavior of the generalization error and found that Eg ...... Emin + a-I, where Emin is the 
best possible value for this parameter region. Next we investigated the case of acI > a > ac2 = .J2log2. 
In this parameter region, the discontinuous phase transition from the poor generalization phase to the 
good generalization phase was again observed. However, we found that the spinodal point asp becomes 
infinity in contrast to the previous region, which means that the quasi-stable solution beyond ath persists 
even in the limit a-+oo. In addition, the asymptotic form of the generalization error for this parameter 
region is very singular from a statistics point of view. We found that Eg ...... Emin + a-2 / 3 • This exponent 
of learning curve is very similar to the learning of blurred boundary in low dimension [18]. 

We next investigated the small a case, namely, ac2 > a > O. For this case, the first order phase 
transition does not occur and the generalization error asymptotically converges to the optimal value as 
Eg ...... Emin + a-2 / 3 • In order to obtain the information about the generalization ability by solving the 
saddle point equations, we assumed that several order parameters appearing in the free· energy are in­
dependent of the replica index, namely, the replica symmetric ansatz. Therefore, it is necessary for us 
to check the validity of the ansatz. We checked this point from different two points of view. We first 
calculated the AT line for our model system and found that the replica symmetric solution is stable if 
the number of examples a is smaller than the critical capacity a c and unstable if a > a c . Therefore, 
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for the asymptotic region, the replica symmetric solution is unstable. However, we should investigate to 
what extent our approximation is reliable. For this purpose, we checked the exponent of the asymptotic 
decay of the learning curves by computer simulation for the two-dimensional case and concluded that our 
approximation is very good in the sense that the exponent may be unchanged even if we calculated the 
replica symmetry breaking solution for our model system. We would like to emphasize that the off-line 
learning algorithm with the Gardner-Derrida cost function leads the student to the convergence to the 
best possible value of the generalization error for all values of parameter a. 

In chapter 4, we investigated the same learning system·as in chapter 3 in the context of the on-line 
learning scenario. 

In on-line learning mode, the processes of learning can be represented by a coupled differential equa­
tions with respect to the macroscopic order parameters I and R, namely, the norm of the student and the 
overlap between the teacher and student. We fist investigated the well-known three learning algorithms, 
namely, perceptron, Hebbian and AdaTron learning algorithms. For these algorithms, if a task of the 
teacher is realizable, namely, a-+oo, the performance of each learning strategy has been investigated by 
several authors. The results can be summarized as follows. 

In the asymptotic region, learning curves for the perceptron, Hebbian and Ada'fron learning algo­
rithms are f.g rv a-1/ 3 , f.g rv a-1/ 2 and f.g rv a-I respectively. Among these results, we found that the 
generalization error for the Ada'fron learning algorithm has faster convergence to zero than the previous 
result f.g rv (3/2)a- 1 which was reported by Biehl and Riegler [98]. If we choose the initial length of the 
student weight optimally, the generalization error converges to zero as f.g rv (4/3)a- 1

. It is important for 
us to bear in mind that in this on-line learning mode, there was no phase transition as we saw in the 
off-line learning scenario. 

As the case of finite a is highly non-trivial, we investigated the behaviors of learning curves in detail. 
At first, for the percept ron learning algorithm, we found that the flows of R and I converge to one of the 
local minima and the student fails to obtain the theoretical lower bound of the generalization error for 
all values of the parameter a. For the Hebbian learning, the generalization error converges to the best 
possible value for the case of a > ac1 rv 0.80, but, if the parameter a is smaller than ac l, an over-training 
occurs and the generalization error converges to worse value which is larger than 0.5 (the case of random 
guess). 

For the Ada'fron learning algorithm, similarly to the perceptron learning algorithm, flows of the order 
parameters are trapped in a local minimum and the corresponding generalization error can not converge 
to the best possible value for all values of parameter a. For both perceptron and AdaTron learning 
algorithms, convergence of the generalization error to the non-optimal value is exponentially fast, and as 
soon as the parameter a goes to infinity, the relaxation time diverges and exponential decays slow down 
to the power law. In addition, the residual error for the Ada'fron learning algorithm is larger than that 
of the perceptron learning algorithm for all values of the width of the reversed wedge a. We concluded 
that the accuracy of the on-line learning is worse than the off-line learning for finite a cases although the 
on-line learning can save the training time in comparison with the off-line learning. 

Nevertheless, we showed that this worse accuracy can be overcome by improving these conventional 
learning algorithms. We first introduced a time dependent learning rate into the learning dynamics 
and optimize it so as to maximize the rate of increase of overlap R at every time step. It is obvious 
that this strategy works well for the case of a larger than acl because the optimal state Ropt for this 
region is +1. For this parameter range, the generalization error of the perceptron and Ada'fron learning 
algorithms converges to the best possible value as rv a-I. Here we should notice that the case a = a c2 = 
~ is special and the learning rate vanishes for this parameter value. On the other hand, for the 
Hebbian learning, the speed of convergence did not change by the optimized time dependent learning 
rate. Although the optimal time dependent learning rate depends on the unknown parameters for the 
student, for example, a or R, we also succeeded in constructing unknown parameter-free optimization 
using the information of the asymptotic form of the learning late. 

For the parameter region a < ac1, we introduced a weight decay term into the Hebbian learning and 
optimized it. As a result, the generalization error converged to the best possible value. 

We also investigated to what extent the query works well on our model system. In the context of the 
learning with query, the student trained by the Hebbian learning algorithm requires inputs lying on the 
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border line u = o. For this learning scenario, we found that the corresponding learning curve converges 
to the optimal value as "" a- l / 2 for the case of a > ac2 = yf210g2 and decays to the best possible value 
exponentially for the case of a < acl = 0.8. In addition, if we introduce the time dependent learning 
rate into the Hebbian learning algorithm with query and optimize it, the convergence rate of the learning 
curves becomes exponential for the parameter range a > ac2. 

In conclusion, in chapter 4, we found that if we improve the on-line learning algorithm by various 
ways, we can obtain the same speed of the convergence to the best possible value as the off-line learning. 

In chapter 5, we investigated the learning process of a non-monotonic perceptron. In this learning 
system, a non-monotonic perceptron learns from the same type of non-monotonic perceptron. Therefore, 
this learning problem is s realizable case. 

Intuitively, it seems that the generalization error converges to zero as long as we choose the conven­
tionallearning algorithm like a percept ron learning algorithm. However, we found that for the parameter 
region a < ac2 = yf210g2, the perceptron and Hebbian learning algorithms lead to a worse generalization 
than the result of a random guess fg = 0.5 contrary to our intuition. We called this curious phenomenon 
the anti-learning. On the other hand, the AdaTron learning failed to obtain the zero residual error for 
all finite a. In order to prevent the student from converging to the non-zero value of the generaliza­
tion error, we introduced several learning algorithms. Among these modifications, the Baysian on-line 
learning showed the best performance. In this Baysian optimization context, we introduced the learning 
function f(Ta(v), u), instead of a learning rate g, into the on-line learning dynamics and optimized it 
so as to accelerate the increase of the order parameter R at every time step. As this learning function 
contains the unknown variable v for the student machine, we averaged it over the distribution of v using 
the well-known Baysian formula. Using this Baysian optimization strategy, the generalization error con­
verged to zero as fg "" 0.883 a-l. We should note that this asymptotic form of the generalization error 
is independent of the width of the reversed wedge a and this exponent is a half of the bound for the 
off-line learning which was obtained by Opper and Haussler [75]. In addition, using this procedure based 
on Baysian statistics, we could obtain the useful information about the optimal queries. 

In the analysis of off-line learning, we assumed that the stochastic process based on Metropolis sam­
plings leads to the distribution with a delta peak around the optimal weight J * if we cool down the 
system sufficiently slowly. Essentially we need such a stochastic process in order to prevent the system 
from being trapped in one of the local minima when the cost function has many local minima. However, 
it is not so clear whether the transition probability of Gibbs-Boltzmann type is the best of all candidates 
as the transition probability. 

In addition, it seems a very important problem how the temperature of the system should be cooled 
down if we take up a new kind of transition probability. This problem is quite general and interesting 
not only for the problem of machine learning but for a lot of combinational optimization problems. In 
order to make this problem clear, we investigated the possibilities of different kind of transition prob­
ability, we especially chose the transition probability based on Tsallis statistics [53, 54] and discussed 
the optimal annealing schedule for the transition probability. We could proved weak ergodicity of the 
inhomogeneous Markov process generated by the generalized transition probability under certain condi­
tions on the parameters. Although the weak ergodicity does not mean the convergence to the optimal 
distribution, it is possible to say that the final state is independent of the initial state and the most 
likely the asymptotic state is the optimal one if we use the optimal annealing schedule T"" rc. We also 
investigated the convergence of the generalized annealing for the case of the one-dimensional parabola 
potential and we concluded that the convergence to the global minimum of the potential as y"" rl if one 
cools the system according to the schedule T "" rl. From these examinations, we concluded that it may 
be possible to obtain the faster convergence to the ground state than the conventional annealing based 
on the Gibbs-Boltzmann statistics. 

Our simulated annealing method based on the new type of the transition probability may be applied 
to various combinational optimization problems. 
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Most of our results in this thesis is rigorous or exact. Of course, it is hard for us to compare the results 
for our simple model with the actual information processing in the complicated real brain. However, some 
of our results are interesting from the experimental psychological point of view. For example, the first 
order phase transition (from the poor generalization to the exedent generalization) which we observed in 
the off-line learning scenario seems to have analogy with a flash in our real life. We also considered that 
the time complexity is one of the important problems in the real brain and investigated the performance 
of the on-line learning for a typical structural mismatch case and compared the results with those of the 
off-line learning. For example, we revealed that the Hebbian learning rule, which has been considered 
as a candidates of the simple learning rules in the real brain and used in the practical situations such 
as robotics, fails to obtain the theoretical lower bound of the generalization error and the over-training 
phenomena appear. Therefore, some sophisticated strategies should be needed and we proposed the 
several candidates for this purpose. The learning strategies which we proposed worked well on our model 
system and some of them succeeded in obtaining the exponential decays, which is much faster than the 
off-line learning, to the best possible value of the generalization error. Our model system is much simpler 
than the real brain, however, when we consider the more complicated network and its learning strategies, 
it should be important for us to take into account the limitation of the power for a single neuronal unit, as 
long as we have a conjecture that high performance of the real brain results from the collective behavior of 
many simple elements. Therefore, we should regard our results as a first step to understand the learning 
way in the real brain. 

On the other hand, the optimization method which depends on the thermal fluctuation as the gener­
alized transition probability may be applicable to the various problems. 

We believe that our work may contribute to some mathematical foundations in the cross-disciplinary 
fields including the brain science, information science and physics. 



Appendix A 

Evaluation of «lnZCB»> 

In this appendix, we derive eqs. (3.10) and (3.26) by the replica method. Under the replica symmetric 
ansatz (3.13) and (3.14), «zn(f3)>>ep is evaluated by the saddle point method with respect to Rand q 
as 

«zn(f3)>>ep = ext{R,q} {i IT dJ a IT 8(J a . J a - N) IT 8(B . J a - N R) II 8(J a . Jb - N q) 
a=O a=l a=l a>b 

n P 

X «II II [e-.e + (1 - e-.e) 0(yp. . Uap.)]»e p } 
a=l p.=1 

= ext{R,q}{Ao(R,q: n) X A1(R,q,f3: n)}, 

_ J a . Xp. 

Uap. = VN ' 

yp. = Ta(Vp.), 

B·xp. 
Vp. = VN. 

In the last line of eq. (A.l), we defined Ao(R, q : n) and Al (R, q, f3 : n) as 

Ao(R,q: n) == i IT dJa IT 8(Ja · J a - N) IT 8(B· J a - NR) 
a=O a=l a=l 

X II 8(Ja · Jb - Nq), 
a>b 

and 
n P 

Al (R, q, f3 : n) == « II II [e-.e + (1 - e-.e)0(yp. . Uap.)]»e p, 
a=lp.=l 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

respectively. We first evaluate Ao(R,q : n). In order to evaluate Ao, we rewrite the delta function 
appearing in Ao by the integral form as 

Ao(R,q, n) = in: dJjexp H F (~JjJ/- qN) + G (~JjB; - NR) + E (~(Jj)' -N) } 1 
= in dJjexp [i {FLJjJJ + GL JjBj + EL(J'J?}] 

),a a<b a a 

X exp[N(_in(n~l)qF -inGR-inE)]. (A.7) 
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By diagonalizing the n x n matrix F 2:.a<b Jj J} + G 2:. a Jj Bj + E 2:. a (Jj)2, we can actually calculate the 
Gaussian integral with respect to Ja. After using the saddle point method with respect to E, F, and G, 
Ao(R,q: n) is evaluated as 

[ 

R2 ] N/2 
Ao (R, q : n) = (1 + n~) X (1 - q r' , 

1-q 
(A.8) 

except for a numerical factor [75]. Next, we evaluate Al (R, q, {3 : n). Since it is assumed that each xp. 
(fL = 1,2··· P) is drawn independently and iteratively from an identical distribution, the average with 
respect to ~p in equation (A.6) is replaced by the product of the averages 

n 

«II[e-.B + (1- e-.B)8(yp.· Uap.)]»cx,,,y,,) , (A.9) 
a=1 

where fL = 1,· .. P. These averages are independent of index fL and therefore we drop fL in the evaluation 
of equation (A.9) from now on. For an input x, the "probability" that y = 1 is returned by the non­
monotonic teacher is 

P(y = +llx) ( 
B·x ) (B.X) (B.X ) =8 - VIi -a +8 VIi -8 VIi-a 

= 8( -v - a) + 8(v) - 8(v - a) 
= 1- P(y = -llx) = P(y = -11- x). (A. 10) 

By taking the average with respect to y first in equation (A.9) using eq. (A. 10) and taking the symmetry 
between x and -x into account, we obtain 

n 

«2[8( -v - a) + 8(v) - 8(v - a)] II [e-.B + (1- e-.B)8(ua)]»x. (A.ll) 
a=1 

It should be remarked that under the RS ansatz (3.13) and (3.14), v, UI, ... Un become a set of joint 
Gaussian random variables which satisfy the condition 

< Ua . Ub >= (1 - q) (Jab + q for a, b = 1 ... , n, 

< V· U a >= R 

< v2 >= 1 

for a = 1···, n, 

(A.12) 

(A.13) 

(A.14) 

when x is uniformly drawn from SN. Here, < ... > stands for the statistical average of .... These joint 
Gaussian random variables are represented explicitly by n + 2 independent Gaussian random variables 
Za (a = 0,1,· .. ,n) and t which satisfy the condition 

< Za . Zb >= (Jab for a, b = 0,1· .. ,n, 
< t . Za >= ° for a = 0,1· .. ,n, 

< t2 >= 1 

as 

Ua = ~ Za + yqt for a = 1· .. ,n, 

v = J 1 - ~2 ZO + ~t. 

(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

Substituting equations (A.18) and (A.19) into equation (A.ll) and taking the average with respect 
to Za (a = 0,1,···, n) and t instead of J, we obtain 

n 

«II[e-.B + (1 - e-.B)8(y· ua)]»CX,y) 
a=1 



= 2 J Dt [J Dzo [6 (-JI- :\0 -J.t -a) +6 (JI- :'zo + J.t) 
-6 (J I - :' Zo + J. t - a) J 1 
x IT J Dza[e-,B + (1 - e-,B) 8( J1=qza + yfgt)] 

a=l 
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= 2 J Dtn (~: t) {3,B(q: t)}n (A.20) 

which means 

A1 (R,q,{3: n) = [2 J Dtn (~: t) {3,B(q: t)}n]P 

For small n, equations (A.8) and (A.21) is expanded with respect to n as 

[
1 q - R2 ] 

Ao(q,R:n),....,l+nxNx -In{l-q)+ ( ) +O(n2), 
2 2 1- q 

and 

respectively. From these, we obtain 

2a J Dtn (~: t) In3,B(q: t)+ 

1 q - R2 } 
"2 ln(l- q) + 2(1- q) , 

which yields equations (3.10) and (3.26). 

(A.21) 

(A.22) 

(A.24) 
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Appendix B 

Stability of the RS solution 

Here, we show that our RS solution is unstable for Q > Q c • The Almeida-Thouless (AT) stability for the 
RS solution is judged by the following quantity for any temperature [62J, 

where 

[ 
[p ] 2 
&t2 ln3.a(q: t) , 

From eq. (3.31), we obtain the following relation for the RS solution 

for t < -V2X 
for -ffx < t < 0 
for 0 < t 

where x = ,8(1 - q), when ,8 is large and 1 - q is small. This yields the relation 

which means that A3 is calculated as 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

in the limit ,8 -> 00. This diverges to infinity unless x is infinite because the right hand side of eq. (B.6) 
includes a term such as o2(t + V2X) in the integral. For Q > Qc, x of our RS solution is finite, which 
means that this solution is thermodynamicilly unstable. 

We should mention that A3 becomes 0 at Q = Q c . Namely, the RS solution loses the AT stability 
just at Q c • This is explained as follows. By partially integrating the left hand side of equation (3.23), we 
obtain 

(B.7) 

Adding equation (3.22) to this equation, we obtain the following relation at Q = Q c 

(B.8) 
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Note that x = 00 at a = aco Then, the right hand side of equation (Bo6) becomes 

2ac [°00 DH1(Rc : t) - 1. 

From equation (B.8), this means that A3 = 0 at a = aco 

(Bo9) 



Appendix C 

Derivation of the differential 
equations of the on-line dynamics 

In this appendix, we explain the derivation of differential equations with respect to 1 and R from the 
on-line learning dynamics which we discussed in chapter 4. In order to treat about the general weight 
function, we use f(Ta(v),u) as the weight function. We should notice that the conventional perceptron, 
Hebbian and AdaTron learnings are recovered if we put 

f(Ta(v),u) -0(-Ta(v)S(u))S(u) 

f(Ta(v), u) = Ta(v) 
f(Ta(v),u) = -u0(-Ta(v)S(v)) 

(C.l) 

(C.2) 
(C.3) 

For this generalized weight function, the dynamics of the on-line learning is described as follows 

J mH = Jm + f(Ta(v),u)x (C.4) 

We first derive the differential equation with respect to 1. Squaring the dynamics (C.4), we obtain 

IJm +112 = IJm l2 + f(Ta(v),u)(Jm· x ) + f(Ta(v),U)2. (C.5) 

Using the notations ZTn = IJml/v'N and Um = v'N(Jm,x)/IJTnI, we rewrite equation (C.5) as 

N(ZTn+1)2 - N(1Tn)2 = <t:.f(Ta(v),u)uTnZTn » + <t:.f(Ta(v),u)2» (C.6) 

where <t:. ... » means the average over the distribution (4.4). We next rewrite the above equation (C.6) 
using the relations (1m+1)2 - (1Tn)2 = (1m+1 + zm)(lm+1 _lTn) -:::= 21dl and liN -:::= dO'. in the limit of N-+oo 
as 

(C.7) 

Next we derive the differential equation with respect to R. Making the product between B and each 
side of the on-line dynamics (C.4), we obtain 

Jm+1·B = Jm·B + f(Ta(v), u)B·x (C.8) 

Using the relation B·Jm = Nzm RTn and v = B·x, we can rewrite the above equation (C.8) as follows 

NImH RTnH' = Nlm RTn + <t:.f(Ta(v),u)v» (C.9) 

By the relations Im+1 Rm+1 _1m Rm -:::= Rdl + ldR and liN -:::= dO'., the above equation (C.9) is rewritten 
as 

dl dR 
R dO'. + 1 dO'. = <t:.f(Ta(v), u)v». (C.lO) 

Substituting the result (C.7), we finally obtain the following differential equation with respect to R 

~~ = ~ [<t:.f(Ta(v), u)>> - ~ [<t:.f (Ta (v) , u)u»Z + <t:.f(Ta(v), u)2»1] . (C.11) 
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Appendix D 

Integrals 

In this appendix, we listed calculations of the integrals appearing in the differential equations of the 
on-line learning. We first consider the structural mismatch case, namely, a simple percept ron learns from 
a non-monotonic perceptron. 

where PR ( u, v) is the distribution we introduced in (4.4). 

Similar for 
2 

<t:vTa(v)~ = ;;:L(l- 2b.) 
V 211" 

2. <t:uS(u)6( -uTa(v))~ 
See Figure (D.l) for the integral regions. 

10 d 1-a 
d u [u

2 + v2 
- 2RUV] h = - u v -exp ----.,,----

-00 -00 211"0- 20-2 

1-
a 1- '!,.v du u2 +v 2 

= - dv -(-o-u + Rv)e--2 -

-00 -00 211" 

1
-

a 
dv roo du(o-u _ Rv)e- u2

;v2 

-00 J p;,v 21r. 

= -~1-a vdve-"; erfc (RV ) + ~1-a dve-6 
2..;'2-rr -00 -120- 211"_00 

The first integral in the above expression is 
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(D.2) 

(D.3) 

(D.4) 
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v 

Figure D.1: Integral regions for the mismatch case. 

Therefore, the integral in the region 1 is 

II = --e-Terfc --- + - dve-~ 
R 0

2 (Ra ) 1 j-a ,.2 
2 yi2; /2(7 27r (7 - 00 

Similarly, 

I2 = _~{1_e-4erfc(Ra)}+_1_ r dve-6 
2yi2; /2(7 2~(7Jo 

R { 0

2 
( Ra ) } 1 jO ,,2 --- 1- e- T erfc -- + - dve-~ 

2yi2; /2(7 2~(7_a 

The total makes 
R 1 

--(1-2~)+ -. 
yi2; yi2; 

3. ~vS(u)e( -uTa(v))~ 

Similarly, 

1 {02 
( Ra ) } R l a 

.2 I2 = f"iL. e-Terfc In -1 + - dve-~. 
2y2~ y2(7 2~(7 0 

(D.5) 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.10) 

(D.ll) 

(D.12) 
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From symmetry of t.he integrand under the change of sign os u and 71, we find 13 = 12 and 14 = h. 
Summing up those results, we have the final value 

The total is 

12 = 2~ 100 u2due- 4 {erfc (;~) _ erfc (a ~~u) } 

13 = 12 

14 =h 

1 roo 2 .2 {(a-Ru) (RU) (a+Ru)} ,j2ii J ° u du e -, erfc V2~ + erfc V2~ - erfc V2~ . 

5. «:uv0(-uTa(v))» 

1 jO j-a ( (v - Ru)2) .2 h -2 - udu vdvexp 2 2 e-' 
7f~ -00 -00 ~ 

2. jO udue- .: j_O+ .. R. (~t + Ru)e-~dt 
27f -00 -00 

1 jO { -~ 100 

} = -2 udue- ·22 ~ [-e-~] .. + Ru V2dte- t2 

7r -00 -00 a~Ru 
2 .. 

~ jO ( a
2 + U2 + 2au) -- uduexp 

27f -00 2~2 

+ ~ jO u2due- ·2' erfc (a ~ RU) 
2v 27f -00 2~ 

~ _ 0
2 jO ((u+aR)2 a2R2) = --e ~ uduexp - + --

27f -00 2~2 2~2 

+ ~ roo u2d.ue-.: erfc (a ~ RU) . 
2v27fh 2~ 

The first term in the above expression is 

(D.13) 

(D.14) 

(D.15) 

(D.16) 

(D.17) 

(D.18) 

(D.19) 

(D.20) 
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Similarly, 

The total is 
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v 

u 

Figure D.2: Integral regions for the realizable case. 

(D.21) 

(D.22) 

(D.23) 

(D.24) 

Next we consider the case in which a non-monotonic perceptron learns from a non-monotonic perceptron. 

1. The asymptotic form of the generalization error E(R) for the case of R = 1 - € and €--+O. 

E(R) 

(D.25) 

The first term El can be rewritten by the change of variable (a + Rv) / V2a I"V (a + v) /2y'E = t as 

El = I¥-J~ dte-!(a+2v'tt)2 erfc(t) 
V': 

l¥-e-022 loo dt(l - 2av'"€t)erfc(t) . 
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(D.26) 

Similarly, 

Vfi .2 
(D.27) E2 -e-'(1 + aVE) 

7r 
E3 0 (D.28) 

E4 
Vfi 

(D.29) 
7r 

E5 0 (D.30) 

Vfi .2 
(D.31) E6 -e-'(l- aVE) 

7r 
The total makes 

Vfi 
(D.32) E(c:) '" -(1 + 2L\). 

7r 

2. «:uSa(u)0( -uTa(v))» 
See. Figure D.2 for the integration regions. 

h = --e-T (o-u + Rv)e-T j -a dv 2100 2 
-00 V2X .-".Rv 

= -- --e-'[-e-']._Rv + -- --e-Terfc U j-a dv v
2 

v
2 

00 R j-a vdv .2 (a - RV) 
V2X -00 V2X -".- 2V2X -00 V2X V2u 

= ~L\erfc (1 + Ra) + ~ j-a ~(_e-·22 )'erfc (a - RV) 
2V2X 0- 2V2X -00 V2X V2u 

u
2 

( 1 + R ) R (1 + R) R2 (1 + R ) rn-=L\erfc In a - rn-=L\erfc ~a + rn-=L\erfc In a . (D.33) 
2v 27r V 2u 2v 27r V 20- 2v 27r V 20-

Using the same technique as the above calculation, 

h 2~ - 2~erfC ( ~o-) - 2~L\erfC ( - 1~: a) 
+ ~L\erfc (_ Ra ) _ ~ + ~L\erfc ( Ra ) 

2V2X V2u 2 V2X 2V2X ..120-
R2 (a) R2 R (1 + R ) 

+ 2V2Xerfc - V2u - 2V2X - 2V2XL\erfc ..120- a 

+ ~erfc (_a_) _ ~L\erfc (_ 1 + R a) + ~L\erfc (_ Ra ). (D.34) 
2V2X ..120- 2V2X ..120- 2V2X ..120-

fa = ~L\erfc (_ Ra ) _ ~L\erfc (1- R a) 
2V2X ..120- 2V2X ..120-

+ ~erfc (~) _ ~L\erfc (1 -R a) 
2V2X V2u 2V2X V2u 

+ ~L\erfc (_ Ra ) _ ~L\erfc (1- R a) (D.35) 
2V2X ..120- 2 V2X ..120-

~erfc (_a_) _ ~ L\erfc ( 1 - R a) 
2V2X ..120- 2V2X ..120-

+ ~L\erfc (_ Ra ) + ~erfc (_a_) 
2V2X V2u 2V2X ..120-

- --L\erfc --a - --L\erfc --a R (1- R) R2 (1- R ) 
2V2X V2u 2V2X V2u (D.36) 
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Therefore, the total is given as «uSaG( -uTa(v))» = 2(h + h + Is + I4 ), namely, 

(1-R)(1_2~). 
.;?:i 

3. «vSa(u)G( -uTa(v))» 

Similarly, 

--~erfc -- - --~erfc --a + --erfc -cr
2 (Ra ) cr

2 (1 -R ) R . ( a ) 
2.;?:i V2cr 2.;?:i V2cr 2.;?:i V2cr 

- --~erfc --a + --~erfc -- - --~erfc --a R (1 -R) R2 (Ra ) R2 (1 -R ) 
2.;?:i V2cr 2.;?:i V2cr 2.;?:i V2cr 

Therefore, the total is given as «vSaG( -uTa(v))» = 2( -h + 12 - Is + 14 ), namely, 

(1- R) 
«vSa(u)G( -uTa(v))» = - .;?:i (1 - 2~). 

211' 

(D.37) 

(D.40) 

(D.41) 

(D.42) 

(D.43) 
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Similarly, 

'T 110 u2du -~ (a + RU) .L2 = - --e 2 erfc 
2 -a...;21r V2a 

(D.44) 

1 fa u2du u
2 

[ (RU) (a+Ru)] 
I3 = 2" Jo ...;21r e- T erfc V2a - erfc V2a (D.45) 

I4 = - --e- T erfc -- - erfc 11-aU2dU u
2 

[ (RU) (a+Ru)] 
2 _ 00 ...;21r V2a V2a (D.46) 

The total makes 

(100 

+ 10
) u2du e- .~2 erfc (a + RU) 

a -a...;21r V2a 

+ ( r j-a) u2du u
2 

[ ( Ru ) (a + RU)] Jo + -00 ...;21re-
T 

erfc V2a - erfc V2a (D.47) 

5. «uv0( -uTa(v))» 

100 udu -~ 1-a vdv _ (.-R
2
u)2 

--e 2 --e 2.-

a...;21r - 00 ...;21ra 

(D.48) 

Using the same technique as the above calculations, 

(D.49) 

(D. 50) 

(D.51) 

The total makes 
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Appendix E 

The weight function in the modified 
AdaTron learning algorithm 

In this appendix, we explain how we introduced the modified weight function G( -Ta(v)Sa(u))h(u)l 
appearing in the AdaTron learning algorithm in subsection 5.3.2. From equations (5.77) and (5.84) in 
subsection 5.3.2, the weight function using the Bayes formula is written as 

(E.1) 

As this expression contains the unknown parameter R to the student, we try to find the suitable learning 
weight function which agrees with the asymptotic form of < r > in the limit of R--+1 [98]. For this 
purpose, we investigate the asymptotic form of n (ylu) as follows. We consider the cases of Ta=y = 1 
and y = -1 separately. 

(I) y = 1 
Using the relation R = 1 - c, c--+O, we find 

n( lu) = H (_ Ru ) _ H ( a - Ru ) + H ( a + Ru ) 
y -/1 - R2 ../1 - R2 ../1 - R2 

1 [ ( -u ) (a -u) (a + u)] ~,fir erfc 2..fi - erfc 2..fi + erfc 2..fi . (E.2) 

The asymptotic form of n (ylu) depends on the range of u. For u > a, the asymptotic form of n (ylu) is 

1 ~ ((u-a)2) n",-- -exp - . 
u - a 7r 4c 

Therefore, < f* > /I = -(u - a). Similarly, we find < r > /I = 0 (0 < 
< r > /l = -u (-a/2 < u < 0) and < r.> /l = -(u + a) (-a < u < -a/2). 
(II) y = -1 
Using the relation R = 1 - c, we find for u > a 

1 ~ ((u - a)2) n"'l- -- -exp - . 
u - a 7r 4c 

(E.3) 

u < a and u < -a), 

(E.4) 

Therefore, the weight function < r > /1 is 0 asymptotically. Similarly, we find < r > /l = 0 
(a/2 < u < a and -a < u < 0), < r > /1 = -u (0 < u < a/2) and < r > /1 = -(a + u) (u < -a). 

From the results of (I) and (II), we find the modified Ada'fron learning algorithm as 

(E.5) 
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where 

h(.) = { 
a-u (u>~) 

-u (-~ < u < ~) 
-a-u (u<-~) 

(E.6) 



Appendix F 

Derivation of the Fokker-Planck 
equation 

Here we explain the derivation of the Fokker-Plank equation for the general transition probability in 
chapter 6. We first consider the master equation which describes the hopping between the nearest 
neighbor local minima; 

dR ( B)l/(l-q) ( B +~. )l/(l-q) -i = 1 + (q - 1) T Pi+1 + 1 + (q - 1) T .-1 Pi - 1 

( 
B+~.)l/(l-q) ( B)l/(l-q) 

- 1+(q-1) T' Pi - 1+(q-1)T Pi. 

For simplicity, we put 

[ 
B] 1/(q-1) 

A= 1+(q-1)T 

Then, the master equation (F.1) is rewritten as 

Introducing, as 
a2 

,= TA2' 

we can rewrite the first two terms on the right hand side of equation (F.3) in the limit a-too as 

(F.1) 

(F.2) 

(F.4) 

(F.5) 

Then, using same technique as the above, the rest of the terms appearing in the right hand side of 
equation (F.3) lead to 

x, , x, , ",_...!:l {Pi - Pi-1 } + _,_ 
- aAq-1 Pi- 1 + 2Aq-1 Pi-1 + aAq-1 Pi + 2Aq-1 Pi Aq-1 a Aq-1 

= 
, 8(xP(x)) 

Aq-1 8x (F.6) 

163 



164 APPENDIX F. DERIVATION OF THE FOKKER-PLANCK EQUATION 

As the result, the master equation (F.1) leads to the next Fokker-Plank equation; 

(F.7) 

where ,(T) and D(T) are represented as 

1 ( B) q/(l-q) 
,(T) = T 1 + (q - 1) T (F.8) 

and 

( 

B)l/(l-q) 
D(T)= 1+(q-1)T (F.9) 
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