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Motion of a vortex sheet on a sphere with pole vortices
Takashi Sakajoa)

Department of Mathematics, Hokkaido University, Sapporo, Hokkaido 060-8610, Japan

~Received 28 May 2003; accepted 1 December 2003; published online 4 February 2004!

We consider the motion of a vortex sheet on the surface of a unit sphere in the presence of point
vortices fixed on north and south poles. Analytic and numerical research revealed that a vortex sheet
in two-dimensional space has the following three properties. First, the vortex sheet is linearly
unstable due to Kelvin–Helmholtz instability. Second, the curvature of the vortex sheet diverges in
finite time. Last, the vortex sheet evolves into a rolling-up doubly branched spiral, when the
equation of motion is regularized by the vortex method. The purpose of this paper is to investigate
how the curvature of the sphere and the presence of the pole vortices affect these three properties
mathematically and numerically. We show that some low spectra of disturbance become linearly
stable due to the pole vortices and thus the singularity formation tends to be delayed. On the other
hand, however, the vortex sheet, which is regularized by the vortex method, acquires complex
structure of many rolling-up spirals. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644148#

I. INTRODUCTION

In real fluid flows, we often observe a band-like region
in which the velocity field changes rapidly and thus the vor-
ticity highly concentrates. The region induces a shear flow,
which is one of the basic research objects in the field of fluid
dynamics. A vortex sheet is a simple model of the shear flow,
if the thickness of the high vorticity region is infinitely thin;
in other words, it is defined as a discontinuous surface of the
velocity field in incompressible and inviscid flow.

Vortex sheets in two-dimensional~2D! space have been
investigated mathematically as well as numerically for sev-
eral decades. We summarize some basic properties of the 2D
vortex sheet obtained so far. See a review in Saffman1 for the
details. A 2D vortex sheet is represented by a complex-
valued function

z~G,t !5x~G,t !1 iy~G,t !, 2`,G,`,

where G is Lagrangian parameter along the sheet andt is
time. Then, the motion of the vortex sheet is governed by the
Birkhoff–Rott equation2

] z̄

]t
~G,t !5

1

2p i
PVE

2`

` dG8

z~G,t !2z~G8,t !
,

in which the integral is Cauchy’s principal value integral and
z̄ denotes the complex conjugate ofz.

First, the vortex sheet is linearly unstable. A flat vortex
sheetz(G,t)5G is a stationary solution of the Birkhoff–Rott
equation. When we add a small disturbance to the steady
state, that is to say

z~G,t !5G1 (
n52`

`

an~ t !exp~ inG!, ~1!

then linearization of the Birkhoff–Rott equation provides us
with linear equations for the spectraan(t) and consequently
we obtain

uan~ t !u;uan~0!uexp~ 1
2unut !

for t!1. It indicates that the spectruman(t) grows exponen-
tially in time at a rate proportional to the wave numbern.
This instability is known as Kelvin–Helmholtz instability.
Hence, we notice that the Birkhoff–Rott equation is ill-posed
in the sense of Hadamard.

The next result is concerned with the existence of the
solution to the Birkhoff–Rott equation. Moore3 considered
the spectral form of solution~1! with an initial condition

z~G,t !5G1 i e sinG.

Then, asymptotic analysis shows that the spectruman(t) has
the following asymptotic form:

uan~ t !u;Cn25/2exp~n~11 1
2t1

1
4 loget !!, ~2!

for t@1, whereC is a constant independent ofn. Therefore,
if tc satisfies

11 1
2tc1 1

4 logetc50,

then the second derivative of the solution, in other words the
curvature of the vortex sheet, diverges attc , sinceuan(t)u is
asymptotically similar toCn25/2, as t→tc . It indicates that
the solution of the Birkhoff–Rott equation loses its analytic-
ity in finite time. Direct numerical computations of the
Birkhoff–Rott equation4–6 followed Moore and supported
his asymptotic result.

Finally, long time evolution of the vortex sheet is studied
numerically. Because of the singularity formation, we are
unable to compute the Birkhoff–Rott equation beyond the
critical time. On the other hand, however, introducing an
artificial parameters, Krasny7 considered the following
regularized equation:
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] z̄

]t
5

1

2p i E2`

`

Ks~z~G,t !,z~G8,t !!dG8,

where

Ks~z~G,t !,z~G8,t !!5
z̄~G,t !2 z̄~G8,t !

uz~G,t !2z~G8,t !u21s2 .

Whens50, the equation is equivalent to the Birkhoff–Rott
equation. This regularization method is called the vortex
method. Caflisch and Lowengrub8 have proven that the so-
lution of the regularized equation converges uniformly to
that of the Birkhoff–Rott equation ass→0, as long as both
solutions are smooth. After the singularity formation, we
have no such strong convergence result. However, Majda9

remarked that the regularized equation converges to the
Birkhoff–Rott equation in a weak sense, even if the singu-
larity appears. On the other hand, some numerical simula-
tions of the regularized equation indicated that the vortex
method gives a physically convincing approximation for in-
compressible flows with small viscosity.7,10–14 In fact,
Krasny7 showed that the regularized 2D vortex sheet rolls up
into a doubly branched spiral, which is a familiar phenom-
enon observed in real fluid flows.

Vortex dynamics on a sphere plays an important role in
understanding basic flows on Earth. There has been much
research onN point vortices ~see references in Newton’s
book!15 and vortex layers with constant vorticity16,17 on a
sphere. In the present paper, we consider a vortex sheet on
the surface of a sphere. This is a model of shear layers on the
Earth when we neglect the effect of rotation. Besides, we
assume that two vortex points are fixed at the north and south
poles. The purpose of the study is to investigate how the
curvature of the sphere and the pole vortices affect the three
properties obtained in the study of 2D vortex sheets: linear
stability, singularity formation, and structure of rolling-up
spirals.

This paper consists of six sections. In Sec. II, we derive
a governing equation for a vortex sheet on a unit sphere in
the presence of the two pole point vortices. In Sec. III, we
study the linear stability of the vortex sheet. Then, we deal

with the singularity formation in Sec. IV. In Sec. V, we com-
pute long time evolution of the regularized vortex sheet and
study how the presence of the pole vortices changes the spi-
ral structure of the vortex sheet. In Sec. VI, we conclude the
results and compare them with evolution of the band of con-
stant vorticity on a sphere studied by Dritschel and Polvani.16

II. GOVERNING EQUATIONS

Suppose that the position of a vortex sheet on a unit
sphere with constant vorticity density is represented by
(u(a,t),w(a,t)) in the spherical coordinates, wherea
P@0,2p) is Lagrangian parameter along the sheet andt is
time. Then, starting with the equations of motion forN point
vortices, we derive the equation for the vortex sheet by tak-
ing the limit N→`.

Now, we discretize the vortex sheet byN segments and
put a point vortex with strengthh52p/N at (u i(t),w i(t))
5(u( ih,t),w( ih,t)) for i 51,...,N. Then, Kimura and
Okamoto18 showed that theN point vortices induce the fol-
lowing velocity field (vu

N ,vw
N) at the position ofmth point

vortex, (um ,wm):

vu
N~um ,wm!52

h

4p (
iÞm

N
sinu i sin~wm2w i !

12cosgmi
, ~3!

vw
N~um ,wm!52

h

4p (
iÞm

N

3
cosum sinu i cos~wm2w i !2sinum cosu i

sinum~12cosgmi!
,

~4!

where gmi denotes the central angle between two points
(u i ,w i) and (um ,wm), and

cosgmi5cosum cosu i1sinum sinu i cos~wm2w i !.

As N→`, the discrete velocity fields~3! and~4! converge to
the following Cauchy’s principal value integrals, which give
the velocity field at the position of the vortex sheet
(u(a,t),w(a,t)):

vu~u~a,t !,w~a,t !!52
1

4p
PVE

0

2p sinu8 sin~w2w8!

12cosg
da8, ~5!

vw~u~a,t !,w~a,t !!52
1

4p
PVE

0

2p cosu sinu8 cos~w2w8!2sinu cosu8

sinu~12cosg!
da8, ~6!

in which cosg5cosu cosu81sinu sinu8 cos(w2w8), u
5u(a,t), u85u(a8,t) and so on.

Furthermore, we introduce two point vortices fixed at the
both poles of the sphere for generality. LetG1 andG2 denote
the strengths of the point vortices at the north and the south
poles, respectively. Since the pole vortices are fixed atu
50 andp, the vortex sheet is convected by their inducing
flow

~vu ,vw!5S 0,
1

4p S G1

12cosu
2

G2

11cosu D D .

Hence, we obtain the equation of motion for the single vor-
tex sheet on the unit sphere with the two pole vortices

u t52
1

4p
PVE

0

2p sinu8 sin~w2w8!

12cosg
da8, ~7!
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w t52
1

4p

3PVE
0

2p cosu sinu8 cos~w2w8!2sinu cosu8

sinu~12cosg!
da8

1
1

4p S G1

12cosu
2

G2

11cosu D . ~8!

III. LINEAR STABILITY ANALYSIS

Suppose that the vortex sheet is identical to a line of
latitude, namelyu(a,t)5u0 andw(a,t)5a, then the right-
hand sides of~7! and ~8! become

u t52
1

4p sinu0
PVE

0

2p sin~a2a8!

12cos~a2a8!
da850,

w t5
cosu0

2 sin2 u0
1

1

4p S G1

12cosu0
2

G2

11cosu0
D[V0 .

Hence, the vortex sheetu5u0 and w5a1V0t is a steady
solution rotating with the constant speedV0 . We study the
linear stability of this solution.

Assume that the solution is disturbed slightly, that is to
say

u~a,t !5u01eu~a,t !,

w~a,t !5a1V0t1ew~a,t !.

Then, we expand Eqs.~7! and ~8! in terms ofeu , eu8 , ew ,
andew8 . The denominators of the integrand become

1

12cosg
5

1

sin2 u0~12cos~a2a8!!

3S 12~eu1eu8!
cosu0

sinu0
2~ew2ew8 !

3
sin~a2a8!

12cos~a2a8! D1O~e2!

and

1

sin~u01eu!
5

1

sinu0
2eu

cosu0

sin2 u0
1O~e2!.

On the other hand, the numerators in the integrand are ex-
panded like

sinu8 sin~w2w8!5sinu0 sin~a2a8!1eu8 cosu0 sin~a2a8!

1~ew2ew8 !sinu0 cos~a2a8!1O~e2!,

and

cosu sinu8 cos~w2w8!2sinu cosu852sinu0 cosu0~12cos~a2a8!!2eu~cos2 u01sin2 u0 cos~a2a8!!

1eu8~cos2 u0 cos~a2a8!1sin2 u0!2~ew2ew8 !sinu0 cosu0 sin~a2a8!1O~e2!.

From these expressions, we calculate the constant term and
the linear terms foreu , eu8 andew2ew8 of the integrand in~7!
as follows:

O~1!:
sin~a2a8!

sinu0~12cos~a2a8!!
,

O~eu!:2
cosu0 sin~a2a8!

sin2 u0~12cos~a2a8!!
,

O~eu8!:0,

and

O~ew2ew8 !:2
1

sinu0~12cos~a2a8!!
.

As for the integrand in Eq.~8!, we have

O~1!:2
cosu0

sin2 u0
,

O~eu!:
11cos2 u0

sin3 u0
2

1

sin3 u0~12cos~a2a8!!
,

O~eu8!:
1

sin3 u0~12cos~a2a8!!
,

and

O~ew2ew8 !:0.

Integrating these terms with respect toa8 from 0 to 2p, we
obtain the first order expansion of the integrals in~7! and~8!

2
1

4p
PVE

0

2p sinu8 sin~w2w8!

12cosg
da8

5
1

4p sinu0
PVE

0

2p ew2ew8

12cos~a2a8!
da81O~e2!,

and
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2
1

4p
PVE

0

2p cosu sinu8 cos~w2w8!2sinu cosu8

sinu~12cosg!
da8

5
cosu0

2 sin2 u0
2eu

11cos2 u0

2 sin3 u0
1

1

4p sin3 u0

3PVE
0

2p eu2eu8

12cos~a2a8!
da81O~e2!.

On the other hand, the flow induced by the pole vortices
becomes

1

4p S G1

12cos~u01eu!
2

G2

11cos~u01eu! D
5V02

cosu0

2 sin2 u0
2euS ~G11G2!~11cos2 u0!

4p sin3 u0

1
~G12G2!cosu0

2p sin3 u0
D1O~e2!.

Now, provided the small disturbanceseu andew are rep-
resented by the following Fourier series:

eu~a,t !5 (
n52`

`

un~ t !exp~ ina!, ~9!

ew~a,t !5 (
n52`

`

wn~ t !exp~ ina!. ~10!

Then, we have the linearized equations for the Fourier
coefficientsun(t) andwn(t)

dun

dt
5

unu
2 sinu0

wn , ~11!

dwn

dt
5S unu

2 sin3 u0
2

~G11G212p!~11cos2 u0!

4p sin3 u0

2
~G12G2!cosu0

2p sin3 u0
D un , ~12!

in which we use the following integral:

1

4p
PVE

0

2p 12exp~ in~a82a!!

12cos~a2a8!
da85

unu
2

.

Thus the eigenvaluesln of the linearized equations are given
by

ln56
1

2 sin2 u0
A~ unu2k1~11cos2 u0!2k2 cosu0!unu,

where

k15
G11G212p

2p

and

k25
G12G2

p
.

Therefore, if the moden satisfies

unu,k1~11cos2 u0!1k2 cosu0 , ~13!

then the Fourier coefficientsun(t) and wn(t) become neu-
trally stable. On the other hand, for sufficiently largen, since
the positive eigenvalue approaches asymptotically to
unu/2 sin2 u0, a disturbance of high wave number grows like
Kelvin–Helmholtz instability for planar flow.

We apply this stability condition to two special cases.
First, when the strengths of both pole vortices are identical,
namelyk250, the stability condition is reduced to

unu,k1~11cos2 u0!. ~14!

It indicates that when there is no pole vortex on the sphere,
i.e., k151, the first spectrau1(t) and w1(t) of disturbance
are neutrally stable for arbitraryu0Þp/2. On the other hand,
for fixed k1 , the number of stable spectra increases as the
vortex sheet approaches either pole, i.e.,u0→0 or p.

Next, when the total vorticity on the sphere is zero,
namelyG11G2522p, the stability condition becomes

unu,k2 cosu0 . ~15!

This means if the strength of the north pole vortex is greater
than that of the south pole vortex, i.e.,G1.G2 , the vortex
sheet in the northern hemisphere region has some neutrally
stable spectra, while the vortex sheet in the southern hemi-
sphere region has no stable spectra. Therefore, the vortex
sheets in the northern hemisphere region evolve more stably
than those in the southern hemisphere region at the initial
moment of their evolution.

In what follows, we verify numerically the stability of
the vortex sheet on the line of latitude,u05p/3, for G1

1G2522p. The criterion for the stability~13! is equivalent
to

unu,
k2

2
.

For eachn, we compute the evolutions ofun(t) and wn(t)
for the following initial condition:

u~a,0!5
p

3
10.01

An

AAn
21Bn

2
sinna,

w~a,0!5a10.01
Bn

AAn
21Bn

2
sinna,

where (An ,Bn) is an eigenvector corresponding to the posi-
tive eigenvalue of the linear equations~11! and ~12!. As for
detailed numerical methods, see Sec. IV. Figure 1 shows the
log plot of uun(t)u and uwn(t)u for n51, 2, 3, 4, and 5 from
t50 to 0.7, whenG151.5p andG2523.5p. The first and
the second spectra are neutrally stable, while the others grow
exponentially in time. This numerical result agrees with the
stability analysis.

IV. SINGULARITY FORMATION

A. Numerical methods

We explain the numerical methods used here to compute
the evolution of the vortex sheet. There are two difficulties in
the numerical computation. First, the linear stability analysis
in Sec. III indicates that Eqs.~7! and~8! are ill-posed in the
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sense of Hadamard, because a disturbance of high wave
numbern grows exponentially at a rate proportional tounu.
Consequently, a small round-off error grows rapidly due to
this instability. Second, since the integrals in the equation are
singular, the trapezoidal rule quadrature fails to compute
them accurately. In order to alleviate these drawbacks, we
implement the spectral filtering technique by Krasny5 and the
alternate point quadrature by Sidi and Israeli.19

In the spectral filtering technique, if the absolute value of
a spectrum of disturbance is less than a prescribed small
threshold, we adjust it to zero. It enables us to eliminate
spurious instability due to round-off error. As a matter of
fact, Caflischet al.20 showed that this technique gives an
optimal numerical approximation for the singularity forma-
tion. In addition, it has been successfully applied to ill-posed
vortex sheet problems.5,6,21–23

On the other hand, the alternate point quadrature gives
an accurate approximation for the integration of weakly sin-
gular periodic functions and has been implemented success-
fully in other vortex sheet problems.6,10,23It is applied to the
present problem in the following way. We discretize the in-
terval aP@0,2p) by N segments and puth52p/N and a i

5 ih. Let f (a,a8) denote the integrand in Eq.~7!. Then, the
singular integral ata5a i is approximated by

PVE
0

2p

f ~a i ,a8!da8'2h (
k:k1 i 5odd

f ~a i ,ak!.

This quadrature also gives an accurate approximation for the
singular integral in~8!.

In order to estimate the singularity formation, we use the
spectral fitting method developed by Sulemet al.24 Assume

that the Fourier coefficients in~9! and~10! have the follow-
ing asymptotic forms fort@1:

uun~ t !u;Cun2pu exp~2dun!,

uwn~ t !u;Cwn2pw exp~2dwn!,

in which the parametersCu , Cw , pu , pw , du , anddw are
independent of the wave numbern. Note that the parameters
du anddw determine analyticity ofu andw, while pu andpw

give the order of the singularity for each variable. We com-
pute these parameters from the numerical data by a least-
square fit. Then, we estimate times whendu and dw vanish
by extrapolation, at which the variablesu and w lose their
smoothness. This method also has been successfully applied
to many numerical studies of singularity formation in vortex
sheet motion.5,6,22,23,25

We consider the following initial condition of the vortex
sheet:

u~a,0!5u010.01 sina,
~16!

w~a,0!5a10.01 sina,

in which u0 is a steady state. As for temporal integration, we
use the fourth-order Runge–Kutta scheme. We implement
the filtering technique every time step. The filtering threshold
is K51.0310211, since we perform 64-bit computation. The
vortex sheet is discretized byN54096 points and the step
size for the Runge–Kutta method isDt51.031023.

B. Stability and singularity formation

Figure 2 shows the log–log plot of the Fourier coeffi-
cients uun(t)u in ~9! from t52 to 6.16 forG15G250. The
high spectra grow rapidly and tend to the power-law line
n22.5 neart56.16, which indicates that the vortex sheet ac-
quires the curvature singularity that is frequently observed in
2D vortex-sheet problems. To confirm this observation, we
compute the parametersdu and dw by the spectral fitting
method. Figure 3 shows the plot of these parameters fromt
56 to 6.16. They decrease monotonically towards zero. Es-
timating the times whendu(t) and dw(t) vanish, we have
tu* 5tw* '6.17, which indicates that the variablesu andw lose
their analyticity at the same time. We remark that the present

FIG. 1. Log plot ofuun(t)u anduwn(t)u for n51, 2, 3, 4, and 5 fromt50 to
0.7. The strengths of pole vortices areG151.5p andG2523.5p.

FIG. 2. Log–log plot of the Fourier coefficients in theu variable vs moden
from t52 to 6.16, whenu05p/3 and G15G250. The high spectra ap-
proach to the power-law slopen22.5.
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numerical computation is too inaccurate to determine the
precise values of the indicespu and pw , although Fig. 2
indicates the curvature singularity. As we can see in Ref. 6,
more resolution with high machine precision is required to
determine these indices.

The linear stability analysis shows that the initial distur-
bancesu1(t) and w1(t) are neutrally stable whenG15G2

50. Nevertheless, the singularity eventually appears. We
give a reason for this phenomenon. Figure 4 shows the log
plot of uun(t)u from n51 to 10 up to the singularity time.
While the spectrumu1(t) remains neutrally stable due to the
linear stability, the unstable spectra arise one by one due to
nonlinearity of the equation and then grow exponentially be-
cause of their own instability, which leads to the singularity
formation.

Now, we focus on how the change of stability affects the
singularity formation. First, we fix the stationary vortex sheet
at u05p/3 and change the strengths of the pole vortices.
Figure 5 is the log–log plot of the Fourier coefficients
uun(t)u from t52 to 7.743 forG151.5p andG2523.5p, in
which uu1(t)u anduu2(t)u are neutrally stable. The high spec-
tra approach to the power-law linen22.5 as time approaches
to t'7.745, which also indicates that the curvature singular-

ity appears. However, the singularity develops later com-
pared to the previous case in which there is no pole vortex.

We give a reason for the delay of the singularity forma-
tion. Figure 6 shows the log plot ofuun(t)u from n51 to 10
up to the singularity time. The spectrau1(t) and u2(t) re-
main neutrally stable due to the linear stability. Since the
number of neutrally stable modes increases, owing to the
pole vortices, it takes a longer time until the unstable higher
modes are induced by nonlinearity of the equation, which
results in the delay of the singularity formation.

Next we compute times of the singularity formation for
various u0 , G1 , and G2 . Figure 7 shows the singularity
times whenG15G252p, G15G250, andG15G25p. Ac-
cording to the stability condition~14!, all modes are unstable
in the first case, the first spectrau1(t) andw1(t) are neutrally
stable in the second case, and the first and the second spectra
are neutrally stable in the last case. While the vortex sheet
acquires the curvature singularity in all cases, it develops
later as the number of stable modes increases. This is be-
cause the destabilization of the vortex sheet is delayed due to
the increase of stable low spectra. On the other hand, how-
ever, the existence time of the vortex sheet approaches zero
as u0 tends to the poles, because the motion of the vortex
sheet becomes singular, i.e.,V0→`, asu0→0 andp regard-
less of the linear stability.

FIG. 3. Plot of du(t) and dw(t) from t56.0 to 6.16 that determine the
analyticity of theu and w variables. The strengths of the pole vortices are
G150 and G250. They decrease linearly to zero at the same time. The
singularity appears when they vanish.

FIG. 4. Log plot ofuun(t)u from n51 to 10 up to the singularity formation.
The strengths of the pole vortices areG150 andG250. The spectrumu1(t)
remains stable. However, the high spectra are induced one by one due to
nonlinearity, and they grow exponentially afterwards because of their own
linear instability.

FIG. 5. Log–log plot of the Fourier coefficients in theu variable vs moden
from t52 to 7.743, whenu05p/3, G151.5p, andG2523.5p. The high
spectra approach to the power-law slopen22.5.

FIG. 6. Log plot ofuun(t)u from n51 to 10 up to the singularity formation.
The strengths of the pole vortices areG151.5p andG2523.5p. The spec-
tra u1(t) andu2(t) remain stable, but the high spectra grow exponentially.

722 Phys. Fluids, Vol. 16, No. 3, March 2004 Takashi Sakajo

Downloaded 28 Feb 2006 to 133.87.26.100. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



We plot the singularity times for another case whenG1

.G2 with G11G2522p in Fig. 8. The vortex sheets in the
northern hemisphere region remain smooth longer than those
in the southern hemisphere region as the differenceG12G2

increases. It is closely related to the linear stability result
~15!; the vortex sheet in the northern hemisphere region has
more linearly stable low spectra than that in the southern
hemisphere region.

V. LONG TIME EVOLUTION

Because of the singularity formation, it is impossible to
compute evolution of vortex sheet beyond the critical time.
In the same way as in the computation of 2D vortex sheets,
introducing an artificial parameters, we consider the follow-
ing regularized equation:

u t52
1

4p
PVE

0

2p sinu8 sin~w2w8!

12cosg1s2 da8, ~17!

w t52
1

4p

3PVE
0

2p cosu sinu8 cos~w2w8!2sinu cosu8

sinu ~12cosg1s2!
da8

1
1

4p S G1

12cosu
2

G2

11cosu D . ~18!

The regularization parameter is fixed tos50.1. The initial
condition and the other numerical parameters are the same as
those in Sec. IV.

Figure 9 shows the evolution of the vortex sheet atu0

5p/3 from t513 to 19 forG15G250. Let us recall that the
initial disturbancesu1(t) andw1(t) are linearly stable in this
case. Then, the vortex sheet begins rolling up and finally
develops into a structure with four rolling-up spirals. On the
other hand, Fig. 10 shows snapshots of the solution forG1

51.5p and G2523.5p, in which un(t) and wn(t) for n
51 and 2 are stable. While the vortex sheet evolves stably
up to t517, five rolling-up spirals appear aftert521. We
also plot the evolution for (G1 ,G2)5(2p,2p), in which
all modes are unstable in Fig. 11, and the evolution for
(G1 ,G2)5(2.5p,24.5p), in which un(t) and wn(t) for n
51, 2, and 3 are stable in Fig. 12. These evolutions show
that as the number of stable low spectra increases, the vortex
sheet tends to remain stable for longer time, but it eventually
evolves into a complex structure with more rolling-up spi-
rals.

We observe this phenomenon from a spectral point of
view. Figure 13 shows the evolution of the Fourier coeffi-
cients un(t) for n51,...,10 when G151.5p and G2

523.5p. The initial spectrumu1(t) is neutrally stable and
the other spectra are sufficiently small untilt515. Hence,
the vortex sheet evolves stably up to this time. Aftert515,
while u1(t) and u2(t) remain small because of the linear
stability, some of the unstable high spectra grow large, which
leads to the rolling-up of the vortex sheet. The Fourier coef-
ficientsu5(t) andu10(t) are dominant spectra in the solution
after t520, which indicates that the five spirals emerge.
Thus, as the number of stable low spectra increases, owing to
the pole vortices, the vortex sheet evolves stably for a longer
time. However, once the unstable spectra arise and grow
large, the vortex sheet rolls up and develops into many
rolling-up spirals. Moreover, since the number of spirals is
determined by the dominant unstable high spectra in the so-
lution, the vortex sheet tends to have more spirals as the
linearly stable low spectra increases.

Finally, we note that the roll-up structure depends on the
regularization parameters. Figure 14 shows the roll-up
structure of the vortex sheet after long time evolution for
variouss. Each solution has five spirals, while these spirals
have more winding ass tends to zero. Thus the solution is
likely to converge to five rolling-up spirals with infinitely
tight winding whens→0. However, whens is too small, the
evolution is quite unstable numerically and many small-scale
rolling-up spirals appear in the numerical solution due to
insufficient accuracy. Hence, many discretizing points and

FIG. 7. Singularity times of the vortex sheets for variousu0 whenG15G2

50 and6p. As the summationG11G2 increases, the vortex sheet remains
smooth longer for allu0 .

FIG. 8. Singularity times of the vortex sheets for variousu0 , G1 , andG2

with G11G2522p. WhenG1.G2 , the vortex sheets in the northern hemi-
sphere regions remain smooth longer than those in the southern hemisphere
regions. As the difference in the strengths of the pole vortices increases, the
vortex sheet blows up later due to the linear stability.
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FIG. 9. Evolution of the vortex sheet atu05p/3 from t513 to 19 when
G150 and G250, in which the first spectra of disturbance are linearly
stable. Four spirals moving westward appear.

FIG. 10. Evolution of the vortex sheet atu05p/3 from t517 to 23 when
G151.5p and G2523.5p, in which the first and the second spectra are
linearly stable. Five spirals moving westward appear.
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FIG. 11. Evolution of the vortex sheet atu05p/3 from t53 to 9 when
G152p andG252p, in which all spectra are unstable. One big rolling-up
spiral appears moving westward.

FIG. 12. Evolution of the vortex sheet atu05p/3 from t529 to 35 when
G152.5p and G2524.5p, in which the first, the second, and the third
spectra are linearly stable. Seven rolling-up spirals appear moving west-
ward.
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higher precision arithmetic are required to verify the conver-
gence of the solution whens→0.

VI. CONCLUSION AND DISCUSSION

We have considered the motion of a single vortex sheet
on the surface of a unit sphere with fixed point vortices at the
poles. First, we derive the equation for the vortex sheet on
the sphere from the equations forN point vortices.

Second, we have investigated the linear stability for the
steady solution located at a line of latitude. When there is no
pole vortex on a sphere, the first spectrau1(t) and w1(t)
become neutrally stable. This is an effect of the curvature of
the sphere on the linear stability. Furthermore, depending on
the position of the stationary vortex sheet and the strengths
of pole vortices, it is possible to stabilize more low spectra or
to destabilize all spectra. On the other hand, for sufficiently
largen, the Fourier spectraun(t) andwn(t) become inevita-
bly unstable and their exponentially growing rate approach
asymptotically toln;unu/2 sin2 u0, which is the same as
Kelvin–Helmholtz instability for planar flow. A similar sta-
bility result is observed in the study of a 2D vortex sheet in
the presence of background shear flow.13,26

Third, although some low spectra in the solution are lin-
early stable, the vortex sheet itself evolves unstably; we
verify numerically that the curvature singularity appears in
the vortex sheet in finite time regardless of the linear stabil-
ity, while the appearance of the singularity is getting later as
the vortex sheet has more stable spectra. Numerical compu-
tation of the equations regularized by the vortex method
shows that the vortex sheet develops into more rolling-up
spirals as it has more linearly stable spectra, although it
evolves stably for a longer time owing to the stability of the
low spectra. These phenomena are largely due to the rapid
growth of the high spectra that the linear stability is unable to
control.

Last, we discuss a connection between the vortex sheet
and a band of constant vorticity on the sphere. Generally
speaking, the vortex sheet is derived from the band of vor-
ticity when its thickness tends to zero, keeping the circula-
tion fixed. In fact, Benedetto and Pulvirenti27 showed that 2D

FIG. 14. Roll-up structure of the vortex sheet for various regularization
parameterss: ~a! s50.08, ~b! s50.12, ~c! s50.16, and~d! s50.2. The
strengths of the pole vortices areG151.5p andG2523.5p. As s tends to
zero, the vortex sheet has five spirals with more winding.

FIG. 13. Evolution of the spectrauun(t)u for n51,...,10 up tot523 when
G151.5p andG2523.5p. While the spectrau1(t) andu2(t) are neutrally
stable, the other spectra are unstable and grow rapidly. The Fourier coeffi-
cientsu5(t) and u10(t) are dominant in the solution, which results in the
appearance of the five rolling-up spirals in Fig. 10.
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vortex layers converge uniformly to 2D vortex sheets insofar
as both of them are sufficiently smooth. Dritschel and
Polvani16 investigated stability of a vortex strip in which the
vorticity is constant, on the sphere with the pole point vorti-
ces. They indicated that a thinner vortex strip tends to be
more unstable and the vortex strips in the northern hemi-
sphere are more stable than those in the southern hemisphere
when the strength of the point vortex at the north pole is
larger than that at the south pole. In addition, they also con-
cluded that the presence of the pole vortices fails to eliminate
the instability. These results are similar to our stability re-
sults. Hence, the vortex strips connect with the vortex sheet
continuously in terms of the stability. On the other hand,
since the vortex sheet acquires the curvature singularity, the
continuity never holds after the singularity time. In particu-
lar, internal structure of the rolling-up spiral in the vortex
sheet is different from that of the vortex strip, as we observed
in Krasny7 and Baker and Shelley.28
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