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1. Introduction

De Gregorio [7, 8] proposed the following differential equation as a model of 3D vorticity

dynamics of incompressible inviscid fluid flow:

ωt + vωx − vxω = 0, (1)

where ω is the unknown function representing the strength of the vorticity, and v is

determined by vx = Hω with H being the Hilbert transform. In this paper we consider

the equation (1) in −π < x < π with the periodic boundary condition. Therefore, Hω

and v are given as

Hω(t, x) =
1

2π

∫ π

−π

ω(t, y)cot

(
x − y

2

)
dy,

where
∫

implies Cauchy’s principal value, and

v(t, x) =
1

π

∫ π

−π

ω(t, y) log

∣∣∣∣sin x − y

2

∣∣∣∣ dy,

respectively. It is also easy to see that v = −
(
− d2

dx2

)−1/2

ω.

We first give numerical evidence which shows that the solution of (1) exists globally

in time. De Gregorio [7, 8] considered (1) in order to contrast it with

ωt − vxω = 0, vx = Hω. (2)

This equation is called the Constantin-Lax-Majda equation (CLM for short) and was

introduced in [6] as a model for blow-up dynamics of vorticity of incompressible inviscid

fluid flow. In fact, as is rigorously proved in [6], most of the solutions of (2) blow up

in finite time. De Gregorio proposed his equation to show that his equation, though it

differs from the CLM equation only by the convection term vωx, is likely to admit no

blow-up. He gave some evidence but mathematical proof is yet to be given, and there is

much room for scrutiny. We cannot prove the global existence of solutions of (1), either,

but we present accurate numerical results conforming with the global existence.

We then consider a generalization of the CLM equation and De Gregorio’s equation

in the following form:

ωt + avωx − vxω = 0, vx = Hω, (3)

where a is a real parameter. If a = 0, it becomes the CLM equation [6]. If a = 1, it is

De Gregorio’s equation. If a = −1, then this is the equation considered by Córdoba et

al.[4, 5]. The authors of [4, 5] considered

θt + θxHθ = 0, (4)

and mathematically proved that this equation possesses many blow-up solutions. If we

differentiate (4) and set ω = −θx, then ω satisfies the generalized De Gregorio equation

with a = −1. Since we are going to argue that the equation (3) with a = 1 admits no

blow-up, this contrast may be of some interest.
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The present paper is organized as follows. A motivation for (3) is explained in

Section 2. Section 3 introduces theorems on local existence and a criterion on global

existence. Based on these theorems, we give in Section 4 the results by numerical

experiments about De Gregorio’s equation. Proofs of the theorems are presented in

Section 5. Then in Section 6, we prove that the equation (3) in the limit of a → ∞
admits no blow-up. Concluding remarks are given in Section 7.

2. The role of the convection term

It is rather interesting to note the fact that

• the equation (3) with a = −1 has blow-up solutions ([4, 5]);

• if a = 0, most solutions blow up in finite time ([6]);

• if a = 1, solutions exist globally in time, which is conjectured in [7, 8] and the

present paper.

This naturally leads us to the question about which values of a yield global existence

for the respective solution.

By analogy with the 3D Euler equations, the term vωx in (1) or (3) may be called

a convection term. The term −vxω may be called a stretching term. In fluid dynamics

literature, blow-up of the solutions of the 3D Euler equations is said to be caused by

the stretching term. It is also said that the convection term is a kind of neutral player,

having little influence on blow-up phenomena. Recently, however, [16] and [17] showed,

with many examples, that a convection term often plays a role more important than

is usually imagined. Hou and Li [9] have drawn a similar conclusion for axisymmetric

flows with swirl reduced from the 3D Euler and Navier Stokes equations. In fact, blow-

ups can be suppressed by a convection term, if its strength relative to the stretching

term (i.e., the modulus of the ratio of their coefficients) is great enough. Accordingly,

the determination of blow-up/global-existence would be an interesting problem for (3).

We naturally expect that solutions of (3) exist globally in time if |a| is large, and

that blow-up is expected if |a| is small. This, however, is a speculation, and rigorous

justification is yet to be obtained. It is also worthwhile to see the importance of the

sign of a. Convection term with a = −1 leads us to blow-up, while a = 1 leads us to

global existence. In view of the 3D vorticity equation, a = 1 would be better suited to

vorticity dynamics model. In fact, on constructing the one-dimensional model equation

(3) with a = 1, De Gregorio [7] introduced the convection term vxω so that the relation

vx = Hω between v and ω represents an one-dimensional analogue of the Biot-Savart

formula, which recovers the velocity field from the vorticity field. For this reason, the

positive convection term is a natural choice for the one-dimensional model for the three-

dimensional Euler equations. We are therefore not saying that any form of convection

term guarantees global existence. In fact, as was pointed out in [16], an unphysical

convection term cannot prevent blow-ups.
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In the present paper, as a first step towards the substantiation of the statement

above, we prove in Section 6 that the global existence is guaranteed in the case of

a → ∞, the precise meaning of which will be given later.

It could be helpful to the reader if we here compare the equation (3) with other,

similar but different equations. They possess nonlocal nonlinear terms which are

different from those in (3).

Morlet [14] considered

θt + δθvx + vθx = 0, v = Hθ

with 0 ≤ δ ≤ 1. The order of differentiation for v is different from (3). This equation

reduces to (4) if δ = 0. She proved blow-up of solutions when 0 < δ < 1/3, δ = 1/2, δ =

1. Later Chae et al. [3] proved blow-up for all 0 < δ ≤ 1.

The equation

ut + fux − afxu = 0, u = −fxx

was considered in [17] and was named the generalized Proudman-Johnson equation. One

of its merits is the fact that the equation reduces to the Burgers and Hunter-Saxton

equation, for a = −3 and a = −2, respectively, and it represents similarity solutions of

the m-dimensional Euler flows for a = −(m − 3)/(m − 1) for m = 2, 3, · · ·. Blow-up

was proved for a < −1, and for −1 ≤ a < 1 global existence was proved (see [15]).

For 1 < a, the global well-posedness is yet to be settled, but numerical computations

strongly suggest blow-up. Thus, it is partly verified that smallness of the stretching

term (i.e., −afxu) implies global existence.

3. Local existence and blow-up criterion

Note first that any solution of (3) satisfies

d

dt

∫ π

−π

ω(t, x)dx =

∫ π

−π

(−avωx + vxω)dx = (a + 1)

∫ π

−π

vxωdx = (a + 1) (Hω, ω) ,

where (·, ·) denotes the L2 inner-product. Since H is a skew-symmetric operator, we

see that
∫ π

−π
ω(t, x)dx is independent of t. We may therefore specify any value of∫ π

−π
ω(0, x)dx. In the present paper, we consider the case where

∫ π

−π
ω(0, x)dx = 0.

Accordingly, we use the following function spaces:

L2(S1)/R =

{
f

∣∣∣∣ f ∈ L2(−π, π),

∫ π

−π

f(x)dx = 0

}
,

Hk(S1)/R =

{
f

∣∣∣∣∣ f =
∞∑

n=1

(an cos nx + bn sin nx),
∞∑

n=1

(a2
n + b2

n)n2k < ∞

}
,

where k is a positive integer. Here, S1 denotes the unit circle in the plane. In what

follows, it is sometimes regarded as the interval [−π, π] with −π and π being identified.
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The symbol /R implies that functions with zero mean are collected. A function ω(t, ·)
with a frozen t is henceforth denoted by ω(t). The L2 and L∞ norms are denoted by

‖ ‖ and ‖ ‖∞, respectively.

The existence local-in-time is guaranteed by the following theorem:

Theorem 3.1 Let a ∈ R be given. For all ω0 ∈ H1(S1)/R, there exists a T >

0 depending only on a and ‖ω0,x‖ such that there exists a unique solution ω ∈
C0([0, T ]; H1(S1)/R) ∩ C1([0, T ]; L2(S1)/R) of (3) with ω(0) = ω0.

The following theorem, which is an analogue of the Beale-Kato-Majda theorem for

the 3D Euler equations [2], will later play a crucial role.

Theorem 3.2 Suppose that ω(0) ∈ H1(S1)/R, that the solution of (3) exists in [0, T ),

and that ∫ T

0

‖Hω(t)‖∞dt < ∞. (5)

Then the solution exists in 0 ≤ t ≤ T + δ for some δ > 0.

The proofs of these theorems will be given in section 5. The criterion (5) will be used in

the next section to discuss the global existence of solutions of De Gregorio’s equation.

4. Numerical evidence on the global existence

In this section, we consider only the case of a = 1.

Note first that the Hilbert transform is an isometry: ‖Hf‖ = ‖f‖ for all

f ∈ L2(S1)/R. Note also that

‖f‖∞ ≤ c0‖fx‖ (f ∈ H1(S1)/R) (6)

with c0 = π√
6
. This inequality can be proved easily by the Fourier expansion and the

identity π2

6
=

∑∞
n=1 n−2.

Since ‖Hω‖∞ ≤ c0‖Hωx‖ = c0‖ωx‖, Theorem 3.2 implies that no blow-up occurs

if ‖ωx(t)‖ remains bounded. In fact, our numerical experiments below suggest that for

all T > 0

sup
0≤t≤T

‖ωx(t)‖ < ∞. (7)

Although this is much stronger than the criterion (5), our computations seem to support

it. We tried hard to prove mathematically the boundedness of ‖ωx(t)‖ or (5), but we

are unsuccessful so far mainly due to the difficulty in handling the Hilbert transform.

Thus, in order to confirm the criterion, we resort to numerical computation.

Numerical investigation of the equation (1) was done with the pseudo-spectral method

in [18], whose computation showed that ‖ωxx(t)‖∞ grows very rapidly in finite time.

However, the number of modes in the Fourier representation of the solution was 1024,

and this might be insufficient for concluding blow-up or global existence. Here, we

perform the numerical computation of the equation (1) more accurately, and discuss,
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in a more precise manner, whether the seemingly singular behavior is really a blow-up

phenomenon or not.

Our numerical method is the same as that described in [18]: we represent the

solution as

ω(t, x) =

N/2−1∑
n=−N/2

wn(t) exp(inx) (−π ≤ x ≤ π)

with N = 16384 = 214. In order to delete the aliasing error, we use the
2

3
-rule, whence

we compute the evolution of wn(t) for |N | ≤ 5000. As the temporal integration, we

use the fourth-order Runge-Kutta method with the step size ∆t = 0.001. In the course

of our experiments, we found spurious growth of the round-off error in high frequency

modes. We therefore adopt a spectral filtering technique (see [12]) in which we set the

Fourier modes that are smaller than the prescribed threshold value 1.0×10−12 to zero at

every time step so that we avoid the spurious growth of the round-off error in numerical

solutions. In what follows, we assume that the initial data are odd functions of x, i.e.

wn(0) + w−n(0) = 0. Then, since it is easy to see that the solution is odd in x for all

time, we have only to track the evolution of wn(t) for n = 1, · · · , 5000. Furthermore, we

also assume that the initial data should have at least two non-zero modes in the Fourier

representation, since, as is noted in [7] ω(t, x) = A sin kx for arbitrary A ∈ R and an

integer k is a stationary solution of (1).

We first investigate the solutions for the following initial data

ω0(x) = sin x + ε sin 2x, ε > 0. (8)

Figure 1 shows the numerical results for ε = 0.1 in 0 ≤ t ≤ 7.0. While ω(t, x) seems

to be smooth for all time, a thin spine appears in the first derivative and the second

derivative grows rapidly at around x = 0. From Figure 1(d) the reader might imagine

that the solution blows up in finite time. However, Figure 1(b) and 1(c) seem to indicate

‖Hω(t)‖∞ ≤ c‖Hω0‖∞ and ‖ωx(t)‖ ≤ c‖ω0,x‖, respectively, where the constant c is the

unity or very close to the unity. If this is the case for all t, then Theorem 3.2 guarantees

global existence.

Next, in order to see the singular behavior more closely, we look at the evolution

of the magnitude of the spectra |wn(t)|, which is shown in Figure 2. For large t, the

low-mode spectra are subject to a power-law, whereas the high-mode spectra decay

rapidly. In order to study the distribution of spectra quantitatively, let us assume that

they behave as

|wn| ∼ Cn−p exp(−δn) (9)

for some positive constants C, δ and p. Then we compute the constants by the least

square method. The fitting functions approximate the distributions of the spectra

accurately as we can see in Figure 2. Figure 3(a) shows the log plot of δ(t), which

indicates a decay exponential in time. This strongly suggests that the solution is

smooth for all time. On the other hand, the power p(t) in Figure 3(b) which is shown in
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(d) ωxx(t,x)

t=0.0
t=4.0
t=6.0
t=7.0

Figure 1. Numerical solution of the equation (1) for the initial data (8) with ε = 0.1.
(a) ω(t, x), (b) Hω(t, x), (c) ωx(t, x) and (d) ωxx(t, x)

Figure 3(b) decreases monotonically. We are, however, unable to see its asymptotic value

from the numerical data up to this time. We need to compute the solution for longer

time to determine it, but the actual numerical computation becomes extremely difficult

as δ(t) gets smaller for large t. This is because when δ(t) is small, the distribution of

higher-mode spectra approaches to a power-law and thus the solution cannot be resolved

accurately even by 5000 modes.

The exponential decay of δ(t) is observed in numerical solutions for other initial

data, too. Figure 4 shows log plots of δ(t) computed from the numerical solutions for

initial data (8) for ε = 0.2, 0.4, · · · , 1.0. They show the exponential decay of δ(t), which
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Figure 2. Evolution of the spectra |wn(t)| of the solution and their approximation
function obtained with the least square fit to the Ansatz (9).
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Figure 3. (a) Log plot of δ(t), (b) plot of p(t) in the Ansatz (9) obtained from the
numerical solution.
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conforms with the hypothesis that the solutions are smooth for all time. We show in

Figure 5 ωx(x, t) for the initial data with ε = 0.2, 0.4, 0.6, and 0.8, which indicates that

‖ωx(t)‖∞ ≤ ‖ω0‖∞ up to this time, although ωx(t, x) acquires a very sharp spine at

x ≈ 0 as t increases. Thus the numerical results verify the condition (7).

 0.001

 0.01

 0.1

 4  5  6  7  8  9  10

ε=0.2
ε=0.4
ε=0.6
ε=0.8
ε=1.0

Figure 4. Log plots of δ(t) for the initial data (8) with various ε.

We add some numerical examples to see (7) for other initial data, which are given

by

ω0(x) = sin mx + 0.1 sin nx, (10)

for various integers m and n. Figure 6 shows the evolutions of ωx(t, x) for (m,n) = (1, 3),

(1, 4), (2, 3), and (2, 4), which endorses (7) in all the cases. We remark that it is difficult

to investigate the distribution of spectra in these cases since the spectra oscillate rapidly

so that the least square fit cannot approximate it accurately.

We have thus two ways of supporting the global existence: by Theorem 3.2 and by

the positivity of δ(t).

We finally show another sample computation of (1) with ω0(x) = 0.2 cos x+sin 4x+

sin 7x. The difference of this initial data and those in the previous paragraphs and [18]

is that the solutions in [18] are odd functions of x, while the present one is not. Figure

7(a), which was computed with a rather small number – 1024 – of Fourier modes, shows

the graph of ‖Hω(t)‖∞, and Figure 7(b) shows that of ‖ωxx(t)‖. They are depicted in

the same time interval. Nevertheless, while the rapid increase of ‖ωxx(t)‖ is remarkable,

‖Hω(t)‖∞ seems to remain bounded in the sense of (5).

Summing up these computations, we may well expect that solutions of De Gregorio’s

equation exist globally in time. This conclusion is reached under the assumption that the

numerical computation is accurate and the numerical examples shown here are typical.

In order to make a mathematical conclusion, we must prove the criterion (5). But this

is difficult for us.
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Figure 5. Evolutions of ωx(t, x) for the initial data (8) with ε = 0.2, 0.4, 0.6 and 0.8.

The reader might wonder whether it is possible that the solution exists in 0 ≤ t <

∞, but it loses the H2-smoothness in the sense that ‖ωxx(t)‖ → ∞ as t approaches a

finite T . This is actually not the case. The proof of this fact will be given in the next

section.

5. Proofs of Theorems

In order to prove local existence for (3), we use the following theorem, which is a special

case of a theorem by Kato and Lai [10]: Let V = H2(S1)/R, W = H1(S1)/R, and

X = L2(S1)/R. The L2 inner-product is denoted by ( , ). W is regarded as a Hilbert

space with (fx, gx) as the inner-product. Similarly, V is equipped with the inner-product

(fxx, gxx). A bilinear form 〈 , 〉 : V × X → R is defined by

〈f, g〉 = −
∫ π

−π

fxxg dx.

It is then easy to see that

〈f, g〉 = (fx, gx) (f ∈ V, g ∈ W ).

Now Kato and Lai’s theorem reads as follows:
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Figure 6. Evolutions of ωx(t, x) for the initial data (10) with (a) (m,n) = (1, 3), (b)
(m,n) = (1, 4), (c) (m,n) = (2, 3) and (d) (m,n) = (2, 4).
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Figure 7. Graphs of ‖Hω(t)‖∞ (a) and ‖ωxx(t)‖ (b). The initial value is ω(0, x) =
0.2 cos x + sin 4x + sin 7x.
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Theorem 5.1 Suppose that there exists a continuous, nondegenerate bilinear form on

V × X, denoted by 〈 , 〉, such that

〈v, u〉 = (v, u)W (v ∈ V, u ∈ W ),

where (·, ·)W denotes the inner-product of W . Let A be a sequentially weakly continuous

mapping from W into X such that

〈v, A(v)〉 ≥ −β
(
‖v‖2

W

)
(for v ∈ V ), (11)

where β(r) ≥ 0 is a monotone increasing function of r ≥ 0. Then for any u0 ∈ W there

exists a T > 0 and a solution of ut + A(u) = 0 and u(0) = u0 in the class

Cw([0, T ]; W ) ∩ C1
w([0, T ]; X),

where the subscript w of Cw and C1
w indicates the weak continuity. Moreover,

sup0<t<T ‖u(t)‖W depends only on T , β, and ‖u(0)‖W .

This theorem is not concerned with the uniqueness of the solution. Neither is it

concerned with whether the weak continuity can be strong continuity. However, these

two issues are settled rather straightforwardly in individual cases of applications.

With the theorem above, we may prove the local existence (Theorem 3.1) in the

following way. We define

A(ω) = avωx − vxω.

For ω ∈ W = H1(S1)/R, we have v ∈ V . Therefore Sobolev’s inequality implies that

‖A(ω)‖ ≤ |a|‖v‖∞‖ωx‖ + ‖Hω‖‖ω‖∞ ≤ c0|a|‖vx‖‖ωx‖ + c0‖ω‖‖ωx‖
= c0(|a| + 1)‖ω‖‖ωx‖.

Similarly we have

‖A(ω) − A(ζ)‖ ≤ C(1 + |a|) (‖ωx‖ + ‖ζx‖) ‖ωx − ζx‖.

This shows that A : W → X is strongly continuous. We then consider

〈ω,A(ω)〉 = (ωx, A(ω)x) =
(a

2
− 1

) ∫ π

−π

vx(t, x)ωx(t, x)2dx−
∫ π

−π

ωωxHωxdx.(12)

By (6) we have

|〈ω,A(ω)〉| ≤ C(1 + |a|)‖ωx‖3

with an absolute constant C. Therefore (11) is satisfied with β(r) = C(1 + |a|)r3/2,

which completes the proof of the existence of a solution.

Uniqueness of the solution is proved in the usual way. Let ω and ζ be a solution

for the same initial data. Then

ωt − ζt = −av(ω − ζ)x − a(v − u)ζx + vx(ω − ζ) + (v − u)xζ,
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where vx = Hω and ux = Hζ. Taking an L2 inner-product with ω − ζ, we have

1

2

d

dt
‖ω(t) − ζ(t)‖2 =

2 + a

2

∫ π

−π

vx(ω(t) − ζ(t))2dx

+

∫ π

−π

[ζ(v − u)x(ω − ζ) − aζx(v − u)(ω − ζ)] dx

≤ 2 + |a|
2

‖vx‖∞ ‖ω(t) − ζ(t)‖2 + ‖ζ‖∞‖vx − ux‖‖ω − ζ‖

+ |a|‖ζx‖‖v − u‖∞‖ω − ζ‖
≤ C(1 + |a|)M ‖ω(t) − ζ(t)‖2 ,

where M = max0≤t≤T (‖ωx(t)‖ + ‖ζx(t)‖). Uniqueness follows from this.

The strong continuity of t 7→ ω(t) is proved just in the same way as in [10], see

page 23 of [10]. We thus obtain Theorem 3.1.

¥
Proof of Theorem 3.2: In view of Theorem 3.1, it is sufficient to prove that the H1

norm of ω(t) remains bounded as t → T . The equation (12) shows that

1

2

d

dt
‖ωx(t)‖2 =

2 − a

2

∫ π

−π

ωx(t)
2Hω(t)dx +

∫ π

−π

ω(t)ωx(t)Hωx(t)dx.

Note that ∫ π

−π

ωωxHωxdx =

∫ π

−π

Hω · H(ωxHωx)dx.

Since H(ωxHωx) = −1
2
(ω2

x − (Hωx)
2), we have∫ π

−π

ωωxHωxdx = −1

2

∫ π

−π

Hω ·
(
(ωx)

2 − (Hωx)
2
)
dx.

Summing up these equalities, we obtain

1

2

d

dt
‖ωx(t)‖2 =

1 − a

2

∫ π

−π

ωx(t)
2Hω(t)dx +

1

2

∫ π

−π

Hω (Hωx)
2 dx

≤ |a − 1|
2

‖Hω(t)‖∞‖ωx(t)‖2 +
1

2
‖Hω(t)‖∞‖Hωx(t)‖2

=
|a − 1|

2
‖Hω(t)‖∞‖ωx(t)‖2 +

1

2
‖Hω(t)‖∞‖ωx(t)‖2,

which is written as

d

dt
‖ωx(t)‖2 ≤ (|a − 1| + 1) ‖Hω(t)‖∞‖ωx(t)‖2.

By Gronwall’s inequality, we have

‖ωx(t)‖2 ≤ ‖ωx(0)‖2 exp

(
(|a − 1| + 1)

∫ t

0

‖Hω(s)‖∞ds

)
.

Namely, ‖ωx(t)‖ remains bounded if∫ T

0

‖Hω(t)‖∞dt < ∞.

This ends the proof of Theorem 3.2.
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¥

We finally prove a proposition on further regularity of solutions.

Proposition 5.1 Let m be an integer ≥ 2. If ω0 ∈ Hm(S1)/R, then

sup0≤t≤T ‖ω(t)‖Hm < ∞ as far as the solution ω exists in C([0, T ]; H1).

Proof. We prove in the case of m = 2. Other cases are proved similarly. We note first

that

ωtxx = −avωxxx + (1 − 2a)vxωxx + (2 − a)vxxωx + vxxxω.

This yields

1

2

d

dt
‖ωxx(t)‖2 =

2 − 3a

2

∫ π

−π

vxω
2
xx + (2 − a)

∫ π

−π

vxxωxωxx +

∫ π

−π

vxxxωωxx.

The first integral of the right hand side is bounded by ‖Hω‖∞‖ωxx(t)‖2, the third

by ‖ω(t)‖∞‖Hωxx(t)‖‖ωxx(t)‖. Both are further bounded by a constant multiple of

‖ωx(t)‖‖ωxx(t)‖2. The second integral is bounded as∫ π

−π

vxxωxωxx ≤ ‖Hωx‖L4‖ωx‖L4‖ωxx‖ ≤ c‖ωx‖2
L4‖ωxx‖, (13)

since the Hilbert transform is a bounded operator in L4 (see, e.g., [11] or [19]). We now

use the following Gagliardo-Nirenberg inequality (see, 139 page of [1]):

‖f‖L4 ≤ c‖f‖3/4‖fx‖1/4 (f ∈ H1(−π, π)).

The last term of (13) is now bounded by ‖ωx‖3/2‖ωxx‖3/2 ≤ c‖ωx‖‖ωxx‖2.

Summing up these inequalities, we have

1

2

d

dt
‖ωxx(t)‖2 ≤ C(1 + |a|)‖ωx(t)‖‖ωxx(t)‖2.

Gronwall’s inequality yields

‖ωxx(t)‖2 ≤ ‖ωxx(0)‖2 exp

(
2C(1 + |a|)

∫ t

0

‖ωx(s)‖ds

)
.

We have already proved that the integral on the right hand side is bounded by a certain

function of ‖Hω‖∞. Therefore the boundedness of ωxx(t) is proved.

¥

Remark 5.1 Note that ωx(t) is bounded by an exponential function of
∫ t

0
‖Hω‖∞, and

ωxx(t) is bounded double exponentially. It can therefore be quite large for a relatively

small t.
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6. The case of a = ∞

If we set ω = a−1ω̃ in (3), and if we multiply the resultant equation by a and let a → ∞,

then, after deleting the tilde, we have

ωt + vωx = 0, vx = Hω. (14)

We consider this equation with the initial condition ω(0, x) = ω0(x). Although De

Gregorio’s equation is a model for the 3D Euler equations, the equation (14) has a

similarity with the 2D Euler equations in vorticity form, as we will see in what follows.

We now prove

Theorem 6.1 Suppose that ω0 belongs to H1(S1)/R. Then the solution of (14) with

ω(0) = ω0 exists for 0 ≤ t < ∞.

Proof. Suppose that ω0 ∈ H1(S1)/R. The proof of the local existence for (3) is still

applicable in the present equation, and we have a local solution. An analogue of Theorem

3.2 is also proved in the same way, and we have a global solution if
∫ T

0
‖Hω(t)‖∞dt < ∞

for any T > 0.

Suppose now that the solution of

ωt + vωx = 0, v = −
(
− d2

dx2

)−1/2

ω

exists in 0 ≤ t ≤ T , and set M = sup0≤t≤T ‖ωx(t)‖. Note that ω is represented as

ω (t, Xt(x)) = ω0(x), (15)

where Xt(x) is a solution of

d

dt
Xt = v(t,Xt(ξ)), X0(ξ) = ξ. (16)

Sobolev’s embedding theorem implies that H1(S1) ⊂ C1/2(S1). ω(t) is therefore

a 1
2
-Hölder continuous function. Note also that the Hilbert transform is a bounded

operator in the Hölder class ([19, page 121]). Consequently,

‖v(t)‖C1,1/2 ≤ C‖ω(t)‖C1/2 ≤ C ′M (0 ≤ t ≤ T ).

In particular, the Lipschitz norm of v(t) is bounded in t. Therefore the ordinary

differential equation (16) has a solution which is unique with respect to the initial

datum ξ ∈ [0, 2π]. As an immediate consequence of (15), we have

‖ω(t)‖∞ = ‖ω0‖∞. (17)

We next prove that

|v(t, x) − v(t, y)| ≤ G (|x − y|) (x, y ∈ [0, 2π]), (18)

where G is defined by

G(s) = C‖ω0‖∞ ×

{
s(1 − log s) (0 ≤ s ≤ 1)

1 (1 < s)
(19)
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with an absolute constant C. The inequality (18) can be proved by

v(t, x) =
1

π

∫ π

−π

ω(t, y) log

∣∣∣∣sin x − y

2

∣∣∣∣ dy.

Let δ = |x− y|. We do not lose generality if we assume that δ < 1 and 0 < x < y < 2π.

We have

v(t, x) − v(t, y) =
1

π

∫ π

−π

ω(t, z)

(
log

∣∣∣∣sin x − z

2

∣∣∣∣ − log

∣∣∣∣sin y − z

2

∣∣∣∣) dz.

The domain of integration is divided into 0 < z < x − δ/2, x − δ/2 < z <

x + δ/2, x + δ/2 < z < y + δ/2, y + δ/2 < z < 2π. In each subinterval ω is bounded by

‖ω0‖∞, and the necessary inequalities are derived as is common in the potential theory.

We prove only one case.∫ x+δ/2

x−δ/2

ω(t, z)

(
log

∣∣∣∣sin x − z

2

∣∣∣∣ − log

∣∣∣∣sin y − z

2

∣∣∣∣) dz

≤ ‖ω0‖∞
∫ δ/2

−δ/2

(∣∣∣log
∣∣∣sin z

2

∣∣∣∣∣∣ +

∣∣∣∣log

∣∣∣∣sin y − x − z

2

∣∣∣∣∣∣∣∣) dz

≤ c‖ω0‖∞δ(1 + | log δ|).

Since the Hilbert transform is a bounded operator in the Hölder class, we see for

β ∈ (0, 1) that

‖Hω(t)‖∞ ≤ c1‖Hω(t)||Cβ ≤ c2‖ω(t)‖Cβ , (20)

where c1 and c2 depend only on β. Therefore it is enough to show that for any T > 0

there exists a β ∈ (0, 1) such that sup0<t<T ‖ω(t)‖Cβ < ∞. Since

|ω(t, x) − ω(t, y)| ≤ c‖ω0,x‖|X−1
t (x) − X−1

t (y)|1/2, (21)

we must derive an a priori bound on |X−1
t (x) − X−1

t (y)|.
Let us write q(t, x) = X−1

t (x). It is then characterized by

∂

∂t
q(t, x) = −v(t, q(t, x)), q(0, x) = x.

This equation and (18) give us

∂

∂t
|q(t, x) − q(t, y)| ≤ G(|q(t, x) − q(t, y)|).

It is known that this differential inequality can be solved. In fact, define β(t) by

β(t) = exp(−C‖ω0‖∞t). Define also

z(t) = |x − y|β(t) exp(1 − 1/β(t)), (22)

for t such that the right hand side is less than one, and

z(t) = 1 + C‖ω0‖∞(t − t0)
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for later t with t0 being the time when the right hand side of (22) becomes one. We

then have (see, for instance, [13, page 73])

|q(t, x) − q(t, y)| ≤ z(t). (23)

By (20) and (21) the proof is complete.

¥

7. Concluding remarks

The above proof depends on the fact that a solution of the ODE (16) exists uniquely

and estimated only by ‖ω‖∞, which is guaranteed by (15). If a is finite, then we do not

have means to find an a priori bound of ‖ω(t)‖∞. Accordingly, the proof above does

not seem to be applicable to the case of finite a.

By Theorem 6.1 together with the results in [4, 5, 6], one may be tempted to

conjecture that solutions may blow-up for −1 ≤ a < 1, and they exist globally for

−∞ < a < −1 and 1 ≤ a < ∞. We tested this conjecture by numerical experiments,

the results of which will be reported elsewhere.

Finally, some potentially useful facts are collected here.

Proposition 7.1 If a = 1, and if the solution is odd in x, then ωx(t, 0) ≡ ω0,x(0).

This is Proposition 3 of [18]. The proof is easy: By differentiation, we have

ωtx = −vωxx + vxxω.

The right hand side vanishes at x = 0 because of the oddness.

Proposition 7.2 If −∞ < a < −1, then

‖ω(t)‖Lp = ‖ω0‖Lp ,

where p = −a.

The proof is straightforward.

d

dt

∫ π

−π

|ω(t, x)|p dx = p

∫ π

−π

|ω(t, x)|p−2 ω(t, x)ωt(t, x)dx

= p

∫ π

−π

|ω|p−2 (
−avωωx + vxω

2
)
dx

= − a

∫ π

−π

v (|ω|p)x dx + p

∫ π

−π

vx|ω|pdx

= 0.
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