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A continuum-mechanical formulation for shallow

polythermal ice sheets

Ralf Greve

Institut für Mechanik
Technische Hochschule Darmstadt

Hochschulstr. 1, D-64289 Darmstadt

Abstract

This paper is concerned with a new theoretical approach to model grounded ice sheets in three
dimensions. These are considered as polythermal, i.e., there will be regions with temperatures below
the pressure melting point (“cold ice”) and regions with temperatures exactly at the pressure melting
point (“temperate ice”). In the latter, small quantities of water may occur.

Based on previous approaches, an improved theory of polythermal ice sheets is developed, which
is founded on continuum-thermodynamic balance relations and jump conditions for mass, momentum
and energy. The rheological behaviour is assumed to be that of an incompressible, nonlinear viscous
and heat conducting fluid; because of the dependence of viscosity on temperature and on water content,
the problem is thermo-mechanically coupled. After presenting analytic solutions for a simple geometry
(ice sheet of uniform depth), the theory is subjected to a scaling procedure with the assumptions of
a small aspect ratio (ratio between typical vertical dimension and typical horizontal dimension) and
a small Froude number. This leads to the introduction of the polythermal shallow-ice approximation
(SIA) equations.

Finally, as an application of the model to a real problem, a numerically computed steady-state
solution for the Greenland Ice Sheet under present climate conditions is presented and compared with
the real ice sheet.
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1 Introduction

The Earth’s cryosphere consists of several components. Ice sheets are extended ice masses with a base
resting on solid land; they have formed by accumulated snowfall in the course of the millennia. Ice stored in
the present ice sheets (essentially Antarctica and Greenland) represents by far the biggest part of today’s
ice volume on Earth; this paper is concerned with a new theoretical formulation of ice sheet motions.
Alpine glaciers develop in the same way; however, they cover alpine regions of much less extent, typically
valleys, and therefore their contribution to the cryosphere is small. Ice shelves are floating ice masses that
are fed from the seaward mass flux of an ice sheet; they exist typically in large bays of an ice-covered
continental shield. Sea ice is superficially frozen sea water, and soil ice is frozen water in the ground as it
occurs in permafrost regions.

Ice appearing in glaciers and ice sheets exists in two fundamentally different states (when additional
tracers of salt and sediment are neglected). Cold ice is characterized by a temperature below the pressure
melting point and can be described as an incompressible, viscous and heat-conducting one-component fluid;
the large ice sheets on Earth consist mainly of this type of ice. However, the temperature of temperate ice
is exactly equal to the pressure melting point, so that it may contain small quantities of water in addition.
Therefore, as opposed to cold ice, it must be regarded as a two-component fluid. In ice sheets, regions of
temperate ice may exist in thin, near-basal layers, with significant consequences on the flow behaviour.
Glaciers and ice sheets that are made up by cold as well as temperate regions are referred to as polythermal
(see e.g. Paterson, 1994).

In the past, several models for the numerical simulation of ice sheets have been developed, becoming
possible only due to the high calculation performance of modern computers. The first, a still vertically
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integrated model, is due to Mahaffy (1976), and has been applied to the Barnes Ice Cap in the Canadian
Arctic. The first genuinely three-dimensional model due to Jenssen (1977) has been used to model the
Greenland Ice Sheet, yet with a very low spatial resolution because of the limited computer capacities at
that time. Numerous models of increasing sophistication followed, with applications to different problems
such as the Greenland Ice Sheet, the Antarctic Ice Sheet, the glacial Laurentide Ice Sheet, the hypothetic
glacial Tibetian Ice Sheet and so forth (Budd and Smith, 1982; Oerlemans, 1982; Herterich, 1988; Fastook
and Chapman, 1989; Letréguilly et. al., 1991a,b; Abe-Ouchi, 1993; Calov, 1994; Huybrechts, 1994; Fabré
et. al., 1995; Calov and Hutter, 1996). Especially remarkable are the simulations of the Antarctic Ice
Sheet carried out with the Huybrechts model (e.g. Huybrechts and Oerlemans, 1988; Huybrechts, 1992;
Huybrechts, 1993), in which the coupled ice sheet/ice shelf/lithosphere problem is modelled with high
spatial resolution.

All these models neglect the possible influence of temperate ice regions. The temperature field is
calculated in the entire ice sheet by solving the heat equation for cold ice, then temperatures that exceed the
pressure melting point are retrospectively reset to the pressure melting point (this is subsequently referred
to as “cold-ice method”). However, this is an oversimplified approach, because it does not account for the
fact that the responses of cold and temperate ice regions are different, and those regions are two different
phases, separated by a phase transition surface (the cold-temperate transition surface or “CTS”) for which
jump conditions for the physical quantities mass, momentum and energy must be fulfilled (Hutter, 1983;
Müller, 1985). Moreover, the cold-ice method does not determine the water content in temperate ice that
has a very pronounced influence on the ice viscosity (Lliboutry and Duval, 1985).

In this study we present a new continuum-mechanical formulation for polythermal ice sheets. It is in
large parts similar to previous formulations (Fowler and Larson, 1978; Hutter, 1982; Blatter, 1991; Hutter,
1993); however, it contains some crucial new features, namely

• consideration of the contribution of the diffusive water flux to the total heat flux in temperate ice,

• a new formulation of the boundary conditions for a temperate ice base, where especially the different
behaviour of temperate ice with and without water diffusion is incorporated,

• a new formulation of the transition conditions at the cold-temperate-transition surface (CTS), with
the inclusion of water surface production at the CTS,

• three-dimensional derivation of the shallow-ice approximation (SIA) for polythermal ice.

Furthermore, we discuss two different types of solutions, namely (i) a semi-analytic solution for a
simple geometry (ice sheet of uniform depth), and (ii) a numerically computed steady-state solution for
the Greenland Ice Sheet under present climate conditions.

2 The polythermal ice-sheet model

A polythermal ice sheet consists of cold-ice regions as well as temperate-ice regions; in the latter, besides
the ice, water may also be present. Below the ice sheet is the lithosphere, which is represented as a solid
rock layer of approximately 100 km thickness that floats on the viscous asthenosphere. However, only the
uppermost few kilometers of the lithosphere influence the thermal response of the ice sheet. The typical
geometry is sketched in fig. 1, where also a Cartesian coordinate system (x, y, z) is introduced; x and y
span the horizontal plane, z is vertical and anti-parallel to the direction of the gravity acceleration.

The following field equations, boundary and transition conditions extend the previous formulations of
Fowler and Larson (1978), Hutter (1982), Blatter (1991) and Hutter (1993).

2.1 Field equations

2.1.1 Cold regions

Cold ice is ice with a temperature below the pressure melting point. If additional tracers of salt, sediment,
debris or air are neglected, it can be regarded as a viscous, heat-conducting, incompressible one-component
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Figure 1: Sketch of a polythermal ice sheet, heavily exaggerated in the vertical. Definition of the Cartesian
coordinate system used in this study: x and y span the horizontal plane, z is the vertical coordinate.

fluid. Thus, the mass balance is given by

div v = tr D = 0, (2.1)

where v is the ice particle velocity, and D is the strain-rate tensor. Because of the incompressibility
assumption, the stress tensor T must be split into an isotropic pressure tensor and a deviatoric (frictional)
stress tensor,

T = −p1 + T R, (2.2)

where the pressure p is a free field, whereas the stress deviator T R is described by a constitutive relation.
The momentum balance is then

−grad p + div T R + ρg = ρv̇, (2.3)

where g is the constant gravity acceleration, and a superposed dot denotes a material time derivative.
The scaling analysis conducted below will show that the acceleration term ρv̇ is negligible, so that pure
Stokes flow prevails.

Three constitutive relations are required: a stress-strain-rate relation, a relation for the internal energy
ε and one for the heat flux q (equal to the sensible heat flux qs);

D = EA(T ′)f(σ)T R with σ :=

√
1
2
tr (T R)2, (2.4)

ε̇ = c(T ) Ṫ , (2.5)

q = qs = −κ(T ) gradT, (2.6)

with in general temperature dependent specific heat c and heat conductivity κ. The first equation implies
that the ice fluidity factorizes into a function A(T ′) (“rate factor”) of the homologous temperature T ′

and a function f(σ) (“creep response function”) of the effective shear stress σ (square root of the second
invariant of the stress deviator IIT R = 1

2 tr (T R)2, cf. Hutter (1983)); the homologous temperature is
defined as T ′ = T − TM , where TM is the pressure melting point of ice. The rate factor and the creep
response function are not specified at this stage; the additional factor E (“enhancement factor”) can be
set greater than unity to account, for instance, for the increased softness of glacial dust-containing ice
compared with ordinary interglacial ice (Paterson, 1994). The second equation relates internal energy
changes to that of temperature, and the last equation is Fourier’s law for heat conduction.
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Neglecting heat supply due to radiation, the energy balance takes the form

ρε̇ = −div q + tr (T RD). (2.7)

Introduction of the three constitutive relations (2.4) – (2.6) transforms this into an evolution equation for
the temperature field,

ρcṪ = div (κ gradT ) + 2EA(T ′)f(σ)σ2. (2.8)

This equation balances local temperature changes with advection (implicitly included in the material time
derivative), heat conduction and dissipative strain heating.

2.1.2 Temperate regions

As opposed to cold ice, the temperature of temperate ice is exactly at the pressure melting point, so that
it need not be calculated separately, but follows immediately from the pressure field:

T = TM = T0 − β∗p = T0 − β
p

ρg
, (2.9)

where T0 = 0◦C, β∗ is the Clausius-Clapeyron constant (Paterson, 1994), and the Clausius-Clapeyron
gradient β := ρgβ∗ corresponds to the temperature gradient in temperate ice as shown below. Temperate
ice may contain a certain amount of water; as the main thermodynamic quantity the water content (more
precisely: mass fraction ω) takes the role of temperature in cold ice. Therefore, in contrast to cold ice,
temperate ice must be regarded as a binary mixture of ice and water, and ρ denotes the total mixture
density. Because of this, it is necessary to apply some basic concepts of mixture theory (cf. Müller, 1985).
Owing to the general assumption that the water content in temperate zones of polythermal ice sheets is
small, with maximum values of about 5% (Hutter, 1993), temperate ice will be described by two mass
balances (one for the mixture as a whole, one for the component water), but only one momentum and one
energy balance for the mixture. That is, water is considered as a tracer component whose motion relative
to the barycentre of the mixture is described by Fickian diffusion. Alternative concepts not necessary in
the present study, but more appropriate for polythermal alpine glaciers with sometimes very high water
content, include two separate momentum balances with a Darcy-type interaction force between the two
components (Fowler, 1984; Hutter, 1993; Morland, 1993).

Before the field equations for temperate ice can be formulated, some quantities from mixture theory
must be introduced. The barycentric velocity is defined as

v :=
1
ρ
(ρivi + ρwvw). (2.10)

The indices i and w, respectively, refer to the components ice and water; ρi/w then denote the corresponding
partial densities. The water content is introduced as the mass fraction, ω, of water in the mixture, namely,

ω :=
ρw

ρ
. (2.11)

In addition, a diffusive water mass flux j is defined, that describes the water motion relative to the motion
of the barycentre,

j := ρw(vw − v) = ρω(vw − v). (2.12)

As was the case for cold ice, the mixture is also assumed incompressible, i.e., ρ is constant. This is
problematic in so far as the intrinsic densities of ice and water are distinctly different (according to
Paterson (1994) the density of glacier ice varies in the range of 830 − 910 kg/m3, whereas the density of
water is 1000 kg/m3). However, because of the assumption of approximately 5% maximum water content,
the relative changes of mixture density due to changes of the water content do not exceed 1% and are
therefore negligible. As a consequence, the mixture mass balance and the mixture momentum balance have
the same form as for cold ice, namely

div v = 0, (2.13)

−grad p + div T R + ρg = ρv̇, (2.14)
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where the stress tensor T has again been decomposed as T = −p1 + T R.
When formulating the mass balance for the component water, it must be noted that the partial density

of water ρw is not constant, but depends on the water content itself. Furthermore, the mass of water is
not conserved due to the possibility of melting and freezing processes. It is therefore necessary to include
a production term M , the rate of water mass produced per unit mixture volume, then

∂ρw

∂t
+ div (ρwvw) = M, (2.15)

which is equivalent to
ρω̇ = −div j + M. (2.16)

As was the case for cold ice, constitutive relations are required to close the system. These are (see
Hutter, 1993);

D = EAt(ω)ft(σ)T R, (2.17)

ε̇ = Lω̇ + c(T ) ṪM , (2.18)

j = −ν gradω, (2.19)

qs = −κ(T ) gradTM . (2.20)

The first equation, namely the stress-strain-rate relation, is the counterpart of (2.4) for cold ice; however,
the temperature dependence of the rate factor is replaced by a factor depending on the water content
(function At(ω)). The second equation relates changes of the internal energy to changes of the water
content and of the melting temperature1. The third equation is the Fickian diffusion law already mentioned
above, and the last equation is again Fourier’s law for heat conduction; however, here the total heat flux
is not equal to the sensible heat flux (see below). The latent heat L and water diffusivity ν are assumed
to have constant values.

Next, consider the mixture energy balance. In (2.18) the internal energy ε depends on the water content
ω, so that a non-vanishing diffusive water flux j contributes to a flux of internal energy (latent heat flux
ql = Lj). Therefore, the total heat flux q can be expressed as

q = qs + ql = qs + Lj. (2.21)

The inclusion of the additional term Lj is a new feature of the theoretical formulation presented here.
With this modified form of the energy flux, the mixture energy balance becomes

ρε̇ = −div (qs + Lj) + tr (T RD). (2.22)

Introducing the constitutive relations (2.17) – (2.20) into the water mass balance (2.16) and into the
mixture energy balance (2.22) yields the respective relations

ρω̇ = ν∇2ω + M, (2.23)

and
ρLω̇ + ρcṪM = Lν∇2ω + div (κ gradTM ) + 2EAt(ω)ft(σ)σ2, (2.24)

which are consistent, provided that the water production rate M is given by

M =
1
L

(
2EAt(ω)ft(σ)σ2 + div (κ gradTM )− ρcṪM

)
. (2.25)

This has the physical interpretation that the energy available for melting is composed of three terms: (i)
the heat dissipated by stress power, tr (T RD) = 2EAt(ω)ft(σ)σ2, (ii) the heat conducted to the point
under consideration and (iii) the heat stored by changes in the melting temperature (the latter term
being obviously negative for ṪM > 0). Of course, the latter two effects contribute little to the value of
LM , but this is exactly what is expected in an environment with two coexisting, exchanging phases. In
earlier theories in which the latent heat flux Lj was not included in q, there is an additional contribution

1From a strict thermodynamical point of view this relation is merely approximate (Svendsen, pers. comm.).
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−ν∇2ω to M , a heat source due to the water flux. This ambiguity arises because separate momentum
and energy balances for water and ice are not considered. Strictly mixture-theoretical computation of q
shows, however, that the latent heat flux Lj, which arises from water diffusion, contributes indeed to the
mixture heat flux q, as is typical for fluxes in mixtures (Müller, 1985; Svendsen, pers. comm.), so that
our approach seems to be preferable. Moreover, if the latent heat flux were ignored, the additional term
−ν∇2ω in M would cancel water diffusion in the water mass balance (2.23) and therefore in the final
water-content equation (4.137), although diffusion was originally included in the model, a physically very
questionable result.

2.1.3 Lithosphere

Since the objective of this work is ice sheet modelling, in the solid rock (lithosphere) only those processes
are included that are of some relevance for the ice sheet. These are (i) the heat conduction in the lithosphere
and the resulting thermal inertia effect on the ice sheet, and (ii) the isostatic adjustment as a consequence
of the varying ice load.

Analogous to the procedure for cold ice, the temperature equation in the rock becomes (see (2.8))

ρrcrṪ = κr ∇2T. (2.26)

The index (·)r refers to the lithosphere (= rock bed), so ρr, cr and κr are its density, specific heat and
heat conductivity, respectively. In contrast to cold ice, cr and κr are assumed constant, and strain heating
is neglected.

For the sinking depth ∆b(x, y, t) of the lithosphere into the asthenosphere below it, consider a local
force balance between buoyancy and ice load for a vertical column of transect area dA with ice thickness
H = h− b:

ρag∆b dA = ρgH dA, (2.27)

where ρa is the density of the asthenosphere. In this affirmation vertically moving lithosphere columns
do not interact with each other, and have no horizontal velocity. With the relaxed ice-free steady-state
lithosphere position at z = b0(x, y, t), its general steady-state position, bss, is given by

bss = b0 −∆b = b0 −
ρ

ρa
H. (2.28)

Due to the asthenosphere viscosity, this equilibrium is not reached instantaneously, but with a certain time
lag τV . The evolution equation for the position of the lithosphere surface at z = b(x, y, t) is (Herterich,
1990)

db

dt
≡ ∂b

∂t
= − 1

τV
(b− bss) = − 1

τV
[b− (b0 −

ρ

ρa
H)]. (2.29)

For a fixed ice thickness H this corresponds to an exponential approach of b towards the equilibrium state
bss.

Under the additional assumption that each vertical column of the lithosphere is rigid, the velocity field
in the lithosphere is

v =
∂b

∂t
(x, y, t) ez, (2.30)

where ez is the unit vector pointing in the z direction.

2.2 Boundary and transition conditions

2.2.1 Boundary conditions at the free surface

As for any singular surface, at the free surface of the ice sheet (ice-atmosphere interface) a kinematic
condition can be formulated. If the free surface is given implicitly by the equation Fs(x, t) = 0 (fig. 2),
with positive side adjacent to the atmosphere, the normal unit vector n = gradFs/‖gradFs‖ points into
the atmosphere. Therefore, the time derivative of Fs following the motion of the free surface with velocity
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w must vanish,
dwFs

dt
=

∂Fs

∂t
+ w · gradFs = 0. (2.31)

Then, introducing the ice volume flux through the free surface, a⊥s := (w − v−) · n,

∂Fs

∂t
+ v− · gradFs = −‖gradFs‖ · a⊥s . (2.32)

With the Cartesian representation of the free surface z = h(x, y, t), Fs(x, t) := z − h(x, y, t), and thus

∂h

∂t
+ v−x

∂h

∂x
+ v−y

∂h

∂y
− v−z =

(
1 +

(
∂h

∂x

)2

+
(

∂h

∂y

)2
)1/2

a⊥s . (2.33)

The ice volume flux through the free surface, a⊥s (“accumulation-ablation function”), is a climatic input
quantity, composed of surface snowfall rate Ss (accumulation) minus surface melting rate Ms (ablation).

Atmosphere (+)

Cold ice (-)

F ( ,t) = 0xs

w

n

Figure 2: Geometry of the free surface.

From the general momentum jump relation (Müller, 1985) there follows, apart from the extremely
small convective momentum flux through the free surface, the continuity of the traction Tn. Neglecting
the stresses on the atmosphere side, composed of the atmospheric pressure patm and the wind shear stress
τττwind, which are small compared to the stresses in the ice sheet,

T−n = T +n = −patmn + τττwind = 0. (2.34)

Further, in the case of a cold free surface (the usual situation) the surface temperature will be prescribed,

T−(x, t) = Ts(x, t); (2.35)

so, Ts represents a further climatic input quantity. In reality, the firn temperature at 10 meters depth,
where seasonal temperature variations (that are irrelevant for the time scales on which ice sheet dynamics
takes place) are damped to a maximum of 1% of their surface amplitudes, is interpreted as Ts. At a
temperate free surface patch, which can possibly arise in small regions close to the ice-sheet margin, the
water content ω or, alternatively, its normal derivative must be prescribed instead.

2.2.2 Transition conditions at the cold ice base

Because of the different properties of cold and temperate ice, the transition conditions between ice and
bedrock (lithosphere) must distinguish the two cases of (i) an ice base below pressure melting (cold ice
base) and (ii) an ice base at pressure melting (temperate ice base). Consider first the case of a cold ice
base.

The bedrock below the ice sheet will be assumed to be impermeable, i.e., a possible mass exchange
between cold ice and lithosphere is ignored. The ice sheet base is denoted by z = b(x, y, t) (fig. 3); the
positive side is identified with the lithosphere, the negative side with the ice. By setting Fb(x, t) :=
b(x, y, t) − z, the normal unit vector n = gradFb/‖gradFb‖ then points into the lithosphere. These
definitions hold for both a cold and a temperate ice base.
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Cold or temperate ice (-)

Lithosphere (+)

F ( ,t) = 0xb

w

n

Figure 3: Geometry of the ice base.

Because of the assumed impermeability,

(v+ −w) · n = (v− −w) · n = 0, (2.36)

so that the general mass jump relation (Müller, 1985) is identically satisfied. The kinematic condition (see
eq. (2.32) for the free surface) is therefore

∂Fb

∂t
+ v− · gradFb = 0, (2.37)

or
∂b

∂t
+ v−x

∂b

∂x
+ v−y

∂b

∂y
− v−z = 0. (2.38)

Further, a sliding law that relates the basal sliding velocity vsl := v−‖ − v+
‖ (where v±‖ = v± − (v± ·n)n)

to the basal shear stress t−‖ is introduced:

vsl = −C(t−⊥, ...) t−‖ , (2.39)

with t−⊥ = n ·T−n and t−‖ = T−n− t−⊥n. The sliding function C depends on the normal basal traction t−⊥
and possibly on further scalar quantities such as ‖t−‖ ‖ or T . Usually in the case of a cold ice base C = 0,
i.e., adhesion of the basal ice at the bedrock, is assumed in ice-sheet and glacier models.

With the impermeability relation (2.36), the general momentum jump relation implies

[[Tn]] = 0, (2.40)

i.e., continuity of the stress vector.
In addition, the energy jump relation is required. With (2.36) and (2.40), the general form (Müller,

1985) reduces to
κ (gradT− · n)− κr (gradT+ · n) = [[v]] · T−n = −vsl · T−n. (2.41)

The term on the right-hand side represents the basal frictional heating, which vanishes in the case of basal
adhesion. Finally, the temperature is assumed continuous,

[[T ]] = 0. (2.42)

2.2.3 Transition conditions at the temperate ice base

Next consider a temperate ice base, where the temperature at the ice-lithosphere interface is at pressure
melting. However, the presence of a temperate ice base at some place in the ice sheet does not necessarily
entail the occurence of a temperate ice layer of non-vanishing thickness above it. It is equally possible
that the temperature gradient at the ice base is below the Clausius-Clapeyron gradient, so that the ice
becomes cold immediately above the base, even though the base itself is temperate. The relations derived
in this section hold for the case of a basal temperate ice layer as well as for the case of a pure temperate
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ice base overlain by cold ice.
The description of the geometry of the cold ice base also applies here. However, the impermeability

assumption applied at the cold ice base does not follow since the possibility of water drainage into the
bedrock is not excluded.

The mass jump relation for the component water is

[[ρw(vw −w) · n]] = Pw
b , (2.43)

where a surface production rate of water Pw
b has been introduced in order to describe the basal ice melting

due to the geothermal heat flux and the basal frictional heating caused by sliding. This can be transformed
to

ρω−(v−w −w) · n = ṁw
b − Pw

b ; (2.44)

here the water mass flux into the base, ṁw
b := ρ+

w(v+
w −w) ·n, has been defined, representing a boundary

condition that must be prescribed in general.
Analogous, the mass jump relation for the component ice yields

[[ρi(vi −w) · n]] = −Pw
b . (2.45)

Since the lithosphere is impermeable to ice, and therefore does not contain any ice (ρ+
i = 0),

ρ(1− ω−) (v−i −w) · n = Pw
b . (2.46)

With the definition (2.10) of the barycentric velocity, it follows that v−w = ω(vw−w)+(1−ω)(vi−w),
which upon scalar multiplication by n and use of (2.44) and (2.46) becomes

(v− −w) · n =
ṁw

b

ρ
. (2.47)

In the case of a negligible diffusive water flux j (i.e., vw = vi = v), the water mass flux into the base ṁw
b

can be calculated by comparing (2.46) and (2.47),

ṁw
b =

Pw
b

1− ω−
, (2.48)

and therefore, in contrast to the general case, does not need separate prescription.
By applying (2.47), the kinematic condition (compare with eqs. (2.32) and (2.33) for the free surface)

becomes
∂Fb

∂t
+ v− · gradFb = ‖gradFb‖ ·

ṁw
b

ρ
, (2.49)

or
∂b

∂t
+ v−x

∂b

∂x
+ v−y

∂b

∂y
− v−z =

(
1 +

(
∂b

∂x

)2

+
(

∂b

∂y

)2
)1/2

ṁw
b

ρ
. (2.50)

For the diffusive water flux j, from (2.44) and (2.47),

j− · n = ρω−(v−w −w) · n− ω−{ρ(v− −w) · n}
= ṁw

b − Pw
b − ω−ṁw

b

= (1− ω−)ṁw
b − Pw

b . (2.51)

Together with the diffusion law (2.19), (2.51) represents a mixed boundary condition for the basal water
content.

As for the case of a cold ice base, a sliding law

vsl = −Ct(t−⊥, ...) t−‖ (2.52)

is formulated, with vsl := v−‖ − v+
‖ , t−⊥ = n · T−n and t−‖ = T−n − t−⊥n as above. Since the water in
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temperate ice may act as a lubricating film between ice and rock, the sliding function Ct is expected to
be distinctly larger than its cold-ice counterpart C.

Neglecting the small convective momentum flux resulting from (2.47), the momentum jump relation
yields again the continuity of the traction,

[[Tn]] = 0. (2.53)

Ignoring the contribution from the kinetic energy, the energy jump relation for the mixture takes the form

[[qs · n]] + L [[j · n]]− [[v · Tn]] + [[(ρ(v −w) · n) Lω]] = 0, (2.54)

and with the relation (2.51) this can be simplified to

κ (grad T− · n)− κr (grad T+ · n) + vsl · T−n + [[ρLω(vw −w) · n]] = 0, (2.55)

or, in view of (2.43),

Pw
b =

1
L

(
κr (grad T+ · n)− κ (gradT− · n)− vsl · T−n

)
. (2.56)

This result is clear; it says that the water production rate at the temperate base, Pw
b (“basal melting

rate”), is fed by the heat fluxes flowing toward the interface from the ice and from the lithosphere as well
as by the basal heat production due to sliding. The temperature is continuous,

[[T ]] = 0 ⇒ T+ = T− = TM , (2.57)

with the phase change surface at the melting temperature. In contrast to the cold ice base, the temper-
ature TM at the temperate ice base is known (provided the pressure field is known), achieving a thermal
decoupling between the ice domain and the lithosphere domain underneath.

2.2.4 Boundary conditions at the lithosphere base

The base of the modelled lithosphere is situated at z = br(x, y, t), or implicitly Fr(x, t) := br(x, y, t)−z = 0
as above. The positive side is identified with the asthenosphere and the negative side with the lithosphere,
and the normal unit vector n = gradFr/‖gradFr‖ therefore points into the asthenosphere (fig. 4).

Lithosphere (-)

Asthenosphere (+)

F ( ,t) = 0xr

w

n

Figure 4: Geometry of the lithosphere base.

Within the framework of the simple lithosphere model applied here, it is merely required to prescribe
a thermal boundary condition at the lithosphere base. To achieve this, specify the geothermal heat flux
Q⊥

geoth := −q− · n in the lithosphere, then with a Fourier heat conduction law

κr (grad T− · n) = Q⊥
geoth, (2.58)

which is a Neumann condition for the temperature.
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2.2.5 Transition conditions at the CTS

The CTS (“cold-temperate transition surface”) constitutes the phase-change surface between the cold and
temperate regions of an ice sheet and is therefore, like the free surface and the ice base, a singular surface
at which the physical quantities may suffer jumps. Its geometry is sketched in fig. 5. It will be described
explicitly by z = zm(x, y, t), and thus implicitly by Fm(x, t) := z − zm(x, y, t) = 0; the positive side is
the upper (cold ice) side, the negative side the lower (temperate ice) side, so that the normal unit vector
n = gradFm/‖gradFm‖ points into the cold ice.

Cold ice (+)

Temperate ice (-)

CTS:

F ( ,t) = 0xm

w

n

Figure 5: Geometry of the CTS.

First, the kinematic condition,

∂Fm

∂t
+ v · gradFm = −‖gradFm‖ · a⊥m, (2.59)

with the above choice for Fm, becomes

∂zm

∂t
+ vx

∂zm

∂x
+ vy

∂zm

∂y
− vz =

(
1 +

(
∂zm

∂x

)2

+
(

∂zm

∂y

)2
)1/2

a⊥m. (2.60)

In this equation the ice volume flux through the CTS, a⊥m := (w − v) · n, has been introduced. This sign
choice causes a⊥m to be positive for melting conditions (ice flow direction from the cold into the temperate
region) and negative for freezing conditions (ice flow direction from the temperate into the cold region).
Because of the continuity of v across the CTS to be deduced below it is not necessary to distinguish
between v+ und v−. In contrast to the accumulation-ablation function a⊥s on the free surface, a⊥m arises
in the interior of the ice sheet, and in consequence must be computed by the model.

The temperature and the tangential velocity are assumed continuous,

[[T ]] = 0, [[v − (v · n)n]] = 0. (2.61)

When deriving the mass balance for temperate ice it was noted that the density difference between cold and
temperate ice is at most 1%. If this slight difference is ignored, the mass jump relation yields continuity
for the normal velocity at the CTS as well,

[[v · n]] = 0, (2.62)

so that the entire velocity vector is continuous,

[[v]] = 0. (2.63)

From this and from the momentum jump relation follows the continuity of traction,

[[Tn]] = 0. (2.64)

Now consider the mass jump relation for the component water. Since melting and freezing processes may

11



occur at the CTS, a surface production term Pw
m for the component water must be introduced. Then

[[ρw(vw −w) · n]] = Pw
m, (2.65)

or, equivalently, with the diffusive water flux given by (2.12) (in view of the fact that at the positive (cold)
side of the CTS no water is present, so that the quantities ω+ and j+ vanish)

−j− · n + ρa⊥mω− = Pw
m. (2.66)

This relation can be interpreted in terms of a total water flux jtot relative to the CTS velocity w, defined
by

jtot := ρw(vw −w), (2.67)

when (2.66) becomes
−j−tot · n = Pw

m. (2.68)

That is, the normal component of the total water flux relative to the CTS at the temperate side of the
CTS equals the surface production of water.

To formulate the energy jump relation, as in the derivation of (2.22), the extended energy flux (2.21)
for temperate ice is used, so that at the cold (positive) side q = qs, and at the negative (temperate) side
q = qs + Lj. With (2.18), (2.63) and (2.64),

q+
s · n− q−s · n− Lj− · n = Lω−ρ(v −w) · n = −Lω−ρa⊥m, (2.69)

or, with Fourier’s heat conduction law and the definition of jtot,

κ (gradT+ − gradT−
M ) · n + L j−tot · n = 0. (2.70)

At the cold side of the CTS the homologous temperature T ′ = T −TM cannot increase with the cold zone
(otherwise the temperature would exceed the melting temperature); thus

gradT+ · n− gradT−
M · n ≤ 0. (2.71)

This and (2.70) imply j−tot · n ≥ 0, so that

Pw
m (= −j−tot · n) ≤ 0; (2.72)

that is, the surface production of water Pw
m cannot be positive.

Because of this secondary condition, for each point of the CTS three cases must be distinguished,
depending on the sign of the quantity (w − v−w) · n:

i) (w − v−w) · n > 0 (“melting condition”):

With the above definition of jtot (2.67) and ρw = ρω, (2.72) can only be fulfilled if

ω− = 0; (2.73)

so the equality in (2.72) holds. Inserting this into (2.70) yields further

gradT+ · n = gradT−
M · n, (2.74)

which means that in case of melting conditions both the water content and the normal temperature
derivative are continuous at the CTS (ω+ is equal to zero anyway, because at the cold side of the CTS by
definition no water is present).

ii) (w − v−w) · n < 0 (“freezing condition”):

In this case, (2.72) is compatible with
ω− ≥ 0, (2.75)

12



so that (2.71) can hold in its general form

gradT+ · n ≤ gradT−
M · n. (2.76)

As a consequence, in case of freezing conditions the water content and the normal temperature derivative
can be discontinuous at the CTS; the jumps of these quantities are connected by eq. (2.70).

iii) (w − v−w) · n = 0 (“parallel-flow condition”):

For this case, too, (2.72) is compatible with
ω− ≥ 0, (2.77)

however, equality holds automatically in (2.72). Inserting this into (2.70) provides

gradT+ · n = gradT−
M · n. (2.78)

Hence, the parallel-flow condition is characterized by a continuous normal temperature derivative (as for
melting conditions), but the possibility of a jump in water content (as for freezing conditions).

This behaviour can be understood as follows: when a non-vanishing total water flux j−tot reaches the
CTS from the temperate side (freezing condition), the transported water can freeze at the CTS (negative
surface production of water). The latent heat released can be conducted away by a negative normal
temperature derivative in the cold zone exceeding the small negative gradient in the temperate zone.
Therefore, this entails a jump of the normal temperature derivative and (since at the cold side the water
content is zero) of the water content as well.

However, the opposite situation cannot occur: it is impossible that cold ice flows toward the CTS,
melts partly at the CTS (positive surface production of water) and produces a non-vanishing total water
flux at the temperate side. The reason for this is that the melting heat necessary for this process cannot
be transported to the CTS; to achieve this the normal temperature derivative would have to be more
positive at the cold side than at the temperate side, which is impossible because then the temperature
in the cold zone would exceed the melting temperature of ice. Ice flow from the cold region through the
CTS toward the temperate region is only possible without surface melting when passing the CTS, so that
in this case ω− = 0 and gradT+ ·n = gradT−

M ·n hold; in other words the water content and the normal
temperature derivative are continuous.

It should further be mentioned that in the case of a negligible diffusive water flux j in temperate ice,
that is, a very small water diffusivity ν, the distinction between melting conditions, freezing conditions
and parallel-flow conditions can simply be made by the sign of the ice volume flux through the CTS a⊥m,
because in this case v = vw holds. a⊥m > 0 (ice flow from cold to temperate ice) then corresponds to the
melting condition, a⊥m < 0 (ice flow from temperate to cold ice) to the freezing condition and a⊥m = 0 to
the parallel-flow condition.

3 Ice sheet of uniform depth

3.1 Application of the model

A simple application of the polythermal ice sheet model described above is now presented. Consider a
two-dimensional inclined polythermal ice sheet of uniform depth (“slab”), infinitely extended in the x-
direction, so the ice flows down the slope, as depicted in fig. 6. Numerical solutions for such a geometry
have already been constructed by Hutter et. al. (1988) and Blatter (1991), but here a different approach
provides essentially analytical solutions. As an explicit demonstration of the well-posed nature of the
boundary value problem this is an essential mathematical step.

The following assumptions are made:

• Constant inclination angle γ, uniformity of the processes in x-direction:
(∂/∂x)(·) = 0.

• Steady-state configuration: (∂/∂t)(·) = 0.
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Atmosphere
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T. I.

Lithosphere

g
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x

H

�

z = h = H

z = z (CTS)m

z = b = 0

Figure 6: Ice sheet of uniform depth (“slab”): geometry and coordinate system. C. I.: cold ice, T. I.:
temperate ice.

• Glen’s flow law (cf. Glen, 1955; Nye, 1957; Hooke, 1981; Paterson, 1994):
f(σ) = ft(σ) = σn−1 (with n = 3).

• Ice fluidity independent of temperature and water content:
EA(T ′) = EAt(ω) ≡ A = 5.3 · 10−24 s−1Pa−3

(value for T ′ = 0◦C and E = 1, see Paterson (1994)).

• ρ = 910 kg m−3, κ = 2.1 W m−1K−1, c = 2009 J kg−1K−1, L = 335 kJ kg−1,
g = 9.81 m s−2.

• Neglect of acceleration: v̇ = 0.

• Neglect of the pressure dependence of the melting point of ice:
TM ≡ 0◦C.

• Neglect of water diffusion: ν = 0 ⇒ j = 0.

• Neglect of lithospheric influences: no bedrock sinking, no calculation of lithosphere temperature and
basal melting rate.

With these assumptions, the model equations become:
Mass balance, cold and temperate region (from eqs. (2.1), (2.13)):

dvz

dz
= 0. (3.1)

Momentum balance, cold and temperate region (from eq. (2.3), (2.14)):

dσxz

dz
+ ρg sin γ = 0, −dp

dz
+

dσR
z

dz
− ρg cos γ = 0. (3.2)

Energy balance, cold region (from eq. (2.8)):

ρcvz
dT

dz
= κ

d2T

dz2
+ 2A σ4. (3.3)

Energy balance, temperate region; mass balance for the component water (from eqs. (2.23), (2.24)):

ρvz
dω

dz
= 2

A

L
σ4. (3.4)
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Stress-strain-rate relation, cold and temperate region (from eqs. (2.4), (2.17)):

σR
x = 0, σR

z = 0,
dvx

dz
= 2A σ2 σxz; (3.5)

with the definition of the effective shear stress σ :=
√

tr (T R)2/2 this yields σ = σxz.

Boundary conditions, cold free surface (from eqs. (2.33), (2.34), (2.35)):

vz = −a⊥s , σ = σxz = 0,
T = Ts, −p + σR

z = −p = 0. (3.6)

Boundary conditions, temperate base:
Due to eqs. (3.1) and (3.6), the velocity vz perpendicular to the bed equals the negative accumulation-
ablation function a⊥s for any vertical position in the slab. In particular, vz takes this value at the base
as well, and as a consequence, the kinematic condition (2.50) is redundant. It determines the water mass
flux into the base ṁw

b required to sustain this basal vz, but this does not affect the ice flow.
Boundary condition (2.51), which determines the normal diffusive water flux, is also redundant, since

water diffusion is neglected. Thus, the sliding law (2.52) remains as the boundary condition for the basal
velocity parallel to the bed, vx,b. However, for simplicity, prescribe vx,b directly instead of formulating an
explicit sliding law. The only impact of vx,b on the results is that it adds a constant to the velocity profile
vx(z); temperature and water content are not affected at all.

Transition conditions, CTS (from eqs. (2.61), (2.63), (2.64), (2.69), (2.71)):

T+ = T−,

v+
x = v−x , v+

z = v−z ,

p+ = p−, σ+
(xz) = σ−(xz),

κ
dT+

dz
= Lω−ρa⊥m with

dT+

dz
≤ 0.

(3.7)

The secondary condition in the last equation entails that two different cases must be distinguished (see
discussion in §2.2.5):

• a⊥m > 0 (“melting condition”, ice flow from cold to temperate region): dT+/dz = 0, ω− = 0.

• a⊥m < 0 (“freezing condition”, ice flow from temperate to cold region): Eq. (3.7) in its non-trivial
form, i.e., dT+/dz can be strictly negative and ω− strictly positive; in this case an additional
boundary condition for the basal water content is required.

The case of parallel flow is ignored, because it does not allow a steady-state solution. For this situation,
because of (B.5) (see Appendix B) vz ≡ 0 would hold, and thus the left-hand side of (3.4) would be zero,
whereas its right-hand side would be strictly positive owing to (B.3). This contradiction proves therefore
that steady parallel-flow conditions of this sort cannot occur.

3.2 Results

In Appendix B it is demonstrated how the slab equations compiled above can be solved semi-analytically.
Here this solution is discussed for two cases, namely (i) melting conditions, and (ii) freezing conditions
at the CTS. In detail, the parameters are: for case (i) thickness H = 200 m, inclination angle γ = 4◦,
surface temperature Ts = −3◦C, accumulation-ablation function a⊥s = 0.2 m a−1 (i.e., a⊥m = 0.2 m a−1 and
vz ≡ −0.2 m a−1), basal sliding velocity vx,b = 5 m a−1 (see fig. 7); and for case (ii) H = 200 m, γ = 4◦,
Ts = −10◦C, a⊥s = −0.2 m a−1 (i.e., a⊥m = −0.2 m a−1 and vz ≡ 0.2 m a−1), vx,b = 5m a−1 (see fig. 8).

In the corresponding figures panel (a) shows the velocity vx parallel to the bed, panel (b) the temper-
ature T in the cold region and the water content ω in the temperate region, all as functions of the vertical
coordinate z. The distribution of the velocity vx is identical for both cases; it increases monotonically
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Figure 7: (a) Velocity vx parallel to the bed, (b) temperature T and water content ω, for the slab with
melting conditions at the CTS. H = 200 m, γ = 4◦, Ts = −3◦C, a⊥s = 0.2 m a−1, vx,b = 5m a−1.

Figure 8: (a) Velocity vx parallel to the bed, (b) temperature T and water content ω, for the slab with
freezing conditions at the CTS. H = 200 m, γ = 4◦, Ts = −10◦C, a⊥s = −0.2 m a−1, vx,b = 5m a−1.

from its minimum value at the base, as it is typical for such a shear flow problem. However, the behaviour
of the temperature and the water content are entirely different: In the case of melting conditions (fig. 7)
the temperature gradient dT+/dz at the cold side of the CTS and the water content at the temperate
side vanish, as already explained in the discussion of eq. (3.7). Since these quantities are zero on the
corresponding opposite sides of the CTS anyway, they are continuous and therefore do not jump. On the
other hand, in the case of freezing conditions (fig. 8) a strictly negative temperature gradient dT+/dz and
a strictly positive water content ω− appear, so that indeed there are discontinuities of these quantities.
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Finally, to anticipate a possible objection that this solution would not represent a realistic flow situation
in a glacier or an ice sheet, note its real value in the following senses. First, the solution demonstrates
that the model equations are well posed. Second, the solution is analytic (except for the determination of
the CTS position by a Newtonian root finder), therefore exact, and can be used to check the performance
of any numerical solution procedure.

4 Scaling analysis and shallow-ice approximation

The polythermal ice sheet model derived in §2 is in general still too complicated to be amenable to a
numerical or analytical solution; only simple problems with strong symmetry (e.g., the ice sheet of uniform
depth, see §3) can be analysed. Further simplification is therefore required. First, introduce an appropriate
scaling in which the physical quantities are made dimensionless by the choice of corresponding typical
magnitudes. Second, systematically neglect terms of small magnitude relative to the major balances. In
this problem, the approximations are based on the assumption that a typical height scale in an ice sheet
is much smaller than a typical length scale, and that respective gradients reflect this distinction in length
scales. That is, the ice sheets are shallow (“shallow-ice approximation”, in the following abbreviated by
“SIA”; cf. Hutter, 1983; Morland, 1984; Blatter, 1991).

4.1 Introduction of the scaling

The various physical quantities will be scaled as follows:

(x, y) = [L] (x̃, ỹ), (A(T ′), At(ω)) = [A] (Ã(θ̃′), Ãt(ω̃)),
z = [H] z̃, (f(σ), ft(σ)) = [f ] (f̃(σ̃), f̃t(σ̃)),

(vx, vy) = [VL] (ṽx, ṽy), Q⊥
geoth = [Q⊥

geoth] Q̃⊥
geoth,

vz = [VH ] ṽz, κ(T ) = [κ] κ̃(θ̃),
t = ([L]/[VL]) t̃, κr = [κr] κ̃r,

(T, T ′) = [∆T ] (θ̃, θ̃′), c(T ) = [c] c̃(θ̃),
ω = [ω] ω̃, cr = [cr] c̃r,

p = ρg[H] p̃, C(t⊥, . . .) = [C] C̃(t̃⊥, . . .),
(σxz, σyz, σ) = ερg[H] (σ̃xz, σ̃yz, σ̃), Ct(t⊥, . . .) = [Ct] C̃t(t̃⊥, . . .),
(σR

x , σR
y , σR

z ) = ε2ρg[H] (σ̃R
x , σ̃R

y , σ̃R
z ), Pw

b = ρ[ω][VH ] P̃w
b ,

σxy = ε2ρg[H] σ̃xy, ṁw
b = ρ[ω][VH ] ˜̇m

w

b ,

(h, zm, b, br) = [H] (h̃, z̃m, b̃, b̃r), Pw
m = ρ[ω][VH ] P̃w

m,
(a⊥s , a⊥m) = [VH ] (ã⊥s , ã⊥m),

(4.1)

with the aspect ratio ε := [H]/[L] = [VH ]/[VL] (thus [VH ] is not independent), and T, T ′ taken in ◦C.
Quantities in square brackets denote typical values for the respective variables, and variables marked with
a tilde are dimensionless. Subsequently, unless stated otherwise, only dimensionless variables are used,
and the tildes are omitted for simplicity.

The scalings are chosen such that the dimensionless quantities are all of order unity. This is evident
for the pressure p which reaches the overburden pressure magnitude ρg[H] at the base. The deviatoric
stress scaling is chosen to satisfy the horizontal momentum balances when the dominant shear stresses are
σxz and σyz, which arises when basal friction is the dominant resistance to gravity-induced flow. This is
appropriate to a grounded ice sheet as considered here, but not for a floating shelf where the basal shear
traction supported by the water is negligible.

The 13 basic quantities introduced above are [L], [H], [VL], [∆T ], [ω], [Q⊥
geoth], [κ], [κr], [c], [cr], [C],

[Ct] and the product [A][f ] (neither [A] nor [f ] appears otherwise), recalling that [VH ] is not independent.
Together with the eight physical constants, ρ, g, L, β, ν, ρr, ρa, τV , these form a set of 21 quantities, whose
dimensions consist of the basic units meter, kilogram, second and Kelvin. The corresponding dimension
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matrix has rank four:
[L] ρ [VL] [∆T ] . . .

m 1 −3 1 0 . . .
kg 0 1 0 0 . . .
s 0 0 −1 0 . . .
K 0 0 0 1 . . .

Due to the rules of dimensional analysis (Barenblatt, 1987), 13 + 8 − 4 = 17 independent dimensionless
products exist. A complete set of these products is

ε =
[H]
[L]

=
[VH ]
[VL]

, Dt =
ν

ρ[H][VH ]
, Nr =

[H][Qgeoth]
[κr][∆T ]

,

F =
[VL]2

g[L]
, F =

ρg[H]2[C]
[L][VL]

, [ω],

D =
[κ]

ρ[c][H][VH ]
, Ft =

ρg[H]2[Ct]
[L][VL]

,
[κr]
[κ]

,

α =
g[H]

[c][∆T ]
, B =

β[H]
[∆T ]

,
ρr

ρ
,

K =
ρg[H]3[A][f ]

[L][VL]
, Dr =

[κr]
ρr[cr][H][VH ]

,
ρa

ρ
;

αt =
g[H]
L[ω]

, Tr =
τV [VH ]

[H]
,

(4.2)

ε is the aspect ratio, F the Froude number, D the heat diffusion number, α the ratio of potential energy
to internal energy for cold ice, K the fluidity number, αt the ratio of potential energy to internal energy
for temperate ice, Dt the water diffusion number, F and Ft the sliding numbers for cold and temperate
base, respectively, B the Clausius-Clapeyron number, Dr the heat diffusion number of the lithosphere,
Tr the time-lag number for isostatic bed adjustment, and finally Nr the geothermal heat number in the
lithosphere. For the last four combinations no special names are introduced.

4.2 Scaling analysis and SIA for the model equations

In the following all field equations, boundary and transition conditions of §2 are subjected to the above
scaling, and subsequently simplified by the shallow-ice approximation (SIA). That is, in the limit

ε → 0, (4.3)

all terms of order O(εp) with p ≥ 1 are neglected in comparison with unity (in real ice sheets, ε is of the
order 10−3). Furthermore, the Froude number in real ice sheets takes values of order F = 10−15 or less. It
is therefore meaningful to simultaneously apply the limit

F

ε
→ 0. (4.4)

4.2.1 Cold regions

The scaled mass balance from (2.1) becomes

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0, (4.5)

recalling that tildes are now omitted, which cannot be simplified further by the SIA. The scaled momentum
balance (2.3) is

F

ε

dvx

dt
= −∂p

∂x
+ ε2 ∂σR

x

∂x
+ ε2 ∂σxy

∂y
+

∂σxz

∂z
, (4.6)
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F

ε

dvy

dt
= ε2 ∂σxy

∂x
− ∂p

∂y
+ ε2

∂σR
y

∂y
+

∂σyz

∂z
, (4.7)

Fε
dvz

dt
= ε2 ∂σxz

∂x
+ ε2 ∂σyz

∂y
− ∂p

∂z
+ ε2 ∂σR

z

∂z
− 1. (4.8)

Application of the SIA yields

−∂p

∂x
+

∂σxz

∂z
= 0, (4.9)

−∂p

∂y
+

∂σyz

∂z
= 0, (4.10)

−∂p

∂z
= 1, (4.11)

which is an impressive example of how much the general equations of §2 are simplified by the SIA.
The result shows further that the scaling of the shear stresses σxz and σyz with ερg[H] (see §4.1) is
appropriate, because without the additional ε compared to the pressure scaling, eqs. (4.9) and (4.10)
would read ∂σxz/∂z = 0, ∂σyz/∂z = 0, a non-physical result for a free-surface flow governed by gravity
and basal friction (see Morland and Johnsen, 1980; Hutter, 1983; Morland, 1984).

The energy balance (2.8) becomes with an explicitly written advection term

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
D
c

{
ε2 ∂

∂x

(
κ

∂θ

∂x

)
+ε2 ∂

∂y

(
κ

∂θ

∂y

)
+

∂

∂z

(
κ

∂θ

∂z

)}
+ 2

α

c
KEA(θ′)f(σ)σ2, (4.12)

and in the SIA limit,

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
D
c

∂

∂z

(
κ

∂θ

∂z

)
+ 2

α

c
KEA(θ′)f(σ)σ2. (4.13)

Horizontal heat conduction can therefore be neglected in the SIA limit, but horizontal, as well as vertical,
advection must be kept.

The stress-strain-rate relation (2.4) takes the component form

∂vx

∂x
= KEA(θ′)f(σ)σR

x , (4.14)

∂vy

∂y
= KEA(θ′)f(σ)σR

y , (4.15)

∂vz

∂z
= KEA(θ′)f(σ)σR

z , (4.16)

∂vx

∂y
+

∂vy

∂x
= 2KEA(θ′)f(σ)σxy, (4.17)

∂vx

∂z

{
+ε2 ∂vz

∂x

}
= 2KEA(θ′)f(σ)σxz, (4.18)

∂vy

∂z

{
+ε2 ∂vz

∂y

}
= 2KEA(θ′)f(σ)σyz, (4.19)

and with the SIA the O(ε2) terms in curly brackets vanish. This makes clear that the scaling of the normal
frictional stresses σR

x , σR
y , σR

z and of the shear stress σxy with ε2ρg[H], according to §4.1, is appropriate,
since it provides order-consistent terms in all equations. These stresses are therefore very small in shallow
grounded ice sheets. Of the above relations only (4.18) and (4.19) will be needed to construct the leading
order stresses. Moreover, the effective shear stress (required for the energy balance and for the creep
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response function),

σ =

√
σ2

xz + σ2
yz + ε2

(
(σR

x )2

2
+

(σR
y )2

2
+

(σR
z )2

2
+ σ2

xy

)
, (4.20)

simplifies in the SIA limit to
σ =

√
σ2

xz + σ2
yz. (4.21)

4.2.2 Temperate regions

As already stated, the mixture mass balance and the mixture momentum balance for ice plus water have
the same form as the corresponding balances for cold ice (see (2.1), (2.3), (2.13), (2.14)); therefore, the
scaled and SIA versions are the same as in the previous section (eqs. (4.5) – (4.11)), and will not be listed
again.

For the temperature, according to (2.9),

θ = θM = −Bp. (4.22)

For the mass balance of the component water (2.23) and the mixture energy balance (2.24), which are the
same provided that (2.25) is applied, we obtain

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
+

cαt

α

(
∂θM

∂t
+ vx

∂θM

∂x
+ vy

∂θM

∂y
+ vz

∂θM

∂z

)
= Dt

(
ε2 ∂2ω

∂x2
+ ε2 ∂2ω

∂y2
+

∂2ω

∂z2

)
+
Dαt

α

{
ε2 ∂

∂x

(
κ

∂θM

∂x

)
+ ε2 ∂

∂y

(
κ

∂θM

∂y

)
+

∂

∂z

(
κ

∂θM

∂z

)}
+2αtKEAt(ω)ft(σ)σ2, (4.23)

which in the SIA reduces to

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
+

cαt

α

(
∂θM

∂t
+ vx

∂θM

∂x
+ vy

∂θM

∂y
+ vz

∂θM

∂z

)
= Dt

∂2ω

∂z2
+
Dαt

α

∂

∂z

(
κ

∂θM

∂z

)
+ 2αtKEAt(ω)ft(σ)σ2. (4.24)

As was the case for the energy balance of cold ice, horizontal diffusion is neglected.
The stress-strain-rate relation (2.17) is basically the same as for cold ice (2.4). Hence eqs. (4.14) – (4.19)

also hold for temperate ice, merely A(θ′) and f(σ) must be replaced by At(ω) and ft(σ), respectively.
Also the result for the effective shear stress remains unchanged.

4.2.3 Lithosphere

The scaled energy balance (2.26)

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
Drκr

cr

(
ε2 ∂2θ

∂x2
+ ε2 ∂2θ

∂y2
+

∂2θ

∂z2

)
(4.25)

reduces in the SIA limit to
∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
Drκr

cr

∂2θ

∂z2
. (4.26)

The evolution of the lithosphere surface follows from (2.29) as

∂b

∂t
= − 1

Tr
[b− (b0 −

ρ

ρa
H)]; (4.27)
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this cannot be further simplified. Correspondingly, the lithosphere velocity simplifies to

vx = 0, vy = 0, vz =
∂b

∂t
(x, y, t) (4.28)

according to (2.30), with ∂b/∂t from equation (4.27).

4.2.4 Boundary conditions at the free surface

The scaled kinematic condition (2.33) is2

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz =

(
1 + ε2

(
∂h

∂x

)2

+ ε2

(
∂h

∂y

)2
)1/2

a⊥s , (4.29)

which in the SIA becomes
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz = a⊥s . (4.30)

For subsequent developments the terms

gradFs =
(
−ε

∂h

∂x
, −ε

∂h

∂y
, 1
)t

, (4.31)

‖gradFs‖ =

(
1 + ε2

(
∂h

∂x

)2

+ ε2

(
∂h

∂y

)2
)1/2

(4.32)

are required, and in the SIA limit they reduce to

gradFs = (0, 0, 1)t, ‖gradFs‖ = 1. (4.33)

With the outer normal unit vector n = gradFs/‖gradFs‖, the component forms of the momentum jump
relation (2.34) are

−(−p + ε2σR
x )

∂h

∂x
− ε2σxy

∂h

∂y
+ σxz = 0, (4.34)

−ε2σxy
∂h

∂x
− (−p + ε2σR

y )
∂h

∂y
+ σyz = 0, (4.35)

−ε2σxz
∂h

∂x
− ε2σyz

∂h

∂y
− p + ε2σR

z = 0. (4.36)

Application of the SIA first simplifies the last of these equations to

p = 0, (4.37)

and with this, the first two equations yield

σxz = 0, σyz = 0. (4.38)

In the case of a cold free surface there remains the boundary condition for the surface temperature (2.35),
which is

θ(x, y, t) = θs(x, y, t). (4.39)

In the case of a temperate free surface, the water content ω or its normal derivative must be prescribed.
2The minus-superscripts (·)− that mark the ice side in the boundary conditions at the free surface as well as in the

transition conditions at the ice base (see §2) are omitted in the following. Therefore, unmarked quantities always refer to
the ice side.
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4.2.5 Transition conditions at the cold ice base

The kinematic condition (2.38) remains formally unchanged under scaling and the SIA,

∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz = 0. (4.40)

Analogous to the free surface,

gradFb =
(

ε
∂b

∂x
, ε

∂b

∂y
, −1

)t

, (4.41)

‖gradFb‖ =

(
1 + ε2

(
∂b

∂x

)2

+ ε2

(
∂b

∂y

)2
)1/2

, (4.42)

and in the SIA limit,
gradFb = (0, 0,−1)t, ‖gradFb‖ = 1. (4.43)

With n = gradFb/‖gradFb‖,

Tn =
ρg[H]

‖gradFb‖


εσx

∂b

∂x
+ ε3σxy

∂b

∂y
− εσxz

ε3σxy
∂b

∂x
+ εσy

∂b

∂y
− εσyz

ε2σxz
∂b

∂x
+ ε2σyz

∂b

∂y
− σz


, (4.44)

and

(n · Tn)n =
ρg[H]

‖gradFb‖3
×

ε3σx

(
∂b

∂x

)3

+ ε3σy
∂b

∂x

(
∂b

∂y

)2

+ εσz
∂b

∂x

+2ε5σxy

(
∂b

∂x

)2
∂b

∂y
− 2ε3σxz

(
∂b

∂x

)2

− 2ε3σyz
∂b

∂x

∂b

∂y

ε3σx

(
∂b

∂x

)2
∂b

∂y
+ ε3σy

(
∂b

∂y

)3

+ εσz
∂b

∂y

+2ε5σxy
∂b

∂x

(
∂b

∂y

)2

− 2ε3σxz
∂b

∂x

∂b

∂y
− 2ε3σyz

(
∂b

∂y

)2

−ε2σx

(
∂b

∂x

)2

− ε2σy

(
∂b

∂y

)2

− σz

−2ε4σxy
∂b

∂x

∂b

∂y
+ 2ε2σxz

∂b

∂x
+ 2ε2σyz

∂b

∂y



, (4.45)

the sliding law (2.39) becomes

(vsl)x = − FC

‖gradFb‖

[
σx

∂b

∂x
+ ε2σxy

∂b

∂y
− σxz

− 1
‖gradFb‖2

(
ε2σx

(
∂b

∂x

)3

+ ε2σy
∂b

∂x

(
∂b

∂y

)2

+ σz
∂b

∂x

+2ε4σxy

(
∂b

∂x

)2
∂b

∂y
− 2ε2σxz

(
∂b

∂x

)2

− 2ε2σyz
∂b

∂x

∂b

∂y

)]
, (4.46)
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(vsl)y = − FC

‖gradFb‖

[
ε2σxy

∂b

∂x
+ σy

∂b

∂y
− σyz

− 1
‖gradFb‖2

(
ε2σx

(
∂b

∂x

)2
∂b

∂y
+ ε2σy

(
∂b

∂y

)3

+ σz
∂b

∂y

+2ε4σxy
∂b

∂x

(
∂b

∂y

)2

− 2ε2σxz
∂b

∂x

∂b

∂y
− 2ε2σyz

(
∂b

∂y

)2
)]

, (4.47)

(vsl)z = − FC

‖gradFb‖

[
σxz

∂b

∂x
+ σyz

∂b

∂y
− σz

ε2

− 1
‖gradFb‖2

(
−σx

(
∂b

∂x

)2

− σy

(
∂b

∂y

)2

− σz

ε2

−2ε2σxy
∂b

∂x

∂b

∂y
+ 2σxz

∂b

∂x
+ 2σyz

∂b

∂y

)]
. (4.48)

In view of 1/‖gradFb‖2 = 1 − ε2(∂b/∂x)2 − ε2(∂b/∂y)2 + O(ε4) (noting that eq. (4.48) contains O(ε−2)
terms, the two terms of order O(ε2) are relevant), the SIA reductions are

(vsl)x = FCσxz, (4.49)
(vsl)y = FCσyz, (4.50)

(vsl)z = FC

(
∂b

∂x
σxz +

∂b

∂y
σyz

)
. (4.51)

According to its definition (see eq. (2.38)), the sliding velocity vsl can be expressed as

(vsl)x = vx − v+
x −

ε2

‖gradFb‖2
×(

(vx − v+
x )

∂b

∂x
+ (vy − v+

y )
∂b

∂y
− (vz − v+

z )
)

∂b

∂x
, (4.52)

(vsl)y = vy − v+
y −

ε2

‖gradFb‖2
×(

(vx − v+
x )

∂b

∂x
+ (vy − v+

y )
∂b

∂y
− (vz − v+

z )
)

∂b

∂y
, (4.53)

(vsl)z = vz − v+
z +

1
‖gradFb‖2

×(
(vx − v+

x )
∂b

∂x
+ (vy − v+

y )
∂b

∂y
− (vz − v+

z )
)

, (4.54)

and application of the SIA limit yields

(vsl)x = vx − v+
x , (4.55)

(vsl)y = vy − v+
y , (4.56)

(vsl)z = (vx − v+
x )

∂b

∂x
+ (vy − v+

y )
∂b

∂y
. (4.57)

Further, for the lithosphere model applied here, v+
x and v+

y vanish; see eqs. (4.28).
The momentum jump relation (2.40) is not required, since the lithosphere stresses are not calculated.
The energy jump relation (2.41) in scaled form is

κ

(
ε2 ∂θ

∂x

∂b

∂x
+ ε2 ∂θ

∂y

∂b

∂y
− ∂θ

∂z

)
− [κr]

[κ]
κr

(
ε2 ∂θ+

∂x

∂b

∂x
+ ε2 ∂θ+

∂y

∂b

∂y
− ∂θ+

∂z

)
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= − α

D

{
(vsl)x

∂b

∂x
(−p + ε2σR

x ) + ε2(vsl)x
∂b

∂y
σxy − (vsl)xσxz

+ε2(vsl)y
∂b

∂x
σxy + (vsl)y

∂b

∂y
(−p + ε2σR

y )− (vsl)yσyz

+ε2(vsl)z
∂b

∂x
σxz + ε2(vsl)z

∂b

∂y
σyz − (vsl)z(−p + ε2σR

z )
}

. (4.58)

If adhesion at the cold base is assumed, the term −(α/D) {. . .} vanishes. The SIA limit of (4.58) is

κ
∂θ

∂z
− [κr]

[κ]
κr

∂θ+

∂z
= − α

D
[(vsl)xσxz + (vsl)yσyz]; (4.59)

the terms containing the pressure p in (4.58) vanish due to eqs. (4.55) – (4.57).
Finally, there is the continuity of the temperature (eq. (2.42)),

θ = θ+. (4.60)

4.2.6 Transition conditions at the temperate ice base

The relations (4.41) – (4.43) for grad Fb and ‖gradFb‖ are valid for this case as well. Thus, the kinematic
condition (2.50) is

∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz =

(
1 + ε2

(
∂b

∂x

)2

+ ε2

(
∂b

∂y

)2
)1/2

[ω]ṁw
b , (4.61)

and in the SIA limit,
∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz = [ω]ṁw

b . (4.62)

The boundary condition for the water content (2.51),

Dt

‖gradFb‖

(
−ε2 ∂ω

∂x

∂b

∂x
− ε2 ∂ω

∂y

∂b

∂y
+

∂ω

∂z

)
= (1− [ω]ω)ṁw

b − Pw
b , (4.63)

reduces in the SIA limit to
Dt

∂ω

∂z
= (1− [ω]ω)ṁw

b − Pw
b . (4.64)

Scaling of the sliding law (2.52) is carried out analogous to the procedure for a cold ice base, simply
replacing FC by FtCt.

The energy jump relation (2.56) yields

Pw
b =

Dαt

α

κ

‖gradFb‖

{
−ε2 ∂θ

∂x

∂b

∂x
− ε2 ∂θ

∂y

∂b

∂y
+

∂θ

∂z

}
−Dαt

α

[κr]
[κ]

κr

‖gradFb‖

{
−ε2 ∂θ+

∂x

∂b

∂x
− ε2 ∂θ+

∂y

∂b

∂y
+

∂θ+

∂z

}
− αt

‖gradFb‖

{
(vsl)x

∂b

∂x
(−p + ε2σR

x ) + ε2(vsl)x
∂b

∂y
σxy − (vsl)xσxz

+ε2(vsl)y
∂b

∂x
σxy + (vsl)y

∂b

∂y
(−p + ε2σR

y )− (vsl)yσyz + ε2(vsl)z
∂b

∂x
σxz

+ε2(vsl)z
∂b

∂y
σyz − (vsl)z(−p + ε2σR

z )
}

, (4.65)
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and application of the SIA gives

Pw
b =

Dαt

α
κ

∂θ

∂z
− Dαt

α

[κr]
[κ]

κr
∂θ+

∂z
+ αt((vsl)xσxz + (vsl)yσyz); (4.66)

the pressure terms in (4.65) cancel due to (4.55) – (4.57).
Finally, there is continuity of the temperature (2.57),

θ = θ+ = θM . (4.67)

4.2.7 Boundary conditions at the lithosphere base

The expressions for gradFr and ‖gradFr‖ have the same form as for the cold ice base (see (4.41) – (4.43));
replacing b by br and Fb by Fr. Thus, with n = gradFr/‖gradFr‖, from (2.58)

κr

(
ε2 ∂br

∂x

∂θ−

∂x
+ ε2 ∂br

∂y

∂θ−

∂y
− ∂θ−

∂z

)
= NrQ

⊥
geoth, (4.68)

and in the SIA limit,

κr
∂θ−

∂z
= −NrQ

⊥
geoth. (4.69)

4.2.8 Transition conditions at the CTS

As for the case of the free surface, the kinematic condition (2.60),

∂zm

∂t
+ vx

∂zm

∂x
+ vy

∂zm

∂y
− vz =

(
1 + ε2

(
∂zm

∂x

)2

+ ε2

(
∂zm

∂y

)2
)1/2

a⊥m, (4.70)

reduces in the SIA limit to
∂zm

∂t
+ vx

∂zm

∂x
+ vy

∂zm

∂y
− vz = a⊥m. (4.71)

gradFm, ‖gradFm‖ and n = gradFm/‖gradFm‖ are evaluated as before.
Continuity of temperature and velocity (eqs. (2.61) – (2.63)) require

θ+ = θ− = θM (4.72)

and
v+

x = v−x , v+
y = v−y , v+

z = v−z . (4.73)

The momentum jump relation (2.64) in scaled form is[[
−(−p + ε2σR

x )
∂zm

∂x
− ε2σxy

∂zm

∂y
+ σxz

]]
= 0, (4.74)[[

−ε2σxy
∂zm

∂x
− (−p + ε2σR

y )
∂zm

∂y
+ σyz

]]
= 0, (4.75)[[

−ε2σxz
∂zm

∂x
− ε2σyz

∂zm

∂y
+ (−p + ε2σR

z )
]]

= 0, (4.76)

and in the SIA limit,
p+ = p−, σ+

xz = σ−xz, σ+
yz = σ−yz. (4.77)

Finally, from the energy jump relation (2.70) and the thermal and water-content jump relations (2.73)
– (2.78), it is inferred that
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i) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) > 0 (melting condition):

−(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) > 0 :

ω− = 0, (4.78)

−ε2 ∂θ+

∂x

∂zm

∂x
− ε2 ∂θ+

∂y

∂zm

∂y
+

∂θ+

∂z
= −ε2 ∂θ−M

∂x

∂zm

∂x
− ε2 ∂θ−M

∂y

∂zm

∂y
+

∂θ−M
∂z

, (4.79)

and the latter reduces in the SIA limit to

∂θ+

∂z
=

∂θ−M
∂z

. (4.80)

ii) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) < 0 (freezing condition):

In this case, (2.70) is needed in its full form, which, with the diffusion law (2.19), becomes

Dκ

‖gradFm‖

(
−ε2 ∂θ+

∂x

∂zm

∂x
− ε2 ∂θ+

∂y

∂zm

∂y
+

∂θ+

∂z

)
− Dκ

‖gradFm‖

(
−ε2 ∂θ−M

∂x

∂zm

∂x
− ε2 ∂θ−M

∂y

∂zm

∂y
+

∂θ−M
∂z

)
− α

αt

Dt

‖gradFm‖

(
−ε2 ∂ω−

∂x

∂zm

∂x
− ε2 ∂ω−

∂y

∂zm

∂y
+

∂ω−

∂z

)
=

α

αt
ω−a⊥m, (4.81)

and in the SIA limit

Dκ
∂θ+

∂z
−Dκ

∂θ−M
∂z

− α

αt
Dt

∂ω−

∂z
=

α

αt
ω−a⊥m. (4.82)

iii) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) = 0 (parallel-flow condition):

ω− ≥ 0 (undetermined). (4.83)

Moreover, continuity of the temperature gradient must hold analogous to case (i) above (eqs. (4.79) and
(4.80)).

4.3 Partial integration of the polythermal SIA equations

The above derived model equations, subjected to the shallow-ice approximation (SIA), can be partly
integrated analytically. It is now demonstrated that the dominant stresses p, σxz and σyz can be obtained
analytically, and the calculation of the three components vx, vy and vz of the velocity field reduces to
simple numerical quadratures. The actual “hard” numerics are therefore restricted to the computation of
the temperature and water-content fields, respectively, and the evolution of the free surface, the ice base
and the CTS of the polythermal ice sheet.

4.3.1 Calculation of the stresses

Integrating eq. (4.11) subject to the boundary condition (4.37) and the transition condition (4.77) gives
the simple pressure distribution

p(x, y, z, t) = h(x, y, t)− z, (4.84)
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which is a purely hydrostatic distribution. Using this result in eqs. (4.9), (4.10), and integrating subject
to the boundary and transition conditions (4.38) and (4.77), yields

σxz = −∂h

∂x
(h− z), (4.85)

σyz = −∂h

∂y
(h− z). (4.86)

Thus, the shear stresses are a product of surface gradient and overburden (hydrostatic) pressure – a
classical glaciological result. From (4.21), the effective shear stress becomes

σ = (h− z)

√(
∂h

∂x

)2

+
(

∂h

∂y

)2

. (4.87)

Note that the above results are equally valid in the cold as well as in the temperate regions of the ice
sheet.

The remaining, very small stresses σR
x , σR

y , σR
z and σxy, are not given by the leading-order equations

(but they could be calculated from the leading-order situation), nor are they required.

4.3.2 Calculation of the velocity

The horizontal velocities vx and vy are obtained by integrating the last two equations (4.18), (4.19) of the
stress-strain-rate relation with σxz and σyz given by (4.85) and (4.86):

vx = vx,b − 2K∂h

∂x

∫ z

b

EA(t)(·)f(t)(σ)(h− z′) dz′, (4.88)

vy = vy,b − 2K∂h

∂y

∫ z

b

EA(t)(·)f(t)(σ)(h− z′) dz′, (4.89)

in which

A(t)(·) =
{

A(θ′) for z > zm (cold regions),
At(ω) for z < zm (temperate regions) (4.90)

and

f(t)(σ) =
{

f(σ) for z > zm (cold regions),
ft(σ) for z < zm (temperate regions). (4.91)

The integration constants vx,b and vy,b represent the corresponding basal velocities, and are given by the
sliding law (4.49), (4.50) with the above values for σxz and σyz:

vx,b = (vsl)x = −F(t)C(t)
∂h

∂x
(h− b), (4.92)

vy,b = (vsl)y = −F(t)C(t)
∂h

∂y
(h− b). (4.93)

Here use has been made of the fact that the x- and y components of the lithosphere velocity vanish (see
(4.28)), so that, according to (4.55), (4.56), the components of the sliding velocity and the corresponding
components of the ice-base velocity are identical. Furthermore,

F(t)C(t) =
{
FC for cold base,
FtCt for temperate base. (4.94)

With these results for the horizontal velocities, further integration of the mass balance (4.5) gives the
vertical velocity,

vz = −
∫ z

b

(
∂vx

∂x
+

∂vy

∂y

)
dz′ + vz,b. (4.95)
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In view of the kinematic conditions (4.40) and (4.62), the basal vertical velocity vz,b can be expressed in
terms of vx,b and vy,b.

To sum up, the velocities are given by the following relations:

vx = −F(t)C(t)
∂h

∂x
(h− b)− 2K∂h

∂x

∫ z

b

EA(t)(·)f(t)(σ)(h− z′) dz′, (4.96)

vy = −F(t)C(t)
∂h

∂y
(h− b)− 2K∂h

∂y

∫ z

b

EA(t)(·)f(t)(σ)(h− z′) dz′, (4.97)

vz = −
∫ z

b

(
∂vx

∂x
+

∂vy

∂y

)
dz′ +

∂b

∂t
+ vx,b

∂b

∂x
+ vy,b

∂b

∂y
− [ω]ṁw

b . (4.98)

If the temperature and water-content fields are known, all integrals can be easily computed numerically.
For the special case of an ice fluidity independent of temperature and water content (A(t) = const), the
integrations can even be performed analytically (see also Hutter, 1983).

Finally, note that
(vx, vy) ∝ −(∂h/∂x, ∂h/∂y) = −grad(x,y) h; (4.99)

that is, the horizontal velocity throughout a vertical column of ice is in the direction of steepest surface
descent (cf. Hutter, 1983). This result allows the concistency of the SIA to be checked by comparing the
velocity direction in ice-sheet boreholes.

4.3.3 Evolution of the free surface

An equation for the evolution of the free surface is derived by combining the mass balance (4.5) with the
kinematic conditions (4.30), (4.40), (4.62) for the free surface and the ice base. Integration of the mass
balance (4.5) from the ice base to the free surface yields, with the Leibniz rule,

vz,s − vz,b = − ∂

∂x

∫ h

b

vx dz′ + vx,s
∂h

∂x
− vx,b

∂b

∂x

− ∂

∂y

∫ h

b

vy dz′ + vy,s
∂h

∂y
− vy,b

∂b

∂y
. (4.100)

In view of the kinematic conditions (4.30), (4.40) and (4.62), this takes the form

∂H

∂t
=

∂(h− b)
∂t

= − ∂

∂x

∫ h

b

vx dz′ − ∂

∂y

∫ h

b

vy dz′ + a⊥s − [ω]ṁw
b , (4.101)

which balances the temporal change of ice thickness with the horizontal divergence of the vertically in-
tegrated horizontal velocity, the accumulation-ablation function (climatic boundary condition) and the
water mass flux into the base.

4.3.4 Evolution of the CTS

In a similar way an evolution equation for the CTS can be obtained. Integrating the mass balance (4.5)
from the ice base to the CTS,

vz,m − vz,b = − ∂

∂x

∫ zm

b

vx dz′ + vx,m
∂zm

∂x
− vx,b

∂b

∂x

− ∂

∂y

∫ zm

b

vy dz′ + vy,m
∂zm

∂y
− vy,b

∂b

∂y
, (4.102)

and with the kinematic conditions (4.62) for the ice base and (4.71) for the CTS, it follows that

∂(zm − b)
∂t

= − ∂

∂x

∫ zm

b

vx dz′ − ∂

∂y

∫ zm

b

vy dz′ + a⊥m − [ω]ṁw
b . (4.103)
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The interpretation of this result is basically the same as for the surface evolution equation, but here the
ice volume flux through the CTS, a⊥m, is an unknown inner variable, not a boundary source term.

4.3.5 Evolution of the lithosphere surface

No further calculation is required here, as eq. (4.27) is taken over unchanged,

∂b

∂t
= − 1

Tr
[b− (b0 −

ρ

ρa
H)]. (4.104)

4.3.6 Temperature and water content

As already noted, the equations of §4.2 for the temperature field and the water-content field must be
solved numerically. The water-content equation (4.24) can be slightly simplified by substituting the result
(4.84) obtained for the hydrostatic pressure field. The temperature evolution equation for the cold region
(4.13) reads

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
D
c

∂

∂z

(
κ

∂θ

∂z

)
+ 2

α

c
KEA(θ′)f(σ)σ2. (4.105)

In the temperate regions, the temperature is uniquely determined by the pressure; thus, from eqs. (4.22)
and (4.84)

θ = θM = −B(h(x, y, t)− z), (4.106)

and consequently,

∂θM

∂t
+ vx

∂θM

∂x
+ vy

∂θM

∂y
+ vz

∂θM

∂z
= −B

(
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz

)
(4.107)

and
∂

∂z

(
κ

∂θM

∂z

)
= B∂κ

∂z
= B∂κ

∂θ

∂θ

∂z
= B2 ∂κ

∂θ
. (4.108)

For the water-content-evolution equation in the temperate regions (4.24) it follows that

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
= Dt

∂2ω

∂z2
+
Dαt

α
B2 ∂κ

∂θ

+
cαt

α
B
(

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz

)
+ 2αtKEAt(ω)ft(σ)σ2, (4.109)

in which the effective shear stress σ is given by (4.87).
With (4.28) the temperature evolution equation for the lithosphere (4.26) is

∂θ

∂t
+

∂b

∂t

∂θ

∂z
=
Drκr

cr

∂2θ

∂z2
. (4.110)

At the cold free surface, the temperature is prescribed (eq. (4.39), a Dirichlet-type boundary condition),

θ = θs(x, y, t). (4.111)

The case of a temperate free surface, essentially irrelevant for ice sheets, will not be considered. For a cold
ice base, (4.59) and (4.60) hold,

κ
∂θ

∂z
− [κr]

[κ]
κr

∂θ+

∂z
= − α

D
[(vsl)xσxz + (vsl)yσyz], (4.112)

θ = θ+, (4.113)
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and in case of a temperate ice base, (4.64), (4.66) and (4.67) apply,

Dt
∂ω

∂z
= (1− [ω]ω)ṁw

b − Pw
b , (4.114)

θ = θ+ = θM , (4.115)

Pw
b =

Dαt

α
κ

∂θ

∂z
− Dαt

α

[κr]
[κ]

κr
∂θ+

∂z
+ αt((vsl)xσxz + (vsl)yσyz). (4.116)

Eq. (4.114) is required only if the temperate ice base is overlain by a temperate ice layer of non-vanishing
thickness. In this case, (4.116) can further be simplified, because then ∂θ/∂z = B holds due to (4.106).
In the case of a temperate ice base overlain by cold ice, however, this is not valid.

At the lithosphere base, (4.69) holds,

κr
∂θ−

∂z
= −NrQ

⊥
geoth. (4.117)

There remain the transition conditions at the CTS, (4.72), (4.78), (4.80) and (4.82):

θ+ = θ− = θM . (4.118)

i) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) > 0 (melting condition):

ω− = 0, (4.119)

∂θ+

∂z
= B. (4.120)

ii) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) < 0 (freezing condition):

Dκ

(
∂θ+

∂z
− B

)
− α

αt
Dt

∂ω−

∂z
=

α

αt
ω−a⊥m, (4.121)

where ∂θ−M/∂z = B was used.

iii) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) = 0 (parallel-flow condition):

ω− ≥ 0 (undetermined), (4.122)

∂θ+

∂z
= B. (4.123)

Finally, some limitations of the shallow-ice approximation are noted. First, this limit excludes closed
CTS lines with infinite gradient at a turning point, because owing to the requirement ε � 1 it only allows
a CTS of small inclination. Inclusions of temperate ice in an environment of cold ice are therefore not
accounted for, only temperate regions that reach the ice base, but the latter represents by far the most
important case. Furthermore, the SIA entails singularities at ice margins and ice domes (maxima of the
ice elevation above sea level) (see e.g. Hutter, 1983; Morland, 1984; Fowler, 1992; Hutter, 1993). Provided
the basal sliding function C(t) is bounded, in the vicinity of an ice margin the ice thickness takes the
form of a square root function with a vertical tangent at the margin, in contradiction to the shallowness
assumption. At ice domes, use of a pseudoplastic power law creep response function f(t)(σ) = σn−1 with
n > 1 (a conventional assumption, see §5.1) yields an infinite curvature of the ice surface, a consequence of
the viscosity tending to infinity for small stresses and strain rates, respectively (Hutter et. al., 1986). These
results have been derived for a purely cold-ice model, but they are applicable for polythermal ice sheets as
well. Moreover, in the vicinity of ice domes the SIA assumption that the vertical velocity is of the order
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ε× horizontal velocity breaks down, because the velocity field is primarily vertical in that neighborhood;
see eqs. (4.96), (4.97) und (4.98). Thus, the SIA is not uniformly valid, and matching procedures would
be needed to connect inner and outer solutions. Such an extended asymptotic solution is, however, not
required since the region around a dome is passive to leading order. In addition, it can be expected that a
numerical solution of the model with discrete grid points smears out these local singularities, so that the
remaining error is negligible.

4.4 Compilation of the SIA equations in dimensional form

For better clarity and interpretation, the partly integrated polythermal SIA equations derived in §4.3 are
listed in dimensional form. They can be easily deduced from the dimensionless equations by setting all
the typical values [·] to unity (see §4.1).

Stresses:

p = ρg(h− z), (4.124)

σxz = −ρg(h− z)
∂h

∂x
, (4.125)

σyz = −ρg(h− z)
∂h

∂y
, (4.126)

σ = ρg(h− z)

√(
∂h

∂x

)2

+
(

∂h

∂y

)2

. (4.127)

Velocity:

vx = −ρg(h− b)C(t)
∂h

∂x
− 2ρg

∂h

∂x

∫ z

b

EA(t)(·)f(t)(σ)(h− z′) dz′, (4.128)

vy = −ρg(h− b)C(t)
∂h

∂y
− 2ρg

∂h

∂y

∫ z

b

EA(t)(·)f(t)(σ)(h− z′) dz′, (4.129)

vz = −
∫ z

b

(
∂vx

∂x
+

∂vy

∂y

)
dz′ +

∂b

∂t
+ vx,b

∂b

∂x
+ vy,b

∂b

∂y
− ṁw

b

ρ
. (4.130)

Evolution of the free surface:

∂H

∂t
=

∂(h− b)
∂t

= −∂Qx

∂x
− ∂Qy

∂y
+ a⊥s −

ṁw
b

ρ
, (4.131)

with the newly introduced mass flux Q defined as

(Qx, Qy) :=
∫ h

b

(vx, vy) dz′. (4.132)

Evolution of the CTS:

∂(zm − b)
∂t

= − ∂

∂x

∫ zm

b

vx dz′ − ∂

∂y

∫ zm

b

vy dz′ + a⊥m − ṁw
b

ρ
. (4.133)

Evolution of the ice base (lithosphere surface):

∂b

∂t
= − 1

τV
[b− (b0 −

ρ

ρa
H)]. (4.134)
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Temperature and water content:

Temperature equation, cold regions:

∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z
=

1
ρc

∂

∂z

(
κ

∂T

∂z

)
+

2
ρc

EA(T ′)f(σ)σ2. (4.135)

Temperature, temperate regions:
T = TM = T0 − β(h− z). (4.136)

Water content equation, temperate regions:

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
=

ν

ρ

∂2ω

∂z2
+

β2

ρL

∂κ

∂T

+
cβ

L

(
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz

)
+

2
ρL

EAt(ω)ft(σ)σ2 − 1
ρ
D(ω). (4.137)

Here an additional term −D(ω)/ρ has been introduced; D(ω) is the water drainage function, corresponding
to a negative volumetric water production; it represents a simple ad-hoc approach to describe the water
drainage from the temperate-ice regions into the base. This is necessary because, as analytic estimates
and preliminary numerical simulations without this term have shown, otherwise unrealistic and even non-
physical (ω > 100%) values for the water content may result. Of course, this extraction process of water
from the interior of the ice violates the local mass balance. More realistic drainage mechanisms, based on
the combined effects of gravitation and interaction forces between ice and water, would require an even
more complicated model with two separate momentum balances for ice and water, which is not pursued
here (cf. Wu, 1996; Bauer, 1997).

Temperature equation, lithosphere:
∂T

∂t
+

∂b

∂t

∂T

∂z
=

κr

ρrcr

∂2T

∂z2
. (4.138)

Cold free surface:
T = Ts(x, y, t). (4.139)

Cold ice base:

κ
∂T

∂z
− κr

∂T+

∂z
= −(vsl)xσxz − (vsl)yσyz, (4.140)

T = T+. (4.141)

Temperate ice base (not overlain by a temperate ice layer):

T = T+ = TM , (4.142)

Pw
b =

1
L

{
κ

∂T

∂z
− κr

∂T+

∂z
+ ((vsl)xσxz + (vsl)yσyz)

}
. (4.143)

Temperate ice base (overlain by a temperate ice layer):

ν
∂ω

∂z
= (1− ω)ṁw

b − Pw
b , (4.144)

T = T+ = TM , (4.145)

Pw
b =

1
L

{
κβ − κr

∂T+

∂z
+ ((vsl)xσxz + (vsl)yσyz)

}
. (4.146)

Recall that in case of a negligible water diffusivity ν, the water mass flux into the base, ṁw
b , that must

be prescribed in general, can be expressed through (2.48) by the basal melting rate Pw
b . Since the water

content of temperate ice is assumed to be small (see also (5.7)), ṁw
b ≈ Pw

b holds.
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Lithosphere base:

κr
∂T−

∂z
= −Q⊥

geoth. (4.147)

Transition conditions, CTS:
T+ = T− = TM . (4.148)

i) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) > 0 (melting condition):

ω− = 0, (4.149)

∂T+

∂z
= β. (4.150)

ii) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) < 0 (freezing condition):

κ

(
∂T+

∂z
− β

)
− Lν

∂ω−

∂z
= Lρω−a⊥m. (4.151)

iii) −(wx − vw,x)
∂zm

∂x
− (wy − vw,y)

∂zm

∂y
+ (wz − vw,z) = 0 (parallel-flow condition):

ω− ≥ 0 (undetermined), (4.152)

∂T+

∂z
= β. (4.153)

In contrast to these general distinguishing criteria, the distinctions for negligible water diffusion are simply
determined by the sign of the ice volume flux through the CTS, a⊥m (see §2.2.5), thus a⊥m > 0 for the melting
condition (case i), a⊥m < 0 for the freezing condition (case ii) and a⊥m = 0 for the parallel-flow condition
(case iii).

5 A simulation of the Greenland Ice Sheet

5.1 Specification of physical quantities

The polythermal SIA equations compiled in §4.4 contain a number of physical quantities that are still
undefined. They are now specified.

Creep response function, cold and temperate ice:
Glen’s flow law (cf. Glen, 1955; Nye, 1957; Hooke, 1981; Paterson, 1994)

f(σ) = ft(σ) = σn−1 with n = 3. (5.1)

Rate factor, cold ice:
Arrhenius law for T ′ ≤ −10◦C, Arrhenius-type fit for −10◦C ≤ T ′ < 0◦C (Paterson, 1994):

A(T ′) =
{

A0 e−Q/R(T0+T ′) for T ′ ≤ −10◦C,

A?
0 e−Q?/R(T0+T ′) for − 10◦C ≤ T ′ < 0◦C,

(5.2)

with the activation energy Q = 60 kJmol−1, the parameter Q? = 139 kJmol−1, the universal gas constant
R, and A(T ′=−10◦C) = 5.2 ·10−25 s−1Pa−3 as a connecting value for the two temperature regimes, which
determines A0 and A?

0.

33



Rate factor, temperate ice: Following Lliboutry & Duval (1985),

At(ω) = A(T ′ = 0◦C) (1 + 184ω). (5.3)

Sliding law, cold base: Adhesion condition

vsl = vb = 0; (5.4)

Sliding law, temperate base: Weertman-type sliding law

vsl = vb = −Csl

ρg

‖t‖‖p

(ρgH)q

t‖

‖t‖‖
with p = 3, q = 2, (5.5)

from which
vsl = vb = −CslH ‖gradh‖2gradh (5.6)

is obtained, with a sliding coefficient Csl = 6 · 104 a−1 (Calov, 1994).

Water drainage function:
This is very problematic because of the lack of appropriate measurements. It is expected that the temperate
ice can keep a certain amount of water, whereas additional water runs off downward through cracks,
crevasses and grain boundaries. The assumption here is that up to a threshold value ωmax, drainage is
negligible, and that any water surplus exceeding this threshold value is instantaneously drained, thus

D(ω) =
{

0 ω ≤ ωmax

∞ ω > ωmax

}
(with ωmax = 1%). (5.7)

In view of sparseness of data on the water content of temperate glacier ice, this very simple parameter-
ization has the advantage that only one unknown parameter ωmax appears. The choice of ωmax in (5.7)
corresponds to the experimentally checked range of validity of the rate factor for temperate ice (5.3), cf.
Lliboutry & Duval (1985).

Further quantities are compiled in table 1.

quantity value

density of ice, ρ 910 kg m−3

heat conductivity of ice, κ 9.828 e−0.0057 T [K] W m−1K−1

specific heat of ice, c (146.3 + 7.253 T [K]) J kg−1K−1

latent heat of ice, L 335 kJ kg−1

Clausius-Clapeyron gradient, β 8.7 · 10−4 Km−1

water diffusivity, ν 0
density × specific heat of the
lithosphere, ρrcr 2000 kJ m−3K−1

heat conductivity of the lithosphere, κr 3 W m−1K−1

thickness of the upper lithosphere layer
regarded by the model, Hr 5 km
time lag for bed adjustment, τV 3000 a
density of the asthenosphere, ρa 3300 kg m−3

gravity acceleration, g 9.81 m s−2

universal gas constant, R 8.314 Jmol−1K−1

Table 1: Compilation of the physical parameters used in the model. References: ρ, β: Calov (1994); τV ,
ρa: Abe-Ouchi (1993); κ, c, ρrcr, κr: Ritz (1987); L: Blatter (1991).
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5.2 Evolution to the present-time steady state

As an example of the application of the polythermal SIA equations to a real problem, a steady-state
simulation under present climate conditions for the Greenland Ice Sheet is presented, based on the finite-
difference program SICOPOLIS (SImulation COde for POLythermal Ice Sheets) using a σ-transformation
in the vertical (i.e., vertical columns in the cold-ice domain, the temperate-ice domain and the lithosphere
are mapped onto [0,1] intervals) (Greve, 1995). A horizontal resolution of 40 km is applied, the vertical
resolution is 51 grid points in the cold-ice domain, and 11 grid points in the temperate-ice domain and
in the lithosphere. The time steps for eqs. (4.131), (4.134) are 10 years, and for eqs. (4.135), (4.137) are
100 years. Computation of the lithosphere temperature governed by eq. (4.138) has been switched off
(instead, the geothermal heat flow has been imposed directly at the ice base), because the thermal inertia
of the lithosphere is only important during the evolution and does not influence the final steady state.
Since this is simply a demonstration of the applicability of the model, the numerical solution technique of
SICOPOLIS is not discussed, for further information see Greve (1995).

The demonstration is a steady-state configuration under present climate conditions, described by the
present distribution of the mean annual air temperature Tma (assumed equal to the 10-m-firn temperature
Ts) and the snowfall rate Ss as known from measurements (Ohmura, 1987; Ohmura and Reeh, 1991), and
a degree-day parameterization for the surface melting rate Ms (Calov, 1994). For the geothermal heat
flux, the standard value Q⊥

geoth = 42 mW m−2 for precambrian shields is applied (Lee, 1970). The model
time covers t = 0 . . . 100000 years, being sufficient to reach stationary conditions. As initial conditions for
the topography the present values btoday and htoday (data from Letréguilly et. al., 1991a) are used, the
initial temperature is uniformly set to −10◦C, and for the initial age of the ice (see discussion below) the
value 15000 years is applied.

The creep enhancement factor E (see eqs. (2.4), (2.17)) is to take into account that glacial ice is less
viscous than interglacial ice; however, the exact cause for this distinction is still unclear (possibly differences
in dust content and/or induced anisotropies contribute to this phenomenon, cf. Paterson (1991), Paterson
(1994), Svendsen and Hutter (1996, 1997)). Here, the enhancement factor E is coupled to the age of the
ice A; the transition between Wisconsin ice age and Holocene interglacial is set at 11000 years before
present:

E = 1 if A < 11000 years,
E = 3 if A ≥ 11000 years. (5.8)

Possible influences of Eemian or even older ice are not considered here, because this ice can only exist in
very thin layers near the ice base where reliable calculation of the age is not certain (due to the nesessity
of introducing a certain amount of numerical diffusion when solving the purely advective age equation
dA/dt = 1).

The results of the simulation are depicted in figs. 10-16. When comparing the present surface topogra-
phy from data (fig. 9) with the modelled topography (fig. 10), there is in general good agreement both for
the surface topography itself and for the ice margin; the basic features are reproduced by the simulation.
The north dome is 124 m too high (3371 m instead of 3247 m), the south dome 51 m too high (2960 m
intead of 2909 m), and their positions are slightly shifted when compared with those of the measurements.
Furthermore, the simulated ice margin tends to be more advanced toward the coast; in particular close
to the north and east coast small ice tongues into actually ice-free land are produced. Therefore, the
simulated ice-covered area Ai,b = 1.725 · 106 km2 is slightly bigger than the real value 1.682 · 106 km2.

Figs. 11, 12 show the mass flux Q and the ice surface velocity vs. The mass flux follows the direction
of steepest surface slope, a consequence of the shallow ice approximation. Moreover, the flux away from
the north dome takes place in pronounced drainage areas, separated by regions with distinctly reduced
ice flow. Contrary to this, the drainage of the south dome appears to be more regular. This is caused
by the distribution of the basal temperate ice regions (fig. 13), on which the ice is allowed to slide. They
surround the south dome as an almost continuous band, whereas north of the Arctic circle essentially four
temperate patches exist that form the drainage regions. This behaviour is an impressive demonstration
of the great significance of temperate ice for the dynamic behaviour of ice sheets.

It is further noticeable that of all basal grid points overlain by a temperate ice layer of non-zero
thickness, only one shows a CTS with freezing conditions (fig. 13). This is connected with the fact that,
typically, the thickness of the basal temperate ice layer gradually increases from the inner ice sheet region
downstream (toward the margin), and then decreases sharply in the immediate vicinity of the margin.
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This can be clearly seen for West Greenland in figs. 14, 15, showing west-east transects for the ice sheet at
y = −2280 km and y = −1840 km, respectively. Due to the steep decrease in thickness, freezing conditions
at the CTS, expected close to the margin, cannot be resolved in general. Incidentally, the simulation
results of a relatively thick temperate ice layer and high ice velocities in West Greenland in the transect at
y = −2280 km coincide with the presence of a very fast ice stream in this area (“Jacobshavns Isbræ”), for
which Funk et. al. (1994) similarly obtain a temperate ice layer by applying a polythermal 2-d streamline
model.

Finally, fig. 16 depicts the applied forcing ∆Tma(t) ≡ 0, and the time evolutions for the maximum
ice elevation above sea level hmax (taken at the north dome), the total ice volume Vtot, the maximum ice
thickness Hmax, the temperate ice volume Vtemp, the maximum thickness of the temperate ice layer Ht,max,
the ice covered basal area Ai,b as well as the basal area covered by temperate ice At,b. A striking feature
is the occurence of strong peaks for the quantities connected with temperate ice in the first 10000 model
years, Vtemp, Ht,max and At,b, coinciding with troughs of the topography quantities hmax, Vtot, Hmax.
This behaviour is apparently an effect of the arbitrarily chosen initial conditions (present topography,
isothermal temperature conditions) and thus does not have any counterpart in the actual history of the
Greenland Ice Sheet.

A variety of further simulations on steady-state as well as transient problems is described by Greve
(1995, 1997), Greve and Hutter (1995), Greve and MacAyeal (1996), Hansen and Greve (1996), Hansen
et. al. (1996) and Greve et. al. (1997).
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Figure 9: Measured surface topography h of the present Greenland Ice Sheet (Letréguilly et. al., 1991a;
in km above sea level). The spacing between the isolines is 200 m. The dashed heavy line indicates the
ice margin.
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Figure 10: Final state of simulation: Topography of the ice surface (in km above sea level). The spacing
between the isolines is 200 m. The dashed heavy line indicates the ice margin.
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Figure 11: Final state of simulation: Horizontal mass flux. Double arrow length corresponds to tenfold
mass flux. The dashed heavy line indicates the ice margin, the isolines the surface topography in 500 m
intervals.
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Figure 12: Final state of simulation: Surface velocity (in km/a). The isolines correspond to the values 1,
3, 10, 30 . . . km/a. The dashed heavy line indicates the ice margin.
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→

Figure 13: Final state of simulation: Homologous temperature at the ice base (in ◦C). The spacing between
the isolines is 3◦C. Open diamond symbols indicate positions where the basal ice is at the pressure melting
point, yet with no temperate layer above, full diamonds (full circles, see → in the plot) indicate positions
where there is a basal layer of temperate ice with a melting (freezing) CTS. The dashed heavy line indicates
the ice margin.
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→

Figure 14: Final state of simulation: Transect at y = −2280 km. Top: ice velocity. Middle: homologous
ice temperature (in ◦C). Bottom: thickness of the basal layer of temperate ice (open circles: cold ice
base; open diamonds: temperate ice base with no temperate ice layer above; full diamonds: basal layer
of temperate ice with a melting CTS; full circle (see → in the plot): basal layer of temperate ice with a
freezing CTS).
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Figure 15: Final state of simulation: Transect at y = −1840 km. Top: ice velocity. Middle: homologous
ice temperature (in ◦C). Bottom: thickness of the basal layer of temperate ice (open circles: cold ice base;
full diamonds: basal layer of temperate ice with a melting CTS).
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Figure 16: Simulation: Time evolution of ∆Tma, hmax, Vtot, Hmax, Vtemp, Ht,max, Ai,b und At,b. The
meaning of these quantities is explained in the main text.
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A Notation

A age of the ice
Ai,b total ice-covered area
At,b basal area covered by temperate ice
A(T ′) rate factor of cold ice
At(ω) rate factor of temperate ice
A(t)(·) rate factor of cold or temperate ice
a⊥m volume flux through the CTS
a⊥s accumulation-ablation function at the ice surface
b z-coordinate of the ice base (lithosphere surface)
b0 relaxed value for b without ice load
br z-coordinate of the lithosphere base
bss steady-state position of the lithosphere surface b
C sliding function for a cold ice base
Ct sliding function for a temperate ice base
Csl coefficient in the Weertman-type sliding law for a temperate ice base
c specific heat of ice
cr specific heat of the lithosphere
D strain-rate tensor
D(ω) water drainage function
E enhancement factor in the flow law
f(σ), ft(σ) creep response function of cold and temperate ice
g gravity acceleration
h z-coordinate of the free ice surface
hmax maximum h of the entire ice sheet
H ice thickness
Hmax maximum ice thickness H
Ht,max maximum thickness of the temperate ice layer
Hr lithosphere thickness
j diffusive water mass flux
jtot total water mass flux (relative to the motion of the CTS)
L latent heat of ice
M water mass production rate in temperate ice
Ms ablation rate (melting rate at the ice surface)
ṁw

b water mass flux into the base
p pressure
q total heat flux, qs + ql

ql latent heat flux
qs sensible heat flux
Q, Qi horizontal mass flux, its i-th component
Q⊥

geoth geothermal heat flux
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R universal gas constant
Ss accumulation rate (snowfall rate at the ice surface)
t time
T temperature
TM pressure melting temperature
T0 melting temperature at zero pressure
T ′ homologous temperature (T − TM )
Tma mean annual air temperature above the ice sheet
Ts ice surface temperature (10-m firn temperature)
T stress tensor
T R stress deviator (frictional stresses)
v, vi velocity (barycentric), its i-th component
vb, (vb)i basal ice velocity (barycentric), its i-th component
vsl, (vsl)i basal sliding velocity (difference between ice velocity

and lithosphere velocity), its i-th component
vi, (vi)j ice velocity in the mixture ice plus water, its j-th component
vw, (vw)j water velocity in the mixture ice plus water, its j-th component
Vtot total ice volume
Vtemp volume of temperate ice
w, wi velocity of a singular surface, its i-th component
x, y horizontal Cartesian coordinates
z vertical Cartesian coordinate (elevation above sea level)
zm z coordinate of the CTS
α ratio of potential energy to internal energy in cold ice
αt ratio of potential energy to internal energy in temperate ice
β Clausius-Clapeyron gradient
ε internal energy
ε aspect ratio
κ heat conductivity of ice
κr heat conductivity of the lithosphere
ν water diffusivity in temperate ice
ρ true density of ice and of the mixture ice plus water, respectively
ρi partial density of ice in the mixture ice plus water
ρw partial density of water in the mixture ice plus water
ρa true density of the asthenosphere
ρr true density of the lithosphere
σ effective shear stress
σij ij-th component of the stress tensor
σR

ij ij-th component of the stress deviator
τV time lag for isostatic bed adjustment
ω water content of temperate ice (mass fraction)
ωmax threshold value in the water drainage law
[A] typical rate factor
[c] typical specific heat of ice
[cr] typical specific heat of the lithosphere
[C] typical sliding function for a cold ice base
[Ct] typical sliding function for a temperate ice base
[f ] typical creep response function
[H] typical vertical dimension
[L] typical horizontal dimension
[Q⊥

geoth] typical geothermal heat flux
[VH ] typical vertical velocity
[VL] typical horizontal velocity
[∆T ] typical temperature difference
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[κ] typical heat conductivity of ice
[κr] typical heat conductivity of the lithosphere
[ω] typical water content
B Clausius-Clapeyron number
D heat diffusion number
Dt water diffusion number
Dr heat diffusion number of the lithosphere
F sliding number for a cold ice base
Ft sliding number for a temperate ice base
K fluidity number
Nr geothermal heat number of the lithosphere
Pw

b basal melting rate
Pw

m water surface production rate at the CTS
Tr time-lag number for isostatic bed adjustment
F Froude number

B Integration of the slab equations

The equations derived in §3.1, that result from applying the polythermal ice sheet model of §2 to the
simplified problem for a sheet of uniform thickness, can be solved almost entirely analytically. Only for
the CTS position z = zm does an implicit algebraic equation remain, which can easily be solved by a
Newtonian root finder.

In view of (3.5), (3.6) and (3.7), integration of (3.2) yields

p(z) = ρg cos γ (H − z), (B.1)

σxz(z) = ρg sin γ (H − z), (B.2)

and thus
σ = σxz = ρg sin γ (H − z). (B.3)

Obviously, the pressure is purely hydrostatic.
With this result, eqs. (3.1), (3.5), (3.6), (3.7) and a prescribed basal velocity vx,b, the velocity distri-

bution is
vx(z) =

A

2
(ρg sin γ)3 [H4 − (H − z)4] + vx,b, (B.4)

vz(z) = const = −a⊥s = −a⊥m. (B.5)

The velocity parallel to the bed, vx, increases monotonically from its minimum value vx,b at the base
to its maximum value at the free surface, as is expected for this gravity-driven shear flow. The velocity
perpendicular to the bed, vz, is constant; it balances the accumulation-ablation function a⊥s at the free
surface, and represents the negative ice volume flux a⊥m through the CTS.

The construction of the solution of eqs. (3.3) and (3.4) for the temperature and the water content in
the cold and the temperate region, respectively, and the associated determination of the CTS position, is
a rather lenthy procedure. First, inserting eqs. (B.3) for σ and (B.5) for vz,

κ
d2T

dz2
+ ρca⊥s

dT

dz
= −2A (ρg sin γ)4(H − z)4 (B.6)

and
ρa⊥s

dω

dz
= −2

A

L
(ρg sin γ)4(H − z)4. (B.7)

For easier calculation, map the vertical coordinate z onto the interval [0,1] by the transformation z = Hζ,
then

D
d2T

dζ2
+ M

dT

dζ
= −K(1− ζ)4 (B.8)
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and
M

dω

dζ
= −Kt(1− ζ)4, (B.9)

where

D =
κ

ρc
,

M = Ha⊥s ,

K =
2A

ρc
H6(ρg sin γ)4,

Kt =
2A

ρL
H6(ρg sin γ)4. (B.10)

Solution of the homogeneous equation of (B.8) is simply

Th = c1 e−(M/D)ζ + c2. (B.11)

A particular integral of the inhomogeneous equation has the form

Tp = a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5, (B.12)

where the coefficients a1 to a5 are calculated by balancing powers of ζ in (B.8), yielding

a5 = − K

5M
,

a4 =
K

M
+

DK

M2
,

a3 = −2
K

M
− 4

DK

M2
− 4

D2K

M3
, (B.13)

a2 = 2
K

M
+ 6

DK

M2
+ 12

D2K

M3
+ 12

D3K

M4
,

a1 = −K

M
− 4

DK

M2
− 12

D2K

M3
− 24

D3K

M4
− 24

D4K

M5
.

With the above results, the general solution of the temperature equation (B.8) is

T = c1 e−(M/D)ζ + c2 + a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5. (B.14)

The constants c1 and c2 are still free and must be determined by boundary and transition conditions.
First consider the water content equation (B.9), which can be integrated directly:

ω =
Kt

5M
(1− ζ)5 + c3, (B.15)

leaving a further undetermined. The last step consists of calculating the integration constants c1, c2 and
c3, and the CTS position ζm. This must be performed separately for the cases of melting conditions
(a⊥m > 0) and freezing conditions (a⊥m < 0) at the CTS.

Slab with melting condition at the CTS:

In this case, according to (B.5), the velocity perpendicular to the bed is negative, i.e., the ice flows from
the free surface toward the base. Because of (3.6), (3.7) and the subsequent discussion,

T (1) = Ts, T+(ζm) = 0, (dT+/dζ)ζm = 0, ω−(ζm) = 0. (B.16)
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Insertion of the first three of these equations into the general temperature solution (B.14) yields

Ts = c1 e−(M/D) + c2 + a1 + a2 + a3 + a4 + a5, (B.17)
0 = c1 e−(M/D)ζm + c2 + a1ζm + a2ζ

2
m + a3ζ

3
m + a4ζ

4
m + a5ζ

5
m, (B.18)

0 = −M

D
c1 e−(M/D)ζm + a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m, (B.19)

which are three equations for the three unknowns c1, c2 and ζm. With c2 from (B.18) and c1 from (B.19),
(B.17) becomes an implicit algebraic equation for the CTS position ζm,

0 =
D

M
(1− e(M/D)(ζm−1))(a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m) + Ts

+a1(ζm − 1) + a2(ζ2
m − 1) + a3(ζ3

m − 1) + a4(ζ4
m − 1) + a5(ζ5

m − 1)
=: f(ζm). (B.20)

This can be easily solved with a Newtonian root finder (starting with an estimated ζ
(0)
m , then iterating by

ζ
(n+1)
m = ζ

(n)
m − f(ζ(n)

m )/f ′(ζ(n)
m )), which yields ζm with great accuracy. This is the only step in the whole

solution procedure that must be performed numerically. Now c1 follows from eq. (B.19), and then c2 from
eq. (B.17). The temperature in the cold region, given by (B.14), is therefore determined completely.

The forth boundary condition of (B.16) determines the coefficient c3 in the expression (B.15) for the
water content, which becomes

ω =
Kt

5M
[(1− ζ)5 − (1− ζm)5]. (B.21)

Slab with freezing condition at the CTS:

In this case, the velocity perpendicular to the bed is positive due to (B.5). The streamlines of the ice
flow therefore run away from the base into the direction of the free surface. The boundary conditions, by
eqs. (3.6), (3.7) and the subsequent discussion, are

T (1) = Ts, T+(ζm) = 0,
κ

H

dT+

dζ
= Lω−ρa⊥m, ω(0) = 0. (B.22)

It is convenient here to first determine c3 by the last condition, when (B.15) becomes

ω =
Kt

5M
[(1− ζ)5 − 1]. (B.23)

Thus the water content at the temperate side of the CTS is

ω− = ω(ζm) =
Kt

5M
[(1− ζm)5 − 1], (B.24)

where, however, ζm is still undetermined. Now, the temperature-gradient condition becomes

dT+

dζ
=

H

κ
Lρa⊥m

Kt

5M
[(1− ζm)5 − 1]

=
LρKt

5κ
[(1− ζm)5 − 1], since M = Ha⊥s = Ha⊥m. (B.25)

The three temperature conditions (B.22)1,2 and (B.25) now relate c1, c2 and ζm:

Ts = c1 e−(M/D) + c2 + a1 + a2 + a3 + a4 + a5, (B.26)
0 = c1 e−(M/D)ζm + c2

+a1ζm + a2ζ
2
m + a3ζ

3
m + a4ζ

4
m + a5ζ

5
m, (B.27)

LρKt

5κ
[(1− ζm)5 − 1] = −M

D
c1 e−(M/D)ζm
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+a1 + 2a2ζm + 3a3ζ
2
m + 4a4ζ

3
m + 5a5ζ

4
m. (B.28)

Again, with c2 from (B.27) and c1 from (B.28), (B.26) becomes an implicit algebraic equation for ζm,

0 =
D

M
(1− e(M/D)(ζm−1))

(
a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m

−LρKt

5κ
[(1− ζm)5 − 1]

)
+ Ts

+a1(ζm − 1) + a2(ζ2
m − 1) + a3(ζ3

m − 1) + a4(ζ4
m − 1) + a5(ζ5

m − 1)
=: g(ζm). (B.29)

After solution by a Newtonian root finder, c1 follows from (B.28), c2 from (B.26), and the temperature
distribution (B.14) is fully determined.
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