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Equation of motion for point vortices in multiply connected

circular domains

Takashi SAKAJO

Department of mathematics, Hokkaido University,
PRESTO, Japan Science and Technology Agency

Abstract

The paper gives the equation of motion for N point vortices in a bounded planar multi-
ply connected domain inside the unit circle that contains many circular obstacles, called the
circular domain. The velocity field induced by the point vortices is described in terms of the
Schottky-Klein prime function associated with the circular domain. The explicit representa-
tion of the equation enables us not only to solve the Euler equations through the point-vortex
approximation numerically, but also to investigate the interactions between localized vortex
structures in the circular domain. As an application of the equation, we consider the motion of
two point vortices with the unit strength of the opposite signs. When the multiply connected
domain is symmetric with respect to the real axis, the motion of the two point vortices is re-
duced to that of a single point vortex in a multiply connected semi-circle, which we investigate
in detail.

1 Introduction

The study of incompressible and inviscid flows in planar multiply connected domains is not only
one of the fundamental subjects in the field of mathematical fluid dynamics, but it also contributes
toward understanding of geophysical flows with many islands and artificial obstacles such as lakes,
inland seas and coastal regions. This is because these regions are mathematically represented by
multiply connected domains.

The motion of the incompressible and inviscid flow is described by the two-dimensional Euler
equations. According to Kelvin’s theorem, the circulation is conserved along the path of a fluid
particle and thus the vorticity neither generates nor disappears during its evolution. Hence in
order to solve the Euler equations, we have only to investigate the evolution of the non-zero
vorticity domain at the initial moment. Based on this observation, we discretize the initial non-
zero vorticity domain with a set of N points, called point vortices, whose strengths are determined
by the circulations around these points. Then we track the evolutions of the N point vortices. This
discretization method for the Euler equations is known as the vortex method[2], which reduces the
Euler equations to a system of ordinary differential equations for the N point vortices. The point-
vortex system is often used as a simple mathematical model to describe the interactions between
localized vortex structures where the vorticity concentrates in small regions. The readers can find
many results and their references of this topic in the books of Newton[11] and Saffman[12].

The point-vortex system is formulated as a Hamiltonian dynamical system, whose Hamiltonian
is conventionally called the Kirchhoff-Routh function. Suppose that the N point vortices {zλ|λ =
1, . . . , N} with the strengths {Γλ|λ = 1, . . . , N} are in a domain D ⊂ C. Then the Kirchhoff-Routh
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function is represented by

H(z1, z
∗
1 , . . . , zN , z∗N ) =

1
2

N∑
λ=1

N∑
α 6=λ

ΓλΓαG(zλ; zα) − 1
2

N∑
λ=1

Γ2
λR(zλ; z∗λ) ≡ HG + HR, (1)

where z∗λ denotes the complex conjugation of zλ. The function G(z;w) is the hydrodynamic
Green’s function satisfying the following Poisson equation,

∆G(z; w) + δ(|z − w|) = 0 in D, (2)

with a certain boundary condition imposed on ∂D, in which the δ-function represents a source at
w ∈ D. The function R(z; w) is derived from the Green’s function by

R(z; w) = −G(z; w) − 1
2π

log |z − w|,

which is called the Robin function[7]. Note that HG and HR represent the vortex-vortex interaction
and the vortex-boundary interaction respectively. Lin[8, 9] showed how to derive the equation for
the N point vortices from the Kirchhoff-Routh function, which is stated as follows[11]:

Theorem 1 Let H(z1, z
∗
1 , z2, z

∗
2 , · · · , zN , z∗N ) be the Kirchhoff-Routh function for the N point vor-

tices {zλ|λ = 1, . . . , N} with the strengths {Γλ|λ = 1, . . . , N} in a domain D ⊂ C. Then the
equation of motion for the N point vortices is given by

Γλ
dzλ

dt
= −2i

∂H

∂z∗λ
, (3)

where i =
√
−1 denotes the complex unit.

The Kirchhoff-Routh functions for the unbounded plane, the surface of a sphere and some simple
domains with boundaries have been obtained[11, 12]. On the other hand, Crowdy and Marshall[3]
recently considered a bounded multiply connected domain inside the unit circle with many circular
boundaries, which is called the circular domain, for which they gave an analytic representation of
the Kirchhoff-Routh function. It has been applied to describe the steady irrotational uniform flow
past many cylindrical obstacles in a plane[5] and to compute the lift on the cylindrical obstacles[6].

Crowdy and Marshall[4] have investigated the motion of a single point vortex, which is equiv-
alent to a contour line of the Kirchhoff-Routh function, since the Hamiltonian dynamical system
(3) for N = 1 is always integrable. On the other hand, the motion of more than one point vortex
is no longer integrable due to lack of special symmetry of the circular domain, and it has not been
investigated well. This is due to the lack of an explicit representation of the equation for the N
point vortices. Thus the primary purpose of the present paper is deriving the equation for the
N -point vortices in the circular domain from the Kirchhoff-Routh function given by Crowdy and
Marshall[3] and Lin’s theorem. Then we make use of the equation to investigate the motion of
two point vortices with the unit strength of the opposite signs in the circular domain.

The paper consists of four sections. In the next section, we derive the equation of the N
point vortices in the multiply connected circular domain from the Kirchhoff-Routh function given
by Crowdy and Marshall[3]. In §3, we investigate the motion of two point vortices in a circular
domain that is symmetric with respect to the real axis. Owing to the symmetry, it is reduced to
the motion of a single point vortex in the multiply connected upper semi-circle. The last section
gives a summary and concluding remarks.
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2 Equation for the N point vortices in circular domains

We introduce a special multiply connected domain Dζ in the complex ζ-plane, called the circular
domain, inside the unit circle |ζ| ≤ 1 with M circular obstacles. The circular domain is regarded
as a canonical multiply connected domain since it is mathematically shown that for any bounded
domain with M holes, there exists a conformal mapping that maps the domain to a circular domain
with M circular obstacles[10]. Let C0 denote the unit circle and {Ci|i = 1, . . . ,M} represent the
boundaries of the disjoint M circular obstacles inside the unit circle, whose centers and radii
are denoted by δi ∈ Dζ and qi ∈ R. The conjugation map φi(ζ) with respect to the unit circle
associated with the circle Ci is given by

φi(ζ) = δ∗i +
q2
i

ζ − δi
, i = 1, . . . ,M,

with which we define the Möbius maps ϑi(ζ) as

ϑi(ζ) ≡ φ∗
i (ζ

−1) = δi +
q2
i ζ

1 − δ∗i ζ
.

Here we use the notations (φ(ζ))∗ = φ∗(ζ∗) and (φ(ζ∗))∗ = φ∗(ζ) for the conjugation of the map.
The infinite free group of maps generated by the basic Möbius maps ϑi(ζ) and their inverses

ϑ−1
i (ζ) for i = 1, . . . ,M is called the Schottky group, which is denoted by Θ. Note that every

element θi(ζ) in the Schottky group is represented by a composition of these 2M basic maps. Let
Θ′′ represent a subset of the Schottky group Θ that excludes the identity map and all inverse
mappings. Then the Schottky-Klein prime function ω(ζ, α) is defined as follows[1]:

ω(ζ, α) = (ζ − α)ω′(ζ, α), ω′(ζ, α) =
∏

θi∈Θ′′

(θi(ζ) − α)(θi(α) − ζ)
(θi(ζ) − ζ)(θi(α) − α)

, ζ, α ∈ Dζ . (4)

For the unit circle |ζ| ≤ 1, the only element in the Schottky group is the identity map, since
there is no obstacle inside. Then the subset Θ′′ is the empty set from the definition. For the
doubly connected concentric annulus {q < |ζ| < 1}, there is only one Möbius map ϑ1(ζ) = q2ζ
associated with the inner boundary |ζ| = q. Since the Schottky group consists of all compositions
of ϑ1(ζ) = q2ζ and its inverse ϑ−1

1 (ζ) = q−2ζ, any element in the subset Θ′′ is represented by
θk(ζ) = q2kζ for k > 1.

Crowdy and Marshall[3] gave the Green’s function G(ζ; α) and the Robin function R(α; α∗)
for the circular domain Dζ as follows:

G(ζ;α) = − 1
2π

log
∣∣∣∣ 1
α

ω(ζ, α)
ω(ζ, α∗−1)

∣∣∣∣ , R(α; α∗) =
1
4π

log
∣∣∣∣ ω′(α, α)ω′∗(α−1, α−1)
α2ω(α, α∗−1)ω∗(α−1, α∗)

∣∣∣∣ .

The Kirchhoff-Routh function (1) with the Green’s function and the Robin function enables us
to derive the equation for the N point vortices in the circular domain Dζ with Theorem 1. The
following theorem is one of the main results of this paper.

Theorem 2 Let {zλ|λ = 1, . . . , N} denote the positions of N point vortices with the strengths
{Γλ|λ = 1, . . . , N} in the circular domain Dζ ⊂ C. Then the motion of the point vortices is
described by

dzλ

dt
=

i
2π

N∑
α 6=λ

Γα

(
ω∗

ζ (z
∗
λ, z∗α)

ω∗(z∗λ, z∗α)
−

ω∗
ζ (z

∗
λ, z−1

α )

ω∗(z∗λ, z−1
α )

)
− i

2π
Γλ

ω∗
ζ (z

∗
λ, z−1

λ )

ω∗(z∗λ, z−1
λ )

, λ = 1, . . . , N, (5)

in which ωζ(ζ, α) = ∂
∂ζ ω(ζ, α) and ω∗

ζ (ζ
∗, α∗) = (ωζ(ζ, α))∗.
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The two terms in the summation represent the contributions from the point vortex at zα and its
conjugation point with respect to the unit circle at z∗−1

α , while the last term is the velocity field
induced by the point vortex at the conjugation point z∗−1

λ of zλ. Since the function ωζ(ζ, α)/ω(ζ, α)
plays a key role in the equation (5), the following expression is useful.

Proposition 1 The function ωζ(ζ, α)/ω(ζ, α) is given by

ωζ(ζ, α)
ω(ζ, α)

=
1

ζ − α
+

∑
θi∈Θ′′

{
θ′i(ζ)(α − ζ)

(θi(ζ) − α)(θi(ζ) − ζ)
+

θi(α) − θi(ζ)
(θi(α) − ζ)(θi(ζ) − ζ)

}
, (6)

in which θ′i(ζ) = d
dζ θi(ζ).

Proof: The calculation is straightforward. Let us write ω′(ζ, α) =
∏

θi∈Θ′′ Ω(i)(ζ, α), where

Ω(i)(ζ, α) =
(θi(ζ) − α)(θi(α) − ζ)
(θi(ζ) − ζ)(θi(α) − α)

.

Since we have

ωζ(ζ, α)
ω(ζ, α)

=
d

dζ
log ω(ζ, α) =

d

dζ

(
log(ζ − α) + log ω′(ζ, α)

)
=

1
ζ − α

+
d

dζ

∑
θi∈Θ′′

log Ω(i)(ζ, α),

the proof is finished by

d

dζ
log Ω(i)(ζ, α) =

θ′i(ζ)
θi(ζ) − α

− 1
θi(α) − ζ

− θ′i(ζ) − 1
θi(ζ) − ζ

=
θ′i(ζ)(α − ζ)

(θi(ζ) − α)(θi(ζ) − ζ)
+

θi(α) − θi(ζ)
(θi(α) − ζ)(θi(ζ) − ζ)

. (7)

2

Owing to this proposition, we write down the explicit representations of ωζ(ζ, α)/ω(ζ, α) for the
simply connected unit disk |ζ| ≤ 1, and the doubly connected concentric annulus {ζ | q < |ζ| < 1}.
For the unit circle, we have ω(ζ, α) = (ζ −α), since the subset Θ′′ is the empty set, which leads to

ωζ(ζ, α)
ω(ζ, α)

=
1

ζ − α
. (8)

Regarding the doubly connected concentric annulus, any element in Θ′′ is represented by θk(ζ) =
q2kζ for k > 1. Hence, it follows from Proposition 1 and

θ′k(ζ)(α − ζ)
(θk(ζ) − α)(θk(ζ) − ζ)

+
θi(α) − θi(ζ)

(θi(α) − ζ)(θi(ζ) − ζ)
=

q2k(α − ζ)
(q2kζ − α)(q2kζ − ζ)

+
q2k(α − ζ)

(q2kα − ζ)(q2kζ − ζ)

=
q2k(α2 − ζ2)

(q2kζ − α)(q2kα − ζ)
1
ζ
.

that we have
ωζ(ζ, α)
ω(ζ, α)

=
1

ζ − α
+

∞∑
k=1

q2k(α2 − ζ2)
(q2kζ − α)(q2kα − ζ)

1
ζ
. (9)

In what follows, we give the proof of Theorem 2. First, let us show some basic properties for
the Schottky-Klein prime function ω(ζ, α).
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Lemma 1 The Schottky-Klein-Prime function ω(ζ, α) satisfies the following.

(i). ω∗(ζ−1, α−1) = − 1
ζα

ω(ζ, α),

(ii). ω(ζ, α) = −ω(α, ζ),

(iii). ω′(ζ, α) = ω′(α, ζ),

(iv). For z ∈ Dζ , ω′
ζ(z, z) = ω′

α(z, z) = 0,

(v). For z ∈ Dζ , ωζ(z∗−1, z) = −ωα(z, z∗−1).

Proof: Since the properties (i)-(iii) have already been confirmed in [3], we prove the last two
properties. Differentiating log ω′ with respect to ζ and α as in the proof of Proposition 1, we have

ω′
ζ(ζ, α)

ω′(ζ, α)
=

∑
θi∈Θ′′

θ′i(ζ)
θi(ζ) − α

− 1
θi(α) − ζ

− θ′i(ζ) − 1
θi(ζ) − ζ

, (10)

ω′
α(ζ, α)

ω′(ζ, α)
=

∑
θi∈Θ′′

−1
θi(ζ) − α

+
θ′i(α)

θi(α) − ζ
− θ′i(α) − 1

θi(α) − α
. (11)

Substituting ζ = α = z ∈ Dζ , we have ω′
ζ(z, z) = ω′

α(z, z) = 0 due to ω′(z, z) = 1.
Regarding (v), we first show ω′

ζ(z
∗−1, z) = ω′

α(z, z∗−1) for z ∈ Dζ . It is easy to see from (10)
and (11) that

ω′
ζ(z

∗−1, z)
ω′(z∗−1, z)

=
∑

θi∈Θ′′

θ′i(z
∗−1)

θi(z∗−1) − z
− 1

θi(z) − z∗−1
− θ′i(z

∗−1) − 1
θi(z∗−1) − z∗−1

=
ωα(z, z∗−1)
ω′(z, z∗−1)

.

Since ω′(z∗−1, z) = ω′(z, z∗−1) due to (iii), we have ω′
ζ(z

∗−1, z) = ω′
α(z, z∗−1). Then it follows

from

ωζ(ζ, α) = ω′(ζ, α) + (ζ − α)ω′
ζ(ζ, α), ωα(ζ, α) = −ω′(ζ, α) + (ζ − α)ω′

α(ζ, α), (12)

that we have

ωα(z, z∗−1) = −ω′(z, z∗−1) + (z − z∗−1)ω′
α(z, z∗−1)

= −ω′(z∗−1, z) − (z∗−1 − z)ω′
ζ(z

∗−1, z) = −ωζ(z∗−1, z).

2

Now, we calculate the right-hand side of (3). First, we deal with the contribution from the
vortex-vortex interaction part HG. Let us rewrite the Green’s function G(zλ; zα) as

G(zλ; zα) = − 1
4π

log
(

ω(zλ, zα)
zαω(zλ, z∗−1

α )

) (
ω∗(z∗λ, z∗α)

z∗αω∗(z∗λ, z−1
α )

)
. (13)

The terms in HG that contain the variable zλ are given by

1
2

∑
α 6=λ

{ΓλΓαG(zλ; zα) + ΓαΓλG(zα; zλ)} =
∑
α 6=λ

ΓλΓαG(zλ; zα).
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Since the derivative of G(zλ; zα) with respect to z∗λ becomes

∂G

∂z∗λ
= − 1

4π

ω∗
ζ (z

∗
λ, z∗α)

ω∗(z∗λ, z∗α)
+

1
4π

ω∗
ζ (z

∗
λ, z−1

α )

ω∗(z∗λ, z−1
α )

,

we have

−2i
∂HG

∂z∗λ
=

i
2π

N∑
α 6=λ

ΓαΓλ

(
ω∗

ζ (z
∗
λ, z∗α)

ω∗(z∗λ, z∗α)
−

ω∗
ζ (z

∗
λ, z−1

α )

ω∗(z∗λ, z−1
α )

)
. (14)

Next, we consider the contribution from the vortex-boundary interaction part HR. The fol-
lowing lemma gives us a simpler expression of the Robin function.

Lemma 2 The Robin function R(α; α∗) is expressed as

R(α; α∗) =
1
2π

log
∣∣∣∣ ω′(α, α)
|α|ω(α, α∗−1)

∣∣∣∣ . (15)

Proof It follows from (i) of Lemma 1 that we have

− 1
ζα

(ζ − α)ω′(ζ, α) = ω∗(ζ−1, α−1) =
α − ζ

ζα
ω′∗(ζ−1, α−1).

Thus we have ω′∗(α−1, α−1) = ω′(α, α). Then the Robin function R is rewritten as

R(α;α∗) =
1
4π

log
∣∣∣∣ ω′(α, α)ω′∗(α−1, α−1)
α2ω(α, α∗−1)ω∗(α−1, α∗)

∣∣∣∣
=

1
4π

log

∣∣∣∣∣ ω′(α, α)ω′(α, α)
α2ω(α, α∗−1) · −α∗

α ω(α, α∗−1)

∣∣∣∣∣ =
1
2π

log
∣∣∣∣ ω′(α, α)
|α|ω(α, α∗−1)

∣∣∣∣ .

2

Due to this lemma, R(zλ; z∗λ) becomes

R(zλ; z∗λ) =
1
2π

log

∣∣∣∣∣ ω′(zλ, zλ)
|zλ|ω(zλ, z∗−1

λ )

∣∣∣∣∣ =
1
4π

log
1

|zλ|2

(
ω′(zλ, zλ)

ω(zλ, z∗−1
λ )

)(
ω′∗(z∗λ, z∗λ)
ω∗(z∗λ, z−1

λ )

)
.

Differentiating it with respect to z∗λ, we have

∂R
∂z∗λ

= − 1
4πz∗λ

− 1
4π

ωα(zλ, z∗−1
λ )

ω(zλ, z∗−1
λ )

(
− 1

z∗2λ

)
+

1
4π

1
ω′∗(z∗λ, z∗λ)

(
ω′∗

ζ (z∗λ, z∗λ) + ω′∗
α (z∗λ, z∗λ)

)
− 1

4π

ω∗
ζ (z

∗
λ, z−1

λ )

ω∗(z∗λ, z−1
λ )

= − 1
4πz∗λ

+
1
4π

ωα(zλ, z∗−1
λ )

ω(zλ, z∗−1
λ )

(
1

z∗2λ

)
− 1

4π

ω∗
ζ (z

∗
λ, z−1

λ )

ω∗(z∗λ, z−1
λ )

. (16)

Note that the third term after the first equality vanishes due to (iv) of Lemma 1. To reduce it
further, we need the following lemma.

Lemma 3
ω∗

ζ (z
∗, z−1)

ω∗(z∗, z−1)
= − 1

(z∗)2
ωα(z, z∗−1)
ω(z, z∗−1)

+
1
z∗

. (17)
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Proof: It follows from (i) and (ii) of Lemma 1 that we obtain

ω∗(z∗, z−1) = −z∗

z
ω(z∗−1, z) =

z∗

z
ω(z, z∗−1).

Differentiating both sides of (i) of Lemma 1 with respect to ζ, we have

∂

∂ζ
ω∗(ζ−1, α−1) = ω∗

ζ (ζ
−1, α−1)

−1
ζ2

,
∂

∂ζ

(
− 1

ζα
ω(ζ, α)

)
=

1
ζ2α

ω(ζ, α) − 1
ζα

ωζ(ζ, α),

which leads to
ω∗

ζ (z
∗, z−1) = −1

z
ω(z∗−1, z) +

1
z∗z

ωζ(z∗−1, z).

Hence due to (i), (ii) and (v) of Lemma 1, we obtain

ω∗
ζ (z

∗, z−1)
ω∗(z∗, z−1)

=
−1

zω(z∗−1, z) + 1
z∗zωζ(z∗−1, z)

z∗

z ω(z, z∗−1)

=
1
zω(z, z∗−1) − 1

z∗zωα(z, z∗−1)
z∗

z ω(z, z∗−1)
=

1
z∗

− ωα(z, z∗−1)
(z∗)2ω(z, z∗−1)

. 2

Substituting (17) into (16), we finally obtain

−2i
∂HR

∂z∗λ
= − i

2π
Γ2

λ

ω∗
ζ (z

∗
λ, z−1

λ )

ω∗(z∗λ, z−1
λ )

. (18)

Consequently, the equation (5) is derived from (14) and (18).

3 Motion of two point vortices in the circular domain

3.1 Reduction to a single point vortex in a semi-circle

We consider the motion of two point vortices located at z1 and z2 in the circular domain Dζ with
the strengths Γ1 = −Γ2 = 1. Then the equation (5) for the two point vortices is given by

dz1

dt
= − i

2π

(
ω∗

ζ (z
∗
1 , z

∗
2)

ω∗(z∗1 , z
∗
2)

−
ω∗

ζ (z
∗
1 , z

−1
2 )

ω∗(z∗1 , z
−1
2 )

)
− i

2π

ω∗
ζ (z

∗
1 , z

−1
1 )

ω∗(z∗1 , z
−1
1 )

, (19)

dz2

dt
=

i
2π

(
ω∗

ζ (z
∗
2 , z

∗
1)

ω∗(z∗2 , z
∗
1)

−
ω∗

ζ (z
∗
2 , z

−1
1 )

ω∗(z∗2 , z
−1
1 )

)
+

i
2π

ω∗
ζ (z

∗
2 , z

−1
2 )

ω∗(z∗2 , z
−1
2 )

. (20)

When the domain is the unit circle or the doubly connected concentric annulus {ζ | q < |ζ| < 1},
their motion is integrable, since the system admits an additional invariant quantity I = |z1|2−|z2|2,
which corresponds to the invariance of the system with respect to the rotation around the origin.
This is directly confirmed from the equations (19) and (20) as follows:

dI

dt
= 2Re

(
z∗1

dz1

dt
− z∗2

dz2

dt

)
= − i

π
Im

(
z∗1

ω∗
ζ (z

∗
1 , z

∗
2)

ω∗(z∗1 , z
∗
2)

+ z∗2
ω∗

ζ (z
∗
2 , z

∗
1)

ω∗(z∗2 , z
∗
1)

)
+

i

π
Im

(
z∗1

ω∗
ζ (z

∗
1 , z

−1
2 )

ω∗(z∗1 , z
−1
2 )

+ z∗2
ω∗

ζ (z
∗
2 , z

−1
1 )

ω∗(z∗2 , z
−1
1 )

)

− i

π
Im

(
z∗1

ω∗
ζ (z

∗
1 , z

−1
1 )

ω∗(z∗1 , z
−1
1 )

+ z∗2
ω∗

ζ (z
∗
2 , z

−1
2 )

ω∗(z∗2 , z
−1
2 )

)
.
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This vanishes if we have, for arbitrary z, w ∈ C,

Im
(

z
ωζ(z, w)
ω(z, w)

+ w
ωζ(w, z)
ω(w, z)

)
= 0,

(
z
ωζ(z, w∗−1)
ω(z, w∗−1)

)∗
= w

ωζ(w, z∗−1)
ω(w, z∗−1)

.

For the unit circle, these conditions hold, since (8) satisfies

z1
1

z1 − z2
+ z2

1
z2 − z1

= 1,

(
z

1
z − w∗−1

)∗
=

z∗

z∗ − w−1
=

w

w − z∗−1
.

We also have the invariance of I for the concentric annulus, since it follows from (9) that

z1
q2k(z2

2 − z1
1)

(q2kz1 − z2)(q2kz2 − z1)
1
z1

+ z2
q2k(z2

1 − z1
2)

(q2kz2 − z1)(q2kz1 − z2)
1
z2

= 0,

and(
z

q2k(w∗−2 − z2)
(q2kz − w∗−1)(q2kw∗−1 − z)

1
z

)∗

=
q2k(1 − z∗2w2)

(q2kz∗w − 1)(q2k − z∗w)
= w

q2k(z∗−2 − w2)
(q2kw − z∗−1)(q2kz∗−1 − w)

1
w

.

Here, let us consider a circular domain that is symmetric with respect to the real axis. In other
words, for arbitrary obstacle Ci, there exists an integer j ∈ {1, . . . ,M} such that the obstacles Cj

and Ci are symmetric with respect to the real axis, i.e., δj = δ∗i and qj = qi. Note that if j = i,
the obstacle Ci is symmetric with respect to the real axis. In terms of the maps in the Schottky
group, it is equivalent to say that for arbitrary map θi(ζ) ∈ Θ′′, there exists a map θj(ζ) such that
θ∗i (ζ) = θj(ζ), since for any generating functions of the Schottky group, we have

(ϑi(ζ∗))
∗ =

(
δi +

q2
i ζ

∗

1 − δ∗i ζ
∗

)∗
= δ∗i +

q2
i ζ

1 − δiζ
= δj +

q2
j ζ

1 − δ∗j ζ
= ϑj(ζ).

Then, for arbitrary ζ and α ∈ Dζ , we obtain

ω∗
ζ (ζ, α)

ω∗(ζ, α)
=

(
ωζ(ζ∗, α∗)
ω(ζ∗, α∗)

)∗

=

 1
ζ∗ − α∗ +

∑
θi∈Θ′′

{
θ′i(ζ

∗)(α∗ − ζ∗)
(θi(ζ∗) − α∗)(θi(ζ∗) − ζ∗)

+
θi(α∗) − θi(ζ∗)

(θi(α∗) − ζ∗)(θi(ζ∗) − ζ∗)

}∗

=
1

ζ − α
+

∑
θi∈Θ′′

{
θ′∗i (ζ)(α − ζ)

(θ∗i (ζ) − α)(θ∗i (ζ) − ζ)
+

θ∗i (α) − θ∗i (ζ)
(θ∗i (α) − ζ)(θ∗i (ζ) − ζ)

}

=
1

ζ − α
+

∑
θj∈Θ′′

{
θ′j(ζ)(α − ζ)

(θj(ζ) − α)(θj(ζ) − ζ)
+

θj(α) − θj(ζ)
(θj(α) − ζ)(θj(ζ) − ζ)

}
=

ωζ(ζ, α)
ω(ζ, α)

.(21)

Suppose that the initial location of the two point vortices is z1 = z∗2 . Then due to (21) we have

d

dt
(z1 − z∗2) = − i

2π

ω∗
ζ (z

∗
1 , z

∗
2)

ω∗(z∗1 , z
∗
2)

+
i

2π

ω∗
ζ (z

∗
1 , z

−1
2 )

ω∗(z∗1 , z
−1
2 )

− i
2π

ω∗
ζ (z

∗
1 , z

−1
1 )

ω∗(z∗1 , z
−1
1 )

−

(
i

2π

ω∗
ζ (z

∗
2 , z

∗
1)

ω∗(z∗2 , z
∗
1)

− i
2π

ω∗
ζ (z

∗
2 , z

−1
1 )

ω∗(z∗2 , z
−1
1 )

+
i

2π

ω∗
ζ (z

∗
2 , z

−1
2 )

ω∗(z∗2 , z
−1
2 )

)∗

= − i
2π

ω∗
ζ (z

∗
1 , z1)

ω∗(z∗1 , z1)
+

i
2π

ω∗
ζ (z

∗
1 , z

∗−1
1 )

ω∗(z∗1 , z
∗−1
1 )

− i
2π

ω∗
ζ (z

∗
1 , z

−1
1 )

ω∗(z∗1 , z
−1
1 )

+
i

2π

ωζ(z∗1 , z1)
ω(z∗1 , z1)

− i
2π

ωζ(z∗1 , z
∗−1
1 )

ω(z∗1 , z
∗−1
1 )

+
i

2π

ωζ(z∗1 , z
−1
1 )

ω(z∗1 , z
−1
1 )

= 0.
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Thus we prove the following theorem.

Theorem 3 Let the circular domain Dζ be symmetric with respect to the real axis. Suppose also
that the initial configuration of the two point vortices with Γ1 = −Γ2 = 1 satisfies z1(0) = z∗2(0).
Then we have z1(t) = z∗2(t) for t ≥ 0.

Owing to this theorem, the orbits of the two point vortices in the circular domain are symmetric
with respect to the real axis, which are observed by plotting the contour lines of the Hamiltonian
with z1 = z∗2 , i.e.,

H(z1, z
∗
1) = G(z1; z∗1) −

1
2
R(z1; z∗1) −

1
2
R(z∗1 ; z1). (22)

Hence it is possible to investigate the motion of the two point vortices by plotting the contour
lines of the Hamiltonian (22).

Finally let us mention how to compute the Schottky-Klein prime function ω(ζ, α) numerically.
Since it is unable to calculate the infinite product in (4), we have to truncate it up to a finite
number of the Möbius maps in Θ′′. As in [3], we introduce the level of all possible compositions of
the generating maps ϑi(ζ) and ϑ−1

i (ζ). The level-zero map is the identity map. The level-one maps
contain all generating maps ϑi(ζ) and their inverse ϑ−1

i (ζ) for i = 1, . . . ,M . All compositions of
any two of the level-one maps that cannot be reduced to the identity map constitute the level-two
maps. We can define recursively the level-three maps that consist of all possible combinations of
three of the level-one maps and that are not reduced to a lower-level map. In the present paper, we
have truncated the infinite product (4) up to the level-three maps. The truncated finite product
approximates the Schottky-Klein prime function accurately if the obstacles Ci for i = 1, . . . ,M
are well-separated as is confirmed in [3]. As for the infinite summation (6) in Proposition 1, we
similarly truncate it up to the level-three maps.

3.2 Motion of a point vortex in multiply connected semi-circles

3.2.1 Two obstacles

Due to the reflectional symmetry, the two obstacles C1 and C2 are symmetric with respect to the
real axis. Namely, the centers and the radii of the two obstacles are given by

C1 : δ1 = a + bi, q1 = r, C2 : δ2 = a − bi, q2 = r, (23)

for a ∈ (−1, 1) and b > 0. The radius r satisfies 0 < r < min
(
b, 1 −

√
a2 + b2

)
, since the obstacle

C1 must be contained in the upper semi-circle.
Figure 1 shows the contour plots of the Hamiltonian (22) for a = 0, r = 0.05 and various b

in (23). Saddle and center points of the contour plot correspond to unstable and neutrally stable
fixed configurations of the two point vortices respectively. The contour plots are symmetric with
respect to the real axis, which means that when the point vortex with the positive unit strength
goes along a contour line in the upper semi-circle, the other point vortex with the negative unit
strength always moves along the contour line in the lower semi-circle that is symmetric with respect
to the real axis. Thus it is sufficient for us to focus on the contour lines in the upper semi-circle.
When b = 0.2 in Figure 1(a), there are two fixed configurations, a center point above the obstacle
C1 and a saddle point between the obstacle and the real axis. The saddle point is connected
by homoclinic orbits. For b = 0.4 in Figure 1(b), while the saddle point with the homoclinic
connections below the obstacle remains, a new saddle point appears above the obstacle. The new
saddle point is connected by homoclinic orbits that surround two center points. At b = 0.4885
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(a) b=0.2 (b) b=0.4 (c) b=0.4885

(d) b=0.6 (e) b=0.8

C1

C2

Figure 1: Contour plots of the Hamiltonian (22) in the circular domains with two obstacles that
are symmetric with respect to the real axis. In (23), we change b with fixed a = 0 and r = 0.05.

Ia IIIIIa IbIIb

(a) (b) (c) (d) (e)

obstacle center point saddle point

Figure 2: Topological patterns of the contour lines in the upper semi-circles corresponding to the
contour plots given in Figure 1
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a = 0.3 b

r 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.03 Ia Ia Ia Ia Ib Ib Ib Ib
0.1 Ia Ia IIa IIb Ib Ib Ib
0.15 Ia IIa IIa IIb IIb Ib
0.2 IIa IIa IIb IIb IIb
0.3 IIa IIb IIb

a = 0.7 b

r 0.1 0.2 0.3 0.4 0.5 0.6
0.05 Ia Ia Ib Ib Ib Ib
0.1 IIa IIb Ib Ib
0.15 IIa IIb IIb
0.2 IIa

Table 1: Classification of topological patterns of the contour lines of the Hamiltonian (22) in the
upper semi-circle for a = 0.3 and a = 0.7.

in Figure 1(c), the homoclinic orbits with respect to the two saddle points coincide, and then
two saddles with homoclinic connections appear again for b = 0.6 in Figure 1(d). Finally, when
the island approaches the outer boundary for b = 0.8 in Figure 1(e), the saddle point below the
obstacle C1 changes to a center point.

The motion of the two point vortices changes largely in the neighborhood of the saddle points of
the contour plot. For instance, in Figure 1(a), when we set the point vortex below the saddle point
at the initial moment, it goes along the real axis and the boundary of the unit circle. On the other
hand, it rotates around the obstacle C1 when it is initially set above the saddle. Thus, in order
to characterize the motion of the single point vortex in the upper semi-circle, we pay attention to
the topological structure that consists of the saddle/center points, their heteroclinic/homoclinic
orbits in the contour lines of the Hamiltonian (22) and the obstacle C1. In Figure 2, we show the
topological patterns corresponding to the contour plots from Figure 1(a) to (e). The topological
patterns for b = 0.2 and 0.8, and those for b = 0.4 and 0.6 are the same topologically. Hence,
the topological patterns are referred to as Ia for b = 0.2, IIa for b = 0.4, III for b = 0.4885, IIb
for b = 0.6 and Ib for b = 0.8. Figure 2 also illustrates how the topological patterns change with
respect to b. The changes from the pattern Ia to IIa, and from the pattern IIb to Ib are due
to a pitchfork bifurcation from the neutrally stable fixed configuration to the unstable one with
the homoclinic connections, which gives rise to the two neutrally stable fixed configurations. The
transition between the patterns IIa and IIb occurs due to the reconnection of the homoclinic orbits
through the degenerate pattern III. Table 1 gives the classification of the topological patterns of
the contour lines for the other cases a = 0.3 and 0.7 with various b and r, in which we typically
observe the patterns Ia, Ib, IIa and IIb. The degenerate pattern III also appears for the parameters
between the patterns IIa and IIb. We have examined the topological patterns for the other values
of a, but we find no other pattern except them.

3.2.2 Three obstacles

Since the circular domain with three obstacles has the reflectional symmetry, the center of one
obstacle is on the real axis. Thus the centers and the radii of the three obstacles are given by

C1 : δ1 = a + bi, q1 = r1, C2 : δ2 = a − bi, q2 = r1, C3 : δ3 = c, q3 = r2, (24)

for a and c ∈ (−1, 1), and the positive b, r1 and r2. Figure 3 shows the contour plots of the
Hamiltonian (22) in the circular domains with the three obstacles (24) for a = 0, b = 0.8, r1 = 0.05
and c = 0. We change the radius r2 of the obstacle C3. For small r2, the topological pattern is
equivalent to the pattern Ib in Figure 2. As r2 gets larger, the topological pattern changes to
IIb and IIa. Figure 4 gives the other contour plots of the Hamiltonian (22) for a = 0, b = 0.6,
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(a) r   =0.05 2 (b) r   =0.5 2 (c) r   =0.7 2
C1

C2

C3

Figure 3: Contour plots of the Hamiltonian (22) in the symmetric circular domains with the three
obstacles (24) for a = 0, b = 0.8, r1 = 0.05 and c = 0. We change the radius r2 of the obstacle C3.

(a) r   =0.2 2 (b) r   =0.2969 2 (c) r   =0.4 2

C1

C2

C3

Figure 4: Contour plots of the Hamiltonian (22) in the symmetric circular domains with the three
obstacles (24) for a = 0, b = 0.6, r1 = 0.1 and c = 0.3. We change the radius r2 of the obstacle
C3.

r1 = 0.1 and c = 0.3, which clearly demonstrates the transition of the contour pattern from IIb to
IIa through the degenerate pattern III at r2 = 0.2969. We have checked the other configurations
of the three obstacles, but we are unable to find any other topological patterns except those in
Figure 2. Hence, we could say that the topological patterns observed here are the same as those
in §3.2.1.

3.2.3 Four obstacles

We need to consider many parameters in order to determine the locations of four islands. Hence,
in this section, we deal with a special configuration of the four circular obstacles of the same
radius. The centers of the obstacles are represented by

C1 : δ1 = a + bi, C2 : δ2 = a − bi, C3 : δ3 = −a + bi, C4 : δ4 = −a − bi, a, b > 0. (25)

The radii of the four obstacles are fixed to 0.1.
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(a) a=0.15 (b) a=0.2 (c) a=0.25

(e) a=0.5(d) a=0.3

I III

V

II

IV

C1

C2

C3

C4

Figure 5: Contour plots of the Hamiltonian (22) in the symmetric circular domains with the four
obstacles of radius 0.1 at (25), in which we change a with fixed b = 0.5.

First, we fix b = 0.5 and change a. Figure 5 shows the contour plots of the Hamiltonian (22).
When a = 0.15 in Figure 5(a), in which the two obstacles C1 and C3 are close, there exists a saddle
point between the two obstacles with homoclinic connections. In addition, we have two saddles
and three centers below the obstacles, and two saddles and one center above the obstacles. Each
saddle point is connected by homoclinic and heteroclinic orbits. For a = 0.2 in Figure 5(b) and
a = 0.25 in Figure 5(c), the number of the saddle and center points remains the same as we have
in Figure 5(a), but their global topological patterns of the homoclinic and the heteroclinic orbits
are different. As the parameter a increases, the saddle point between the two obstacles changes
to a center point as in Figure 5(d) for a = 0.3. The two saddles and the three centers below the
obstacles collapse to a center in Figure 5(e) for a = 0.5. We obtain the five topological patterns,
which are referred to as I for a = 0.15, II for a = 0.2, III for a = 0.25, IV for a = 0.3 and V for
a = 0.5 respectively.

The transitions between the patterns I, II and III occur not due to the change of stability of the
fixed configuration, but due to reconnection of the homoclinic and heteroclinic orbits through the
degenerate cases for a = 0.1935 in Figure 6(a) and for a = 0.21269 in Figure 6(b). The subcritical
pitchfork bifurcation from saddle to center results in the change of the topological pattern from
III to IV. The transition between the patterns IV and V arises due to a degenerate pinching of
the contour lines of the Hamiltonian around the center point below the obstacles as shown in
Figure 7(a).

Next, we change b with a = 0.15. Figure 8 shows the contour plots of the Hamiltonian (22).
When the two obstacles C1 and C3 are close to the real axis for b = 0.15 in Figure 8(a), we
have two saddle points with heteroclinic and homoclinic connections between the obstacles and
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(a) a=0.1935 (b) a=0.21269 (c) b=0.2838

C1

C2C4

C3

Figure 6: Contour plots of the Hamiltonian (22) and their corresponding topological patterns of
the contour lines in the upper semi-circles for (a) a = 0.1935, b = 0.5, (b) a = 0.21269, b = 0.5
and (c) a = 0.15, b = 0.2838 in (25). They are degenerate cases through which the reconnections
of the homoclinic and heteroclinic orbits of the topological patterns occur.

(a)

(b)

Figure 7: Schematic pictures for degenerate pinching bifurcations of the contour lines of the
Hamiltonian around the center points, which generate new saddle/center points and homo-
clinic/heteroclinic connections.
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(a) b=0.15 V VI(b) b=0.2 VII(c) b=0.3

(d) b=0.4 I (e) b=0.5 I (f) b=0.72 II (g) b=0.8 VI

C1

C2

C3

C4

Figure 8: Contour plots of the Hamiltonian (22) in the symmetric circular domains with the four
obstacles of radius 0.1 at (25), in which we change b with a = 0.15.

the real axis, and a center point above them. The pattern is topologically equivalent to the
pattern V for Figure 5(e). Another degenerate pinching like Figure 7(b) generates a saddle point
with homoclinic connections for b = 0.2 in Figure 8(b), which arises a new pattern VI. A global
reconnection of the heteroclinic and homoclinic orbits occurs from Figure 8(b) to Figure 8(c) for
b = 0.3, which is identified as a new pattern VII. The degenerate topological pattern between the
patterns VI and VII for b = 0.2838 is given in Figure 6(c). The pinching bifurcation of Figure 7(a)
around the center above the obstacles results in the transition from the pattern VII to I for b = 0.4
and 0.5 in Figure 8(d) and (e). Then the global reconnection from the pattern I to II is observed
for b = 0.72 in Figure 8(f) through the degenerate pattern like in Figure 6(a). The transition
from the pattern II to VI is due to the pinching bifurcation of Figure 7(b) around the center
point below the two obstacles. These seven topological patterns I to VII are typically observed for
the other configurations of the obstacles (25). Table 2 gives the classification of the topological
patterns of the contour lines for a = 0.2, 0.25 and 0.3 with various b, in which we observe the
patterns II, III, IV and V. For a = 0.2, a new transition from the pattern II to IV is observed
due to the degenerate pinching of Figure 7(b). We summarize the transitions and the bifurcations
of the topological patterns of the contour lines in the upper semi-circle in Figure 9. Let us note
that we are unable to find any other generic patterns except the seven patterns although we have
examined the patterns for the other possible configurations of the four obstacles.

3.3 Comparison with the motion of a single point vortices in circles

As is shown in [4], since the motion of a single point vortex in any circular domain is integrable,
its orbit corresponds to a contour line of the following Hamiltonian

H(s)(z1) = −1
2
R(z1; z∗1), (26)
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b= 0.3 b=0.34 b=0.4 b=0.5 b=0.65 b=0.7
a = 0.2 V IV II II IV V

b=0.2 b=0.4 b=0.47 b=0.5 b=0.6 b=0.8
a = 0.25 V IV III III IV V

b=0.2 b=0.4 b=0.5 b=0.65
a = 0.5 V IV IV V

Table 2: Classification of the topological patterns of the contour lines of the Hamiltonian (22) in
the upper semi-circles for a = 0.2, a = 0.25 and a = 0.3 in (25).

III

IV

V

reconnection

reconnection

pitchfork bifurcation

pinching

I II

VIVII

pinchingpinching 

reconnection

pinching

pinching

Figure 9: Transition diagram of the topological patterns of the contour lines of the Hamiltonian
in the upper semi-circles found in Figures 5, 6 and 8.
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Figure 10: Contour plot of the Hamiltonian (26) for the single point vortex in the doubly connected
circular domain with one obstacle of radius 0.1, whose center is located at 0.5i. Its corresponding
topological pattern is equivalent to the pattern Ib in Figure 2.

which is obtained by taking N = 1 in (1). We investigate the topological pattern of the contour
lines of (26) for circular domains with the same connectivity as the semi-circles considered in §3.2.

We first deal with the motion of a point vortex in a doubly connected circular domain with one
obstacle, which we compare with the results in §§3.2.1 and 3.2.2. Due to the rotational symmetry
of the unit circle, the center of the obstacle is given by δ1 = bi for b > 0 without loss of generality.
Figure 10 shows the contour plot of H(s) for b = 0.5. The radius of the obstacle is 0.1. We have one
saddle point with homoclinic connections and one center point, whose corresponding topological
pattern is equivalent to the pattern Ib in Figure 2. For the other value of b and the radius of the
obstacle, the only topological pattern we observe is the pattern Ib.

Next, we consider the motion of a point vortex in a triply connected circular domain. Since
the configuration of the four obstacles (25) in §3.2.3 has the special symmetry, for the sake of
comparison, we assume that the centers of two obstacles in the circular domain are located at

C1 : δ1 = a + bi, C2 : δ2 = −a + bi, a > 0, b ≥ 0. (27)

and the radii of the two obstacles are both 0.1. Figure 11 shows the contour plots of the Hamil-
tonian (26) with b = 0 and various a. The topological patterns for a = 0.2, a = 0.3 and a = 0.5
are equivalent to the patterns VII, VI and V in Figure 9 respectively. The global reconnection
of the homoclinic orbits occurs between the patterns VII and VI through the degenerate pattern
like Figure 6(c). The saddle point between the obstacles in Figure 11(b) becomes the center point
in Figure 11(c) due to the pitchfork bifurcation. The transition and the bifurcation between the
three patterns are observed for the other parameters a and b as shown in Table 3.

These results indicate that the possible topological patterns of the contour lines for the motion
of the single point vortex in the circular domain are given as a part of those observed in the
semi-circle with the same connectivity. Hence, we can observe a wide variety of the topological
patterns of the contour lines and the transitions and the bifurcations between them in the motion
of the single point vortex in the multiply connected semi-circle compared to those in the multiply
connected circle.

3.4 Nonintegrable motion of the two point vortices without the symmetry

When either the circular domain or the initial configuration of the two point vortices is not
symmetric with respect to the real axis, the system is no longer integrable. Here we give some
numerical samples of the motion of the two point vortices without the reflectional symmetry. The
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(a) a=0.2 (b) a=0.3 (c) a=0.5

Figure 11: Contour plots of the Hamiltonian (26) for the single point vortex in the triply connected
circular domains with the two obstacles at (27) with b = 0 and various a, whose topological
patterns for a = 0.2, 0.3 and 0.5 are equivalent to (a) the pattern VII, (b) VI and (c) V in
Figure 9 respectively.

b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6
a = 0.2 VII VI VI VI VI V
a = 0.3 VI V V V V V
a = 0.5 V V V V V V

Table 3: Topological patterns of the contour lines of the Hamiltonian (26) in the triply connected
circular domains for a = 0.2, a = 0.3 and a = 0.5 and various b.
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(a) z(0)=z   
1

(b) z(0)=z  2 (c) z(0)=z   
1

(d) z(0)=z  2

Trajectories   Poincare sections   

Figure 12: Motion of the two point vortices in the symmetric domain with the two obstacles (23)
for a = 0, b = 0.4 and r = 0.05. The amplitude of the perturbation in the initial configuration
(28) is ε1 = 1.0 × 10−4. Trajectories of the two point vortices for (a) z(0) = z1 and (b) z2, and
their corresponding Poincaré sections {Rez1 = 0} for (c) z(0) = z1 and (d) z2 respectively.

equations (19) and (20) are integrated by the fourth order Runge-Kutta method with time step
size ∆t = 0.001. We consider the same symmetric circular domain with the two obstacles (23)
for a = 0, b = 0.4 and r = 0.05 as in Figure 1(b). On the other hand, we deal with an initial
configuration without the reflectional symmetry. Let ζ1 and ζ2 denote the two saddle fixed points
obtained in Figure 1(b). Then the initial configuration is given by

z(0) ≡ (z1(0), z2(0)) = zk ≡ (ζk + ε1(1 + i), ζ∗k + ε2i) ∈ C2, k = 1, 2, (28)

for ε1 and ε2 ∈ R. For given ε1, the parameter ε2 is determined numerically so that the value
of the Hamiltonian for (28) is equivalent to that of the Hamiltonian (22) with the reflectional
symmetry at z1 = ζk up to 12 digits.

Figure 12 shows the trajectories of the two point vortices for the initial data (a) z(0) = z1 and
for (b) z(0) = z2 with ε1 = 1.0×10−4. Although the initial disturbance ε1 is quite small, they are
far from being integrable. Figure 13(a) shows the evolutions of d(t) = |z1(t)− z∗2(t)| for z(0) = z1

and z2 with ε1 = 1.0× 10−4, which indicate that the reflectional symmetry between the two point
vortices is breaking, since d(t) ≡ 0 for all time if the system is integrable. In addition, in order
to see the dependence on the initial disturbance, we observe the center of the two point vortices,
i.e., c(t) = 1

2(z1(t) + z2(t)), which evolves in the real axis if the motion is integrable. Figure 13
also shows the trajectories of c(t) for (b) z(0) = z1 and for (c) z(0) = z2 with ε1 = 1.0 × 10−4

and 3.0× 10−4, which indicates that the motion of the two point vortices is sensitive to the initial
disturbance, since the trajectories of c(t) for ε1 = 1.0 × 10−4 and 3.0 × 10−4 are different.

The motion of the two point vortices is reduced to three-dimensional dynamical system since
the equations (19) and (20) define the Hamiltonian dynamical system in the four-dimensional phase
space (Rez1, Imz1, Rez2, Imz2) and the orbit evolves in the same energy surface of the Hamiltonian.
Thus in order to observe the motion of the two point vortices from another point of view, we show
the Poincaré section {Rez1 = 0} in Figure 12(c) and (d) corresponding to the trajectories of
Figure 12(a) and (b). For z(0) = z1, the orbits spread in a region near the homoclinic orbits to
ζ1. On the other hand, they spread inside the whole unit circle for z(0) = z2. We infer from them
that the evolution of the two point vortices without the reflectional symmetry could be chaotic.
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Figure 13: (a) Evolutions of d(t) = |z1(t) − z∗2(t)| for the initial configurations z(0) = z1 and z2

with ε1 = 1.0 × 10−4. Trajectories of the center c(t) of the two point vortices for (b) z(0) = z1

and for (c) z(0) = z2 with amplitudes ε1 = 1.0 × 10−4 and 3.0 × 10−4 in (28).

4 Summary and concluding remarks

We have derived the equation of motion for the N point vortices in a multiply connected domain,
called the circular domain, inside the unit circle that has M circular obstacles. The interaction
between the point vortices is expressed by the function ωζ(ζ, α)/ω(ζ, α), in which ω(ζ, α) is the
Schottky-Klein prime function associated with the circular domain. Thanks to the explicit repre-
sentation, it is possible to approximate the solution of the Euler equations in the circular domain
numerically with the vortex method[2]. Moreover, for given N point vortices {zλ|λ = 1, . . . , N}
with the strengths {Γλ|λ = 1, · · · , N}, we have the following expression for the instantaneous
velocity field at any point z in the circular domain,

u(z) =
i

2π

N∑
λ=1

Γλ

(
ω∗

ζ (z
∗, z∗λ)

ω∗(z∗, z∗λ)
−

ω∗
ζ (z

∗, z−1
λ )

ω∗(z∗, z−1
λ )

)
,

which is available to compute the motion of passive scalars advected by the N point vortices.
Let us mention the equation for the N point vortices for general multiply connected domains.

Suppose that the conformal mapping ζ = f(w) from a given multiply connected domain Dw in
the complex w-plane to a circular domain Dζ in the complex ζ-plane is constructed. Then the
motion of the N vortex points {wλ|λ = 1, . . . , N} in Dw is described by a Hamiltonian dynamical
system, whose Hamiltonian H(w) is represented by

H(w)(w1, w
∗
1, . . . , wN , w∗

N ) = H(ζ)(ζ1, ζ
∗
1 , . . . , ζN , ζ∗N ) −

N∑
λ=1

Γ2
λ

4π
log |fw(wλ)| ,

in which H(ζ) denotes the Kirchhoff-Routh function for the N point vortices {ζλ|λ = 1, . . . , N} in
the circular domain Dζ with ζλ = f(wλ).

We have applied the equation to investigate the motion of two point vortices with the unit
strength of the opposite signs. When the domain is either the simply connected circle or the
double connected concentric annuls, their motion is integrable. On the other hand, for the cir-
cular domains with more than one obstacle, it is not integrable in general. However, when the
circular domain is symmetric with respect to the real axis, the motion of the two point vortices is
reduced to that of a single point vortex in the upper semi-circle, if their initial configuration has
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the same symmetry. We have described the motion of the single point vortex when the circular
domain contains two, three and four obstacles by plotting the contour lines of the Hamiltonian.
We focus on the topological pattern in the semi-circle that consists of fixed configurations, ho-
moclinic/heteroclinic orbits and the obstacles. Then we describe the transitions and bifurcations
between the topological patterns, which occur due to the pitchfork bifurcation, the degenerate
pinching bifurcations of the contour line around the center point and the reconnection of the
heteroclinic/homoclinic orbits. Comparing the results with the motion of the single point vortex
in the circular domains with the same connectivity, we find that more topological patterns of the
contour lines and more complicated transitions and bifurcations between them are possible for
the semi-circles than for the circles. Moreover, we give several numerical examples of the motion
of the two point vortices when the saddle points in the integrable system are slightly perturbed.
Although the initial perturbation is quite small, the evolution of the two point vortices without the
reflectional symmetry becomes complicated, which is sensitive to the initial amplitude of distur-
bance. Poincaré section for their trajectories illustrates that the motion of the two point vortices
becomes chaotic.
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