

Title	
Author(s)	, · ·
Citation	JOURNAL OF THE RESEARCH INSTITUTE FOR CATALYSIS HOKKAIDO UNIVERSITY, 13(3), 209-221
Issue Date	1966-02
Doc URL	http://hdl.handle.net/2115/24803
Туре	bulletin (article)
File Information	13(3)_P209-221.pdf

J. Res. Inst. Catalysis, Hokkaido Univ., Vol. 13, No. 3, pp. 209 to 221 (1966)

ИЗУЧЕНИЕ СТРОЕНИЯ ПОВЕРХНОСТНЫХ СОЕДИНЕНИЙ ОКИСИ УГЛЕРОДА НА МЕТАЛЛАХ МЕТОДОМ ИНФРАКРАСНОЙ СПЕКТРОСКОПИИ

Н. Н. Кавтарадзе*)

(Received August 21, 1965)**

Инфракрасная спектроскопия используется для изучения адсобционных комплексов на металлах сравнительно недавно, хотя еще в 40-х годах она впервые стала применяться для этой цели А. Н. Терениным¹⁾. Эйшенс²⁾, Гарланд и Янг³⁾, а затем и мы, вначале с В. И. Лыгиным⁴⁾, а затем систематически с Н. П. Соколовой⁵⁻⁸⁾ также стали изуча ть спектры В нашем сообщении мы поверхностных соединений газов и паров. изложим результаты исследования природы и строения адсорбционных комплексов окиси углерода на переходных металлах в широкой области температур и давлений методами инфракрасной спектроскопии. Ранее нами было установлено, что характер адсорбции H₂, C₂H₄ и CO⁹⁻¹⁵⁾ и формы образующихся поверхностных соединений Н₂ зависят от положения металла в периодической системе элементов: граница резкого изменения алсорбционных свойств металлов по отношению к Н₂ и С₂Н₄ находится между Ni, Pd, Pt и металлами подгруппы меди; в случае СО эта граница, по нашим адсорбционным данным^{15,16)}, сдвигается вправо и проходит между металлами подгруппы меди и цинка. Учитывая эти результаты, мы предположили, что кроме указанного резкого изменения адсорбционных свойств металлов по отношению к окиси углерода следует ожидать и различия в строении поверхностных карбонилов металлов 8-ой группы и подгруппы меди¹⁵⁾. Проверить этот вывод, а также выяснить интересующий нас механизм хемосорбции СО на металлах можно пока что лишь методами инфракрасной спектроскопии.

Как известно, образцы, пригодные для исследования инфракрасных спектров поверхностных соединений, должны слабо рассеивать и мало поглощать инфракрасную радиацию. В то же время они должны иметь большое число поверхностей раздела, которые могут заполняться при ад-

^{*)} Институт Физической химии АН СССР.

^{**)} В статье излагается содержание докладов, сделанных автором в Университетах Хоккайдо (Саппоро), Киото, Токио и Токийском Технологическом Институте.

Metal	Initial compound containig	Temperature of decomposition degree	Carrier	Metal content, %	Operating pressure, kg/cm ²	Weight per unit area, mg/cm ²	Temperature of reduction and ageing, °C	Time of reduction, hr	Time of ageing, hr	Pressure after ageing, mmHg	Transmission IR-radiation %	Average size of metal particles Å	References
Cu	Cu (NO) ₃ •6H ₂ O	114,5	$\mathrm{Al}_2\mathrm{O}_3$	12	7.10 ³	24	350	4	4	10-6	10	100	Our data
Cu	$Cu (NO)_3 \cdot 6H_2O$	114,5	SiO_2	12	7.10 ³	24	350	4	5	10^{-6}	10	100	**
Ag	$\mathrm{Ag}(\mathrm{NO})_{3}$	444	$\mathrm{Al}_2\mathrm{O}_3$	8	7.10 ³	24	100	43	3	10-6	15	250	**
Au	HAuCl₄∙4H₂O	254	$\mathrm{Al}_{2}\mathrm{O}_{3}$	12	7.10 ³	24	100	4	5	106	12	80	**
Co	$CO (NO_3)_2 \cdot 6H_2O$	100*	$\mathrm{Al}_{2}\mathrm{O}_{3}$	12	5.10 ³	24	550	6	6	10^{-6}	10	160	"
Pd	$PdCl_2 \cdot 2H_zO$	500	SiO_2	10	5.10 ³	24	300	6	3	10-6	10	140	**
Rh	RhCl ₃ •4H ₂ O	100*	$\mathrm{Al}_{2}\mathrm{O}_{3}^{**}$	2 - 16	-	11	200/400	—	-	10-5	2-4		18
Ni	Ni $(NO_3)_2 \cdot 6H_2O$	56,7	$\mathrm{Al}_2\mathrm{O}_3$	1,5-25		16	300	12–18	3	10 - 5-10 - 6	_	28	2, 19, 20
Ni	Ni (CO)4	200	SiO_2	_	_		—		_				1
Pt	H ₂ PtCl ₆ •6H ₂ O	370	$\mathrm{Al}_2\mathrm{O}_3$	9	—			-		104			2
Ru	RuOHCl ₃		$\mathrm{Al}_{2}\mathrm{O}_{3}$	8	7.10 ³	24	350	4	3	10 - 6	8-12	50	Our data
Rh	RhCl ₃ •4H ₂ O	100	$\mathrm{Al}_2\mathrm{O}_3$	10	7.10 ³	24	300	4	4	10-6	20	_	"

TABLE 1. Preparation of Fine Metal Dispersionand Their Characteristics

* Temperature of crystalline hydrate decomposition

** Alon C

210

сорбции слоем исследуемых газов. Этим требованиям отвечают образцы дисперсных металлов с размером частиц <1µ, распределенные в инертном носителе той же или меньшей дисперсности, их удается получить пропитыванием носителя растворимыми соединениями металлов и прессованим высушенных дисперсий. Условия приготовления образцов приведены в таблице 1. В качестве носителей мы использовали окись

Рис. 1.

Кварцевая кювета для исследования инфракрасных спектров адсорбционных комплексов: 1-корпус, 2шлиф: 3-вакуумная рубашка: 4-окошки из флюорита: 5-вводы для термопары: 6-отросток для крепления держателя. алюминия высокой степени чистоты (уд. поверхность 100,6 м²/г) а аэросил (уд. поверхность 144 м²/г). Полученные образцы помещались в специальную кювету, которая служила как для восстановления образцов до металлов, так и для регистрации инфракрасных спектров газов, адсорбированных на металлической поверхности в широком интервале температур.

В кварцевой кювете (рис. 1) для пропускания инфракрасной радиации имеются два круглых отверстия, к которым приклеены диски из флюорита. Через шлиф (2) вставляется патрубок с вакуумной рубашкой (3) и отростком для крепления держателя образцов (6). Образец прогревался электрическим нагревателем, температура которого измерялась термопарой и регулировалась терморегулятором ЭПВ2-11А. Металлы восстанавливались Н₂ при давлении 100 мм рт. ст. в течение 4-6 часов при температурах, указанных в таблице 1, а затем при тех же температурах тренировались 6-7 часов в вакууме ~10⁻⁶ мм рт. ст. и охлаждались до требуемой температуры. Толщина образцов колебалась от 0,10 до 0,15 мм. Структура образцов изучалась рентгеноструктурными и электрономикроскопическими методами. Рентгеноструктурное исследование показало, что размеры частиц Сu, Ag, Au и Со составляют примерно 150-250 Å. Более точные результаты были получены электрономикроскопическим методом¹⁷⁾. Оказалось, что дисперсии Au и Cu относительно однородны и средние размеры их частиц соответст-

Н. Н. Кавтарадзе

венно равны 80 и 100 Å, а частицы серебра полидисперсны: их средний размер 200 Å, рис. 2; отдельные частицы достигают 800 Å. Частицы Ru и Rh меньше 30 Å. Регистрация спектров полученных образцов проводилась на спектрометре ИКС-12 с призмой из NaCl в интервале частот от 1800-2200 см⁻¹. Спектральная ширина щели изменялась в интервале 15-30 см⁻¹. Прежде чем излагать результаты исследования следует рассмотреть вопрос об интерпретации инфракрасных спектров поверхностных соединений окиси углерода на металлах.

Истолкование спектров химических соединений, как известно, являтся эмпирическим^{21,22)} и основано на корреляции их строения, установленного большим или меньим числом исследований, со спектрами. Однако, эмпирически установленные корреляции не всегда надежно экспериментально обоснованы²¹⁾. Интерпретация спектров поверхностных соединений паров и газов, в частности СО на металлах, еще более сложна: уже в простейшем случае трудно надежно установить корреляции спектров со строением адсорбционных комплексов, поскольку сами спектральные исследования являются пока что практически единственным методом установления их структуры.

Спектры адсорбционных комплексов обычно интерпретируются по аналогии со спектрами объемных соединений²⁾: полосы поглощения в их спектрах, совпадающие или расположенные вблизи полос поглощения характеристических частот тех или иных групп известных соединений принимаются за свидетельство присутствия соответствующих групп в поверхностных комплексах. При этом, как правило, не оговаривается, что поверхностные соединения не имеют полных аналогов среди объемных соединений, не рассматриваются корреляции между спектрами и строением последних, не определяются и закономерности в наблюдаемых спектр-

ах. Между тем все это необходимо для надежного истолкования интересующих нас поверхностных соединений СО на металлах.

Сопоставление всех известных нам нам литературных сведений о структурах и спектрах обычных карбонилов (см. таблицу 2) приводит нас к некоторым заключениям, которыми следует, очевидно, руководствоваться при истолковании спектров поверхностных карбонилов.

Полосы поглощения одноядерных карбонилов группируются в основном в области 2000-2130 см⁻¹. Поскольку в этих карбонилах все группы ---С=О связаны с атомами металлов только линейной связью (M=C=O), поскольку полосы поглощения с частотами от 2000 до 2130 см⁻¹ в ёпектрах поверхностных карбонилов можно приписывать "линейным" группам СО. В спектрах двухядерных карбонилов Fe₂(CO)₉ и Co₂(CO)₉ имеется три области частот: "выских" от 2100 до 1980 см⁻¹, "низких" от 1820 до 1800 см⁻¹ и промежуточных от 1980 до 1820 см⁻¹. Так как, согласно структурным данным^{24,27)} у $Fe_2(CO)_9$ и $Co_2(CO)_8$ имеются группы C=O, связанные как линейной, так и мостиковой связью, при наличии прямой связи между атомами металла Fe-Fe и Co-Co, то "высокочастотные" полосы, положение которых совпадает с положением частот линейных групп в одноядерных карбонилах, можно относить к колебаниям групп СО, связанных с атомами металлов линейной связью, а "низкочастотные" -к колебаниям групп СО, связанных с атомами металлов мостиковой связью. По аналогии со спектрами этих карбонилов "низкочастотные" полосы в спектрах поверхностных соединений СО можно относить к колебаниям "мостиковых" групп. В спектрах двухядерных карбонилов Mn₂(CO)₁₀ и Re₂(CO)₁₀ основные полосы поглощения группируются в "длинноволновом" диапазоне от 2070 до 1970 см⁻¹, а в "низкочастотной" и переходной области они отсутствуют^{40,48}, согласно структурным данным, у этих карбонилов мостиковые связи отсутствуют*) и, по мнению Корея и Даля^{зе)} не могут возникнуть из-за большой длины связи Mn-Mn и Re-Re.

У трехядерных карбонилов состава $Me_3(CO)_{12}$ полосы поглощения лежат только в области 2070–1990 см⁻¹, т.е. в области линейных карбонильных групп, что согласуется с рентгеноструктурными данными^{24,27,61)}. Полосы 1850 и 1830 см⁻¹ у Fe₃(CO)₁₂ имеют малую интенсивность и являются, по-видимому, составными частотами²⁶⁾. Из этого факта следует, что не всегда наличие полос в области 1880–1820 см⁻¹ может служить безоговорочным критерием и присутствия мостиковых групп у поверхностных карбонилов и что при истолковании инфракрасных спектров следует учитывать и интенсивность полос.

^{*)} Ранее предполагалось присутствие и мостиковых связей41, 42⁹.

№ IIII	Соединение	Частота, см ⁻¹											Литература													
1	2	3	:	4	:	5	:	6	:	7	:	8	:	9	:	10	:	1	1	:	12	:		13	:	14
1	Ni (CO) ₄			2128				2057															34	, 48		
2	Ni (CO) ₄							2057,	7															44		
3	Ni (CO) ₄							2040																36		
4	Fe (CO) ₅									2034	:	$2018 \\ 2014 \\ 2009$		1981										50		
5	Fe (CO) ₅					2084				2028	:			1994		1935								23		
6	Fe (CO) ₅									2034	,4	2013,5												44		
7	Fe (CO) ₅									2034		2014												48		
8*	Cr (CO) ₆			$\begin{array}{c} 2108 \\ 2119 \end{array}$										2000)									46		
9*	Cr (CO) ₆			2121		2090								2000										43		
10*	Cr (CO) ₆													2000		1965	5							46		
11	Cr (CO) ₆													2000,	,1									44		
12*	Cr (CO) ₆	2172		$\begin{array}{c} 2118 \\ 2103 \end{array}$		2078				2026	5			2000										45		
13	Cr (CO) ₆													1981										48		
14*	$Mo(CO)_6$			2115		2085								2000										43		
15	$Mo(CO)_6$													2002	,6									44		
16	$Mo(CO)_6$	2186		2124 2112		2092				2027	,			2004										45		

ТАБЛИЦА 2 Положение полос поглощения группы СО в объемных карбонилах

* В литературе имеются сведения о частотах колебаний в длинноволновой области для связей Ме-С

Ħ

Н. Кавтарадзе

Таблица	2	(продолжение)

1	2	3	: 4	: 5	: 6	: 7	: 8	: 9	: 10	: 11	: 12	:	13 : 14
17*	Mo (CO) ₆		2131			2022		2000					46
18	$W (CO)_6$							1997.5					44
19*	W (CO) ₆	2174	2124	2066		2019		1998					45
20	Co ₂ (CO) ₈		$\begin{array}{c} 2112\\ 2107 \end{array}$	2071		2023		$2001 \\ 1991$		1886-1857			51
21	$\operatorname{Co}_2(\operatorname{CO})_6$			2070	2043	2025				1858			29
22	$\operatorname{Co}_8 (\bigcirc \operatorname{O})_2$			2079	2053	2037		2000		1876			31
23	$Co_8 (CO)_2$			2066	2041	2024				1859			30
24	Fe ₂ (CO) ₉			2080		2034					1828		23, 38
25	$Mn_{2}\left(CO\right) _{i0}$			2074			2015	1972					48
26	$Mn_{2}(CO)_{10}$			2068		2039		2006					40
27*	$\operatorname{Re}_2(\operatorname{CO})_{10}$				2044		2013	1983					48
28	$Re_{\hat{z}}$ (CO) ₁₀			2070			2019	1985					40
29	Fe ₃ (CO) ₁₂				2043	2020					1833		25
30*	$Fe_3 (CO)_{12}$				2043	2020		1997		1858	1826		26
31	$Fe_3 (CO)_{12}$				2046	2023				1865	1834		28
32	Ru ₃ (CO) ₁₂			2061		2032	2015						38
33	$Os_3 (CO)_{12}$			$2073 \\ 2064$	2057	$2037 \\ 2026$		$1995 \\ 1986$					38
34	Co ₄ (CO) ₁₂		2110		2058	2030		1996	1905	1873	1838		31
35	Co4 (CO)12			2070 2062	2045	2033				1869			32
36	Rh4 (CO)12			2089 2079	2056	2035			1919	1875			38
37	Rh ₄ (CO) ₁₁			2073	2043	2026		$1995 \\ 1985$		1800			33

i

ł

№ III	Металл			Ľ	астота,	СМ-1					Литера- тура
1	2	3	: 4	: 5	: 6	: 7	':	8	:	9	10
1	Cu		2104								2
2	Cu		2120								5
3	Cu		2095								52
4	AS	2180									6
5	Ag	2165	2099								52
6	Au	2170									6
7	Fe			2020	1961						2
8	Fe				1950						53
9	Fe		-		1998						54
10	Co	$\begin{array}{c} 2179\\ 2160 \end{array}$	2091								55
11	Co	2140	2070		1950			1820			7
12	Ni	2193	2130	2035	1957			1870			56
13	Ni			2033		190)9				57
14	Ni		2075	2041							58
15	Ni		2066								59
16	Ni		2075	2045	1960	19	10				19
17	Ni		2082	$2057 \\ 2035$	1963	193	15				20
18	Ni			2060							55
19	Ru		2160	2020				1850		1780	8
20	Rh		2095	2040 2055 2062 2027	1925	190)5				3
21	$\mathbf{R}\mathbf{h}$			2063							59
22	Rh			2060				1870			8
23	Pd			2055		191	5	1852		1818	57
24	\mathbf{Pd}			2050				1840			58
25	\mathbf{Pd}		2085		1990						4,16
26	Pd		2080					1900			8
27	Pt		2070								57
28	Pt		2075					1852			58
29	Pt			2041				1818			2

ТАБЛИЦА 3 Положение полос поглощения в поверхностных карбонилах

И, наконец, у четырехядерых карбонилов состава Ме₄(CO)₁₂ имеющих, согласно структурным данным⁶¹⁾, линейные и мостиковые карбонильные группы, полосы поглощения лежат как в коротко волновой области — 2100–2000 см⁻¹, характерной для линейных групп CO, так и в "длинно волновой" области — 1880–1820 см⁻¹, свойственной мостиковым связям.

Нами изучены поверхностные соединения окиси углерода на Cu, Ag, Au, Fe, Co, Ni, Ru, Rh и Pd. В таблице З представлены положения полос поглощения в их инфракрасных спектрах, зарегистрированных нами и другими авторами. На рис. 3–7 приведены некоторые из полученных нами спектров.

Из таблицы З видно, что частоты полос поглощения адсорбционных комплексов СО на металлах как и в случае объемных карбонилов группируются в трех областях : 2180–2020, 1900–1820 см⁻¹, а в некоторых случаях в промежуточном диапазоне 1970–1925 см⁻¹. На основании проведенного сопоставления полосы, лежащие в интервале 2180–2020 см⁻¹, можно

Рис. 3. Спектры СО хемосорбированной на металлах подгруппы меди при −160°: а-на меди: о-на серебре, в-на золоте; спектр 1-при давлении окиси углерода 1,3 мм рт. ст., спектр 2-при давлении окиси углерода 15⁻⁵ мм рт. ст.

отнести к колебаниям линейных карбонильных групп. В этом случае можно утверждать, что на всех металлах при хемосорбции СО образуютя поверхностные соединения линейной структуры. Учитывая, что в инфракрасных спектрах СО, прочно адсорбированной Сu, Ag и Au имеется только по одной интенсивной полосе в области 2180–2120 см⁻¹ следует признать существованне на них поверхностных соединений СО только

Н. Н. Кавтарадзе

линейной структуры: предположение о подобной закономерности нами было сделано ранее¹⁵⁾.

Приписывая полосы поглощения в интервале 1900–1820 см⁻¹ мостиковым карбонльным группам, можно принять, что при прочной хемосорбции СО на Fe, Co, Ni, Ru, Rh, Pd и Pt наряду с линейными возникают также и мостиковые структуры. Соотношение этих сосуществующих поверхностных карбонильных форм, как установлено нами с H. П. Соколовой⁸⁾ зависит от природы металлов, от их положения в периодической системе элементов, т. е. в конечном счете от электронной структуры их валентных

Рис. 5. Спектры CO, адсорбированной на одном и том же образце рутения, нанесенном на Al₂O₃: a-150°, б-60°: в-+50°, г-+120°, 1-при давлении 1,3 мм рт. ст., 2-при 10⁻⁵ мм рт. ст.

те же, что и урутения.

оболочек. Так, например, из спектров CO, хемосорбированной на Ru, Rh и Pd (рис. 5–7), видно, что в ряду Ru–Rh–Pd концентрация адсорбционных комплексов CO линейной структуры, превалирующей на Ru, последовательно уменьшается к Pd, а мостиковой формы увеличивается и становится преобладающей на Pd.

В спектрах CO, хемосорбированной на Fe, Co, Ni, Ru, Rh, Pd и Pt присутствуют полосы поглощения, лежащие между 2020 и 1925 см⁻¹, т.е. в переходной области частот. Интерпретация подобных полос затруднена уже в случае объеных карбонилов, еще более она усложняется при переходе к поверхностным соединениям окиси углерода. Отнесение полос в некоторых случаях можно облегчить, если учитывать разницу в положении полос поглощения, присущих линейным и мостиковым струк-

Н. Н. Кавтарадзе

турам и равную примерно 170–90 см⁻¹, а также зависимость положения полос от заполнения и от температуры. Кроме того, следует принимать во внимание и периодическую зависимость хемосорбционных свойств металлов⁹⁻¹⁵.

Литература

- 1) А. Н. Теренин, ЖФХ, 14, 1362 (1940).
- 2) R. P. Eischens, W. A. Pliskin, Advances in Catalysis, 10, 1 (1958).
- 3) A. G. Yang, C. W. Garland, J. Phys. Chem. 61, 1504 (1957).
- 4) Н. Н. Кавтарадзе, В. И. Лыгин, Докл. АН СССР, 138, 616 (1961).
- 5) Н. Н. Кавтарадзе, Н. П. Соколова, Докл. АН СССР, 146, 1367 (1962).
- 6) Н. Н. Кавтарадзе, Н. П. Соколова, ЖФХ, 36, 2804 (1962).
- 7) Н. Н. Кавтарадзе, Н. П. Соколова, ЖФХ, 37, 1004 (1964).
- 8) Н. Н. Кавтарадзе, Н. П. Соколова, Докл. АН СССР, (1965).
- 9) Н. Н. Кавтарадзе, Гетерогенный катализ в химической промышленности; Материалы Всесоюзного совещания 1953г., М. ГНТИХЛ 1955, стр. 150.
- 10) Н. Н. Кавтарадзе, Докл. АН СССР, 117, 822 (1957): ЖФХ, 32, 909, 1055, 1214 (1958).
- 11) Н. Н. Кавтарадзе, Изв. АН СССР, ОХН № 9, 1045 (1958).
- 12) N. N. Kavtaradze, Z. Physik. Chem., Neue Folge, 28, 376 (1961).
- 13) Н. Н. Кавтарадзе, Поверхностные химические соединения и их роль в явлениях адсорбции. В сб.: "Труды конференции по алсорбции, посвященной 200-летию МГУ", Изд. МГУ, 1955, стр. 73.
- 14) Н. Н. Кавтарадзе, Механизм взаимодействия металлов с газами. Изд. "Наука" М., 1964, стр. 36.
- 15) Н. Н. Кавтарадзе, ЖФХ, 36, 628 (1962).
- 16) Н. Н. Кавтарадзе, Е. Г. Борескова, В. И. Лыгин, Кинетика и катализ, 2, 378 (1961).
- 17) Н. Н. Кавтарадзе, Н. П. Соколова, В. М. Лукьянович, Э. М. Евко, Кинетика и катализ, 5, 1095 (1964).
- 18) A. G. Yang, C. W. Garland, J. Phys. Chem., 61, 1504 (1957).
- 19) C. W. Garland, J. Peys. Chem., 63, 1424 (1961).
- 20) I. T. Jates, C. W. Garland, J. Phys. Chem., 65, 617 (617 (1961).
- Л. Беллами, Инфракрасные спектры сложных молекул, М., Изд. иностр лит., 1963.
- 22) К. Лоуссон, Инфракрасные спектры поглощения неорганических веществ, М., "Мир", 1964.
- 23) R. K. Sheline, K. S. Pitzer, J. Am. Chem. Soc., 72, 1107 (1950).
- 24) R. V. J. Ewens & M. W. Lister, Trans. Faraday Soc., 35, 681 (1939).
- 25) R. K. Sheline, J. Am. Chem. Soc., 73, 1615 (1951).
- 26) F. A.Cotoon, J. Wilkinson, J. Am. Chem. Soc., 79, 752 (1957).
- 27) O. S. Mills, Chemistry & Industry, 73, (1957).
- 28) K. Noak, Helv. Chim. Acta, 45, 1947 (1962).

- 29) T. W. Cable, R. S. Nyholm, R. K. S heline, J. Am. Chem. Soc., 76, 3373 (1954).
- 30) H. W. Sternberg, J. Wender, R. A. Friedel, M. Orchin, J. Am. Chem. Soc., 75, 2712 (1953).
- 31) R. A. Friedel, J. Wender, S. L. Shufler, H. W. Sternberg, J. Am. Chem. Soc., 77, 3951 (1955).
- 32) F. A. Cotton, R. R. Monchamp, J. Chem. Soc. (London), 1883 (1960).
- 33) L. O. Brockway, P. Cross, J. Chem. Phys., 3, 828, (1935).
- 34) L. H. Jones, J. Chem. Phys., 28, 1215 (1958).
- 35) L. H. Jones, J. Chem. Phys., 23, 2448 (1955).
- 36) M. Bigorgne, J. Inorg. Nucl. Chem., 8, 113 (1958).
- 37) M. Bigorgne, Compt. Rend., 246, 1685 (1958).
- 38) W. Beck, K. Lottes, Chem. Ber., 94, 2578 (1961).
- 39) E. K. Corey, L. F. Dahl, J. Am. Chem. Soc., 83, 2903 (1961).
- 40) A. Cotton, A. Liehr, J. Wilkinson, J. Inorg. Nucl. Chem., 2, 141 (1956).
- 41) W. Hieber, H. Schulten, Z. anorg. Chem., 243, 164 (1939).
- 42) W. Hieber, R. Schuh, H. Fuchs, A. anorg. Chem., 248, (1941).
- 43) N. J. Hawkins, H. C. Mattraw, W. W. Sabol & D. R. Carpenter, J. Chem. Phys., 23, 2422 (1955).
- 44) G. Bor, Acta Chim. Acad. Sci. Hung., 34, 315 (1962).
- 45) L. H. Jones, Spectr. Acta, 19, 329 (1963).
- 46) H. Murata, K. Kawai, J. Chem. Phys., 27, 605 (1957).
- 47) S. L. Shufler, H. W. Sternberg, R. A. Friedel, J. Am. Chem. Soc., 78, 2687 (1956).
- 48) E. W. Abel, Quart. Rev., 17, 133 (1963).
- 49) W. F. Edgeii, W. E. Wilson, R. Summit, Spectr. Acta, 19, 863 (1963).
- 50) G. Bor, Spectr. Acta, 19, 2065 (1963).
- 51) R. A. Gardner, R. M. Petrucci, J. Phys. Chem. 167, 1376 (1963).
- 52) G. Bluholder, J. Chem. Phys., 36, 2036 (1962)
- 53) G. Bluholder, L. Neff, J. Phys. Chem., 66, 1664 (1962).
- 54) R. A. Gardner, R. H. Petrucci, J. Am. Chem. Soc., 82, 5051 (1960).
- 55) А. Н. Теренин, Проблемы кинетики и катализ, 10, 314 (1959).
- 56) R. P. Eischens, W. A. Pliskin, S. A. Francis, J. Chem. Phys., 22, 1786 (1954).
- 57) R. P. Eischens, S. A. Francis, W. A. Pliskin, J. Phys. Chem., 60, 194 (1956).
- 58) H. L. Pickering, H. C. Eckstrom, J. Phys. Chem., 63, 512 (1959).
- 59) L. F. Dehl, E. Ishishi, R. E. Rundle, J. Chem. Phys., 26, 1750 (1957).
- 60) P. Corradini, J. Chem. Phys., 31, 1676 (1959).