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Tailoring two-photon interference with phase dispersion
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We present a complete analytical formalism of the effect of phase dispersion on the Hong-Ou-Mandel dip
with cw pumping, including higher-order terms. We show that the Hong-Ou-Mandel dip is strongly modified
by the frequency-dependent phase modulation and even becomes a bump when the phase dispersion is a
special step function. We also show that the phase dispersion function can be fully reconstructed via Fourier
transformation from the measurement result of the Hong-Ou-Mandel dip when the dispersion function is
antisymmetric. An experimental demonstration of the proposed method using a bandpass filter as a test sample

is also presented.
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The two-photon interference phenomenon with a beam
splitter was first demonstrated by Hong, Ou, and Mandel
(HOM) [1]. They used a pair of photons generated via spon-
taneous parametric downconversion (SPDC), in which a
single photon of a pumping laser is converted into a pair of
photons. These two photons were sent to a 50-50 beam split-
ter and were detected by single-photon counters after the
beam splitter. They measured the number of coincidence
events while scanning an optical delay added to the path of
one of the photons, and found a sharp dip (a HOM dip), at
which the delay was exactly zero. This two-photon interfer-
ence phenomenon has become an important tool [2] in a
variety of fields. In the field of quantum information, the
phenomenon is used in Bell-state analyzers [3] for quantum
teleportation [4] and in quantum gates [5,6] and quantum
filters [7] for linear optics quantum computation [8]. Re-
cently, this phenomenon has come to be used in the field of
optical tomography [9]. The effect of phase dispersion on
two-photon interference, or the HOM dip, has also been at-
tracting attention because the phase dispersion shows inter-
esting characteristics of the phenomenon and of the down-
converted photon pairs.

Franson [10] analyzed the effect of dispersion up to the
second order and found that the width of the HOM dip and
the degree of coincidence were unchanged, even when the
dispersions experienced by each of the photons were similar.
This phenomenon, called dispersion cancellation, was ex-
perimentally demonstrated by Steinberg et al. [11]. Later,
Grice and Walmsley presented a detailed analysis of disper-
sion cancellation for photon pairs produced by ultrashort
pulses [12]. They studied the effect of external dispersion up
to the second order and found that the shape of the HOM dip
is distorted and becomes asymmetric with a short (200 fs)
pump pulse. Such an asymmetric HOM dip with femtosec-
ond pulse laser pumping has been reported in the literature
[13,14]. However, the effect of phase dispersion, including
higher-order terms, on the shape of the HOM dip has not
been analytically formulated [15] either for pulse laser
pumping or for cw laser pumping.
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In this Rapid Communication, we present the complete
analytical formalism of the effect of phase dispersion on the
HOM dip with cw pumping, including higher-order terms.
We show that the HOM dip is strongly modified by phase
dispersion with higher-order terms and even becomes a
“bump” when the phase dispersion is a special step function.
Such analysis is not possible by previous methods. Under
this condition, these two photons show a kind of antibunch-
ing, which is opposite to the phenomenon that “two photons
always emerge together” [16] observed without phase disper-
sion. This type of quantum interference may be useful for
quantum-information processing.

In addition, we found that the phase dispersion function
can be fully reconstructed via Fourier transformation from
the measurement result of the HOM dip when the dispersion
function is antisymmetric. We also performed an experimen-
tal demonstration of this method using a bandpass filter as a
test sample. We observed a strongly distorted HOM dip, even
with cw pumping, when a test sample having higher-order
phase dispersion was inserted in one of the photon paths. The
reconstructed phase dispersion is compared to that calculated
for an imaginary monolayer dielectric filter.

Suppose we have a sample material with a phase disper-
sion in the path of one of twin photons with a complex
transmittance 7(w)=r(w)expli(w)], where o, r(w), and
J(w) are the frequency, real transmittance, and phase shift,
respectively, of the photons. Using the weight function
(o), wy—w;) of the parametric fluorescence emitted at w,
and wy— w; with pump wavelength w,, the wave function of
the twin photons after passing through the material is

|‘I'>=f 7(w)) plo, 0y — 0)|o)|wy - ))do;. (1)
0

Note that in their pioneering paper Hong et al. assumed that
¢(w,,wy—w;) is real and that no phase dispersion existed in
the path of the entangled photons [1], i.e., 7(w)=1.

The joint probability of detection of the photons at both
detectors at times ¢ and 7+ 7 is given by

Py(7,87) = K{T*|G(7)|* + R*|G(267~ 7)|?
-RT[G (G(2o7— 1) +c.c.]}, (2)
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o

G(7) = 7 w/2 + 0) p(wy/2 + w, w2 — w)

—00

Xexp(— iwT)dw, (3)

where K, o7, T, and R denote the constant characteristics of
the detectors, the amount of optical delay inserted in one of
the paths, and the transmittance and reflectance of the beam
splitter, respectively. Here the integration region (—wy/2 to
©) of w was replaced by —© to o,

The coincidence count probability N(J7) is obtained by
integrating P ,(7, 67) over the coincidence time window T¢c
of a few nanoseconds, which is much longer than the coher-
ent time of parametric fluorescence (typically a few picosec-
onds). In this case, the integration region of 7 can be replaced
by the region —oo to . Thus, N(57) is given as follows:

N(67) = fo K{T*|G(7))* + R*|G(267- 7)|?

—RT[G'(NGQ287—7) +c.c.]idr. 4)
By substituting Eq. (3) in Eq. (4), we have

[

|W(r, 5T)|2d7', (5)

N(67) = KJ
where
W(r, 61) = Tfm 7 wy/2 + ) P(wy/2 + w, w2 — w)
Xexp(— iwT)dw

- Rf (w2 + 0) p(wy/2 + 0, w2 — w)

—00

X explio(7—267)]dw. (6)

Using Parseval’s theorem [17], Eq. (5) is transformed into
the following equation:

N(67) = %J

By substituting Eq. (6) in Eq. (7), we have

oc 2
f W(r, 67)exp(—iowndr| dw. (7)

[

N(67) = 277Kf IT7(wy/2 — ©) (w2 — w,wy/2 + ®)

—Ry(wy/2 + 0) p(wy/2 + w,wy/2 — o)
Xexp(— iw2d7)|*dw. (8)

Equation (8) indicates that the coincidence counting rate
N(87) is symmetric when 7(wy/2+w) has only one- and
two-order terms [18]. However, N(J87) can be asymmetric
when 7(w,/2+ w) is not a real constant due to phase disper-
sion.

As an example of the case in which the effect of higher-
order terms is significant, we calculated N(57) [Fig. 1(b)] for
the phase dispersion ¢{w)=Arg[ 7(w)], which shows a sud-
den change in ¢, at the center wavelength w,/2 [Fig. 1(a)].
When ¢,=0, i.e., phase dispersion does not exist, the graph
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FIG. 1. (Color online) (a) Phase dispersion of the sample mate-
rial inserted in the path of one of twin photons (solid line). The
dotted line shows the absolute value of 7(w). (b) The calculated
HOM dip for various phase gaps ¢, using the present theory. When
i,=, the coincidence count probability shows a bump rather than
the usual dip structure.

shows a typical HOM dip. However, as ¢, increases, the
right side of the dip starts to rise and the shape of N(57)
becomes asymmetric. When the phase gap i,=, the shape
of N(87) becomes symmetric. However, the HOM dip is not
a dip, but rather a bump [19]. In this condition, the coinci-
dence probability becomes unity when the path length differ-
ence is zero. It means that these two photons are output from
each output port one by one (antibunching), which is oppo-
site to the phenomenon of two photons always emerging to-
gether [16] observed without phase dispersion. As #, in-
creases further, the center part of the bump slides to the left
and the shape gradually returns to the familiar HOM dip.

We have derived an exact formalism that shows how the
HOM dip is distorted with arbitrary phase dispersion. Next,
we show that the phase dispersion function can be estimated
from the measured HOM dip.

By expanding and Fourier-transforming the right-hand
side of Eq. (8), we have the following equation:

N wy/2 = 0) 7' (wy/2 + ©) P02 — w, w2 + ®)
X ¢ (wy/2 + w,wy/2 — )

LJOO N() — N(67)

=3RT 3 Py exp(—iw267)d(267), (9)

where
N(x) = ZWKf (T (w2 - 0) P(wy/2 — ©,wy/2 + w)|?

+|Rp(wy/2 + ©) pwy/2 + 0,02 — w)[*}do  (10)

corresponds to the coincidence count probability with suffi-
ciently large &7.
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FIG. 2. (Color online) Schematic diagram of the experimental
setup.

Suppose that we first perform a reference experiment
without inserting the sample and obtain a coincidence rate
(HOM dip) N’ (87). Using the measured N’ (57), we calculate
F'(w), which is in the right-hand side of Eq. (9), from the
measured coincidence rate N'(87),
1 fx N'(®) = N'(67)

F(w) = 27K

SRT exp(— iw287)d(257).

(11)

Next, we measure the coincidence rate N(S7) with the
sample inserted in the path of one of the twin photons and
calculate F(w):

1 f * N() = N(67)

Flo)=——
(@) e 27K

SRT exp(— iw267)d(267).

(12)

Then, from Egs. (9), (11), and (12) the complex transmit-
tance of the sample can be estimated by the following equa-
tion:

F(w)

m. (13)

Wwy/2 - w) 7 (wy/2 + w) =

The unknown phase dispersion (w) of the material can

be found when we assume that /(w) is antisymmetric with
respect to wy/2 [20], as follows:

1 F(w)

Wwy/2 — w) = 2Arg<F,(w)>. (14)

We performed a proof-of principle experiment using a
narrow bandpass optical filter as a test sample. A schematic
diagram of the experimental setup is shown in Fig. 2 [21]. A
B-barium borate (BBO) crystal cut for the type-II twin-beam
condition [22] was pumped by an argon ion laser at a wave-
length of 351.1 nm. The pump beam was focused in the
BBO crystal using a convex lens to increase the photon flux
[23]. The signal photon and idler photon were emitted at
702.2 nm and have horizontal and vertical polarization, re-
spectively. As a test sample, a bandpass filter (center wave-
length 702.2 nm, full width at half maximum 0.3 nm) was
inserted before the fiber coupler. Each of the photons was
then coupled to polarization-maintaining single-mode fibers
(PMFs). Then, we twisted the PMF for the signal photon so
that the polarization of the signal photon was changed to
vertical. Thus, signal and idler photons with the same polar-
ization (vertical polarization) were injected onto a 50-50

PHYSICAL REVIEW A 74, 011801(R) (2006)

(2]

= 4400LM oy )
g 4000 . s

» B :

§ 2000 .

k) e @)
o Y

e L. ¥
3 -400-200 O 200 400

Path difference ¢ ér[um]

0

o

@

@ 12000 M‘. R cad
210000 | o

[%2] .

§ 5.

s 5000 .

3 = (b)
£

3 ok

77000 0 1000
Path difference c ér[um]

FIG. 3. Measured coincidence count rate without (a) and with
(b) the sample. A narrow bandpass filter, the transmission spectrum
of which is shown in the inset of Fig. 4, was used as a test sample.

beam splitter. The arrival timing of the two photons at the
beam splitter was controlled using an optical delay. After the
quantum interference that occurs at the beam splitter, the
photons were reflected by mirrors [24], coupled into single-
mode fibers, and counted by single-photon counters (SPCM-
AQ-FC, Perkin-Elmer).

The obtained HOM dip with and without the sample is
shown in Figs. 3(b) and 3(a), respectively. The dip was dis-
torted and became asymmetric when the narrow bandpass
filter was inserted into one of the optical paths [Fig. 3(b)].
The coincidence count rate with sufficiently large | 7] in Fig.
3(b) is smaller than that in Fig. 3(a) because some of the
fluorescence was cut by the bandpass filter.

Next, we attempted to reconstruct the phase dispersion of
the bandpass filter from the data shown in Figs. 3(a) and 3(b)
[Egs. (10)—(13)]. The reconstructed phase dispersion is
shown as a dotted line in Fig. 4. The center frequency used
for the reconstruction is wy/2=2.684 36 X 10'>. For compari-
son, a phase dispersion curve of an imaginary single-layer
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FIG. 4. (Color online) A reconstructed phase distribution (dotted
line) of the sample using the data shown in Fig. 3. The solid line
shows a calculated phase distribution for a monolayer filter, the
transmission of which (inset, solid line) is similar to that of the
actual sample (inset, dotted line).
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filter, the center wavelength and transmission spectrum (solid
line in the inset of Fig. 4) of which are similar to those of the
bandpass filter (dotted line in the inset of Fig. 4), is shown as
the solid line in Fig. 4. Note that the measured transmission
spectrum of the filter has a symmetric shape, suggesting that
the phase dispersion curve satisfies the required assumptions
for the estimation. The average inclination of the recon-
structed phase dispersion is similar to that of the imaginary
single-layer filter, but some inflection points that appear in
the reconstructed data (dotted line) are not observed in the
calculation for the imaginary filter (solid line). This may be
because the actual filter has a complicated multilayer struc-
ture to suppress the leakage outside of the bandpass region,

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 74, 011801(R) (2006)

and so the reconstructed phase dispersion is different from
the actual phase dispersion of the filter. This conjecture is
supported by the fact that the HOM dip simulated using the
calculated phase dispersion (solid line) was similar to the
measured HOM dip [Fig. 3(b)] but did not show the bump in
the left shoulder of the measured HOM dip.
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