<table>
<thead>
<tr>
<th>Instructor</th>
<th>Instructions for use</th>
</tr>
</thead>
</table>

A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells.
A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells

Takayuki Sassa¹, Shota Suto¹, Yuriko Okayasu, Akio Kihara *

Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

*Corresponding author
¹These two authors contributed equally to this work

Address correspondence to:
Akio Kihara
Laboratory of Biochemistry
Faculty of Pharmaceutical Sciences, Hokkaido University
Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
Telephone: +81-11-706-3754
Fax: +81-11-706-4900
E-mail: kihara@pharm.hokudai.ac.jp
Abstract

Sphingolipids, major lipid components of the eukaryotic plasma membrane, have a variety of physiological functions and have been associated with many diseases. They have also been implicated in apoptosis. Sphingolipids are heterogeneous in their acyl chain length, with long-chain (C16) and very long-chain (C24) sphingolipids being predominant in most mammalian tissues. We demonstrate that knockdown of ELOVL1 or CERS2, which catalyze synthesis of C24 acyl-CoAs and C24 ceramide, respectively, drastically reduced C24 sphingolipid levels with a complementary increase in C16 sphingolipids. Under ELOVL1 or CERS2 knockdown conditions, cisplatin-induced apoptosis significantly increased. Enhanced sensitivity to cisplatin-induced apoptosis exhibited close correlation with increases in caspase-3/7 activity. No significant alterations in sphingolipid metabolism such as ceramide generation were apparent with the cisplatin-induced apoptosis, and inhibitors of ceramide generation had no effect on the apoptosis. Apoptosis induced by UV radiation or C6 ceramides also increased in ELOVL1 or CERS2 knockdown cells. Changes in the composition of sphingolipid chain length may affect susceptibility to stimuli-induced apoptosis by affecting the properties of cell membranes, such as lipid microdomain/raft formation.

Keywords: ceramide/sphingolipid/very long-chain fatty acid/apoptosis/cisplatin/caspase

Abbreviations: CERS, ceramide synthase; FB1, fumonisin B1; VLCFA, very long-chain fatty acid; X-ALD, X-linked adrenoleukodystrophy
1. Introduction

Sphingolipids are major lipid constituents of eukaryotic plasma membranes and are indispensable for the growth and survival of organisms ranging from yeasts to mammals [1-3]. Mutations in genes involved in the metabolism of sphingolipids are associated with human diseases known as sphingolipidoses, which are characterized by the accumulation of particular sphingolipid subtypes [4]. Such mutations and the resulting sphingolipidoses provide evidence that sphingolipid homeostasis needs to be tightly coordinated.

In addition to their roles as cell membrane components, some sphingolipid metabolites act as signaling molecules [5, 6]. Ceramide, the backbone of sphingolipids, causes cell-cycle arrest and induces apoptosis [7, 8]. Ceramide is synthesized in the endoplasmic reticulum by a ceramide synthase (CERS) catalyzing an amide bond between a sphingoid base and a fatty acyl-CoA [6, 9]. Six mammalian CERSs (CERS1-6) have been identified. Each CERS exhibits characteristic substrate specificity toward fatty acyl-CoA(s) with particular acyl chain lengths and displays a cell type- or tissue-specific expression pattern [9, 10]. Thus, the relative expression levels of CERS isoforms partly account for the composition of ceramide and sphingolipid species with certain chain lengths within a cell or tissue.

Fatty acids in sphingolipids have acyl chains that vary in length from C16 to ≥C28. Fatty acids having a chain length of >20 are called very long-chain fatty acids (VLCFAs), and are produced from long-chain fatty acids (e.g., palmitic acid (C16:0) or oleic acid (C18:1)), by elongation in the endoplasmic reticulum. In most mammalian tissues, the major sphingolipid species are C16:0 long-chain sphingolipids and C24 (C24:0 and C24:1) very long-chain sphingolipids. C24 sphingolipids are quite unique in that they contain C24 VLCFAs, which are almost exclusively utilized for C24 sphingolipids and not for
glycerolipid synthesis [11]. Enzymes involved in C24 sphingolipid generation include CERS2 and ELOVL1. CERS2, one of six mammalian CERS isoforms, is highly active toward C24 acyl-CoAs [12]. The C24 acyl-CoA utilized for C24 ceramide synthesis is a product of ELOVL1, one of seven mammalian elongases involved in the elongation of very long-chain acyl-CoAs [13]. Knockdown of ELOVL1 or CERS2 in HeLa cells significantly reduces the level of endogenous C24 sphingolipids [13]. Moreover, ELOVL1 forms a complex with CERS2, which also regulates its activity, so production of C24 acyl-CoA is coordinated with C24 sphingolipid synthesis [13].

In the plasma membrane, sphingolipids, together with cholesterol, form lipid microdomains, which are hypothesized to function as platforms for signal transduction [14, 15]. In neutrophil lipid microdomains, C24 lactosylceramides (but not C16 lactosylceramides) associate with and activate the acylated Src family kinase LYN [16]. We have shown in HeLa cells that ELOVL1 knockdown impairs activation of LYN, suggesting that changes in the composition of sphingolipid chain length can affect the organization or function of the lipid microdomain [13, 16].

Apoptosis is a cellular process of cell death involved in a variety of developmental and pathological events [17, 18]. Sphingolipids, especially ceramides, have been implicated in apoptosis induced by stress stimuli including radiation, chemotherapeutic drugs, and tumor necrosis factor α [19]. To address the role of C24 sphingolipids in cellular functions, we examined the effect on apoptosis of a reduction in C24 sphingolipid levels in HeLa cells. We found that knockdown of ELOVL1 or CERS2 caused a reduction in C24 sphingolipids and a compensatory increase in C16 sphingolipids. This shift was accompanied by increased susceptibility of the cells to apoptosis induced by cisplatin, UV, or C6 ceramide. Results
obtained by experiments using tracers and pharmacological inhibitors suggest that
cisplatin-induced apoptosis proceeded without alterations in sphingolipid metabolism,
including ceramide generation. Taken together, these results suggest that the membrane
environment formed by sphingolipids having specific chain lengths, rather than any increase
or decrease in the amount of sphingolipids with a particular (polar) head group, such as
ceramide, may affect the apoptosis signaling pathway.
2. Material and methods

2.1. Cell culture and transfection

HeLa cells were grown in DMEM D6046 (Sigma, St. Louis, MO) containing 10% fetal bovine serum and supplemented with 100 units/ml penicillin and 100 μg/ml streptomycin. Transfections were performed using Lipofectamine Plus Reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s instructions.

2.2. Plasmids

The pCE-puro 3xFLAG-1 vector and pCE-puro 3xFLAG-mElovl1 plasmid were described previously [13].

2.3. RNAi

The control siRNA and siRNAs for CERS2 and CERS4 were purchased from Qiagen and their use has been described previously [20]. The siRNA for ELOVL1 was purchased from Sigma and its use has been described previously [13]. Four days prior to the experiments, HeLa cells (1.25 × 10^5 cells in 35 mm dish) were transfected with the appropriate siRNA using Lipofectamine RNAiMAX Reagent (Invitrogen).

2.4. RT-PCR

Total RNAs were extracted from HeLa cells using a NucleoSpin RNA II kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s instructions. ELOVL1, CERS2, CERS4 and GAPDH cDNAs were amplified from total RNAs by a SuperScript One-Step RT-PCR with
Platinum Taq kit (Invitrogen), following the manufacturer’s instructions. Primers for ELOVL1, CERS2, CERS4 and GAPDH were described previously [13, 21].

2.5. Induction of apoptosis and its quantification by flow cytometry
Apoptosis in HeLa cells was induced by exposure to cisplatin (Sigma), C6 ceramide (Enzo Life Sciences, Farmingdale, NY), or UV radiation. To induce apoptosis by cisplatin or C6 ceramide, cells were treated for 24 h with cisplatin or for 48 h with C6 ceramide. In some experiments, myriocin (Sigma), FB1 (Sigma), Z-VAD-FMK (R&D Systems, Minneapolis, MN), or imipramine (Sigma) was added 24 h before cisplatin treatment or 20 h before C6 ceramide treatment. These inhibitors were present continuously until harvest. UV irradiation was performed in a biological safety cabinet using a UV GL-15 lamp (Toshiba, Tokyo, Japan). Prior to UV irradiation, culture medium was replaced with Opti-MEM I (Invitrogen), and the dish tops were removed. Cells were treated for 10 sec with 2.2 J/m²/s UV-C light (wavelength 253.7 nm). After the irradiation, cells were incubated in fresh culture medium for 12 h. After trypsinization, the cells undergoing apoptosis were detected and quantified using an Annexin V-FITC Apoptosis Detection Kit (Medical & Biological Laboratories, Nagoya, Japan) and FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ) following the manufacturers’ instructions.

2.6. Caspase-3/7 assay
Caspase-3/7 activities in cisplatin-treated HeLa cell extracts were quantified by a colorimetric assay using an APOPCYTO Caspase-3 Colorimetric Assay Kit (Medical & Biological Laboratories).
2.7. \([^{3}H]\)Sphingosine labeling assay

Labeling of cellular sphingolipids in HeLa cells using \([^{3}H]\)sphingosine, lipid extractions, and lipid separation by reverse-phase TLC were performed as described previously [13, 22]. Lipid separation by normal-phase TLC was performed using Silica Gel 60 HPTLC plates (Merck, Whitestation, NJ) with 1-butanol/acetic acid/water (3:1:1, v/v).

2.8. Diacylglycerol kinase (DGK) assays

To quantify ceramide levels, DGK assays were performed as described previously [23].
3. Results

3.1. Increased susceptibility of HeLa cells to cisplatin-induced apoptosis following ELOVL1 knockdown

In HeLa cells, the amount of C24 ceramides is much higher than that of C16 ceramides, but knockdown of ELOVL1 essentially reverses the composition so that there are almost no C24 ceramides and C16 ceramides are increased [13]. We treated control or ELOVL1 siRNA-transfected cells with cisplatin, which is known to induce apoptosis through caspase activation [24], then compared the fractions of cells undergoing apoptosis. In the absence of cisplatin, the basal level of apoptosis in ELOVL1 siRNA-transfected cells was comparable or slightly increased as compared with that of control siRNA-transfected cells (Figs. 1 and 6). Treatment with cisplatin, however, resulted in significantly more apoptosis in ELOVL1 siRNA-transfected cells than in control siRNA-transfected cells (Fig. 1A). To confirm that the increase in cisplatin-induced apoptosis was due specifically to the ELOVL1 knockdown and not to any off-target effect of the siRNA, we performed a rescue experiment by transfecting the cells with a mouse Elovl1 expression plasmid. The nucleotide sequence of mouse Elovl1 cDNA differs from that of the human sequence in the region targeted by the ELOVL1 siRNA, so its expression should be resistant to the ELOVL1 siRNA. As expected, introduction of mouse Elovl1 into the ELOVL1 siRNA-transfected cells significantly lowered the number of cells undergoing apoptosis (Fig. 1B).

3.2. ELOVL1 knockdown facilitates activation of caspase-3/7 in response to cisplatin treatment
To determine whether the increased cisplatin-induced apoptosis observed with
ELOVL1 knockdown is due to enhanced activation of apoptotic mediators, we monitored the
protease activity of caspase-3/7 in control and ELOVL1 siRNA-transfected cells. In the
absence of cisplatin treatment, caspase-3/7 activity was nearly undetectable in control and
ELOVL1 knockdown cells (Fig. 2). Treatment with cisplatin dose-dependently increased
caspase-3/7 activity in the control and ELOVL1 knockdown cells, with the activation level
significantly higher in the ELOVL1 knockdown cells than in the control cells (Fig. 2). The
increase in caspase-3/7 activity observed in the ELOVL1 knockdown cells correlated well
with the increased apoptosis (Figs. 1A and 2). These results suggest that changes in the
composition of sphingolipid acyl chain length may affect the cellular membrane environment
and thereby alter the signaling pathway leading to caspase-3/7 activation.

3.3. Increased susceptibility to cisplatin-induced apoptosis following CERS2 knockdown

In HeLa cells, CERS2, 4, and 5 are expressed, but C24 ceramides are predominantly
synthesized by CERS2 [20]. In vitro, CERS4 exhibits similar substrate specificity to that of
CERS2 [21]. To determine the contribution of CERS2 and CERS4 to C24 ceramide synthesis
in HeLa cells, we knocked down CERS2 or CERS4 in these cells and examined lipid
compositions. For comparison, ELOVL1 knockdown was also performed. The knockdown
efficiency of these siRNAs was confirmed by RT-PCR (Fig. 3A). We examined the
composition of ceramide subspecies by labeling the cells with $[^3]$H]sphingosine, followed by
lipid extraction and separation using reverse-phase TLC. Knockdown of CERS2 nearly
eliminated C24:1 and C24:0 ceramides, but increased C16:0 ceramide (Fig. 3B). This effect
was essentially identical to, or more severe than, the effect of ELOVL1 knockdown (Fig. 3B).
Knockdown of CERS4 resulted in subtle effects with decreases in C18:0 and C20:0 ceramides, and modest increases in C16:0 and C24:0 ceramides (Fig. 3B). Thus, CERS2 is the major ceramide synthase involved in the synthesis of C24 ceramides in HeLa cells. We next examined the effect of the changes in the sphingolipid chain length on cisplatin-induced apoptosis (Fig. 4). Knockdown of CERS2 significantly increased apoptosis in response to cisplatin treatment as compared with control siRNA treatment (Fig. 4). Knockdown of CERS4 had no effect, as was expected from the little change observed in the fatty acid composition of ceramides (Figs. 3B and 4).

3.4. Cisplatin-induced apoptosis in HeLa cells is not a characteristic ceramide-dependent apoptosis

The results above suggest that the fatty acid composition of sphingolipids affects apoptosis signaling. To identify the sphingolipid species involved in cisplatin-induced apoptosis, we first examined the effects of cisplatin treatment on sphingolipid metabolism using a \[^3\text{H}\]sphingosine labeling experiment. There were no obvious changes in the metabolism of sphingolipids such as ceramide, glucosylceramide, or sphingomyelin following treatment with 0.5, 1, 3, or 24 h cisplatin (Fig. 5A). Ceramides have been widely implicated in apoptosis [19], so we next examined the fatty acid compositions of ceramides by reverse-phase TLC. Cisplatin treatment did not result in any changes in the balance between long-chain ceramides and very long-chain ceramides, although a slight shift was observed in C24:0 ceramide to C22:0/C24:1 ceramide ratios (Fig. 5B). Treatment with the ceramide synthase inhibitor FB1 resulted in dose-dependent inhibition of ceramide production, but no changes in fatty acid composition (Fig. 5B). A 24 h incubation with 20 \(\mu\text{M}\) FB1
completely blocked ceramide synthesis (Fig. 5B and Supplementary Fig. 1A and B). FB₁ treatment also caused inhibition of the synthesis of downstream sphingolipids such as sphingomyelin and glucosylceramide, but caused only slight increases in sphingosine and sphingosine 1-phosphate (Supplementary Fig. 1A and B). Inhibition of ceramide synthesis may cause accumulation of the ceramide synthase substrate sphingosine and its metabolite sphingosine 1-phosphate.

To examine the involvement of ceramides in cisplatin-induced apoptosis in more detail, we inhibited one of two pathways for ceramide generation, *de novo* synthesis (using FB₁ or myriocin) or sphingomyelin hydrolysis (using imipramine). Myriocin is an inhibitor of serine palmitoyltransferase, the enzyme catalyzing the first step of sphingolipid synthesis. A [³H]palmitic acid labeling experiment in HeLa cells indicated that even 0.1 µM myriocin effectively caused a reduction in sphingomyelin levels and a near absence of glucosylceramide (Supplementary Fig. 2). Increasing the myriocin concentration had no additional effect. Residual amounts of sphingomyelin did not disappear even at high levels of myriocin, probably due to its production through the salvage pathway. Treatment with myriocin or FB₁ did not affect the level of the cisplatin-induced apoptosis (Fig. 5C).

Imipramine, a potent inhibitor of acid sphingomyelinase that inhibits ceramide generated by sphingomyelin hydrolysis, also had no significant effect on the apoptosis induced by cisplatin (Fig. 5C). However, treatment with the broad caspase inhibitor Z-VAD-FMK significantly inhibited the cisplatin-induced apoptosis, confirming that this cell death mechanism depends on caspase activities [24].

Although apoptosis-dependent increases in ceramides have been reported in several previous studies [19], no apparent increase in ceramide levels following cisplatin treatment
was observed in the [³H]sphingosine labeling experiments (Fig. 5A and B and Supplementary Fig. 1B). Therefore, we measured the ceramide levels by DGK assay for confirmation. Again, no obvious difference in the levels of C16 or C24 ceramides between untreated and cisplatin-treated cells was found (Fig. 5D). These results suggest that cisplatin-induced apoptosis proceeds without alterations in sphingolipid metabolism including ceramide generation. Together with the knockdown analysis of individual CERS isoforms (Figs. 3 and 4), these data also suggest that in HeLa cells sphingolipids of specific acyl chain length may affect cisplatin-induced apoptosis, and that any increase or decrease in the amounts of sphingolipids having a particular (polar) head group, such as ceramide, may not be relevant.

3.5. Increased susceptibility to apoptosis induced by UV radiation or C6 ceramide following ELOVL1 or CERS2 knockdown

We next examined whether the observed increase in apoptosis accompanying the shift from C24 to C16 sphingolipids is specific to cisplatin or can be extended to other apoptosis-inducing stimuli. We treated ELOVL1 or CERS2 siRNA-treated HeLa cells with UV radiation or C6 ceramide, a cell-permeable short chain ceramide that can induce apoptosis in many cell types, including HeLa cells [25, 26] (Fig. 6). We found that, similar to the effect observed with cisplatin treatment, both UV radiation-induced and C6 ceramide-induced apoptosis were significantly enhanced in ELOVL1 or CERS2 siRNA-transfected cells compared with controls (Fig 6A and B). We examined the sensitivity of the C6 ceramide-induced apoptosis to inhibitors of ceramide generation, and found that neither FB1 nor imipramine suppressed apoptosis (data not shown). These results suggest that
sphingolipids with specific acyl chain length may affect apoptosis in HeLa cells in response to various stimuli, and this effect would seem to be ceramide-independent.
4. Discussion

Six CERS isoforms having different specificities for acyl chain length were recently identified [6, 9]. These studies revealed, at least in part, the basis of heterogeneity in mammalian sphingolipids, and suggested that sphingolipid species with specific acyl chain length may have unique cellular functions. Our finding, that changes in the cellular composition of sphingolipid acyl chain length affect sensitivity to cisplatin-induced apoptosis, supports this theory.

We succeeded in manipulating the chain length of cellular sphingolipid species in HeLa cells by knockdown of ELOVL1 or CERS2. Cisplatin-, UV radiation-, and C6 ceramide-induced apoptosis were each significantly enhanced by knockdown of ELOVL1 or CERS2 (Figs. 1, 4 and 6). It remains to be determined whether changes in the composition of sphingolipid chain length affect apoptosis signaling directly or indirectly, as through a change in membrane properties such as lipid microdomain formation; we deem the latter to be more likely.

To reveal whether a specific sphingolipid is involved in the cisplatin-induced apoptosis, we examined sphingolipid metabolism using tracer experiments. Sphingolipid metabolism, including the levels and fatty acid composition of ceramides, which themselves have been widely implicated in apoptosis, was almost unchanged following cisplatin treatment (Fig. 5A and B). Furthermore, inhibitors of ceramide generation had no significant effect on apoptosis (Fig. 5C). These results suggest that ceramides may not play an important role in cisplatin-induced apoptosis of HeLa cells, at least under our experimental conditions, although we cannot exclude the possibility of their partial involvement. We did observe a compensatory increase in C16 sphingolipids upon ELOVL1 or CERS2 knockdown (Fig. 3B),
so we also cannot exclude the possibility that the reduction in C24 sphingolipids alters the levels of other lipids, and that these lipids may secondarily participate in regulating apoptosis signaling.

The pharmacological inhibitors myriocin, FB1, and imipramine can affect the levels of certain sphingolipid species, but not their fatty acid compositions. In contrast, knockdown of *ELOVL1* or *CERS2* affects the fatty acid composition of sphingolipids. Considering that knockdown of *ELOVL1* or *CERS2* affected cisplatin-induced apoptosis whereas treatment with the inhibitors had no effect (Figs. 1, 4, and 5), we speculate that rather than any specific sphingolipid molecule being responsible, the membrane environment formed by the presence of sphingolipids having different acyl chain lengths (as described in detail below) affects apoptotic signals.

Glycosphingolipids and sphingomyelin exist in clusters and form lipid microdomains at the plasma membrane. Lipid microdomains play important roles in signal transduction at the membrane, as they provide a platform for many signaling molecules such as glycosylphosphatidylinositol-anchored proteins and acylated proteins [15, 27]. Several studies have characterized roles for sphingolipid acyl chain length in forming a membrane environment that includes domains such as lipid microdomains, which are platforms for signal transduction [16, 28]. Biophysical studies using artificial lipid bilayers have suggested that the extended portion of the C24 fatty acid moiety in C24 sphingolipids may cross the mid-plane of the lipid bilayer and interact with lipids in the opposing leaflet, thereby forming a partial interdigitation between the two leaflets [28]. Similarly, C24 lactosylceramides in the outer leaflet of the plasma membrane microdomain, but not C16 lactosylceramides, can cross the mid-plane of the lipid bilayer and interact with the acylated Src family kinase LYN in the
inner leaflet; this association promotes LYN activation [16]. \textit{ELOVL1} knockdown in HeLa cells resulted in a failure of LYN activation [13], suggesting that there may be a signaling protein(s) with which C24 sphingolipids uniquely interact to regulate apoptosis. Interestingly, membrane vesicles prepared from livers or brains of \textit{CerS2} knockout mice, which are severely deficient in C24 sphingolipids, exhibited increased membrane fluidity and altered morphology [29]. Treatment of HeLa cells with cisplatin induces cytochrome \textit{c} release from mitochondria, leading to caspase-3/7 activation [24]. In cells with \textit{ELOVL1} knockdown, enhanced cisplatin-induced apoptosis correlated with increased caspase-3/7 activity (Fig. 2). This suggests that changes in the composition of sphingolipid acyl chain length may affect the cellular membrane environment, and thereby alter the signaling pathway leading to caspase-3/7 activation. Sphingolipids are mainly present at the outer leaflet of the plasma membrane, so it is possible that sphingolipid chain length may affect anti-apoptotic/survival signaling regulated at the plasma membrane [30]. Alternatively, sphingolipids in mitochondria may affect mitochondrial outer membrane permeability, which regulates cytochrome \textit{c} release in response to apoptosis signal, although the precise localization of sphingolipids in mitochondria has yet to be established [31]. \textit{CerS2} knockout mice reportedly developed hepatocarcinomas; notably, increases in both apoptosis and proliferation of hepatocytes were observed [32, 33]. These increases accompanied changes in gene expression profiles and increases in the expression of cell-cycle regulators, including cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and tumor suppressor p53 [33]. It is possible that the increased apoptosis in \textit{ELOVL1} or \textit{CERS2} knockdown HeLa cells may be caused by mechanisms similar to those observed in the livers of \textit{CerS2} knockout mice.
Our results demonstrate that a shift from C24 to C16 sphingolipids affects apoptosis. Saturated C24 and C26 VLCFAs and sphingolipids that contain them are accumulated in X-linked adrenoleukodystrophy (X-ALD), which presents with symptoms of progressive demyelination and neurological dysfunction, as well as adrenal atrophy [34, 35]. ELOVL1 catalyzes the synthesis of C24:0- and C26:0-CoA in most cells, and knockdown of ELOVL1 in fibroblasts derived from X-ALD patients significantly suppressed accumulation of C26:0 VLCFA [36]. Thus, C24 (and C26) sphingolipids may have multiple functions whose dysregulation could lead to pathological consequences. Future studies using genetically modified animals such as Elovl1 knockout mice will be required to fully understand the physiological and pathological functions of C24 sphingolipids and saturated VLCFAs.
Acknowledgements: This work was supported by a Grant-in-Aid for Scientific Research (B) (23370057) from the Japan Society for the Promotion of Science (JSPS).
References

[10] I. Becker, L. Wang-Eckhardt, A. Yaghootfam, V. Gieselmann, M. Eckhardt,

[26] W. Hu, R. Xu, G. Zhang, J. Jin, Z.M. Szulc, J. Bielawski, Y.A. Hannun, L.M. Obeid, C. Mao, Golgi fragmentation is associated with ceramide-induced cellular effects,

10911-10923.

Figure captions

Fig. 1. Increased susceptibility of HeLa cells to cisplatin-induced apoptosis following ELOVL1 knockdown. (A) Cells were transfected with control or ELOVL1 siRNAs (16 nM), then 3 days later were treated for 24 h with the indicated concentrations of cisplatin. Values shown are the percentages of cells exhibiting an Annexin V-FITC signal above the threshold level, and represent the mean ± SD from three independent experiments. Statistically significant differences are indicated (**p < 0.01; t test). (B) Cells were transfected with control or ELOVL1 siRNAs, then 2 days later were transfected with the pCE-puro 3xFLAG-Elovl1 plasmid encoding mouse Elovl1, or with the pCE-puro 3xFLAG-1 vector. One day later, cells were treated for 24 h with the indicated concentrations of cisplatin. Data were obtained and are presented as in (A). Statistically significant differences are indicated (*p < 0.05, **p < 0.01; t test). mElovl1, mouse Elovl1.

Fig. 2. ELOVL1 knockdown facilitates activation of caspase-3/7 in response to cisplatin treatment. Cells were transfected with control or ELOVL1 siRNA (16 nM), then 3 days later were treated for 24 h with the indicated concentrations of cisplatin. Total cell lysates were prepared, then incubated for 1 h at 37 °C with the DEVD-pNA peptide, a synthetic caspase-3/7 substrate labeled with p-nitroanilide. Caspase-3/7 activity was determined as a measure of free pNA level by monitoring an absorbance at 405 nm using an absorption spectrophotometer. Values represent the mean ± SD from three independent experiments. Statistically significant differences are indicated (**p < 0.01; t test).
Fig. 3. Knockdown of ELOVL1 or CERS2 causes changes in the fatty acid composition of ceramides in HeLa cells. Cells were transfected with the indicated siRNAs (16 nM for control and ELOVL1, 2 nM for CERS2, and 4 nM for CERS4) 3 days prior to assays. (A) Total RNA was extracted from the transfected cells and subjected to RT-PCR using primers specific for ELOVL1, CERS2, CERS4 or GAPDH. (B) Cells were labeled with 0.5 μCi [3H]sphingosine for 2 h at 37 ºC. Lipids were extracted, separated by reverse-phase TLC, and detected by autoradiography as shown in the right panel. The left panel shows ceramide standards carrying an acyl chain of C16:0, C20:0, C24:0, or C24:1, which were separated in parallel with the lipids in the right panel and stained with a cupric acetate/phosphoric acid solution.

Fig. 4. Increased susceptibility to cisplatin-induced apoptosis following CERS2 knockdown. Cells were transfected with the indicated siRNAs (4 nM for control, 2 nM for CERS2 and 4 nM for CERS4), then 3 days later were treated for 24 h in the absence or presence of 20 μM cisplatin. Cells were stained with Annexin V-FITC and analyzed using a FACSCalibur flow cytometer. Values shown are the percentages of cells exhibiting Annexin V-FITC signal above the threshold level, and represent the mean ± SD from three independent experiments. Statistically significant differences are indicated (***p < 0.01; t test).

Fig. 5. Sphingolipid levels are unchanged by cisplatin treatment in HeLa cells. (A) Cells were incubated with 30 μM cisplatin for the indicated times, then were labeled with 0.5 μCi [3H]sphingosine for 2 h at 37 ºC. Lipids were extracted, separated by normal-phase TLC, and
detected by autoradiography. Cer, ceramide; GlcCer, glucosylceramide; Sph, sphingosine; S1P, sphingosine 1-phosphate; SM, sphingomyelin. (B) Cells were incubated with the indicated concentrations of FB1 for 1 h, then were incubated for an additional 24 h in the absence or presence of 30 μM cisplatin. Cells were labeled with 0.5 μCi [3H]sphingosine for 2 h at 37 °C. FB1 and cisplatin were present continuously until harvest. Lipids were extracted, separated by reverse-phase TLC, and detected by autoradiography. (C) Cells were incubated for 24 h in the absence or presence of cisplatin (30 μM). Where indicated, cells were preincubated with myriocin (1 μM), FB1 (20 μM), imipramine (20 μM), or Z-VAD-FMK (30 μM), 24 h prior to addition of cisplatin. The inhibitors were present continuously until harvest. Values show the percentages of cells exhibiting Annexin V-FITC signal above the threshold level, and represent the mean ± SD from three independent experiments. Statistically significant differences are indicated (**p < 0.01; t test). (D) Cells were incubated in the absence or presence of 20 μM cisplatin for 0 or 24 h. Lipids were extracted and subjected to a DGK assay, together with standard ceramides to quantify ceramide levels. Ceramides were converted to ceramide 1-phosphates (C1Ps) by incubating with DGK and 1 μCi [32P]ATP, followed by separation by normal-phase TLC and detection using a BAS2500 image analyzer.

Fig. 6. Increased susceptibility to apoptosis induced by UV radiation or C6 ceramide following ELOVL1 or CERS2 knockdown. (A) Cells were transfected with the indicated siRNAs (16 nM for control, 16 nM for ELOVL1, and 2 nM for CERS2), then 3 days later were irradiated for 10 sec with 2.2 J/m²/s UV-C. Twelve hours after UV radiation, cells were stained with Annexin V-FITC and analyzed using a FACSCalibur flow cytometer. Values
show the percentages of cells exhibiting an Annexin V-FITC signal above the threshold level, and represent the mean ± SD from three independent experiments. Statistically significant differences are indicated (**p < 0.01; t test). (B) Cells were transfected as above with the indicated siRNAs, then 2 days later were treated for 48 h with the indicated concentrations of C6 ceramide. Cells undergoing apoptosis were detected, quantified, and presented as above.
Supplementary information

A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells

Takayuki Sassa, Shota Suto, Yuriko Okayasu, Akio Kihara

Supplementary Material and methods

Cells grown in 6 well plate were labeled with 50 μCi[^3]H]palmitic acid (60 Ci/mmol; American Radiolabeled Chemicals, St. Louis, MO) for 4 h at 37 ºC. Cells were collected and suspended in 200 μl phosphate-buffered saline, then lipids were extracted by successive additions of a 3.75-fold volume of chloroform/methanol/HCl (100:200:1, v/v), a 1.25-fold volume of chloroform, and a 1.25-fold volume of 1% KCl, with mixing. Phases were separated by centrifugation, and the organic phase was recovered. Lipids (300 μl) were saponified by adding 180 μl of 0.5 M NaOH in methanol and incubating at 37 ºC for 1 h. Samples were then treated with 90 μl of 1 M HCl in methanol, 180 μl chloroform, and 600 μl H2O, with mixing. Phases were separated by centrifugation, and the organic phase was recovered, dried, and suspended in chloroform/methanol (2:1, v/v). The labeled lipids were separated on Silica Gel 60 HPTLC plates (Merck, Whitestation, NJ) with 1-butanol/acetic acid/ water (3:1:1, v/v) and detected by autoradiography.

Supplementary Figure captions
Supplementary Fig. 1. Dose-dependent inhibition of sphingolipid synthesis by FB₁. (A) HeLa cells were incubated with the indicated concentrations of FB₁. After 1 h or 24 h incubation, cells were labeled with 0.5 μCi [³H]sphingosine for 2 h at 37 ºC. FB₁ was present continuously until harvest. Lipids were extracted, separated by normal-phase TLC, and detected by autoradiography. Cer, ceramide; GlcCer, glucosylceramide; Sph, sphingosine; S1P, sphingosine 1-phosphate; SM, sphingomyelin. (B) HeLa cells were incubated with the indicated concentrations of FB₁ for 1 h, then cells were incubated for an additional 24 h in the absence or presence of 30 μM cisplatin. Cells were then labeled with 0.5 μCi [³H]sphingosine for 2 h at 37 ºC. FB₁ and cisplatin were present continuously until harvest. Lipids were extracted, separated by normal-phase TLC, and detected by autoradiography.

Supplementary Fig. 2. Myriocin inhibits de novo sphingolipid synthesis in HeLa cells. Cells were treated with the indicated concentrations of myriocin for 1 h or 24 h. Cells were then labeled with 50 μCi [³H]palmitic acid for 4 h at 37 ºC. Myriocin was present continuously until harvest. Lipids were extracted, treated with 0.1 M NaOH (to hydrolyze the ester linkages in glycerolipids), separated by a normal-phase TLC, and detected by autoradiography. Pal, palmitic acid; GlcCer, glucosylceramide; SM, sphingomyelin.
Sassa et al., Figure 2
Sassa et al., Figure 4
Sassa et al., Figure 6