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Abstract

The majority of elasto-plastic analyses of a shell are concerned with the direction
wherein its plastic deformation proceeds not normal to but only in parallel with the
middle surface of the structure. In the present report a finite element method of
analysis of shallow shells is developed using a laminated element that makes relevant
analysis possible in both directions. This approach also enables demonstrating such
transitory behaviors of the structure that occur wherever a deformation change from
elastic to elasto-plastic takes place.

1. Introduction

The present report deals with the elasto-plastic behavior of a thin homogenous
isotropic shallow shell subjected to incremental loading.

The analysis is conducted by means of a finite element method using a laminated
element given as a multiple set of thin layers so that the plastic region developing
in the direction normal to its middle surface may be treated.

By way of a numerical example a shallow helicoidal shell under a gradually
increasing gravity load will be analyzed in detail.

2. General Theory

2.1 Assumption

The analysis employs the following assumptions.

1) Kirchhoff’s hypothesis that an initial plane section remains plane afterwards
holds for both elastic and plastic deformation.

2) The shell under consideration is definable as consisting of a system of
laminated elements. ,

3) The stress-strain relationship follows Hooke’s law or the theory of Prandtle-
Reuss in a elastic or plastic range, respectively.

4) A functinal of incremental type based on mixed variational principles is
adopted in the analysis to be performed by the finite element method.
2.2 Incremental strains and incremental curvatures

Referring to the relations given in Fig. 1 incremental displacements 4U, 4V

* Department of General Education, Faculty of Engineering, Hokkaido University.
#%  Department of General Science, Muroran Institute of Technology.



68 Yoshizo DOBRASHI, Takeshi UCHIYAMA and Akira SUGINOME

Fig. 1 Incremental displacements

and AW for the shallow shell may be approximated by the following equations.

4U(x, 3, z) =duz, y)+aﬂdw*2?# 1
AV(x, y, 2)=dvlx, y)+awdw a;’;” { (1)
AW(,‘{, ) Z):Aw(x, y)

From Egs. (1) both incremental strains and curvatures are derived as Egs. (2)
and (3), respectively.
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2.3 Incremental functional

Taking as basic independent variables incremental displacements 4y, 4y and
4w and incremental moments 4M,, 4M, and 4M,, in such a way as to assure
the conditions of compatibility of Egs. (4) on the element boundary leads to the
incremental functional of Eq. (5).
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~§4 ,,sa;””ds—g (4Nt + AN+ 47,4035 { a2
where [E=Young’s Modulus; v=Poisson’s ratio; sz=thickness of shell; s;=

part of boundary on which loads are prescribed ; s;=part of boundary
on which displacements are prescribed; and 4V, =084M,/d,+ 204M,/ds.
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Fig. 2 Notation for stresses

And incremental membrane forces {4N} follow incremental strains {de)} in the
middle surface to yield Egs. (6).
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Now for each incremental displacement 4y, 4dp and 4w and incremental
moments 4M,, dM, and 4M.,, taking the stationary condition for Eq. (5) and
rearranging by the relations of Egs. (6) result in the following governing equation
in an incremental form for the shallow shell.

Within the element

{dN}= (6)
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3. Finite Element Solution

3.1 Incremental membrane forces, moments and functional
for a laminated element
With the strain distribution assumed to obey Kirchhoff’s hypothesis, incremental
strains at a distance z; from the middle surface as shown Fig. 3 are expressed as
follows.
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N L
middle
surface

Fig. 3 Strain distribution across
layers of element

{de;} ={dey} +2z:{dg} (11)
Hence incremental membrane force {4N} and incremental moment {4M} are
given as
{AN} = 04h[ DD deo} + dh-2,[D]{dd}
{dM}y = dh-z [ Di1){de,) + (234h-Z[D]){4d¢}
with [D,] to be taken as [D;] and [,D;,] for the elastic and plastic range,
respectively.

(12)

From Eqs. (12) incremental curvatures and incremental membrance forces
result as

=Lal{dM}—[B1{4e,}
{dN}=(14hz1) 3 4k D;]){4M}
+E(ZA]7[Di])"_(Zdh'ZiEDi])<2Ah'Z?[Di]—l(zdh'Zi[Di])T]{AEQ}J
=[B1"{4M?} + [V {dec}
‘Rewriting Eqg. (5) using Eqs. (13) gives an incremental form of functional for
elasto-plastic analysis of a shallow shell, that is

{dp}t= (Z‘.Z/%'Z?[Di]*{dM} — (204h (D] dh -2, D] dey} , ]

(13)
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+

- S‘S;[A/Vx,,du+A/\7y,,-dv+AV,,Aw]ds— { EAM,,‘%’Z’(ZS (14)

3.2 Application of theory to finite element method

Throughout this finite element analysis both displacement and stress function
are assumed as follows for the adopted triangular element (Fig. 4).

Yy 3 (x:,y5)

2 (side point)

(x1,¥1)
[t] X

TFig. 4 Geometry of element
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du,, dv,, 4w,

{du, dv, dw}=[1, x, yYIJLA]| dus, dvs, dw, (15)
Auy, dv;, dw,
{4M., AM,, 4Msy} =[C,, Cy, C,] (16)

where C;=constants.

Further, incremental moments 4M,, 4M, and 4M., in Egs. (16) are denoted
in terms of incremental moments on the element boundary 4M,, 4M., and 4M.,
respectively, namely

j 4AM, \ “ cos 20, sin ?0;, 2sin O, cos B, \"Y AMn, ]
AM, ' =\ cos %8, sin 26, 2sin 8, cos 8, AMy,  =[TNH4M.,} 7
L AMsx, J cos 204, sin 20;, 2sin 0, cos 0, L AM, I
where
sinb;=(x;—x)]l;,  cos 0;=(y;—y)]l;
L=y (xi—x)?+(yi—y)?  i=1,2,3-j=231

Substituting Eqs. (15) and (17) into Eq. (14) and taking the variations of

incremental displacements 4y, 4y and 4w and incremental moment 4M, end in

the following variational set of equations for elasto-plastic analysis of a shallow
shell.

Sdu \T/ Ky, Ky Ky Ky, du 4P,

J ddv 1 K3 Ky Ky Ky, f dv ]_I 4P, W o 18
3 dw j K& K Ky Ky, L Adw [ IAP,,, I :

L 34M, K5 K} K, Ky '\ 4M, 4P,
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[K. = [ta}, 0, (b IFITCT]
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[1(23] = 4%1 [(CYx‘/’ls + ay‘:’”a3){ﬂi}{(lj) + (“y?r’zz + ﬂ'xsbd:}){bi}{bj}
+ (ay@a; + axfa) @i b} + (aafhin + ayas){0iHas} ]
[Kul= [0, {6}, {a} LRI
[Kss]= 411"[(0’2‘/’11 + 2az0,415 + @SPag){ait{ay}

+(a3¢as + 2000003 + P 0n) {B: 105}
+ (axay o+ o) + adas + avayPas) ({ai b} + {0 Hai1) ]
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4. Numerical Example

Numerical analysis was performed on a shallow helicoidal shell subjected to
a uniformly distributed load with its surface of helicoid considered as that of
the initial deformation.

The structure in plan view divided breadthways and lengthways into a net of
respectively 3 by 10 meshes was diagonally subdivided into triangles for the
elements that were five-layered.

The adopted yield condition and stress-strain relationship in the plastic range
are of von Mises and Yamada, respectively.

Fig. 5 and 6 are curves of load-deflection relationship at respective points A
and B on the axis of symmetry for the shell. Therein the load at the elastic
limit for the structure increases with the increased slope of its surface. And
then the deflection at B shows a greater increase than at A where the dis-
placement of the shell remains very small.

Figs. 7 through to 9 illustrate the development of plastic regions with increas-
ing load intensity.
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Fig. 5 Load-deflection curve at point A Fig. 6 Load-deflection curve at point B

q= ~2.50 kg/cm® q= -3.26 kg/cm®

q= -4.00 ky/cm?

{a) upper surface

9= -2.50 kg/em? q= -3.25 kg/cm?

9= -4.00 kg/cm*

(b) lower surface

Legend : Hatched are elements with all their layers yielded.
Each number on element of its yielded layers stands
for depth of its plastic deformation.

TFig. 7 Development of plastic regions for structure with
angle of inclination of surface a=5°
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= -5.00 kg/ew? q= -6.50 kg/cm?

(a) upper surface

q= -6.50 kg/cm?

q= -6.00 kg/cm?

{b) lower surface

Fig. 8 Development of plastic regions for structure with
angle of inclination of surface a=15°

q=-10.00 kg/cm®

{a) upper surface

q=-10.00 kg/cm?

(b) Yower surface

Fig. 9 Development of plastic regions for structure with
angle of inclination of surface a=25°

5. Conclusion

The presented method was shown to ensure a follow-up of plastic domains as
they evolve in the directions conforming to the curvatures of the structure as
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well as in the normal directions to them. The procedures herein used for a
helicoidal shell is readily applicable to other types of shallow shells.
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