
 

Instructions for use

Title Physical and functional interactions between ZIP kinase and UbcH5

Author(s) Ohbayashi, Norihiko; Okada, Katsuya; Kawakami, Shiho; Togi, Sumihito; Sato, Noriko; Ikeda, Osamu; Kamitani,
Shinya; Muromoto, Ryuta; Sekine, Yuichi; Kawai, Taro; Akira, Shizuo; Matsuda, Tadashi

Citation Biochemical and Biophysical Research Communications, 372(4), 708-712
https://doi.org/10.1016/j.bbrc.2008.05.113

Issue Date 2008-08-08

Doc URL http://hdl.handle.net/2115/33898

Type article (author version)

File Information BBRC-ZIPK.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


1

Title: Physical and functional interactions between ZIP kinase and UbcH5

Authors: Norihiko Ohbayashi1*, Katsuya Okada1*, Shiho Kawakami1, Sumihito Togi1,

Noriko Sato1, Osamu Ikeda1, Shinya Kamitani1, Ryuta Muromoto1, Yuichi Sekine1, Taro

Kawai2, Shizuo Akira2 and Tadashi Matsuda1, *

Affiliation: 1Department of Immunology, Graduate School of Pharmaceutical Sciences

Hokkaido University, Sapporo 060-0812 Japan, 2Department of Host Defense, Research

Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871,

Japan

*These authors contributed equally to this work.

*Address for manuscript correspondence: Dr. Tadashi Matsuda, Department of Immunology,

Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi

6, Sapporo 060-0812, Japan TEL: 81-11-706-3243, FAX: 81-11-706-4990, E-mail:

tmatsuda@pharm.hokudai.ac.jp

Running title: Interactions between ZIPK with UbcH5



2

Abstract

Zipper-interacting protein kinase (ZIPK) is a widely expressed serine/threonine kinase that

has been implicated in cell death and transcriptional regulation, but its mechanism of

regulation remains unknown. In our previous study, we showed that leukemia inhibitory

factor stimulated threonine-265 phosphorylation of ZIPK, thereby leading to

phosphorylation and activation of signal transducer and activator of transcription 3. Here,

we identified UbcH5c as a novel ZIPK-binding partner by yeast two-hybrid screening.

Importantly, we found that UbcH5c induced ubiquitination of ZIPK. Small-interfering

RNA-mediated reduction of endogenous UbcH5 expression decreased ZIPK ubiquitination.

Furthermore, coexpression of UbcH5c with ZIPK influenced promyelocytic leukemia

protein nuclear body (PML-NB) formation. These results suggest that UbcH5 regulates

ZIPK accumulation in PML-NBs by interacting with ZIPK and stimulating its

ubiquitination.

Keywords: ZIPK, UbcH5, ubiquitination, PML nuclear body
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Introduction

  Zipper-interacting protein kinase (ZIPK) was originally identified as a binding partner of

activating transcription factor 4 (ATF4), a member of the activating transcription

factor/cyclic AMP-responsive element-binding family of transcription factor proteins [1,2].

ZIPK aggregates through its C-terminal leucine zipper (LZ) structure, thereby becoming an

active enzyme. Ectopic expression of ZIPK in NIH 3T3 cells induced apoptosis, whereas a

kinase-inactive mutant protein, ZIPK K42A, failed to induce apoptosis, indicating that

ZIPK stimulates apoptosis via its catalytic activity [1]. Previous studies showed that ZIPK,

in collaboration with Daxx and Par-4, induced apoptosis from promyelocytic leukemia

protein nuclear bodies (PML-NBs) [3]. However, the mechanisms responsible for the

activation of ZIPK and the downstream substrates that mediate its apoptotic activity remain

unknown. Recently, we demonstrated that ZIPK specifically interacted with signal

transducer and activator of transcription (STAT) 3, phosphorylated STAT3 on serine-727

and enhanced its transcriptional activity [4]. We further demonstrated that leukemia

inhibitory factor (LIF) induced threonine-265 (Thr265) phosphorylation of ZIPK, which is

critical for its kinase activation [5], suggesting that LIF signaling mediates ZIPK/STAT3
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activation through phosphorylation of Thr265.

  To investigate the regulatory mechanisms of ZIPK, we sought to identify ZIPK-

interacting proteins by yeast two-hybrid screening with the kinase domain of ZIPK as bait.

We identified UbcH5c as a novel binding partner of ZIPK. UbcH5c is a ubiquitously

expressed E2 ubiquitin conjugating enzyme that is closely related to UbcH5a and UbcH5b

[6]. Here, we show that UbcH5c acts as a ZIPK ubiquitin ligase and influences ZIPK

accumulation in PML-NBs.
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Materials and Methods

Reagents and antibodies. Expression vectors for epitope-tagged ZIPK, ZIPK kinase

domain (KD) and ZIPK leucine zipper domain (LZ) were described previously [1,2].

Expression vectors for UbcH5a, UbcH5b, UbcH5c and ubiquitin (Ub)-unbound mutant

CA [7] were kindly provided by Dr. K. Iwai (Osaka City University, Osaka, Japan). An

anti-Myc antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). An

anti-FLAG M2 monoclonal antibody was purchased from Sigma (St. Louis, MO). An

anti-ZIPK antibody was purchased from BIOMOL Research Laboratories (Plymouth,

PA). An anti-UbcH5 antibody was purchased from Boston Biochem (Cambridge, MA).

An anti-actin antibody was purchased from Chemicon International (Temecula, CA).

Yeast two-hybrid screening. Gal4-ZIPK was constructed by fusing the coding sequence

for the kinase domain (amino acids 1-275) of mouse ZIPK in-frame with the Gal4 DNA-

binding domain in the pGBKT7 vector (Clontech, Palo Alto, CA). Saccharomyces

cerevisiae AH109 cells were transformed with pGal4-ZIPK and mated with Y187 cells

containing a pretransformed mouse 11-day embryo MATCHMAKER cDNA library
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(Clontech). Approximately 2.6 x 106 colonies were screened as previously described [4].

Plasmid DNAs derived from positive clones were extracted and sequenced.

Cell culture, transfection, siRNAs and RT-PCR. Human cervix carcinoma cell line HeLa

and human embryonic kidney carcinoma cell line 293T cells were maintained in DMEM

containing 10% FCS. 293T cells were transfected using a standard calcium precipitation

protocol [8]. The siRNAs targeting human UbcH5a, UbcH5b and UbcH5c used in the

present study were as follows: UbcH5a, 5’-CCAAAGAUUGCUUUCACAATT-3’;

UbcH5b, 5’-CAGUGGUCUCCAGCACUATT-3’; and UbcH5c, 5’-

UCAAGGCGGUGUAUUCUUUTT-3'. HeLa cells were transfected using jetPEI

(PolyPlus-Transfection, Strasbourg, France) according to the manufacturer's instructions.

HeLa cells were plated on 24-well plates at 2 x 104 cells/well and incubated with a

siRNA-Lipofectamine 2000 (Invitrogen, Carlsbad, CA) mixture at 37°C for 4 h,

followed by the addition of fresh medium containing 10% FCS [9]. At 24 h after

transfection, the cells were harvested and subjected to western blot analysis and RT-PCR.

Total RNAs were prepared using the TRI reagent (Sigma-Aldrich) and used for RT-PCR.

RT-PCR was performed using an RT-PCR High -Plus- Kit (TOYOBO, Tokyo, Japan).
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The following primers were used for amplification: UbcH5a, 5'-

AGCGCATATCAAGGTGGAGT-3' (forward) and 5'-GTCAGAGCTGGTGACCATTG-

3' (reverse); UbcH5b, 5'-CAATAATGGGGCCAAATGAC-3' (forward) and 5'-

GAGCCTTTTCTTTCCCATCC-3' (reverse); UbcH5c, 5'-

CCAGACGACAAGCACACACT-3' (forward) and 5'-TGGGTTTGGATCACATAGCA-

3' (reverse).

Immunoprecipitation, immunoblotting and in vivo ubiquitination. Immunoprecipitation

and immunoblotting were performed as described previously [8]. The cells were

harvested and lysed in lysis buffer (50 mM Tris-HCl pH 7.4, 0.15 M NaCl, 1% NP-40, 1

mM sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride and 10 mg/ml each of

aprotinin, pepstatin and leupeptin). Immunoprecipitates from the cell lysates were

resolved by SDS-PAGE, transferred to Immobilon filters (Millipore, Bedford, MA) and

immunoblotted with relevant antibodies. Immunoreactive proteins were visualized using

an enhanced chemiluminescence detection system (Millipore). For in vivo ubiquitination

assays of ZIPK, His-tagged proteins were purified as previously described [10] and

analyzed by immunoblotting with anti-Myc and anti-ZIPK antibodies.
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Indirect immunofluorescence microscopy. HeLa cells (5 x 104) seeded on glass plates

were transfected using Metafectene (Biontex Laboratories GmbH, München, Germany).

At 48 h after transfection, the cells were fixed with 4% paraformaldehyde and incubated

with appropriate antibodies. The cells were then incubated with FITC-conjugated anti-

rabbit IgG (Chemicon International) and observed under a confocal laser fluorescence

microscope [11]. Images were obtained using a Carl Zeiss LSM 510 laser scanning

microscope (Thornwood, NY) equipped with an Apochromat x63/1.4 oil immersion

objective and x4 zoom.
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Results and Discussion

Molecular interactions between ZIPK and UbcH5c

  We performed yeast two-hybrid screening of a mouse embryo cDNA library using the

kinase domain of ZIPK (amino acids 1-275) as bait. From a screen of about 2.6 x 106

transformants, we identified several positive clones. Sequence analyses revealed that one of

these clones encoded the entire UbcH5c protein (amino acids 1-147). We first examined

whether UbcH5c binds to ZIPK in mammalian cells. 293T cells were transfected with His-

tagged UbcH5c WT or CA together with Myc-tagged ZIPK. Western blot analysis of

immunoprecipitates using an anti-His antibody revealed that ZIPK interacted with both

UbcH5c WT and CA, suggesting that UbcH5c binds to ZIPK independently of ubiquitin in

293T cells (Fig. 1A). To further delineate the domains in ZIPK required for the interaction

with UbcH5c in 293T cells, we used two sets of mutant ZIPK proteins (ZIPK KD and LZ).

293T cells were transiently transfected with His-tagged UbcH5c and Myc-tagged ZIPK KD

or LZ. As shown in Fig. 1B and C, the N-terminal kinase domain of ZIPK (ZIPK KD), but

not the C-terminal leucine zipper domain (ZIPK LZ), interacted with UbcH5c, consistent
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with the finding that ZIPK KD interacts with UbcH5c in yeast. We further examined

whether ZIPK interacted with UbcH5a and UbcH5b, which are closely related to UbcH5c,

in 293T cells. His-tagged UbcH5a, UbcH5b or UbcH5c together with Myc-tagged ZIPK

were transiently expressed in 293T cells. Immunoprecipitation using an anti-His antibody

revealed that ZIPK interacted with all three UbcH5 proteins in 293T cells (Fig. 1D).

UbcH5c promotes ZIPK ubiquitination

  Next, we examined whether ZIPK is a target of UbcH5c-mediated ubiquitination. 293T

cells were transfected with FLAG-tagged ZIPK and/or His-tagged UbcH5c WT or CA

together with His-tagged ubiquitin. After preparation of total cell lysates, ubiquitinated

proteins were purified on Ni-NTA beads and subjected to immunoblot analysis using an

anti-FLAG antibody. As shown in Fig. 2A, ZIPK was slightly ubiquitinated in vivo when

coexpressed with ubiquitin. Importantly, UbcH5c WT, but not CA, markedly enhanced

ZIPK ubiquitination. We further examined the domains in ZIPK required for ubiquitination

by UbcH5c in 293T cells, and used the ZIPK KD and LZ mutants. 293T cells were

transiently transfected with His-tagged UbcH5c, Ub and Myc-tagged ZIPK KD or LZ. As
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shown in Fig. 2B, ZIPK KD was ubiquitinated by UbcH5c to a greater extent than ZIPK

LZ, suggesting that the major sites in ZIPK for UbcH5c-mediated ubiquitination may exist

within the kinase domain. Furthermore, overexpression of UbcH5c WT together with

ubiquitin promoted endogenous ZIPK ubiquitination in 293T cells (Fig. 2C). Since

ubiquitinated proteins are often degraded through a proteasome-dependent pathway, we

investigated the potential for UbcH5c to affect the steady-state level of ZIPK protein

expression. However, we did not observe any significant alterations in the ZIPK protein

contents (Fig. 2C).

Reduction of endogenous UbcH5 reduces ZIPK ubiquitination in HeLa cells

  To further explore whether UbcH5c ubiquitinates ZIPK in vivo, we used siRNAs to

reduce the endogenous expression of UbcH5 in HeLa cells. Specific siRNAs for UbcH5a,

UbcH5b and UbcH5c or a control siRNA were transfected into HeLa cells. Total cell lysate,

or RNA isolated from the transfected cells was subjected to western blot analysis and RT-

PCR, which confirmed reductions in the respective UbcH5 mRNA expression levels. As

shown in Fig. 3A (lower panels), an approximately 70% reduction in the UbcH5 protein
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contents was observed in HeLa cells following combined expression of the UbcH5 siRNAs.

We then determined the effects of the UbcH5 siRNAs on ZIPK ubiquitination in HeLa

cells. As shown in Fig. 3A (upper panel), siRNA-mediated reduced expression of UbcH5

resulted in a significant reduction of ZIPK ubiquitination, indicating that endogenous

UbcH5 mediates ZIPK ubiquitination in HeLa cells.

ZIPK ubiquitination influences PML-NB formation within the nucleus

  Protein ubiquitination was originally discovered as a signal for proteasomal degradation.

Subsequently, however, ubiquitination has also been shown to play important roles in

receptor trafficking, immune responses, transcriptional regulation and other cellular

processes. In these cellular events, ubiquitination plays important roles by altering the

subcellular localizations of target proteins [12]. Therefore, we tested the effect of UbcH5c

on the subcellular localization of ZIPK. ZIPK has been shown to localize in the nucleus,

especially in PML-NBs. HeLa cells were transiently transfected with FLAG-tagged ZIPK

with or without UbcH5c and ubiquitin, and then incubated with an anti-FLAG antibody.

ZIPK was localized in a diffuse nuclear pattern in approximately 70% of the transfected
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cells (Fig. 3B-I), and a speckled nuclear pattern in approximately 30% of the transfected

cells. The latter pattern of ZIPK localization, which is characteristic of PML-NBs, was

categorized into two types: 60-100 smaller dot-like structures per nucleus (Fig. 3B-II) and

10-20 larger dot-like structures per nucleus (Fig. 3B-III). PML-NBs are known to

aggregate with other NB proteins, such as Daxx and ZIPK, and promote the growth of

concentered PML networks during their maturation process [13]. Therefore, maturation of

PML-NBs seems to be determined by their volume, suggesting that the smaller dot-like

structures represent an early stage of PML-NB formation. Importantly, coexpression of

ZIPK with UbcH5c and ubiquitin enhanced the accumulation of PML-NBs (Fig. 3C-II and

-III) in the nucleus compared with expression of ZIPK alone. These results suggest that

ZIPK ubiquitination influences PML-NB formation in the nucleus.

Concluding remarks

  The present study provides evidence that UbcH5c acts as a ZIPK ubiquitin ligase and

influences ZIPK accumulation in PML-NBs. We have also demonstrated that the major

ubiquitination sites are located in the N-terminal kinase domain of ZIPK. Ubiquitin is
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covalently linked to lysine residues of target proteins. The kinase domain of ZIPK

possesses many lysine residues (18 residues in humans; 17 residues in mice). Although we

could not determine the precise sites for UbcH5-mediated ubiquitination in ZIPK, their

identification will clarify their roles in other ZIPK functions, such as alterations in its

localization and kinase activity. Moreover, as shown in Fig. 2A and C, ZIPK ubiquitination

by UbcH5c did not promote its proteasomal degradation, although treatment with a

proteasome inhibitor, MG132, slightly enhanced the ubiquitination of ZIPK by UbcH5c

(data not shown), suggesting that ubiquitination of the ZIPK protein may be partly involved

in its degradation.

  The kinase domain of ZIPK shows strong homology to that of death-associated protein

kinase (DAPK). ZIPK and DAPK are members of a family of related kinases that includes

DAPK2/DRP-1, DRAK1 and DRAK2 [14], all of which are implicated in executing

apoptosis. Importantly, evidence that the gene encoding DAPK may function as a tumor

suppressor has also been presented [15, 16]. Recently, it has been shown that DRAK2 is

specifically expressed by lymphocytes and that DRAK2-deficient mice do not show any

defects in apoptosis, although DRAK2-deficient T cells are hypersensitive to stimulation
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through T-cell receptors [23]. Furthermore, DRAK2-deficient mice are resistant to

experimental autoimmune encephalomyelitis but respond normally to infection with

lymphocytic choriomeningitis virus. Therefore, DAPK family kinases may play important

roles in immune regulation. Indeed, ZIPK phosphorylates an immune disease-related IL-6

signal transducer, STAT3, and regulates its activation. Although we do not have any

evidence regarding the involvement of ZIPK in immune regulation, it is possible that ZIPK

could be a target candidate for the treatment of autoimmune diseases.



16

Acknowlegements

We thank K. Iwai for a kind gift of reagents. We also thank T. Watanabe for technical

assistance. This study was supported in part by Sankyo Foundation of Life Science,

Industrial Technology Research Grant Program in 2005 from New Energy and Industrial

Technology Development Organization (NEDO) of Japan and Grant-in-Aid for

scientific research from Ministry of Education, Culture, Sports, Science and Technology

of Japan.



17

References

[1] T. Kawai, M. Matsumoto, K. Takeda, H. Sanjo, S. Akira, ZIP kinase, a novel

serine/threonine kinase which mediates apoptosis, Mol. Cell. Biol. 18 (1998) 1642-1651.

[2] D. Kogel, O. Plottner, G. Landsberg, S. Christian, K. H. Scheidtmann, Cloning and

characterization of Dlk, a novel serine/threonine kinase that is tightly associated with

chromatin and phosphorylates core histones, Oncogene 17 (1998) 2645-2654.

[3] T. Kawai, S. Akira, and J. C. Reed, ZIP kinase triggers apoptosis from nuclear PML

oncogenic domains, Mol. Cell. Biol. 23 (2003) 6174-6186.

[4] N. Sato, T. Kawai, K. Sugiyama, R. Muromoto, S. Imoto, Y. Sekine, M. Ishida, S.

Akira, T. Matsuda Physical and functional interactions between STAT3 and ZIP kinase,

Int. Immunol. 17 (2005) 1543-1552.

[5] N. Sato., N. Kamada, R. Muromoto, T. Kawai, K. Sugiyama, T. Watanabe, S. Imoto,

Y. Sekine, N. Ohbayashi, M. Ishida, S. Akira, T. Matsuda Phosphorylation of threonine-

265 in Zipper-interacting protein kinase plays an important role in its activity and is

induced by IL-6 family cytokines, Immunol. Lett. 103(2006) 127-134.



18

[6] J.P. Jensen, P.W. Bates, M. Yang, R.D. Vierstra, A.M. Weissman, Identification of a

family of closely related human ubiquitin conjugating enzymes, J Biol Chem. 270

(1995) 30408-30414.

[7] H. Gonen, B. Bercovich, A. Orian, A. Carrano, C. Takizawa, K. Yamanaka, M.

Pagano, K. Iwai, A. Ciechanover, Identification of the ubiquitin carrier proteins, E2s,

involved in signal-induced conjugation and subsequent degradation of IkappaBalpha, J

Biol Chem. 274 (1999) 14823-14830.

[8] T. Matsuda, T. Yamamoto, A. Muraguchi, F. Saatcioglu, Cross-talk between

transforming growth factor-beta and estrogen receptor signaling through Smad3, J. Biol.

Chem. 276 (2001) 42908-42914.

[9] Y. Sekine, O. Ikeda, Y. Hayakawa, S. Tsuji, S. Imoto, N. Aoki, K. Sugiyama, T.

Matsuda, DUSP22/LMW-DSP2 regulates estrogen receptor-alpha-mediated signaling

through dephosphorylation of Ser-118, Oncogene 26 (2007) 6038-6049

[10] T. Tanaka, M.A.Soriano, M.J. Grusby, SLIM is a nuclear ubiquitin E3 ligase that

negatively regulates STAT signaling. Immunity. (2005) 729-736.

[11] R. Muromoto, M. Ishida, K. Sugiyama, Y. Sekine, K. Oritani, K. Shimoda, T.



19

Matsuda Sumoylation of Daxx regulates IFN-induced growth suppression of B-

lymphocytes and the hormone receptor-mediated transactivation, J. Immunol. 177

(2006) 1160-1170.

[12] Ciechanover A, The ubiquitin-proteasome pathway: on protein death and cell life,

EMBO J. 17 (1998) 7151-7160.

[13] T.H. Shen, H.K. Lin, P.P. Scaglioni, T.M. Yung, P.P. Pandolfi, The mechanisms of

PML-nuclear body formation, Mol Cell. 24 (2006) 331-339.

[14] D. Kogel, J. H. Prehn, K. H. Scheidtmann, The DAP kinase family of pro-apoptotic

proteins: novel players in the apoptotic game, Bioessays 23 (2001) 352-358.

[15] B. Inbal, O. Cohen, S. Polak-Charcon, J. Kopolovic, E. Vadai, L. Eisenbach, A.

Kimchi, DAP kinase links the control of apoptosis to metastasis, Nature 390 (1997) 180-

184.

[16] T. Raveh, G. Droguett, M. S. Horwitz, R. A. DePinho, A. Kimchi, DAP kinase

activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic

transformation, Nat. Cell. Biol. 3 (2001) 1-7.

[17] M.A. McGargill, B.G. Wen, C.M. Walsh, S.M. Hedrick, A deficiency in Drak2



20

results in a T cell hypersensitivity and an unexpected resistance to autoimmunity.

Immunity 21(2004) 781–791.    



21

 Figure legends

Fig. 1. Molecular interactions between ZIPK and UbcH5c

A. 293T cells in 10-cm dishes were transfected with Myc-tagged ZIPK (10 mg) together

with His-tagged UbcH5c WT or CA (10 mg). The cells were lysed at 48 h after

transfection, immunoprecipitated with an anti-His antibody and immunoblotted with

anti-Myc (upper panel) and anti-His (middle panel) antibodies. Total cell lysates (TCL;

1%) were blotted with the anti-Myc antibody (bottom panel).

B. Schematic diagrams of the domain structures of ZIPK and Myc-tagged mutant

fragments.

C. 293T cells in 10-cm dishes were transfected with His-tagged UbcH5c WT (10 mg)

with or without Myc-tagged ZIPK FL, KD or LZ (10 mg). The cells were lysed at 48 h

after transfection, immunoprecipitated with an anti-Myc antibody and immunoblotted

with anti-His (upper panel) and anti-Myc (middle panel) antibodies. TCL (1%) were

blotted with the anti-His antibody (bottom panel).

D. 293T cells in 10-cm dishes were transfected with Myc-tagged ZIPK (10 mg) together
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with His-tagged UbcH5a, UbcH5b or UbcH5c (10 mg). The cells were lysed at 48 h after

transfection, immunoprecipitated with an anti-His antibody and immunoblotted with

anti-Myc (upper panel) and anti-His (middle panel) antibodies. TCL (1%) were blotted

with the anti-Myc antibody (bottom panel).

Fig. 2. UbcH5c promotes ZIPK ubiquitination

A. 293T cells in 6-cm dishes were transfected with FLAG-tagged ZIPK (1.0 mg) with or

without His-tagged UbcH5c WT or CA (1.0 mg) and/or His-tagged Ub (0.5 mg). The cells

were lysed at 48 h after transfection, and total cell lysates (TCL; 1%) were

immunoblotted with anti-FLAG (upper panel) and anti-His (lower panel) antibodies.

B. 293T cells in 10-cm dishes were transfected with or without His-tagged UbcH5c WT

(10 mg) with or without Myc-tagged ZIPK FL, KD or LZ (10 mg), and lysed at 48 h after

transfection. His-tagged proteins were purified using Ni-NTA beads and immunoblotted

with an anti-Myc antibody (upper panel). TCL (1%) were blotted with anti-Myc and anti-

His antibodies (lower panels). NS, non-specific band

C. 293T cells in 10-cm dishes were transfected with His-tagged Ub (5 mg) with or
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without His-tagged UbcH5c WT (10 mg), and lysed at 48 h after transfection. His-tagged

proteins were purified using Ni-NTA beads and immunoblotted with an anti-ZIPK

antibody (upper panel). Total cell lysates (TCL; 1%) were also blotted with the anti-ZIPK

antibody (lower panel).

Fig. 3. Reduction of endogenous UbcH5 reduces ZIPK ubiquitination in HeLa cells

A. HeLa cells in 24-well plates were transfected with a control siRNA or siRNAs

targeting UbcH5a, UbcH5b and UbcH5c as indicated using Lipofectamine 2000. The

cells were then transfected with FLAG-tagged ZIPK (0.1 mg) and His-tagged Ub (0.5 mg)

using JetPEI. The UbcH5 expression levels were quantified by western blot analysis and

RT-PCR. The cells were lysed at 36 h after transfection, and total cell lysates (TCL; 1%)

were blotted with anti-FLAG (upper panel), anti-UbcH5 (middle panel) and anti-actin

(bottom panel) antibodies.

B. HeLa cells in 6-well plates were transfected with FLAG-tagged ZIPK (1.0 mg)

together with His-tagged UbcH5c (1.0 mg) or Ub (0.5 mg). The cells were fixed and

incubated with an anti-FLAG antibody, following by FITC-conjugated anti-rabbit IgG.
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The nuclear localization of ZIPK was observed by indirect immunofluorescence

microscopy. Three typical features of ZIPK staining in the nucleus are shown (I, II and

III).

C. Approximately 100 cells were quantified according the FITC signals in dotted

structures in the nucleus. The results represent the means of three individual experiments,

and the error bars represent the SD. *, p<0.05; **, p<0.01.








