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Abstract

Let (T,H) be a weak Weyl representation of the canonical commutation relation
(CCR) with one degree of freedom. Namely T is a symmetric operator and H is a
self-adjoint operator on a complex Hilbert space H satisfying the weak Weyl relation:
For all t ∈ R (the set of real numbers), e−itHD(T ) ⊂ D(T ) (i is the imaginary unit
and D(T ) denotes the domain of T ) and Te−itHψ = e−itH(T + t)ψ, ∀t ∈ R,∀ψ ∈
D(T ). In the context of quantum theory where H is a Hamiltonian, T is called
a strong time operator of H. In this paper we prove the following theorem on
uniqueness of weak Weyl representations: Let H be separable. Assume that H is
bounded below with ε0 := inf σ(H) and σ(T ) = {z ∈ C|Im z ≥ 0}, where C is the set
of complex numbers and, for a linear operator A on a Hilbert space, σ(A) denotes
the spectrum of A. Suppose that {T , T ∗,H} (T is the closure of T ) is irreducible.
Then (T ,H) is unitarily equivalent to the weak Weyl representation (−pε0,+, qε0,+)
on the Hilbert space L2((ε0,∞)), where qε0,+ is the multiplication operator by the
variable λ ∈ (ε0,∞) and pε0,+ := −id/dλ with D(d/dλ) = C∞

0 ((ε0,∞)). Using
this theorem, we construct a Weyl representation of the CCR from the weak Weyl
representation (T ,H).
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1 Introduction and Main Results

A pair (T,H) of a symmetric operator T and a self-adjoint operator H on a complex
Hilbert space H is called a weak Weyl representation of the canonical commutation relation
(CCR) with one degree of freedom if it obeys the weak Weyl relation: For all t ∈ R (the
set of real numbers), e−itHD(T ) ⊂ D(T ) (i is the imaginary unit and D(T ) denotes the
domain of T ) and

Te−itHψ = e−itH(T + t)ψ, ∀t ∈ R,∀ψ ∈ D(T ). (1.1)

This type of representations of the CCR was first discussed by Schmüdgen [13, 14] from
a purely operator theoretical point of view and then by Miyamoto [8] in application to
a theory of time operator in quantum theory. In the context of quantum theory where
H is a Hamiltonian, T is called a strong time operator of H [3, 5]. A generalization of
a weak Weyl relation was presented by the present author [2] to cover a wider range of
applications to quantum physics including quantum field theory.

In the paper [6], a general structure for construction of a Weyl representation of the
CCR (see below) from a weak Weyl representation which satisfies some additional property
was discussed. In this paper we consider another important problem, i.e., the problem
on uniqueness (up to unitary equivalences) of weak Weyl representations, which has not
been discussed so far in the literature. This problem has an independent interest in the
theory of weak Weyl representations. Before stating the main results on this problem,
however, we need some preliminaries.

We denote by W(H) the set of all the weak Weyl representations on H:

W(H) := {(T,H)|(T,H) is a weak Weyl representation on H}. (1.2)

It is easy to see that, if (T,H) is in W(H), then so are (T ,H) and (−T,−H), where T
denotes the closure of T .

For a linear operator A on a Hilbert space, σ(A) (resp. ρ(A)) denotes the spectrum
(resp. the resolvent set) of A (if A is closable, then σ(A) = σ(A)). Let C be the set of
complex numbers and

Π+ := {z ∈ C|Im z > 0}, Π− := {z ∈ C|Im z < 0}. (1.3)

In the previous paper [4], we proved the following facts:

Theorem 1.1 [4] Let (T,H) ∈ W(H). Then:

(i) If H is bounded below, then either σ(T ) = Π+ (the closure of Π+) or σ(T ) = C.

(ii) If H is bounded above, then either σ(T ) = Π− or σ(T ) = C.

(iii) If H is bounded, then σ(T ) = C.

This theorem has to be taken into account in considering the uniqueness problem of weak
Weyl representations.
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A form of representations of the CCR stronger than weak Weyl representations is
known as a Weyl representation of the CCR which is a pair (T,H) of self-adjoint operators
on H obeying the Weyl relation

eitT eisH = e−itseisHeitT , ∀t,∀s ∈ R. (1.4)

It is well known (the von Neumann uniqueness theorem [9]) that, every Weyl representa-
tion on a separable Hilbert space is unitarily equivalent to a direct sum of the Schrödinger
representation (q, p) on L2(R), where q is the multiplication operator by the variable
x ∈ R and p = −iDx with Dx being the generalized differential operator in x (cf. [3,
§3.5], [10, Theorem 4.3.1], [11, Theorem VIII.14]).

It is easy to see that a Weyl representation is a weak Weyl representation (but the
converse is not true). Therefore, as far as the Hilbert space under consideration is sep-
arable, the non-trivial case for the uniqueness problem of weak Weyl representations is
the one where they are not Weyl representations. A general class of such weak Weyl
representations (T,H) are given in the case where H is semi-bounded (bounded below or
bounded above). In this case, T is not essentially self-adjoint [2, Theorem 2.8], implying
Theorem 1.1.

Two simple examples in this class are constructed as follows:

Example 1.1 Let a ∈ R and consider the Hilbert space L2(R+
a ) with R+

a := (a,∞). Let
qa,+ be the multiplication operator on L2(R+

a ) by the variable λ ∈ R+
a :

D(qa,+) :=

{
f ∈ L2(R+

a )|
∫ ∞

a

λ2|f(λ)|2dλ < ∞
}

, (1.5)

qa,+f := λf, f ∈ D(qa,+) (1.6)

and

pa,+ := −i
d

dλ
(1.7)

with D(pa,+) = C∞
0 (R+

a ), the set of infinitely differentiable functions on R+
a with bounded

support in R+
a . Then it is easy to see that qa,+ is self-adjoint, bounded below with

σ(qa,+) = [a,∞) and pa,+ is a symmetric operator. Moreover, (−pa,+, qa,+) is a weak Weyl
representation of the CCR. Hence, as remarked above, (−pa,+, qa,+) also is a weak Weyl
representation.

Note that pa,+ is not essentially self-adjoint and

σ(−pa,+) = σ(−pa,+) = Π+. (1.8)

In particular, ±pa,+ are maximal symmetric, i.e., they have no non-trivial symmetric
extensions (e.g., [12, §X.1, Corollary]).

Example 1.2 Let b ∈ R and consider the Hilbert space L2(R−
b ) with R−

b := (−∞, b).
Let qb,− be the multiplication operator on L2(R−

b ) by the variable λ ∈ R−
b . and

pb,− := −i
d

dλ
(1.9)
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with D(pb,−) = C∞
0 (R−

b ). Then qb,− is self-adjoint, bounded above with σ(qb,−) = (−∞, b],
pb,− is a symmetric operator, and (−pb,−, qb,−) is a weak Weyl representation of the CCR.
As in the case of pa,+, pb,− is not essentially self-adjoint and

σ(−pb,−) = Π−. (1.10)

A relation between (−pa,+, qa,+) and (−pb,−, qb,−) is given as follows. Let Uab : L2(R+
a )

→ L2(R−
b ) be a linear operator defined by

(Uabf)(λ) := f(a + b − λ), f ∈ L2(R+
a ), a.e.λ ∈ R−

b .

Then Uab is unitary and

Uabqa,+U−1
ab = a + b − qb,−, Uabpa,+U−1

ab = −pb,−. (1.11)

In view of the von Neumann uniqueness theorem for Weyl representations, the pair
(−pa,+, qa,+) (resp. (−pb,−, qb,−) ) may be a reference pair in classifying weak Weyl repre-
sentations (T,H) with H being bounded below (resp. bounded above).

By Theorem 1.1, we can define two subsets of W(H):

W+(H) := {(T,H) ∈ W(H)|H is bounded below and σ(T ) = Π+}, (1.12)

W−(H) := {(T,H) ∈ W(H)|H is bounded above and σ(T ) = Π−}. (1.13)

Then, as shown above, (−pa,+, qa,+) ∈ W+(L2(R+
a )) and (−pb,−, qb,−) ∈ W−(L2(R−

b )).
For a set A of linear operators on a Hilbert space H, we set A′ := {B ∈ B(H)|BA ⊂

AB, ∀A ∈ A}, called the strong commutant of A in H, where B(H) is the set of all
bounded linear operators on H with D(B) = H. We say that A is irreducible if A′ =
{cI|c ∈ C}, where I is the identity on H.

The main results of the present paper are as follows:

Theorem 1.2 Let H be separable and (T,H) ∈ W+(H) with ε0 := inf σ(H). Suppose
that {T , T ∗, H} is irreducible. Then there exists a unitary operator U : H → L2(R+

ε0
) such

that
UTU−1 = −pε0,+, UHU−1 = qε0,+. (1.14)

In particular
σ(H) = [ε0,∞). (1.15)

Remark 1.1 It is known that, for every weak Weyl representation (T,H) ∈ W(H) (H
is not necessarily separable), H is purely absolutely continuous [8, 13].

As a corollary of Theorem 1.2, we have the following result:

Theorem 1.3 Let H be separable and (T,H) ∈ W−(H) with b := sup σ(H). Suppose
that {T , T ∗, H} is irreducible. Then there exists a unitary operator V : H → L2(R−

b ) such
that

V TV −1 = −pb,−, V HV −1 = qb,−. (1.16)

In particular
σ(H) = (−∞, b]. (1.17)
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Proof. As remarked in the second paragraph of this section, (−T,−H) ∈ W+(H) with
a := inf σ(−H) = −b and σ(−T ) = Π+. Hence, we can apply Theorem 1.2 to conclude
that there exists a unitary operator U : H → L2(R+

a ) such that

UTU−1 = pa,+, UHU−1 = −qa,+.

By Example 1.2, we have

Uabpa,+U−1
ab = −pb,−, Uabqa,+U−1

ab = −qb,−,

where we have used that a + b = 0. Hence, putting V := UabU , we obtain the desired
result.

Remark 1.2 In view of Theorems 1.2 and 1.3, it would be interesting to know when
σ(T ) = Π+ (resp. Π−) for (T,H) ∈ W(H) with H bounded below (resp. above). Con-
cerning this problem, we have the following results [5]:

(i) Let (T,H) ∈ W(H) and H be bounded below. Suppose that, for some β0 > 0,
Ran(e−β0HT ) ( the range of e−β0HT ) is dense in H. Then σ(T ) = Π+.

(ii) Let (T,H) ∈ W(H) and H be bounded above. Suppose that, for some β0 > 0,
Ran(eβ0HT ) is dense in H. Then σ(T ) = Π−.

Proof of Theorem 1.2 is given in Section 2. In Section 3 we present examples. In the
last section we apply Theorem 1.2 to the general theory established in [6] and obtain a class
of weak Weyl representations, from which a class of Weyl representations is constructed.

2 Some Facts and Proof of Theorem 1.2

To prove Theorem 1.2, we first present some key facts.

Lemma 2.1 Let S be a closed symmetric operator on H such that σ(S) = Π+. Then there
exists a unique strongly continuous one-parameter semi-group {Z(t)}t≥0 whose generator
is iS. Moreover, each Z(t) is an isometry:

Z(t)∗Z(t) = I, ∀t ≥ 0. (2.1)

Proof. This fact is probably well known. But, for completeness, we give a proof. By
the assumption σ(S) = Π+, we have σ(iS) = {z ∈ C|Re z ≤ 0}. Therefore the positive
real axis (0,∞) is included in the resolvent set ρ(iS) of iS. Since S is symmetric, it follows
that

‖(iS − λ)−1‖ ≤ 1

λ
, λ > 0.

Hence, by the Hille-Yosida theorem, iS generates a strongly continuous one-parameter
semi-group {Z(t)}t≥0 of contractions. For all ψ ∈ D(iS) = D(S), Z(t)ψ is in D(S) and
strongly differentiable in t ≥ 0 with

d

dt
Z(t)ψ = iSZ(t)ψ = Z(t)iSψ.
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This equation and the symmetricity of S imply that ‖Z(t)ψ‖2 = ‖ψ‖2, ∀t ≥ 0. Hence
(2.1) follows.

Lemma 2.2 Let (T,H) ∈ W+(H). Then there exists a unique strongly continuous one-
parameter semi-group {UT (t)}t≥0 whose generator is iT . Moreover, each UT (t) is an
isometry and

UT (t)e−isH = eitse−isHUT (t), t ≥ 0, s ∈ R. (2.2)

Proof. We can apply Lemma 2.1 to S = T to conclude that iT generates a strongly
continuous one-parameter semi-group {UT (t)}t≥0 of isometries on H. For all ψ ∈ D(T )
and all t ≥ 0, UT (t)ψ is in D(T ) and strongly differentiable in t ≥ 0 with

d

dt
UT (t)ψ = iTUT (t)ψ = UT (t)iTψ.

Let s ∈ R be fixed and V (t) := eitse−isHUT (t)eisH . Then {V (t)}t≥0 is a strongly continuous
one-parameter semi-group of isometries. Let ψ ∈ D(T ). Then e−isHψ ∈ D(T ) and

Te−isHψ = e−isHTψ + se−isHψ.

Hence V (t)ψ is in D(T ) and strongly differentiable in t with

d

dt
V (t)ψ = iTV (t)ψ.

This implies that V (t)ψ = UT (t)ψ,∀t ≥ 0. Since D(T ) is dense, it follows that V (t) =
UT (t),∀t ≥ 0, implying (2.2).

Let a ∈ R be fixed. For each t ≥ 0, we define a linear operator Ua(t) on L2(R+
a ) as

follows: For each f ∈ L2(R+
a ),

(Ua(t)f)(λ) :=

{
f(λ − t) λ > t + a
0 a < λ ≤ t + a

(2.3)

Then it is easy to see that {Ua(t)}t≥0 is a strongly continuous one-parameter semi-group
of isometries on L2(Ra

+).

Lemma 2.3 The generator of {Ua(t)}t≥0 is −ipa,+.

Proof. Let iA be the generator of {Ua(t)}t≥0. Then it follows from the isometry of
Ua(t) that A is a closed symmetric operator. It is easy to see that −pa,+ ⊂ A and hence
−pa,+ ⊂ A. As already remarked in Example 1.1, −pa,+ is maximal symmetric. Hence
A = −pa,+.

We recall a result of Bracci and Picasso [7]. Let {U(α)}α≥0 and {V (β)}β∈R be a
strongly continuous one-parameter semi-group and a strongly continuous one-parameter
unitary group on H respectively, satisfying

U(α)∗U(α) = I, α ≥ 0, (2.4)

U(α)V (β) = eiαβV (β)U(α), α ≥ 0, β ∈ R. (2.5)

Then, by the Stone theorem, there exists a unique self-adjoint operator P on H such that

V (β) = e−iβP , β ∈ R. (2.6)
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Lemma 2.4 [7] Let H be separable. Suppose that P is bounded below with ν := inf σ(P )
and that {U(α), U(α)∗, V (β)|α ≥ 0, β ∈ R} is irreducible. Then there exists a unitary
operator S : H → L2(R+

ν ) such that

SV (β)S−1 = e−iβqν,+ , β ∈ R, (2.7)

SU(α)S−1 = Uν(α), α ≥ 0. (2.8)

We denote the generator of {U(α)}α≥0 by iQ. It follows that Q is closed and symmet-
ric.

Lemma 2.5 Let S and ν be as in Lemma 2.4. Then

SPS−1 = qν,+, (2.9)

SQS−1 = −pν,+. (2.10)

In particular
σ(P ) = [ν,∞). (2.11)

Proof. Relations (2.6) and (2.7) imply (2.9). Simlarly (2.10) follows from (2.8) and
Lemma 2.3.

Lemma 2.6 Let (T,H) ∈ W(H) with σ(T ) = Π+. Suppose that {T , T ∗, H} is irreducible.
Then {UT (t), UT (t)∗, e−isH |t ≥ 0, s ∈ R} is irreducible.

Proof. Let B ∈ B(H) be such that

BUT (t) = UT (t)B, (2.12)

BUT (t)∗ = UT (t)∗B, (2.13)

Be−isH = e−isHB, ∀t ≥ 0,∀s ∈ R. (2.14)

Let ψ ∈ D(T ). Then, by (2.12), we have BUT (t)ψ = UT (t)Bψ, ∀t ≥ 0. By Lemma 2.2,
the left hand side is strongly differentiable in t with d(BUT (t)ψ)/dt = iBTUT (t)ψ. Hence
so does the right hand side and we obtain that Bψ ∈ D(T ) and BTψ = TBψ. Therefore
BT ⊂ TB. Note that (2.13) implies that UT (t)B∗ = B∗UT (t). Hence it follows that
B∗T ⊂ TB∗, which implies that BT ∗ ⊂ T ∗B, where we have used the following general
facts: for every densely defined closable linear operator A on H and all C ∈ B(H),
(CA)∗ = A∗C∗, (AC)∗ ⊃ C∗A∗, (Ā)∗ = A∗. Similarly (2.14) implies that BH ⊂ HB.
Hence B ∈ {T , T ∗, H}′. Therefore B = cI for some c ∈ C.

Proof of Theorem 1.2

By Lemmas 2.2 and 2.6, we can apply Lemma 2.4 to the case where V (β) = e−iβH , β ∈ R
and U(α) = UT (α), α ≥ 0. Then the desired results follow from Lemmas 2.4 and 2.5.
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3 Examples

Example 3.1 Let Rd
x = {x = (x1, · · · , xd)|xj ∈ R, j = 1, · · · , d}. We denote by qj the

j-th position operator on L2(Rd
x) (the multiplication operator by the j-th variable xj) and

pj := −iDj the j-th momentum operator, where Dj is the generalized partial differential
operator in xj. The free Hamiltonian for a non-relativistic quantum particle with mass
M > 0 is given by

H0 := − 1

2M
∆,

where ∆ :=
∑d

j=1 D2
j is the generalized Laplacian on L2(Rd

x). It is well known that H0

is a nonnegative self-adjoint operator on L2(Rd
x) and absolutely continuous with σ(H0) =

[0,∞).
We denote by F : L2(Rd

x) → L2(Rd
k) the Fourier transform:

(Ff)(k) :=
1

(2π)d/2

∫
Rd

x

e−ikxf(x)dx, f ∈ L2(Rd
x)

in the L2 sense. Let

Mj :=
{
k = (k1, · · · , kd) ∈ Rd

k|kj 6= 0
}
⊂ Rd

k

For each j = 1, · · · , d, we define

TAB
j :=

M

2

(
qjp

−1
j + p−1

j qj

)
with D(TAB

j ) := F−1C∞
0 (Mj). It is easy to see that (TAB

j , H0) is a weak Weyl representa-
tion of the CCR [2, 8]. The operator TAB

j is called the Aharonov-Bohm time operator [1].

In the previous paper [5], we proved that σ(TAB
j ) = Π+. Hence (TAB

j , H0) ∈ W+(L2(Rd
x)).

Note that inf σ(H0) = 0.

We consider the case d = 1. In this case, one can directly show that (T
AB

1 , H0) is
unitarily equivalent to the two direct sum of the weak Weyl representation (−p0,+, q0,+)
on L2((0,∞)).

Example 3.2 (A relativistic time operator [2]) The free Hamiltonian for a relativistic
quantum particle with mass m ≥ 0 and spin 0 is given by

Hrel :=
√
−∆ + m2

acting in L2(Rd
x). For each j = 1, · · · , d, we define

T rel
j :=

1

2

(
Hrelp

−1
j qj + qjp

−1
j Hrel

)
with D(T rel

j ) := F−1C∞
0 (Mj). As is shown in [2], (T rel

j , Hrel) is a weak Weyl representtion.

Moreover σ(T rel
j ) = Π+ [4]. Hence (T rel

j , Hrel) ∈ W+(L2(Rd
x)). One has that inf σ(Hrel) =

m.
We consider the case d = 1. In this case, one can directly prove that (T

rel

1 , H0) is
unitarily equivalent to the two direct sum of the weak Weyl representation (−pm,+, qm,+)
on L2((m,∞)).
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4 Construction of a Weyl representation from a weak

Weyl representation

In the previous paper [6], a general structure was found to construct a Weyl representation
from a weak Weyl representation. Here we recall it.

Theorem 4.1 [6, Corollary 2.6] Let (T,H) be a weak Weyl representation on a Hilbert
space H with T closed. Then the operator

L := log |H| (4.1)

is well-defined, self-adjoint and the operator

D :=
1

2
(TH + HT ) (4.2)

is a symmetric operator. Moreover, if D is essentially self-adjoint, then (D,L) is a Weyl
representation of the CCR and σ(|H|) = [0,∞).

To apply this theorem, we need a lemma.

Lemma 4.2 Let a ∈ R and

da := −1

2
(pa,+qa,+ + qa,+pa,+) (4.3)

acting in L2(R+
a ). Then da is essentially self-adjoint if and only if a = 0.

Proof. Let a > 0. Then the function u on R+
a defined by u(λ) = 1/λ3/2, λ > a is in

C∞(R+
a )∩L2(R+

a ) with λu′(λ) = −(3/2)u(λ). In the present case, we have D(pa,+qa,+) =
C∞

0 (R+
a ) = D(pa,+). Hence D(da) = C∞

0 (R+
a ). It follows that, for all f ∈ D(da),

〈u, (da − i)f〉 = 0. This implies that u ∈ ker(d∗
a + i) and hence ker(d∗

a + i) 6= {0}.
Therefore da is not essentially self-adjoint. Thus, if da is essentially self-adjoint, then
a ≤ 0. Let a < 0 and v ∈ ker(d∗

a + i). Then, for all f ∈ C∞
0 (R+

a ), 〈v, (da − i)f〉 = 0.
This implies the distribution equation λDλv(λ) = −(3/2)v(λ) on R+

a . Hence v(λ) =
{c1χ[a,0](λ)+ c′1χ(0,∞)(λ)}/|λ|3/2 for a.e. λ ∈ R+

a with constants c1 and c′1, where χS is the
characteristic function of the set S. Since v is in L2(R+

a ), it follows that c1 = c′1 = 0 and
hence v = 0. Thus ker(d∗

a + i) = {0}. Next, let w ∈ ker(d∗
a − i). Then, in the same way

as in the preceding case, we have w(λ) = {c2χ[a,0](λ) + c′2χ(0,∞)(λ)}|λ|1/2 with constants
c2 and c′2. Since w is in L2(R+

a ), it follows that c′2 = 0 and hence w(λ) = c2χ[a,0](λ)|λ|1/2.
Thus dim ker(d∗

a − i) = 1. By a general criterion on essential self-adjointness, we conclude
that da is not essentially self-adjoint. Thus, if da is essentially self-adjoint, then a = 0.

In the same way as in the preceding case, one can easily show that, if a = 0, then da

is essentially self-adjoint.

Now we can prove the following theorem.

Theorem 4.3 Let H be separable and (T,H) ∈ W+(H) with T closed and inf σ(H) = 0.
Suppose that {T, T ∗, H} is irreducible. Let L and D be as in (4.1) and (4.2) respectively.
Then D is essentially self-adjoint and (D,L) is a Weyl representation of the CCR.
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Proof. Let d̂0 be the operator d0 with p0,+ replaced by p0,+. Then, by Theorem 1.2, D

is unitarily equivalent to d̂0. We have d0 ⊂ d̂0. By Lemma 4.2, d0 is essentially self-adjoint.
Hence d̂0 is essentially self-adjoint. Therefore it follows that D is essentially self-adjoint.
The second half of the theorem follows from Theorem 4.1.

Finally we remark on the case where (T,H) ∈ W−(H):

Corollary 4.4 Let H be separable and (T,H) ∈ W−(H) with T closed and sup σ(H) = 0.
Suppose that {T, T ∗, H} is irreducible. Let L and D be as in (4.1) and (4.2) respectively.
Then D is essentially self-adjoint and (D,L) is a Weyl representation of the CCR.

Proof. We have (−T,−H) ∈ W+(H) with inf σ(−H) = 0. The operator D (resp. L)
for (−T,−H) is the same as that for (T,H). Hence the conclusions follow from Theorem
4.3.
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