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Abstract

Understanding how biological systems solve problems could aid the design of
novel computational methods. Information processing in unicellular eukaryotes is
of particular interest, as these organisms have survived for more than a billion
years using a simple system. The large amoeboid plasmodium of Physarum is
able to solve a maze and to connect multiple food locations via a smart network.
The current study examined how Physarum amoebae compute these solutions. The
mechanism involves the adaptation of the tubular body, which appears to be similar
to a network, based on cell dynamics. Our model describes how the network of
tubes expands and contracts depending on the flux of protoplasmic streaming, and
reproduces experimental observations of the behavior of the organism. The proposed
algorithm based on Physarum is both simple and powerful.

Keywords: cell dynamics, network, Steiner minimum tree, Physarum
Abbreviations: FS, food source; FT, fault tolerance; SMT, Steiner minimum

tree; TL, total length of the tube network

1 Introduction

Technologies capable of connecting multiple locations, such as public transporta-
tion networks between cities, are fundamental to modern society. In general, such
networks must have several properties including a minimal total length, tolerance
of global connectivity to accidental disconnection of the edges, and a short distance
for dense communication. However, it is difficult to meet all of these requirements
without some trade-offs. The most popular method for solving such problems is

1



the combinatorial optimization technique, but this approach is time consuming.
Two biologically-inspired methods have been proposed to overcome this difficulty:
genetic algorithms and ant algorithms [1].

Recently, we reported that the true slime mold Physarum could effectively solve
a network problem in just a few days [2, 3]. Here we propose a mathematical model
for connecting multiple locations, and consider how this primitive organism solves
such problems.

The Physarum polycephalum plasmodium is a large amoeboid organism with an
intracellular structure consisting of a network of tubes. The network acts both as
an information highway transporting chemical and physical signals, and as a supply
network circulating nutrients and metabolites throughout the organism [4, 5]. It is
also regarded as an organ of movement, as protoplasmic body mass is transported
through the tubes. This multi-functional system is therefore of great physiological
importance to the plasmodium. Moreover, the computing ability of Physarum is
much greater than was previously thought.

The shape of the network alters drastically in response to environmental changes
and external stimulation. For instance, when many separate food pellets are pre-
sented on an agar plate, a tube network forms to connect them over a short distance.
Maze solving is one experimental outcome of this behavior [6, 7, 8]. The organism
spreads throughout the available space in a maze when two food sources (FSs) are
presented at two exits. The shortest tube path connecting the two FSs is then
chosen from the many possible options. Previously, we proposed a mathematical
model for the assembly and disassembly of the tube network during maze solving
[9, 10]. Simulations were carried out, and the model was demonstrated to be useful.
The resulting method based on Physarum was named Physarum solver [9]. It has
been mathematically proven that Physarum solver can find the shortest path in a
general planar graph [11, 12].

The abovementioned model describes the dynamics of a tube network that bal-
ances two antagonistic processes: tube thickening depending on flux through the
tube itself, and tube thinning with first-order kinetics. The dynamics can thus be
calculated once the flow through every tube is known. The physiological basis for
the model has been comprehensively discussed in previous papers [10, 13]. The be-
havior with two FSs has been modeled in detail, as it is relatively easy to determine
the flow through the tubes in such a case [10].

So far, however, no mathematical model for three FSs has been proposed. This
is because, with more than two FSs, it is necessary to know how much sol flows from
each individual FS to the others, as the flow of protoplasm through every tube is
needed to compute the tube dynamics. Unfortunately, limited data have so far been
obtained. Here we apply the tube dynamics to the case of multiple FSs by making
some logical assumptions about sol flow. This highlights the importance of the total
flux of sol integrated over the entire organism, and of a parameter that expresses
the dependence of tube thickening on sol flux. The effects of these parameters are
thus examined.

The model reproduces a wide variety of the network shapes observed in real
experiments with three FSs. The required properties of the functional network
mentioned above are similar in the simulation and the actual organism. The network
shapes are shown with four FSs, six FSs, and so on, and we discuss an algorithm
derived from Physarum.
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2 Networking three or more FSs

2.1 Mathematical model for a tube network adaptive
to flow

A mathematical model for cases with two FSs has previously been proposed [10].
The model consists of sets of equations for protoplasm flow and adaptability of tube
thickness, respectively. The model was based on experimentally observed biological
behavior, but took a form that was mathematically simplified and tractable.

In brief, the model represents the shape of the cell body by a graph, in which
an edge corresponds to a plasmodial tube and a node corresponds to a junction
between tubes. The two nodes with food sources are labeled N1 and N2 while the
other nodes are numbered N3, N4, N5, · · · and so on. The edge between node i and
j is labeled Mij , and multiple edges between these nodes are labeled M1

ij ,M
2
ij , · · ·.

Suppose that the pressures at nodes i and j are pi and pj , respectively, and that
the two nodes are connected by a cylinder of length Lij and radius rij . Assuming
Poiseuille flow, the flux through the tube is a measure of the conductivity of the
tube:

Qij =
πr4(pi − pj)

8ξLij
=

Dij

Lij
(pi − pj), (1)

where ξ is the viscosity of the fluid, and

Dij =
πr4

8ξ
(2)

Although the tube walls are not rigid and the radius changes over time, the dynamics
of tube adaptation are sufficiently slow (10-20 min) for the flow to be considered
at steady state. The state of the network is described by the fluxes Qij , and the
conductivities, Dij , of the edges.

At each node i (i ̸= 1, 2), the inflow and outflow must be balanced as

ΣjQij = 0. (3)

The nodes that correspond to food sources drive the flow through the network, so
that, at the food sources, eq.3 is modified by a prescribed source (or sink) term.
For the source node (i = 1) and the sink node (i = 2),{

ΣjQ1j − I0 = 0,
ΣjQ2j + I0 = 0,

(4)

where I0 is the flux flowing into the source node and out of the sink node. These
source terms might be periodic in time, and drive shuttle streaming through the
network. However, because the time scale of network adaptation is an order of
magnitude larger than the time scale of shuttle streaming, the sources are taken to
be constant. It should be noted that I0 is a parameter in our model.

For a given set of conductivities and source and sink, the flux through each of
the network edges can be computed. In Physarum, the radii of the tubes change in
response to this flux [10, 14], and in the model the conductivities evolve according
to the equation

dDij

dt
= f(|Qij |) − aDij . (5)
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Here, the first term on the right-hand side describes the expansion of tubes in
response to the flux. The function f is a monotonically increasing function that
satisfies the condition f(0) = 0. The second term represents a constant rate of tube
constriction and a is a positive constant for the first order kinetics, so that the tubes
will disappear in the absence of flow. The tubes interact with one another because
the total amount of fluid in the network must be conserved. If the flux through a
tube changes, it affects all the other tubes in the network.

It is instructive to consider an analogy with an electrical circuit. An edge of
the network is regarded as a dynamic resistor, with resistance proportional to Lij

and r−4
ij . The shape of the organism is represented as a network of resistors. The

fluxes through the edges are thus analogous to the currents through the resistors,
and the source/sink terms at the food sources correspond to the input currents.
The pressures at the nodes correspond to the voltages in the circuit. If the current
through a resistor is large enough, its resistance decreases and the current through
it increases. If the current through a resistor is low, the resistance increases and
finally tends to infinity, which corresponds to the collapse of the tube.

The model used eq. (1)-(5) corresponds to Physarum solver if f(|Q|) = |Q|µ,
(µ = 1). However, here Physarum solver is modified to be applicable to cases of
more than three FSs. The function form f(|Q|) is given by a more realistic form
f(|Q|) = |Q|γ/(1 + |Q|γ) than the power function. The observation that there is a
maximum tube diameter clearly requires the growth function to saturate, regardless
of the mechanism. We assume that the flux is proportional to the pressure; however,
the thixotropy (which is a property of non-Newtonian fluids) of protoplasm means
that it barely flows when the pressure difference is small. Modeling the complex
rheology of the protoplasm is beyond the scope of this paper. To account for this
observation in our model, we take γ > 1 in the sigmoidal function, so that tube
growth is less sensitive to changes in the flow when the pressure differences are
small.

In order to calculate the numerical simulation for the modified model, it is
necessary to know which FSs are sources of protoplasmic flow and which are sinks.
However, this is largely unclear. We thus assume that only one source and one sink
exist at any given moment, and that they are not fixed but rather switch at random
between all of the FSs. At each time step, one FS node is randomly picked as a
sink, say it is node i. Then another FS node j is randomly picked as a source with
the probability dβ

ij/Σk ̸=id
β
ik, where the index k runs over a set of FS nodes and β

is a positive constant. The dik is distance between the sink node i and the source
node k. This probability means that an FS farthest from the sink is most likely
to become the source. We have studied the parameters γ, I0, β of this amended
model.

3 Simulation results and comparison with real

networks

Figure 1 shows the results of a simulation with three FSs. The model succeeds in
reproducing a wide variety of network patterns observed in the real organisms. The
differences between the patterns result from differences in the parameters. Here, I0

is the total flow through the entire network, γ is the exponent of a sigmoidal function
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in the process of tube thickening, and β is βth order of moment for choosing a source
node stochastically. In general, the number of edges increases as I0 increases at a
fixed β (=1). The dependence of I0 agrees with the experimental observation that
the tube network tends to be dense and complex when the organism initially applied
is large (so that the flux of protoplasm between the FSs is large).

In our experiments [3], we observed a network shape resembling the so-called
Steiner minimum tree (SMT), which is the shortest connection network between
multiple locations on a plane (Fig. 1a1). This is not, in fact, an SMT because the
edges are not straight, and the junction of the three edges around the centers of the
three FS positions is not at the center of mass of the three points. However, the con-
nectivity of nodes and edges is the same as that of an SMT. Other types of network
shape were observed, as shown in Fig. 1a. The total length of network increases
from Figures 1a1 to 1a5. We noted a statistical tendency for network shapes of
greater total length to emerge, as this experimental parameter was increased (that
is, the organism was in relative excess over the volume of food provided). This
implies that a large amount of protoplasmic sol can be exchanged between FSs.

We observed a similar tendency in the simulation. As the flow rate I0 increased
from 1.5 to 6.0 (Figs. 1b1 and 1b5, respectively), the network shape became more
complicated, with a longer total length. The model thus reproduced an important
behavior of the organism. The other parameter, γ , was set between 2.5 and 4.0,
so that the simulation results might fit the experimental results. This meant that
there was no rigorous reason for the choice of parameter value, but similar values
were used for the cases of two FSs in our previous paper [15] in order to reproduce
the actual behavior of the organism. The issue of parameter choice needs to be
studied in future, based on indications from physiological experiments [13]. β was
set at 1.0 in the abovementioned simulation.

Fig.2 shows the actual network shapes and the simulation results with four FSs,
which were located at the vertices of squares and rectangles. Two typical shapes
observed in the square setup were the SMT-type and the cycle type (Figs. 2a1 and
2a2, respectively). The effect of I0 was similar to that in the case of three FSs, as
the total length was greater in Fig. 2b2 (I0 = 6.5) than in Fig. 2b1 (I0 = 2.0). The
parameter β was β = 5.0 in the SMT-type and only β = 3.0 in the cycle type. In
the simulation of the rectangular setup, the SMT type appeared at large values of
β as shown in Fig. 2b3, while the cycle type was obtained at relatively small values
of β. In general, the SMT type tended to appear at large β values in some other
sets of FS positions. This implies that the plasmodium might construct an SMT
when protoplasmic sol (and chemical and physical signals transported by the sol) is
mainly exchanged between maximally separated parts of the organism. This matter
also needs to be clarified in future studies.

In the biological experiments with three FSs, the functionality of networking was
evaluated by two kinds of measure: shortness of total length of the entire network,
and fault tolerance (FT) of the global connectivity to accidental disconnection of
the tubes [2, 3].

Two measures were used to evaluate the network pattern: the total length of
the tube network (TL), and the FT against accidental disconnection of the tubes
[2]. TL is expressed as a dimensionless value, which is the total length divided
by that of the SMT. FTN is defined as the probability that the organism (that is,
main part of the body located at the food source) is not fragmented if N accidental
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disconnections occur at random points along the tubes. The FT1 is calculated by
assuming that one disconnection occurs, and that the probability of a disconnection
is proportional to the ratio of tube length to total network length. For the FT2,
two disconnections are assumed. A longer tube has a higher risk of disconnection;
therefore, smaller values of TL and higher values of FT are advantageous. These
trends result from the physiological requirements of the organism. Generally, FT
rises as TL increases, which reflects the relative cost of redundant connections to
food sources. Therefore, we tested the FT-TL relationship, which expresses the
cost-benefit trade-off, as shown in Figure 3.

Figure 3 shows a comparison of the functionality in the real organism and the
simulation results evaluated by the abovementioned measures TL varies widely, as a
considerable range of network shapes was observed. For all of the TL values, the FT
observed represented the very good value under the constraints of that specific TL
(Figs. 3a and 3c). This shows that the organism consistently maximized FT at the
different TLs. Figures 3b and 3c show the TL-FT relationship for network shape
obtained by the model simulation (Fig. 1b). There is good agreement between the
real organism and the simulation. Thus, the model effectively reproduces network
formation in the organism.

4 Conclusion

We analyzed networking in the biological system of Physarum, and the observed
phenomena were reproduced by a mathematical model. Based on the behavior of
the organism, we developed a method for computing the networking. The problem
of functional networking might thus be solved by computation. In future, we might
also learn more from this amoeboid organism, which is capable of finding the shortest
connection path between multiple food sources. With a specific set of parameters,
the mathematical model reproduces the Steiner minimum tree. Building upon this
model behavior, it might be possible to generate an algorithm for a Steiner problem
solver. This topic will be considered elsewhere in the near future
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a1

b4

a5a4a3a2

b0 b5b3b2b1

Figure 1: Simulation for three FSs located at the three vertices of an equilateral triangle.
(a) Network shapes in the real organism, in ascending order of total length of network,
from a1 to a5. (b) Simulated network shapes. (b0) Initial conditions with constant
thickness Dij = 1.0. The parameter sets of (I0, γ, β) were (1.5, 3.5, 1.0), (3.0, 4.0, 1.0),
(5.0, 3.5, 1.0), (6.0, 3.0, 1.0), and (6.0, 2.5, 1.0), for b1, b2, b3, b4, and b5, respectively.
a = 1.0. A wide variety of network shapes were observed in both systems. (a2) The
right side edge indicated by the arrow appears to be present, but, in fact, has already
disconnected and is actually only a trace of the viscous sheath of the slime mold.
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a1 a2 a3

b1 b2 b3

Figure 2: Simulation for four FSs. (a) Real organism. (b) Model simulation. (I0, γ,
β)=(2.0, 3.5, 5.0), (6.5, 3.5, 3.0) and (2.0, 3.5, 5.0) for b1, b2, and b3. Note that I0 is the
total flow through the entire network, γ is the exponent of the sigmoidal function in the
process of tube thickening, and β is the βth order of moment for choosing a source node
stochastically a = 1.0. AG: food-source.
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Figure 3: FT of the network in the real organism (a, c) and in the model (b, d). (a,
b) FT against one accidental disconnection (FT1). (c, d) FT against two accidental
disconnections (FT2). Parameters I0 and γ were randomly set at any values in the range
3.0< I0 <8.0 and 2.0< γ <4.0, respectively. β = 1.0, a = 1.0.
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