Fast computation method for a Fresnel hologram using three-dimensional affine transformations in real space

Hironobu Sakata* and Yuji Sakamoto
Graduate School of Information Science and Technology, Hokkaido University,
North 14, West 9, Kita-ku, Sapporo-shi 060-0814 Japan
*Corresponding author: sakata@ist.hokudai.ac.jp

Received 2 July 2009; revised 20 October 2009; accepted 21 October 2009; posted 22 October 2009 (Doc. ID 113725); published 11 November 2009

Calculating computer-generated holograms takes a tremendous amount of computation time. We propose a fast method for calculating object lights for Fresnel holograms without the use of a Fourier transform. This method generates object lights of variously shaped patches from a basic object light for a fixed-shape patch by using three-dimensional affine transforms. It can thus calculate holograms that display complex objects including patches of various shapes. Computer simulations and optical experiments demonstrate the effectiveness of this method. The results show that it performs twice as fast as a method that uses a Fourier transform. © 2009 Optical Society of America

OCIS codes: 090.0090, 090.1760.

1. Introduction

Three-dimensional (3D) display systems have recently become an active area of research. Holography is an ideal 3D display technology because it fulfills human visual performance requirements. Light from an object (object light) is recorded and reconstructed using holographic interference and diffraction. Recording materials that record interference patterns are called holograms. A computer-generated hologram (CGH) is made by computer simulation, and it shows a 3D virtual scene. The interference patterns created by object lights that are simulated using wave propagation theory from virtual objects and a reference light must be calculated. A CGH does not require real objects and optical systems for the recording process and can display a moving image. However, the computation time to make a CGH is tremendous. The purpose of our research is to find a way to calculate CGHs at high speed.

The two main types of calculation method for CGHs are the point light methods and methods based on Fourier transforms; the details are described in Section 2. It is easy to calculate object lights from complex objects using a point light method, but it takes a tremendous amount of computation time.

The methods based on Fourier transforms calculate the propagation between an object plane and a hologram plane. The calculation is faster than that with a point light method because the object plane, which includes many points, is calculated using one-time processing and a fast Fourier transform (FFT) algorithm to speed up the Fourier transform calculation [1]. Although the FFT algorithm is faster, it still takes a significant amount of time because it is a complex algorithm and is not suited for parallel computations. Normally, a patch model, which describes the shape of objects using patches, is used along with this method, and each patch requires a two-dimensional (2D) FFT [2]. Therefore, a complex object including many patches requires much calculation time. Various methods have been proposed to reduce the calculation time. One of the more
promising approaches is a precalculation method that calculates the object light of a primitive object and creates an all-inclusive object light by combining primitive object lights [3–6]. Although this approach performs the calculation faster, methods that use the patch model still require a FFT because transformation and combination of object lights are performed in frequency space [5].

Another approach is to use transformation in real space (i.e., without a FFT). One proposed method transforms a precalculated object light from a point light and calculates an object light from another point light at a different distance [4]. Another proposed method uses a patch model [7]. The object lights from various patches are obtained by transforming only one precalculated object light from a patch. This proposed method includes transformation of the translations along the x and y axes of the distance along the z axis of the rotations about the x, y, and z axes and of the scalings along the x and y axes in the Fraunhofer region. These transforms are incomplete for achieving 3D affine transformation, which means they lack skew transformations. Ordinarily, triangle patches are used for the patch model because they cover the object surface without any surface gaps. When 3D affine transformation is achieved, an arbitrary triangle patch is constructed from only one basic triangle patch. Therefore, it is important to perform the entire 3D transformation to generate a CGH of an arbitrary object. Moreover, transformations in the Fresnel region are required to achieve a wide viewing zone and a wide visual field. We describe the skew transformations in real space that are missing from the 3D affine transformation. In addition, all the transformations are developed in the Fresnel region, and we show that these transformations are effective in the Fresnel region.

2. Methods for Calculating Computer-Generated Holograms

The light propagating from an object to the hologram plane must be calculated. This calculation is derived by using the Fresnel–Kirchhoff diffraction integral. When the object’s distribution is \( g(x,y,z) \) and the object light distribution on the hologram plane is \( u(x_h,y_h) \) (Fig. 1), the Fresnel–Kirchhoff diffraction integral is expressed as

\[
u(x_h,y_h) = \frac{i}{\lambda} \int \int \int g(x,y,z) \frac{\exp(-jkr)}{r} \, dx \, dy \, dz, \tag{1}\]

where \( j = \sqrt{-1} \) is the imaginary unit, \( k = \frac{2\pi}{\lambda} \) is the wavenumber, \( r \) is the distance from a point on an object, \( g(x,y,z) \), to a point on the hologram plane, \( u(x_h,y_h) \). Therefore,

\[
r = \sqrt{(x_h-x)^2 + (y_h-y)^2 + (z-z_0)^2}. \tag{2}\]

The following two main computational methods, which are based on the Fresnel–Kirchhoff diffraction integral, are included in the calculation of CGHs.

A. Point Light Methods

In the point light methods, the faces of objects are considered to be covered with point light sources. The calculation order is \( O(MN^2) \), where \( M \) is the number of point light sources and \( N \) is the number of pixels on each side of the hologram plane. It is easy to calculate object lights from complex objects by using the point light method. However, the number of point light sources is likely to be a significant amount because it takes several hundred point light sources per square millimeter to represent the object faces smoothly. Since the calculation time is proportional to the number of point light sources, it is a tremendous amount of time. The point light methods are simple and useful for parallel computation, so fast calculation methods using specialized hardware, a graphics processing unit (GPU), and a lookup table have been proposed [8–10].

B. Methods Based on Fast Fourier Transform

When an object is a plane and parallel to a hologram plane, a FFT can be used to calculate propagation as Fresnel diffraction or Fraunhofer diffraction. A FFT method can also be based on the angular spectrum of plane waves [11]. Here we used a method based on the angular spectrum of plane waves as the conventional method. Methods for calculating a plane not parallel to a hologram plane are described, and a patch model is used to model the objects.

1. Patch Model

A patch model is one of the more commonly used modeling methods. In this model, objects are covered with small surfaces without any gaps, and these small surfaces are called patches. In computer graphics, polygons are used as patches, and the model is called a polygon model. When curves are depicted by the patch model, a sufficient number of small patches is required. Here we use triangles as patches because their use makes it easy to depict curves. The object light from a patch model is obtained as the sum of the object light from each patch. When the object light from a patch is \( u_i \), the object light from patch model \( u \) is expressed as

\[
u = \sum_{i=1}^{P} u_i, \tag{3}\]

where \( P \) is the number of patches. Use of the patch model prevents an increase in the calculation time by
increasing object complexity in comparison with the point light methods. These methods, however, require a 2D FFT, so the calculation time increases with the number of pixels. The calculation order of a 2D FFT is $O(N^2 \log N)$, so the calculation order of the propagation calculation is $O(PN^2 \log N)$. The details for Fresnel diffraction and Fraunhofer diffraction are described in Subsections 2.B.2 and 2.B.3.

2. Fresnel Diffraction

The diffraction when Fresnel approximation can be used is called Fresnel diffraction. Application of a Fresnel approximation changes Eq. (2) to

$$r = z_0 + \frac{(x - x)^2}{2z_0} + \frac{(y - y)^2}{2z_0}$$

$$= z_0 + \frac{x^2 + y^2}{2z_0} - \frac{xh}{z_0} \frac{y}{z_0} + \frac{x^2 + y^2}{2z_0},$$

(4)

where $z_0$ is the distance from an object plane to a hologram plane. When Eq. (4) is assigned to Eq. (1), the Fresnel diffraction can be expressed as

$$u(x, y) = \frac{j}{\lambda z_0} \exp(-j k z_0) \int \int \infty g(x, y)$$

$$\times \exp \left[ -j \frac{\pi}{\lambda z_0} \left( (x - x)^2 + (y - y)^2 \right) \right] \, \text{d}x \, \text{d}y.$$  

(5)

3. Fraunhofer Diffraction

When the distance between a hologram plane and an object plane is much longer than the object size, Eq. (2) can be approximated as

$$r = z_0 + \frac{x^2 + y^2}{2z_0} - \frac{xh}{z_0} \frac{y}{z_0}.$$  

(6)

In this case, Eq. (1) changes to

$$u(x, y) = \frac{j}{\lambda z_0} \exp(-j k z_0)$$

$$\times \exp \left[ -j k \frac{x^2 + y^2}{2z_0} \right] \int \int \infty g(x, y)$$

$$\times \exp \left[ j \frac{k}{z_0} (xh + y) \right] \, \text{d}x \, \text{d}y,$$  

(7)

which is the equation for Fraunhofer diffraction.

3. Overview of Our Method

We use the patch model as a modeling method for CGH calculation. In the patch model, objects consist of many patches, and the shapes of the patches differ. When the lights from these patches are calculated, a precalculated object light must be transformed because object lights from individual patches also differ.

Our method comprises four steps.

1. Define a basic patch and calculate the object light from the patch (hereinafter referred to as basic object light).

2. Transform the basic object light in accordance with the translation, rotation, scale size, and skew of patches without a FFT, which is the 3D affine transformation in real space. When an object light from the $i$th patch is $u_{hi}$ and the basic object light is $u_b$, $u_{hi}$ is expressed as

$$u_{hi} = T_i[u_b],$$  

(8)

where $T_i$ is a transform function. The transform algorithms are described in Section 4.

3. Sum up the object light from each patch calculated in step 2. When the object light from the entire patch model is $u_{h all}$, $u_{h all}$ is expressed as

$$u_{h all} = \sum_{i=1}^{P} u_{hi}.$$  

(9)

4. Calculate a reference light using the conventional method. When the interference pattern is $I$ and the reference light is $R$, $I$ is expressed as

$$I = |u_{h all} + R|^2.$$  

(10)

Figures 2 and 3 show the algorithms for making holograms using our method and the conventional method, respectively. The latter requires two 2D FFTs and an input object image has to be made for each patch. On the other hand, our method does not require a FFT, which requires a tremendous amount of calculation time, and also does not require an input object image for each patch.

![Fig. 2. Algorithm for our method.](image-url)
In our method, the calculation order of the transforms is $O(N^2)$, and the calculation order of all the calculations is $O(PN^2)$. Using our method should speed up the CGH calculation because the calculation order of the conventional method is $O(PN^2 \log N)$. If 3D affine transformation is achieved, the object light of the arbitrary triangle patches can be calculated from only one basic object light. When the basic object light is calculated beforehand, a FFT is not necessary to calculate a hologram.

4. Transforms

Here we discuss each transform of the 3D affine transformation in real space. First, each transform is derived in the Fraunhofer region except for the slide and rotation transform. Then the transforms are extended to the Fresnel region. In the Fraunhofer region, when the distance from a basic patch to a hologram is $z_0$, the basic object light, $u_b(x_b, y_b)$, is derived by substituting $z = z_0, x_b = x_b$, and $y_b = y_b$ into Eq. (7). By the same token, in the Fresnel region $u_h(x_h, y_h)$ is derived by substituting $z = z_0, x_h = x_h$, and $y_h = y_h$ into Eq. (5). Equation (5) is then rewritten as

$$u_h(x_h, y_h) = \frac{j}{\lambda z_0} \exp(-jkz_0) \int \int_{-\infty}^{\infty} g(x, y) \times \exp\left[-j\frac{k}{2z_0}(x^2 + y^2)\right] dx dy$$

$$= \frac{j}{\lambda z_0} \exp(-jkz_0) \exp\left[-j\frac{k}{2z_0}(x_b^2 + y_b^2)\right] \times \int \int_{-\infty}^{\infty} g(x, y) \exp\left[-j\frac{k}{2z_0}(x^2 + y^2)\right] dx dy.$$

A. Slide and Rotation Transform

The slide and rotation transform represents the translations along the $x$ and $y$ axes and the rotation about the $z$ axis. When the objective patch is translated and rotated in a plane parallel to a basic patch, the transform is achieved by resampling the basic object light at the changed location. The transform is expressed as

$$u_h(x_h, y_h) = u_b(x_h \cos \theta + y_h \sin \theta - \Delta x, y_h \cos \theta - x_h \sin \theta - \Delta y),$$

where $u_h$ is the object light from the objective patch and $\Delta x, \Delta y$, and $\theta$ are the transform amounts shown in Fig. 4.

B. Distance Transform

The distance transform is the translation along the $z$ axis. The distance from an objective patch to a hologram is $z_0 + \Delta z$, as shown in Fig. 5.

1. Fraunhofer Region

When $z = z_0 + \Delta z$ is assigned to Eq. (7), an object light on a hologram plane from an objective patch can be expressed as

$$u(x_h, y_h) = \frac{j}{\lambda (z_0 + \Delta z)} \exp(-jk(z_0 + \Delta z)) \int \int_{-\infty}^{\infty} g(x, y) \times \exp\left[-j\frac{k}{2(z_0 + \Delta z)}(x_h^2 + y_h^2)\right] dx dy$$

$$= \frac{j}{\lambda z_0} \exp(-jkz_0) \exp(-j\frac{k}{2z_0}(x_h^2 + y_h^2)) \times \int \int_{-\infty}^{\infty} g(x, y) \times \exp\left[-j\frac{k}{2z_0}(x^2 + y^2)\right] dx dy$$

$$= C_1 \exp(-jkL_1) u_b(x_b, y_b),$$

where

$$x_b = \frac{z_0}{z + \Delta z}x_h, \quad y_b = \frac{z_0}{z + \Delta z}y_h,$$

$$L_1 = \Delta z + \frac{x_h^2 + y_h^2}{2(z_0 + \Delta z)} - \frac{z_0(x_h^2 + y_h^2)}{2(z_0 + \Delta z)^2}.$$
and \( L_1 \) is the approximate distance from \((x_b, y_b)\) to \((x_h, y_h)\), as shown in Fig. 4. The distance transform represents the product of the phase at distance \( L_1 \) and \( u_0(x_b, y_b)\).

### 2. Fresnel Region

When \( z = z_0 + \Delta z \) is assigned to Eq. (5), an object light on a hologram plane from an objective patch can be expressed as

\[
\begin{align*}
u(x_h, y_h) &= \frac{j}{\lambda(z_0 + \Delta z)} \exp(-jk(z_0 + \Delta z)) \\
&\times \exp\left\{-jk\left(\frac{x_h^2 + y_h^2}{2(z_0 + \Delta z)}\right)\right\} \int_{-\infty}^{\infty} g(x, y) \mathrm{d}x \mathrm{d}y \\
&\times \exp\left\{-jk\left(\frac{x^2 + y^2}{2(z_0 + \Delta z)}\right)\right\} \exp\left(\frac{jk \Delta z}{2}\right) \\
&\times \exp\left\{j \frac{k}{z_0}(x_hx + y_hy)\right\} \mathrm{d}x \mathrm{d}y \\
&\times \exp\left\{j \frac{k}{z_0}(x^2 + y^2)\right\} \exp\left(\frac{j k \Delta z}{2}\right) \int_{-\infty}^{\infty} g'(x, y) \mathrm{d}x \mathrm{d}y.
\end{align*}
\]

(14)

where

\[
g'(x, y) = g(x, y) \text{error}_1(x, y),
\]

\[
\text{error}_1(x, y) = \exp\left\{jk \frac{x^2 + y^2}{2} \frac{\Delta z}{z_0(z_0 + \Delta z)}\right\}.
\]

Error1 is the error term for the distance transform. The details of this error term and those of the following transforms are described in Subsection 4.3. If this error term is allowed, \( u_h(x_h, y_h) \) in the Fresnel region can be expressed as

\[
u_h(x_h, y_h) = \frac{z_0}{z_0 + \Delta z} \exp(-jkL_1) \frac{j}{\lambda z_0} \exp(-jkz_0) \\
\times \exp\left\{-jk\frac{x_b^2 + y_b^2}{2z_0}\right\} \int_{-\infty}^{\infty} g(x, y) \mathrm{d}x \mathrm{d}y \\
\times \exp\left\{\frac{j k}{z_0}(x_bx + y_by)\right\} \mathrm{d}x \mathrm{d}y \\
\times \exp\left\{\frac{j k}{z_0}(x^2 + y^2)\right\} \exp\left(\frac{j k \Delta z}{2}\right) \int_{-\infty}^{\infty} g'(x, y) \mathrm{d}x \mathrm{d}y.
\]

(15)

### C. Tilt Transform

The tilt transform represents the rotations about the \( x \) and \( y \) axes. Here we derived the transforms (the tilt, scaling, and skew transforms) from one axis, but the transforms of another axis are derived in the same way. When an objective patch is rotated using angle \( \phi \) about the \( y \) axis, the object distribution changes to \( g(x \cos \phi, y, -x \sin \phi) \) and \( z \) changes to \( z_0 + x \sin \phi \) in integral computation, as shown in Fig. 6. The reason \( z \) changes to \( z_0 + x \sin \phi \) is that the distance between the object and the hologram plane changed. When \( g(x \cos \phi, y, -x \sin \phi) \) and \( z = z_0 + x \sin \phi \) in integral computation are assigned to Eq. (5), the object light from the objective patch can be expressed as

Fig. 4. Slide and rotation transform.

Fig. 5. Distance transform.

Fig. 6. Tilt transform.
where

\[ x_b = \frac{x_h - z_0 \sin \phi}{2 - \cos \phi}, \quad y_b = \frac{y_h - z_0}{z_0(2 - \cos \phi)} \]

\[ L_2 = x \sin \phi + x_h^2 \left( 1 - \frac{1}{2 - \cos \phi^2} \right) \]
\[ + 2x_h z_0 \sin \phi \frac{z_0 \sin 2\phi}{(2 - \cos \phi^2)^2} \]
\[ + y_h^2 \left( 1 - \frac{z_0^2}{z_0^2(2 - \cos \phi^2)} \right) \]
\[ \text{error}_2 = \exp \left[ \frac{-j k}{2z_0 (z_0 + x \tan \phi)} \right] \times \left\{ -x^3 + z_0 x^2 \left( \frac{1}{\cos^2 \phi - 1} \right) - xy^2 \tan \phi \right\} \].

In the same way as for the distance transform, \( L_2 \) is the approximate distance from \((x_h, y_h)\) to \((x, y)\). The tilt transform represents the product of the phase at distance \( L_2 \) and \( u_h(x_h, y_h) \). More precisely, \( u_h \) includes the error term for the tilt transform, error_2.

D. Scaling Transform

The scaling transform represents the scalings along the x and y axes. When an objective patch is scaled by scaling factor \( R_x \), as shown in Fig. 7, the object distribution changes to \( g(x - y R_x, y) \). When \( g(x - y S_x, y) \) is assigned to Eq. (7), the object light from the objective patch can be expressed as

\[ u_h(x_h, y_h) = \frac{j}{z_0} \exp(-j k z_0) \exp \left(-j k \frac{x_h^2 + y_h^2}{2z_0} \right) \]
\[ \times \int \int_{-\infty}^\infty \frac{x}{R_x} g \left( \frac{x}{R_x}, y \right) \exp \left(-j k \frac{x^2 + y^2}{2z_0} \right) \]
\[ \times \exp \left( j k \frac{x_h x + y_h y}{z_0} \right) \] dx dy
\[ \approx C_2 \exp(-j k L_2) u_b(x_h, y_h), \quad (16) \]

where

\[ x_b = R_x x_h, \quad y_b = y_h, \quad L_3 = \frac{y_h^2 (1 - R_x^2)}{2z_0}, \]
\[ \text{error}_3 = \exp \left( j k \frac{y^2}{2z_0} \left( 1 - R_x^2 \right) \right), \]

and \( u_h \) includes the error term for scaling transform error_3.

E. Skew Transform

The skew transform represents the skew along the x and y axes. When an objective patch is skewed by skew factor \( S_x \), as shown in Fig. 8, the object distribution changes to \( g(x - y S_x, y) \). When \( g(x - y S_x, y) \) is assigned to Eq. (7), the object light from the objective patch can be expressed as

\[ u_h(x_h, y_h) = \frac{j}{z_0} \exp(-j k z_0) \exp \left(-j k \frac{x_h^2 + y_h^2}{2z_0} \right) \]
\[ \times \int \int_{-\infty}^\infty \frac{x}{R_x} g \left( \frac{x}{R_x}, y \right) \exp \left(-j k \frac{x^2 + y^2}{2z_0} \right) \]
\[ \times \exp \left( j k \frac{x_h x + y_h y}{z_0} \right) \] dx dy
\[ \approx C_4 \exp(-j k L_4) u_b(x_h, y_h), \quad (18) \]

where

\[ x_b = x_h, \quad y_b = y_h + S_x x_h, \]
\[ L_4 = \frac{S_x x_h (S_x x_h + 2 y_h)}{2z_0}, \]
\[ \text{error}_4 = \exp \left(-j k \frac{S_x y (S_x y + 2 x)}{2z_0} \right). \]

In the same way, \( u_h \) includes the error term for skew transform error_4.
F. Transform Error Terms
The error terms mean that a phase is added to the basic patch. In other words, they do not affect the location and shape of the basic patch; they affect the phase terms of the basic patch, which means that our transforms change the reflectance property of the basic patch. Here we calculate the basic patch as a perfectly diffuse surface, so, in theory, error terms are allowed in the Fresnel and Fraunhofer regions.

G. Combinations of Transforms
These transforms are used in combination by using one-time processing, so various transforms are achieved at high speed. When a triangle is used as a basic patch, the object light from an arbitrary patch is calculated by using only one basic object light.

5. Experimental Results
We carried out computer simulations and optical experiments to determine the effectiveness of our transforms. The parameters of these experiments are listed in Table 1. For the optical experiments, the holograms were printed on a transparent sheet with a black-and-white binary image. A red light-emitting diode was used to reconstruct the holograms, and all the viewpoints were located across the hologram plane from the objects. The basic object light was calculated as a perfectly diffuse surface.

A. Limitation of Transforms
In theory, transforms in the Fresnel and Fraunhofer regions are allowed, as discussed in Subsection 4.F. The transforms, however, are restricted by the size of the basic object light. In other words, the basic object light must be larger than the hologram because, when an objective patch is transformed, the object light on the hologram plane might refer to the basic object light data outside the precalculated area. If the basic object light does not cover the area referred to by the hologram, regions of the hologram data will disappear. To prevent such disappearance, the transform parameters must be limited.

In the experiments described below, the basic object light was twice as large as the hologram on a side, and thus four times larger than the area. When the parameters were set as shown in Table 1, we completely avoid disappearing data by using the range of parameters described below:

\[-0.0065 [m] \leq \Delta x \leq 0.0065 [m] , \]
\[-0.0065 [m] \leq \Delta y \leq 0.0065 [m] , \]

Table 1. Parameters for the Experiments

<table>
<thead>
<tr>
<th>Basic Object Light</th>
<th>Hologram</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic patch image</strong></td>
<td>Equilateral triangle, 500 pixels a side</td>
</tr>
<tr>
<td><strong>No. of pixels</strong></td>
<td>4096 × 4096</td>
</tr>
<tr>
<td><strong>Distance</strong></td>
<td>( z_0 = 0.15 , (m) )</td>
</tr>
<tr>
<td><strong>No. of pixels</strong></td>
<td>2048 × 2048</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Common Parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Sampling pitch</strong></td>
<td>6.35 × 6.35 (μm)</td>
</tr>
<tr>
<td><strong>Wavelength</strong></td>
<td>632 (nm)</td>
</tr>
</tbody>
</table>

Fig. 9. Object locations from slide and rotation transform and distance transform.

Fig. 10. (Color online) Results of distance transform.

(a) View from left

(b) View from right

(a) Propagation distance was 0.20 m

(b) Propagation distance was 0.15 m

Fig. 11. Computer-simulated distance transform.
When the parameters that meet the ranges are used, \((x_b, y_b)\) of the transform expressions do not exceed the size of the basic object light. In actuality, a larger range of parameters is allowed because the hologram does not require the object light for the whole hologram plane. However, when the transforms are combined, the range of parameters is narrowed.

**B. Results of Slide and Rotation Transform and Distance Transform**

First, we carried out an optical experiment to determine the effectiveness of the slide and rotation transform and the distance transform. Patch 1, which was transformed by the slide and rotation transform, and patch 2, which was transformed by the slide and rotation transform and the distance transform, were arranged as shown in Fig. 9. Figure 10 shows the results of the optical experiments that focused on patch 2. When viewed from the left [see Fig. 10(a)], the two patches overlapped. In contrast, when viewed from the right [Fig. 10(b)], they did not overlap. This change in the view with the change in viewpoints demonstrates the effectiveness of the transforms.

We conducted computer simulations to confirm the correctness of the changed distance. The object lights on the hologram plane were propagated back to the positions of patch 1 and patch 2, and the amplitude images were shown. Figure 11(a) shows the result of propagating back to the position of patch 1 (i.e., the propagation distance was 0.2 m), and Fig. 11(b) shows the result of propagating back to the position of patch 2 (i.e., the propagation distance was 0.15 m). In Fig. 11(a), patch 1 is in focus and patch 2 is not. In contrast, only patch 2 is in focus in Fig. 11(b), meaning that the changed distance was correct.

**C. Results of Tilt Transform**

Computer simulations were conducted to determine the effectiveness of the tilt transform. The propagation of the object light was simulated as in Fig. 12. The reason for carrying out computer simulations is that it is difficult to determine the effectiveness of the tilt transform using optical experimentation.

---

**Fig. 12.** Propagation simulation.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( R_x = 0.8 )</td>
<td>( R_x = 1.0 )</td>
<td>( R_x = 1.2 )</td>
</tr>
</tbody>
</table>

Reconstructed images

**Fig. 13.** Results of tilt transform by propagation simulation as in Fig. 12.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( S_x = 0.0 )</td>
<td>( S_x = 0.4 )</td>
<td>( S_x = 0.8 )</td>
</tr>
</tbody>
</table>

Reconstructed images

**Fig. 14.** (Color online) Results of scaling transform.

<table>
<thead>
<tr>
<th>(d)</th>
<th>(e)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>( S_x = 0.8 )</td>
<td>( S_x = 1.0 )</td>
<td>( S_x = 1.2 )</td>
</tr>
</tbody>
</table>

Computer graphics images

**Fig. 15.** (Color online) Results of skew transform.
The width of the object plane was 0.013 m, and the distance from the hologram plane to the object plane was 0.15 m, as shown in Fig. 12. The basic object light was calculated as a perfect mirror surface to make the results easier to analyze. When the basic object light is calculated as a perfect mirror surface, it does not diffuse like a laser.

Figure 13 shows the propagation simulation results for (a) the basic object light, (b) the transformed object light (rotated 1° about the y axis), and (c) the object light calculated using the conventional method (rotated 1° about the y axis). The object light faces front in (a) and is tilted in (b). Since (b) is nearly identical to (c), the tilt transform is effective.

When the basic patch was a perfectly diffuse surface, the tilt transform also performed well. The object light from the patch widely filled the hologram plane. Therefore, the object light from a deeply tilted patch reaches the hologram, and viewers can see the patch. If a more deeply tilted patch (i.e., |φ| > 2.4°) is required, it is only necessary to create a larger basic object light by using a smaller pixel pitch or to create a pretilted basic object light.

D. Results of Scaling Transform and Skew Transform

Optical experiments were carried out to determine the effectiveness of the scaling transform and the skew transform. Figures 14 and 15 show the results of the scaling and skew transforms, respectively, for the same transformation parameters as above. Figures 14(a)–14(c) and 15(a)–15(c) show the reconstructed images; Figs. 14(d)–14(f) and 15(d)–15(f) show the computer graphic images that were transformed using the same parameters that were used for the reconstructed images. The reconstructed images conformed to the computer graphics images in each parameter, meaning that the scaling and skew transforms are effective.

E. Results of Combined Transforms

In another experiment, we calculated the object lights from objects composed of all the transforms except the tilt transform. We used the patch model to construct two arrow objects, as shown in Fig. 16. They were reconstructed in an optical experiment. As shown in Fig. 17, the arrows were reconstructed to resemble the originals. In Fig. 17(a), the left arrow is in focus and the right one is not. In contrast, only the right arrow is in focus in Fig. 17(b), meaning that the combined transforms were effective.

6. Calculation Time

Table 2 lists the times for calculating the object lights used in the experiments. The computer used for the calculations had a Xeon X5492 3.40 GHz GPU and 32 Gbits of memory. We used an FFT algorithm programmed by us by using the conventional method. It was about twice as fast as the FFTW (version 3.2.1) [12]. As shown in Table 2, our proposed method is more than twice as fast as the conventional method.

The relationship between the number of pixels and the calculation time is plotted in Fig. 18. We can see that the increase in the calculation time with the number of pixels is reduced. This means that our proposed method will be more effective in the future when display devices have more pixels. In addition, our transforms are simpler than the FFT and more useful for parallel computation using specialized hardware and a GPU. Adaptation of our proposed method to these methods should further increase the speed.

7. Conclusions

We have described 3D affine transformation of basic object light without a FFT. The object light from arbitrary patches can be calculated from only one basic object light. We demonstrated the effectiveness of all
the transformations by conducting optical experiments and computer simulations. Our method does not require a FFT for each patch because all the transformations are achieved in real space, and it performs twice as fast as the conventional method. All the transformations in our method are simple and useful for parallel computation. Speed can be further increased by using specialized hardware such as a GPU and a lookup table. Our method will be more effective for future display devices with more pixels. We plan to calculate a CGH from complex objects including tilted planes.

References
12. FFTW homepage: http://www.fftw.org/