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Cantor coding in the hippocampus

Ichiro Tsuda and Shigeru Kuroda

Applied Mathematics and Complex Systems Research Group,
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Abstract

We construct a mathematical model for the dynamic behavior of hip-

pocampus. The model is described by the skew product transformation in

terms of chaotic dynamics and contracting dynamics. In the contracting

subspace, fractal objects are generated. We show that such fractal objects

are characterized by a code of a temporal sequence generated by chaotic

dynamics.

Key words: Cantor coding, fractal, chaotic dynamics, skew product transfor-

mation, hippocampus
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1 Introduction

Our aim in this paper is to show how information of the orbits generated by

chaotic dynamical system is encoded in Cantor sets generated in a contracting

subspace in chaos-driven contracting systems, and also to apply this idea

to the construction of a mathematical model for the dynamic behavior of

hippocampus in the brain. A type of coding that we treat in this paper is

a kind of temporal coding [1]. The hippocampus is known to be responsible

for the formation of episodic memory. Without hippocampus no one can

transform short-term memories to long-term memories. Thus the present

study may provide a mathematical basis of the mechanism for the formation

of episodic memory [2].

In our mathematical model of hippocampus, we treat, in particular, the

unidirectional coupling from CA3 to CA1, both of which also receive the

control signal from the septum. Here, from the phisiological and anatomical

(structural) reason, it is proper to assume that CA3 is an unstable network

which can generate chaotic behavior and CA1 is a stable network in the

case without synaptic modifications. We found a Cantor set in the phase

space of the model CA1, which is generated, driven by chaotic behavior in

the model CA3. From the mathematical point of view, the problem is thus

how information of the orbits (or symbol sequence) generated by chaotic

dynamics is encoded in a Cantor set generated in the contracting subspace

in the chaos-driven contracting system.

It is known that a coding on a Cantor set is realized in iterated function

system (IFS) [3, 4, 5, 6] and also in recurrent neural network (RNN) [7, 8, 9,

10]. It is, however, not known how to encode the information of symbol se-

quence generated in chaotic dynamical systems into its subspace. We discuss

this issue in several chaos-driven contracting systems, where various Cantor
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sets [11, 12, 13] are the subject for the study.

In §2, we show a mechanism of Cantor coding by using simple dynamical

systems. A mathematical model of the hippocampus is presented in §3. The

Candor coding in the hippocampal model is presented in §4. Section 5 is

devoted to summary and discussion.

2 A typical chaos-driven contracting system

In this section, we present a simple example of chaos-driven contracting sys-

tem. A dissipative baker’s map is presented, which can be viewed as a skew

product transformation T (x, y) = (f(x), gx(y)) with a chaotic mapping f

and a contracting mapping g.

The following equations describe a dissipative baker’s map.

For x, y ∈ R, t ∈ N , and µ < 1
2
,

x(t + 1) = 2x(t) (mod 1), (1)

y(t + 1) =

{
µy(t) (x(t) ≤ 1

2
)

µy(t) + 1 − µ (x(t) > 1
2
).

(2)

Here, t indicates a discrete time and µ a dissipation parameter. The

variable x constitutes chaotic dynamics by itself. Actually, it provides a

Bernoulli shift. On the other hand, the variable y constitues contracting

dynamics in the present µ’s condition, the dynamics of which depend on the

x variable. Thus the (dissipative) baker’s map is considered to be a skew

product transformation in the sense of a chaos-driven contracting system.

In the contracting subspace y, a Cantor set is generated. Actually, one can

“observe” a Cantor set on any crosssection, x = constant, which is taken not

to see the chaotic behavior.

When we label the chaotic orbits arriving in the subintervals x ≤ 1
2

and

x > 1
2

by, for instance, “0” and “1”, respectively, we say that the Bernoulli
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shift generates symbol sequence consisting of 0 and 1. This kind of chaotic

symbol sequence is encoded in the Cantor set created in the contraction sub-

space. A characteristic of encoding is as follows. An itinerary of the sequence

is hierarchically encoded in the Cantor set. In other words, a temporal struc-

ture of the sequence is encoded in a spatial (or geometric) hierarchy of the

Cantor set. Generalizing this scheme, we wish to call it a Cantor coding.

There are many other chaotic dynamical systems like the solenoid which can

also be written in the form of a skew product transformation.

3 A model for the hippocampus

The model we wish to propose is a kind of macroscopic model at the network

level. In other words, we are concerned with an averaged activity of neuron,

thus our network consists of several peculiar network components, based

on the neuron model representing a simple input-output function such as a

sigmoid function. In order to construct a model for the hippocampus, let us,

for the first time, describe the physiological and anatomical facts related to

the network. The hippocampus consists of several areas. Among others, the

network within areas called CA3 and CA1, and its inter-areal connections

have been investigated.

In CA3, the axon-collaterals of the pyramidal cells make the synaptic

contacts with themselves, and construct recurrent connections. Thus the

pyramidal cells in CA3 constitute, so called a recurrent network. Further-

more, each pyramidal cell makes a synaptic contact with a neighboring in-

hibitory cell. Such an inhibitory cell excited by the outputs of pyramidal

cell inhibits the neighboring pyramidal cells via the synaptic contacts. The

other axon-collaterals of the pyramidal cells called Schaffer collaterals make

synaptic contacts with the apical dendrites of the pyramidal cells in CA1.
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This type of connections constitute a unidirectional coupling of the CA3 net-

work with CA1 network. Mathematically, this can be called a skew-product

transformation of the dynamics in CA3 and CA1.

In CA1, the recurrent connections among pyramidal cells have not been

clearly found. The inhibitory cells exist also in CA1, each of which receives

mainly the output of the nearest neighbor pyramidal cell, and inhibits the

neighboring pyramidal cells. The axon-collaterals of the pyramidal cells in

CA1 are sent to various other area such as the subiculum, the enthorinal

cortex, and the subcortical areas.

The inhibitory cells in CA3 and CA1 have relatively long axon-collaterals

and constitute an interneuronal network [14, 15]. There exist the collinergic

and GABAergic afferents from the septum to the hippocampal CA3 and CA1.

Here, the collinergic afferents contact both the pyramidal and inhibitory cells

of hippocampus. On the other hand, the GABAergic afferents make synaptic

contacts mainly with the inhibitory cells, but not pyramidal cells (for the

collinergic afferent, see Frotscher and Leranth [16], and for the GABAergic

afferents, see Freund and Antal [17], and Toth et al. [18]). Actually, Toth

et al. concluded that their experiments suggest that the GABAergic septo-

hippocampal afferents selectively inhibit the hippocampal inhibitory cells and

consequently disinhibit the pyramidal cells.

Taking into account these anatomical and physiological facts, and the

hypothetical assertions suggested so far, we construct the network model of

the hippocampus. In the following subsections, we treat the model of CA3

network and its dynamics, the CA1 network model, and the overall network

model and its dynamics.
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3.1 A model of the hippocampal CA3 and its dynamics

Since the network structure and the physiological facts known in CA3 is

similar to those factors of the model network for the dynamic association

of memories which was proposed by one of the authors [19, 20, 21, 24], we

construct a model of CA3, modified the previous model. The neurodynamics

we took is as follows.

Let X and Y be a N -dimensional vector, whose i-th component is denoted

by xi and yi, respectively. Here, xi and yi are interpreted as the activity of

i-th pyramidal and inhibitory cells, respectively. Let us introduce a discrete

time step t for the development of neurodynamics. The following equation

provides 2N - dimensional dynamical system composed of the pyramidal and

inhibitory cell dynamics.

(X(t + 1), Y (t + 1)) = F (X(t), Y (t)), (3)

where F is 2N nonlinear transformations denoting neurodynamics. Taking

into account the effect of the stimulus-induced stochastic release of synaptic

vesicles widely observed in the hippocampus, however, we here interpret F as

representing a stochatic renewal of neurodynamics, as in the case of Tsuda’s

model of dynamic associative memories [19, 20, 21, 24].

The stochastic renewal of neurodynamics for the i-th set of the pyramidal

and the inhibitory cells is defined as follows.

Fi(X, Y ) = (fx(X,Y ), fy(X)), (4)

xi(t + 1) = fx(X(t), Y (t)), (5)

=

{
Hx(

1
N

∑N
j=1 wijxj − diyi) (wih probability px)

xi(t) (otherwise)
, (6)

yi(t + 1) = fy(X(t)), (7)

=

{
Hy(

1
N

∑N
j=1 eijxj) (with probability py)

0 (otherwise),
(8)
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where xi ∈ [−1, 1](i = 1, · · · , N), yi ∈ [−1, 1](i = 1, · · · , N), wij denotes a

synaptic weight from pyramidal cell j to i, whose concrete form is given be-

low, eij ∈ [0, α] a synaptic weight from the pyramidal cell j to the inhibitory

cell i, and di ∈ [0, β] a synaptic weight from the inhibitory cell i to the pyra-

midal cell i. Furthermore, as mentioned above, we use a sigmoid function as

follows.

Hx(z) = Hy(z) = 2/(1 + exp(−γz)) − 1. (9)

Here γ is a steepness parameter.

Memories here are represented by a vector, each component of which

denotes the activity of the pyramidal cell. The memories are constructed in

the recurrent network of pyramidal cells by the Hebbian learning algorithm

wij =
1

K

∑
µ

xµ
i x

µ
j , (10)

where xµ
i is a i-th component of the µ-th memory, Xµ = (xµ

1 , · · · , xµ
N). It

should be noted that the Hebbian algorithm insures a complete retrieval of

memory, that is, X = WX for the connection matrix W constructed by

orthonormal patterns Xµ(µ = 1, · · · , K). We then introduce the correlation

index of stored patterns [24]. The definition of the correlation index is as

follows.

Cor =
2

NK(K − 1)

∑
µ

∑
ν>µ

< Xµ, Xν >, (11)

where < A, B > denotes an inner product of vectors A and B.

Let us first describe the properties of CA3 network without the effects

of the inhibitory neurons, namely di = 0 for all i. This condition of the

network can occur in the physiological condition that the inhibitory neurons

in CA3 are inhibited by the GABAergic afferents coming from the septum.

In this case, as in the conventional model of associative memory, the net-

work dynamics become attractor dynamics. In other words, the phase space
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is decomposed into basins of attraction, each of which is represented by an

attractor, say a fixed point attractor. Some attractors are generated by

the above Hebbian learning algorithm, thus these represent memories, but

others are a parasitic one inevitably produced by the correlations between

memories. An initial condition implies an input pattern to the network, and

the relaxation process to a ceratin attractor implies the retrieval process of

the memory concerned. However, this type of network cannot produce the

transitions from one attractor to other attractors. Rather, in this network,

quantities such as the parameter dependence of memory capacity, the time

duration necessary for the transition, and the probabilities of retrieving mem-

ories are a subject to study. The system’s parameter here is the probabilities

px and py with each of which the respective network is renewed its dynamics.

We further describe the properties of the CA3 network in the case without

the effects of GABAergic neurons from the septum. This situation is similar

to the one in the dynamic associative memory model [19, 20, 21, 24, 2, 22, 23].

In the simulation, we fix the value of each di, randomly choosing a value

among the values uniformly distributed on [0, β]. Expectedly, the chaotic

transitions among memories occur. In other words, a chaotic sequence of

memory patterns is generated (see Fig. 1). – Fig. 1 –

3.2 A model of CA1

In this subsection, we provide a model of CA1 network and study its dynam-

ics. Let U and V be a vector of the space [0, 1]M , writing U = (u1, · · · , uM)

and V = (v1, · · · , vM), where ui denotes the state of pyramidal cell i and vi
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the state of stellate cell i. Here, M is the number of cell of each type.

U(t + 1) = G(U(t), X(t)), (12)

Gi(U,X) = gi(h(U), X), (13)

ui(t + 1) = gi(V (t), X(t)), (14)

= Hu

(
ε

1

N

∑
j

Tij

(x′
j(t) + 1)

2
− δ

∑
j

cijvj(t) + θi

)
, (15)

vi(t) = hi(U(t)), (16)

=
∑

j

bijuj(t), (17)

x′
j(t) = xj(t) (x1(t) > 0), (18)

x′
j(t) = −xj(t) (x1(t) < 0) (19)

Here, Tij denotes the synaptic connection from the CA3 pyramidal cell j to

the pyramidal cell i in CA1, and its value is fixed to the randomly chosen

value among the values uniformly distributed on [0, 1]. The introduction of

the variable x′ is due to a symmetry of the network. For the two types of

connections in CA1, cij denotes the synaptic connection from the stellate cell

j to the pyramidal cell i, and bij the synaptic connection from the pyramidal

cell j to the stellate cell i. In the present simulation, we treat the case that

bii = 1.0 and bij = 0 if i 6= j, and also cii = 1.0 and cij = 0 if i 6= j. In

the second equation on ui, we express the first term by
x′

j(t)+1

2
because of the

physiological plausibility that the Shaffer collaterals of the CA3 pyramidal

cells are excitatory. Here, we assume δ � 1 in the presence of GABAergic

inhibitory inputs from the septum to the stellate cells in CA1, and δ = O(1)

in the absence of such disinhibitions.

Furthermore, we use a sigmoid function as an input-output transforma-

tion of the pyramidal cells.

Hu(z) = 1/(1 + exp(−γuz)), (20)
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where γu is a steepness parameter.

In the simulation, we determine the parameter values to satisfy the in-

equality providing the contraction condition.

4 Cantor coding in the hippocampus

In chaos-driven contracting dynamics, in general, the information read out

by chaotic dynamics is written in the contracting subspace by the contracting

dynamics, as is seen in the dissipative baker’s transformation. In other words,

a symbol sequence created by chaotic dynamics is represented as a subset of

a Cantor set generated in the contracting subspace. A code table can thus be

formed on a Cantor set. Actually, one-to-one correspondence between each

symbol sequence generated by chaotic dynamics and each position of Cantor

element has been elucidated in the model of the system of unidirectional

coupling from CA3 to CA1, i.e, CA3 → CA1.

In our framework, the CA3 network is a device for the generation of a

sequence of patterns. The existence of such a sequence is insured by the

presence of chaotic itinerancy [19, 20, 21, 25, 26]. The distance between (or

the closeness of) memories represented by a spatial pattern of neuron activity

can be specified in CA3 by a scalar product between each two patterns. On

the other hand, the distance between different sequences can be defined in

CA1 by the Eucledian norm between corresponding two points in the Cantor

set. In fact, it can be made by means of the hierarchies embedded in the

Cantor set. We have verified the existence of such a hierarchical coding in

the model CA1 network of any temporal sequence given by the stimulations

of the Shaffer collaterals (see Fig. 2). We have also verified the existence of

hierarchical coding in the model CA1 network when the model CA3 network

produces a temporal sequence of patterns linked by chaotic orbits (see Fig.
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3). The details of this study will be published elsewhere (Kuroda and Tsuda

2001).

– Fig. 2 –

– Fig. 3 –

5 Summary and discussion

We proposed in this paper dynamical models of temporal coding of informa-

tion in which chaotic itinerancy and Cantor set attractors are linked in terms

of the Cantor coding. The temporal coding was realized by the mechanism

that a temporal structure generated by chaotic dynamics is hierarchically

embedded into a Cantor set in a contracting subspace. We showed that this

type of coding can characterize the information processing in the hippocam-

pus.

We were motivated a mathematical part of the present study by the paper

of Hata and Yamaguti [27] which clarified the relation of chaos and fractal,

and also by the paper of Rössler et al. [11] which showed a possible dynamical

mechanism of the appearance of singular-continuous nowhere-differentiable

attractors. The late Professor Yamaguti had influenced one of the authors,

I. T. over twenty years by his discernment for applied mathematics as well

as his personality. I. T. was actually impressed by his words, ”Investigating

the scientific subjects in the spirit of applied mathematics, one inevitably

studies the fundamental parts of mathematics and will eventually find the

close relation to many subjects in other different disciplines of sciences”. We

believe our way of the present study follows his way of thinking of applied

mathematics.
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[11] Rössler, O. E., Wais, R., and Rössler, R. (1992). Singular-continuous

Weierstrass function attractors, In Proceedings of the 2nd International

Conference on Fuzzy Logic and Neural Networks, (Iizuka, Japan) 909-

912.

[12] Tsuda, I. (1996) A new type of self-organization associated with chaotic

dynamics in neural systems. International Journal of Neural Systems 7:

451-459.

[13] Tsuda, I. and Yamaguchi, A. (1998) Singular-continuous nowhere-

differentiable attractors in neural systems. Neural Networks 11:927-937.

[14] Buszaki, G. Functions for interneuronal nets in the hippocampus. Can.

J. Physiol. Pharmacol. 75 (1997) 508-515.

[15] Freund, T. F. and Gulyas, Inhibitory control of GABAergic interneurons

in the hippocampus. Can. J. Physiol. Pharmacol. 75 (1997) 479-487.

[16] Frotscher, M. and Leranth, C. Collinergic innervation of the hippocam-

pus as revealed by colline acetyltransferase immunocytochemistry: a

combined light and electron microscopic study. Journal of Comparative

Neurology 239 (1985) 237-246.

[17] Freund, T. F. and Antal, M. GABA-containing neurons in the septum

control inhibitory. Nature 336 (1988) .

14



[18] Toth, K., Freund, T. F., and Miles, R. Disinhibition of rat hippocampal

pyramidal cells by GABAergic afferents from the septum. Journal of

Physiology 500.2 (1997) 463-474.

[19] Tsuda, I., Körner, E., and Shimizu, H. Memory dynamics in asyn-

chronous neural networks. Progress of Theoretical Physics 78 (1987)

51-71.

[20] Tsuda, I. Chaotic itinerancy as a dynamical basis of Hermeneutics of

brain and mind. World Futures 32 (1991) 167-185.

[21] Tsuda, I. Chaotic neural networks and thesaurus. In: Neurocomputers

and Attention I, ed., A. V. Holden and V. I. Kryukov. Manchester Uni-

versity Press, Manchester, 1991, 405-424.

[22] Aihara, K., Takabe, T., and Toyoda, M. Chaotic neural networks.

Physics Letters A 144 (1990) 333-340.

[23] Nara, S. and Davis, P. Chaotic wandering and search in a cycle-memory

neural network. Progress of Theoretical Physics 88 (1992) 845-855.

[24] Tsuda, I. Dynamic link of memories–chaotic memory map in nonequi-

librium neural networks. Neural Networks 5 (1992) 313-326.

[25] Ikeda, K., Otsuka, K., and Matsumoto, K. (1989) Maxwell-Bloch tur-

bulence, Progress of Theoretical Physics, Supplement, 99: 295-324.

[26] Kaneko, K. (1990) Clustering, coding, switching, hierarchical ordering,

and control in network of chaotic elements. Physica D 41: 137-172.

[27] Hata, M. and Yamaguti, M. Takagi function and its generalization,

Japan Journal of Applied Mathematics, 1 (1984) 186-199.

15



Figure Captions

Fig.1 Time series of neural activity in CA3. The neural activity is repre-

sented by the overlapping m(µ)(t) = |(x(t), X(µ))| for µ = 1, 2, 3, 4, namely

an inner product of the activity of pyramidal cells and the µ-th stored pat-

tern. Four time series are overlaid. The value m(µ) = 1 indicates a complete

retrieval of memories. The figure shows a successive retrieval of memories.

The parameter values for this simulation: N = 32, K = 4, β = 1.0, px =

0.6, py = 1.0.

Fig.2 A Cantor coding in phase space constructed by the membrane poten-

tial of CA1 pyramidal neurons. The case with the inputs of random sequence

consisting of three almost orthogonal patterns. The patterns are denoted by

the number 1, 2 and 3. The label nm denotes the temporal patern sequence

from m to n. The most left cluster indicates all the pattern sequences of

the ”present” pattern 2, the right lower one for the ”present” pattern 3, and

the right upper one for the ”present” pattern 1. Each cluster consists of

further three subclusters which indicate the ”previous” patterns appeared at

one time step before in the sequence. The itinerary of a random sequence is

thus hierarchically represented in the self-similar structure of a Cantor set.

Fig.3 A Cantor coding in phase space constructed by the membrane poten-

tial of CA1 pyramidal neurons. The case with the inputs from CA3 chaotic

outputs. Memories in CA3 are here represented by three almost orthogonal-

ized patterns, X(1), X(2), and X(3). Here we supposed a periodic repetition

of inhibition and disinhibition with a period 4 (time-steps) which may stem

from the septum. The figure shows a certain particular part of activity of

CA1 at time t + 1 when the CA3 activity X(t) equals to the activity for the

memory 3, X(3). Three symbols in the figure indicate each particular tran-
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sition to a memory pattern X(3) from a respective following pattern after

four time-steps: a cross denotes the transition from X(1), a plus from X(2),

and an asterisk from X(3). We further adjusted a threshold θ in CA1 model

such that it has a slightly positive value when the inhibitory inputs from the

septum are absent and zero when such inputs are present.
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