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Motion of a vortex sheet on a sphere with pole vortices
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(Received 28 May 2003; accepted 1 December 2003; published online 4 Februajy 2004

We consider the motion of a vortex sheet on the surface of a unit sphere in the presence of point
vortices fixed on north and south poles. Analytic and numerical research revealed that a vortex sheet
in two-dimensional space has the following three properties. First, the vortex sheet is linearly
unstable due to Kelvin—Helmholtz instability. Second, the curvature of the vortex sheet diverges in
finite time. Last, the vortex sheet evolves into a rolling-up doubly branched spiral, when the
equation of motion is regularized by the vortex method. The purpose of this paper is to investigate
how the curvature of the sphere and the presence of the pole vortices affect these three properties
mathematically and numerically. We show that some low spectra of disturbance become linearly
stable due to the pole vortices and thus the singularity formation tends to be delayed. On the other
hand, however, the vortex sheet, which is regularized by the vortex method, acquires complex
structure of many rolling-up spirals. @004 American Institute of Physics.
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I. INTRODUCTION then linearization of the Birkhoff—Rott equation provides us
with linear equations for the spectag(t) and consequently

In real fluid flows, we often observe a band-like region,,« gptain

in which the velocity field changes rapidly and thus the vor-

ticity highly concentrates. The region induces a shear flow, |a,(t)|~|a,(0)|exp 3|n|t)

which is one of the basic research objects in the field of fluid o

dynamics. A vortex sheet is a simple model of the shear flowfO" t<1. Itindicates that the spectrua(t) grows exponen-

if the thickness of the high vorticity region is infinitely thin; Ually in time at a rate proportional to the wave numirer

in other words, it is defined as a discontinuous surface of tha NiS instability is known as Kelvin—Helmholtz instability.

velocity field in incompressible and inviscid flow. Hence, we notice that the Birkhoff—Rott equation is ill-posed
Vortex sheets in two-dimensionéD) space have been N the sense of Hadamard. _ _

investigated mathematically as well as numerically for sev- 1€ next result is concerned with the §TX|sten.ce of the

eral decades. We summarize some basic properties of the 259!Ution to the Birkhoff—Rott equation. Mooreonsidered

vortex sheet obtained so far. See a review in Saffrfarthe the spectral form of solutiofil) with an initial condition

details. A 2D vortex sheet is represented by a complex-  z(' t)=T+iesinl.

valued function ) )
Then, asymptotic analysis shows that the speciay(h) has

Z(I',t)=x(I',t) +iy(I',t), —oo<I'<oo, the following asymptotic form:
whereI" is Lagrangian parameter along the sheet sl la,(t)|~Cn~%2exp(n(1+ it+:loget)), 2
time. Then, the motion of the vortex sheet is governed by the ) )
Birkhoff—Rott equatiof for t>1, whereC is a constant independent of Therefore,

if t, satisfies

[?71“ _ ! Pvfm —dF’ 1+it.+%loget.=0
a V=50V T o=z 2le 210G 1= L
then the second derivative of the solution, in other words the
in which the integral is Cauchy’s principal value integral andcurvature of the vortex sheet, divergeg at since|a,(t)| is
z denotes the complex conjugate of asymptotically similar taCn~%?, ast—t,. It indicates that
First, the vortex sheet is linearly unstable. A flat vortexthe solution of the Birkhoff—Rott equation loses its analytic-
sheez(I',t) =I' is a stationary solution of the Birkhoff—Rott ity in finite time. Direct numerical computations of the

equation. When we add a small disturbance to the steadgirkhoff—Rott equatioh® followed Moore and supported

state, that is to say his asymptotic result.
o Finally, long time evolution of the vortex sheet is studied
2=+ > a,(t)expinl), (1)  Numerically. Because of 'Fhe singularity forr_nation, we are
n=—c unable to compute the Birkhoff—-Rott equation beyond the

critical time. On the other hand, however, introducing an

Telephone: +81-11-706-4660; fax:+81-11-727-3705; electronic mail: artificial parametero, Krasny considered the following
sakajo@math.sci.hokudai.ac.jp regularlzed equation:
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gz 1 (= with the singularity formation in Sec. IV. In Sec. V, we com-
e JlmK(,(z(l“,t),z(F’,t))dl“’, pute long time evolution of the regularized vortex sheet and
study how the presence of the pole vortices changes the spi-
where ral structure of the vortex sheet. In Sec. VI, we conclude the
ZI0,H) -2 1) results and compare them with evolution of the band of con-

Ky (z(I',t),z(I'" ,t)) = stant vorticity on a sphere studied by Dritschel and PolVani.

(T, =" )P+ 0%
When o=0, the equation is equivalent to the Birkhoff—Rott 1l. GOVERNING EQUATIONS
equation. This regularization method is called the vortex
method. Caflisch and Lowengfiibave proven that the so-

lution of the regularized equation converges uniformly to

that of the Birkhoff—Rott equation as— 0, as long as both <[0.27) is Lagrangian parameter along the sheet il

solutions are smooth. After the singularity formation, we o Then, starting with the equations of motion Ropoint
have no such strong convergence result. However, Majda,_ .. . .
. . vortices, we derive the equation for the vortex sheet by tak-

remarked that the regularized equation converges to the -
Ihg the limit N— oo,

Birkhoff—Rott equation in a weak sense, even if the singu- . .
. . : Now, we discretize the vortex sheet bysegments and
larity appears. On the other hand, some numerical simula-

tions of the regularized equation indicated that the vortexP Ul @ point vortex with strength=2/N at (6(1), ¢i(t))

method gives a physically convincing approximation for in—:(a(ih’t)’(’o(ih’t)) for i=1..N. Then, Kimura and
g physicaty '9 approxin Okamotd® showed that thé\ point vortices induce the fol-
compressible flows with small viscosity! In fact,

Krasny showed that the regularized 2D vortex sheet rolls upIOWIng velocity field @ .v,) at the position ofmth point

into a doubly branched spiral, which is a familiar phenom-vortex’ O @m):

Suppose that the position of a vortex sheet on a unit
sphere with constant vorticity density is represented by
(0(a,t),o(a,t)) in the spherical coordinates, where

enon observed in real fluid flows. h & sing, sin(em— @)
H . . ..N 0 ): o 2 i m i (3)
Vortex dynamics on a sphere plays an important role inv o (Om. em e 1—cosym, ;
understanding basic flows on Earth. There has been much !
research onN point vortices (see references in Newton'’s h N
book)s : L 4617 Nep = >
ook™ and vortex layers with constant vortict!’ on a v (0m,¢em) ppp-y
sphere. In the present paper, we consider a vortex sheet on
the surface of a sphere. This is a model of shear layers on the C0S6,,, Sin 6, coS ¢, — ¢;) — Sin B, COSH;
Earth when we neglect the effect of rotation. Besides, we X Sin6,.(1— cosym) '
assume that two vortex points are fixed at the north and south
poles. The purpose of the study is to investigate how the 4

curvature of the sphere and the pole vortices affect the threghere y,,; denotes the central angle between two points
properties obtained in the study of 2D vortex sheets: linea(g,,¢;,) and (6, ¢y), and
stability, singularity formation, and structure of rolling-up
spirals.

This paper consists of six sections. In Sec. Il, we deriveAs N— oo, the discrete velocity field8) and(4) converge to
a governing equation for a vortex sheet on a unit sphere ithe following Cauchy’s principal value integrals, which give
the presence of the two pole point vortices. In Sec. lll, wethe velocity field at the position of the vortex sheet
study the linear stability of the vortex sheet. Then, we deal8(«,t),¢(a,t)):

COSYmi= C0SH,, COSH; +Sin b, Sin 6; cO ¢, — ¢;)-

a', ®)

0 1-—cosy

1 2msinf’ sin(p—¢")
oo, o)== 7PV

! PV

4

vo(0(a,t), p(at))=—

wa cos@sing’ cogo—¢')—singcosd’ | ©

0 sinf(1—cosy)

in  which cosy=cosfcosé +sinfdsind’ coslp—¢'), 0
=6(a,t), 8'=6(a’,t) and so on. (vg,v4)= 07—
Furthermore, we introduce two point vortices fixed at the
both poles of the sphere for generality. IgtandI’, denote  Hence, we obtain the equation of motion for the single vor-
the strengths of the point vortices at the north and the souttex sheet on the unit sphere with the two pole vortices
poles, respectively. Since the pole vortices are fixed at ) .
_ ; . ; 1 2msinf’ sin(p—¢")
=0 andm, the vortex sheet is convected by their inducing, — _ = py, da’ @
t — )
flow 0 1-cosy

Iy I
1—cosf# 1+coso
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1 Assume that the solution is disturbed slightly, that is to
P=T say

O(a,t)= 6+ €y a,t),

2mcosfsing’ cog ¢—¢')—sinf cosb’
XPVJ

0 sinf(1—cosy) @ e(a,t)=a+Vot+ e (a,t).
1 r, r, Then, we expand Eqg7) and (8) in terms ofey, €, €,,
+ E( 1-cosd 1+cose>' (8)  ande,,. The denominators of the integrand become
1 1

Ill. LINEAR STABILITY ANALYSIS 1—cosy Sirf fp(1—coda—a’))

Suppose that the vortex sheet is identical to a line of cosé,
latitude, namelyd(a,t) = 6, and ¢(a,t) = «, then the right- X|1—(€gt€p) T_(e“’_ €;)
hand sides of7) and (8) become sinto

e sina—a’) xSMama) ) o)
Bt__4wsinaopvfo 1—cos{a—a')da =0, 1-cofa—a')
d
_cosy 1 ( T, L)y, an
PSP e, 4m|l-cos, 1+cosby O 1 1 cosbo LO(ed).

" = — — €y
. +
Hence, the vortex shed@t= 6, and ¢=a+ V,t is a steady Sin(do+ ) sindy it o

solution rotating with the constant spe¥d. We study the On the other hand, the numerators in the integrand are ex-
linear stability of this solution. panded like

sing’ sin(p—¢')=sinfysin(a—a’)+ e, cosfysin(a—a')
+(e,~€,)sinfycoga—a’)+0(e),
and
cosésing’ cog ¢— ¢')—sinf cosh’ = —sinf, coshy(1—coga—a'))— €,(cos O+ Sir? §ycoga—a'))

+€y(cos O cod a—a')+sir 6) — (e, €,)sin 6 cosby sin(a—a’) + O(€).

From these expressions, we calculate the constant term and / 1
the linear terms fok,, €; ande,— e, of the integrand ir(7) O(ey): g7 Oo(1—cosa—a’)’
as follows:
sinfa—a')
O(1): and

sinfy(l—coga—a’))’

cosfysin(a—a')

0(60):_Sin2 00(1_(:0361’_6&’,)), O(G(p_E(P):O.
O(e€y):0,
Integrating these terms with respectd6 from 0 to 27, we
and obtain the first order expansion of the integralginand(8)
O( o) !
TSl singo(1-coga—a))’ L (27sing’ sin(p—g")
- ——PV f ,
As for the integrand in Eq8), we have amJo 1-cosy
~ cosby _ 21 €, € ' 2
O(l)'_m’ _4W3inaopvfo 1—cos{a—a’)da +O(e),
Ol 1+cos 6, 1
(€0) ~5iF g, S fo(1_coda—a’)’ and
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1 27 cos@sing’ cog ¢—¢')—siné cosh’ then the Fourier coefficient8,(t) and ¢,(t) become neu-
T4 fo sin#(1—cosy) a' trally stal?l_e. On f[he other hand, for sufficiently Iamge_since
the positive eigenvalue approaches asymptotically to
cosb, 1+ cog 6, 1 In|/2 sir? 6, a disturbance of high wave number grows like
T 2sir b €0 5 sirP b0 T amsi? o Kelvin—Helmholtz instability for planar flow.

We apply this stability condition to two special cases.
First, when the strengths of both pole vortices are identical,
namely x,= 0, the stability condition is reduced to

!

PVJZW—G"_EH da’+0(e?
X o 1—cosa—a’) a'+0(€%).

On the other hand, the flow induced by the pole vortices In|<k1(1+cos o). (14)
becomes It indicates that when there is no pole vortex on the sphere,
1 ( T, T, ) i.e., k,=1, the first spectra,(t) and ¢,(t) of disturbance
— |7 are neutrally stable for arbitram,# /2. On the other hand,
4ml1-codfotey) 1+codbotey) for fixed «,, the number of stable spectra increases as the
cos6, (T'1+T,)(14cos 6y) vortex sheet approaches either pole, itlg+0 or .
=Vo— 2 Sire 00—60 4 Sir? 6, Next, when the total vorticity on the sphere is zero,
namelyl’; +I',=— 27, the stability condition becomes
(I'y—T',)cosé, )
- n| <k, C0SH,. 15
2msitg, | O [n| < x5 cosbo (15

This means if the strength of the north pole vortex is greater
than that of the south pole vortex, i.&;>T",, the vortex
sheet in the northern hemisphere region has some neutrally
* stable spectra, while the vortex sheet in the southern hemi-
e)a,t)= Z O,(Hexpina), 9 sphere region has no stable spectra. Therefore, the vortex
n=- sheets in the northern hemisphere region evolve more stably
o than those in the southern hemisphere region at the initial
e(a,)= 2 ognt)expina). (100  moment of their evolution.
n=-= In what follows, we verify numerically the stability of
Then, we have the linearized equations for the Fourieihe vortex sheet on the line of latitudéy= /3, for I'y

Now, provided the small disturbancegande, are rep-
resented by the following Fourier series:

coefficientsd,(t) and ¢,(t) +1",=—27. The criterion for the stability13) is equivalent
to
do, _ In| 1
dt _23in00(p”’ (11) |I”I|<E.

2

For eachn, we compute the evolutions @f,(t) and ¢,(t)
for the following initial condition:

d(,Dn_ |n| (F1+F2+27T)(1+C052 00)
dt | 2sirfe, 477 Sir 6,

I''—T',)cosé
- ;wsizr;ﬁ 0) n (12 0(a0)=z+001Lsinna
° T3 T azeB2
in which we use the following integral:
. B
1 2rl-expin(e’ ~a))  |n| o(@,0)= a+0.01—">— sinna
4 Vfo l-coqa—a’) da T2 VAﬁ+B§

where @A, ,B,) is an eigenvector corresponding to the posi-

tive eigenvalue of the linear equatiofikl) and (12). As for

detailed numerical methods, see Sec. IV. Figure 1 shows the
1 log plot of |6,(t)| and|¢,(t)| for n=1, 2, 3, 4, and 5 from

M=o 6 V(Inl = k1(1+ cos ) ~ ; cosdo) ||, t=0 to 0.7, whenl';=1.57 andI',= — 3.57. The first and

the second spectra are neutrally stable, while the others grow

Thus the eigenvalues, of the linearized equations are given
by

where exponentially in time. This numerical result agrees with the
ri+I,+27 stability analysis.
S
and IV. SINGULARITY FORMATION
r,-r, A. Numerical methods
Km0 We explain the numerical methods used here to compute

the evolution of the vortex sheet. There are two difficulties in

the numerical computation. First, the linear stability analysis

n|<kq(1+cos 6y)+ k,COSHy, in Sec. lll indicates that Eq$7) an are ill-posed in the
(1 < 6) 0 (13  in Sec. lll indi hat Eq$7) and(8) ill din th

Therefore, if the mode satisfies
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[0(t)]

[6n(t)]
)
[=2]

10—10 l

0 05 1 15 2 25 3 35 4 12
i 10
Time 10°

mode n

FIG. 2. Log—log plot of the Fourier coefficients in tifesariable vs mode
from t=2 to 6.16, whenfy=/3 andI';=1",=0. The high spectra ap-
proach to the power-law slope 5.

[9n(t)]

that the Fourier coefficients i(®) and(10) have the follow-
ing asymptotic forms fot>1:

0 o 8 | 6n(t)| ~Cyn~Poexp( — &yn),
0 05 1 15 2 25 3 35 4 -
Time |§Dn(t)|~C<pn Pe exp(—5¢n),
FIG. 1. Log plot of| 8,(t)| and|en(t)| forn=1, 2, 3, 4, and 5 from=0 to in which the parameter€,, C<P » Pos Pe ¢, and 5<P are
0.7. The strengths of pole vortices df¢=1.57 andI',= —3.5x. independent of the wave numberNote that the parameters

dy and 6, determine analyticity ob and ¢, while p, andp,,
give the order of the singularity for each variable. We com-

_ ) pute these parameters from the numerical data by a least-
sense of Hadamard, because a disturbance of high wWa@uare fit. Then, we estimate times whépand 8, vanish
. , .

numbern grows exponentially at a rate proportional [t9. extrapolation, at which the variablesand ¢ lose their
Consequently, a small round-off error grows rapidly due togmgothness. This method also has been successfully applied

this instability. Second, since the integrals in the equation arg, many numerical studies of singularity formation in vortex
singular, the trapezoidal rule quadrature fails to computgneet motiory:6:22:23.25

them accurately. In order to alleviate these drawbacks, we \ye consider the following initial condition of the vortex
implement the spectral filtering technique by Krasagd the sheet:
alternate point quadrature by Sidi and Isr&2li. )
In the spectral filtering technique, if the absolute value of ~ 6(@,0)= 6o +0.01sina,
a spectrum of di_sturb_ance is less than a prescribe_d_small o(a,0)=a+0.01 sina, (16)
threshold, we adjust it to zero. It enables us to eliminate
spurious instability due to round-off error. As a matter of in Which 6 is a steady state. As for temporal integration, we
fact, Caflischet al?° showed that this technique gives an use the fourth-order Runge—Kutta scheme. We implement
Optimal numericai approximation for the Singularity forma- the f||ter|ng teChniqUe eVery tlme Step. The flltel’lng thl’eshold
tion. In addition, it has been successfully applied to ill-posedS K=1.0x 10", since we perform 64-bit computation. The
vortex sheet problents®21-23 vortex sheet is discretized Hy=4096 points and the step
On the other hand, the alternate point quadrature give§ize for the Runge—Kutta method d¢=1.0x10"°.
an accurate approximation for the integration of weakly sin-
gular periodic functions and has been implemented succes8- Stability and singularity formation
fu”y in other vortex sheet problerﬁé‘.o'zslt is applled to the Figure 2 ShOWS the |og_|og piot Of the Fourier Coeffi_
present problem in the following way. We discretize the in-cjents|g,(t)| in (9) from t=2 to 6.16 forl';=I',=0. The
terval a€[0,27) by N segments and put=2#/N and«;  high spectra grow rapidly and tend to the power-law line
=ih. Letf(a,a') denote the integrand in E¢7). Then, the =25 neart=6.16, which indicates that the vortex sheet ac-

singular integral ate= a; is approximated by quires the curvature singularity that is frequently observed in
27 2D vortex-sheet problems. To confirm this observation, we
F’VJ0 f(a ,a')da’~2hk k;: o flai,ay). compute the parameted, and 5, by the spectral fitting
. I=0

method. Figure 3 shows the plot of these parameters from
This quadrature also gives an accurate approximation for the6 to 6.16. They decrease monotonically towards zero. Es-
singular integral in(8). timating the times wherdy(t) and 6,(t) vanish, we have

In order to estimate the singularity formation, we use thet; =tf; ~6.17, which indicates that the variablésnd ¢ lose
spectral fitting method developed by Sulemal?* Assume  their analyticity at the same time. We remark that the present
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0.25

02 [
0.15

0.1

16(0

8y(t) and 8,(t)

0.05

6 6.04 6.08 6.12 6.16
time

10° 10*

10" 10
mode n

FIG. 3. Plot of §,(t) and §,(t) from t=6.0 to 6.16 that determine the . . . .

analyticity of the and ¢ variables. The strengths of the pole vortices are FIG- 5. Log—log plot of the Fourier coefficients in tidevariable vs mode

I';=0 andT',=0. They decrease linearly to zero at the same time. Theffom t=2 to 7.743, wheno=/3, I'y = 1.5, andl';=—3.5r. The high

singularity appears when they vanish. spectra approach to the power-law slape->.

numerical computation is too inaccurate to determine thdy appears. However, the singularity develops later com-

precise values of the indicgs, and p,, although Fig. 2 pared to the previous case in which there is no pole vortex.
(P 1 - . - .

indicates the curvature singularity. As we can see in Ref. 6, e give a reason for the delay of the smgularlty forma-

more resolution with high machine precision is required tolion- Figure 6 shows the log plot 0, (t)| fromn=1 to 10

determine these indices. up to the singularity time. The spectig(t) and 0,(t) re-

The linear stability analysis shows that the initial distur- Main neutrally stable due to the linear stability. Since the
bancesé, () and ¢4(t) are neutrally stable whefi;=T, number of neutrally stable modes increases, owing to the
=0. Nevertheless, the singularity eventually appears. weole vortices, it takes a longer time until the unstable higher
give a reason for this phenomenon. Figure 4 shows the lof'0des aré induced by nonlinearity of the equation, which
plot of |6,(t)| from n=1 to 10 up to the singularity time. results in the delay of t_he smgulanty_ formayon. _

While the spectrund, (t) remains neutrally stable due to the €t we compute times of the singularity formation for
linear stability, the unstable spectra arise one by one due t$2110US 6o, ri’ aEd Iy Flgure_7 shows _the fmgularlty
nonlinearity of the equation and then grow exponentially be{imes when'y=I'y=—m, I')=I';=0, andl’;=T";=. Ac-
cause of their own instability, which leads to the singularity0rding to the stability conditiof4), all modes are unstable
formation. in the first case, the first spectfia(t) and¢,(t) are neutrally

Now, we focus on how the change of stability affects thesStable in the second case, and the first and the second spectra
singularity formation. First, we fix the stationary vortex sheet®'® neutrally stable in the last case. While the vortex sheet
at §,= /3 and change the strengths of the pole vortices2Cduires the curvature singularity in all cases, it develops
Figure 5 is the log—log plot of the Fourier coefficients later as the number of stable modes increases. This is be-
|6,(t)| fromt=2 to 7.743 fo'; = 1.5m andl’ ;= —3.5m, in  Cause the destabilization of the vortex sheet is delayed due to

N ) . .o, X
which | 6,(t)| and| 6,(t)| are neutrally stable. The high spec- the increase of stablle low spectra. On the other hand, how-
tra approach to the power-law lime 25 as time approaches Vel the existence time of the vortex sheet approaches zero

to t~7.745, which also indicates that the curvature singular®S fo tends to the poles, because the motion of the vortex
sheet becomes singular, i.€5—0, asf,—0 andw regard-
less of the linear stability.

-2
10 P pp—
2 0
4 3 10 ——
107 t - n=1
e 4
z 100y 6 .l 4
£ |7/ g - _ " 2
g ; 9 SR .
10 / B J— = 10y .
i -8 f 9
i 10°
107 0 —
I T % I 1010 !
01 2 3 4 5 6 7 8 9
Time 1072

0 2 4 6 8 10
FIG. 4. Log plot of| 8,(t)| from n=1 to 10 up to the singularity formation. time

The strengths of the pole vortices dtge=0 andI",=0. The spectrun®,(t)

remains stable. However, the high spectra are induced one by one due EG. 6. Log plot of| §,(t)| from n=1 to 10 up to the singularity formation.
nonlinearity, and they grow exponentially afterwards because of their owrrhe strengths of the pole vortices dte=1.57 andI',= —3.57. The spec-
linear instability. tra 6,(t) and 6,(t) remain stable, but the high spectra grow exponentially.
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20

15 |

10 |

singularity time

5

0.1 02 03 04 05 06 0.7 0.8 0.9
8y (x )

FIG. 7. Singularity times of the vortex sheets for varigigswhenI';=T",

=0 and=*. As the summatiol’; +I', increases, the vortex sheet remains

smooth longer for alb,.

We plot the singularity times for another case whHen
>T", with 'y +T',= —2m in Fig. 8. The vortex sheets in the

Motion of a vortex sheet on a sphere 723
1
t 4
2m cosfsing’ cod ¢—¢')—sinf cosé’
X PV - 5 o'
0 sind (1—cosy+ o9)
1 r, I,
+— - .
47\ 1—cosf# 1+cosé (18

The regularization parameter is fixed ¢o=0.1. The initial
condition and the other numerical parameters are the same as
those in Sec. IV.

Figure 9 shows the evolution of the vortex sheetat
=m/3 fromt=13 to 19 forl'y=1",=0. Let us recall that the
initial disturbance9),(t) and¢(t) are linearly stable in this
case. Then, the vortex sheet begins rolling up and finally
develops into a structure with four rolling-up spirals. On the
other hand, Fig. 10 shows snapshots of the solutionfor
=1.57 and I',=—3.5, in which 8,(t) and ¢,(t) for n

northern hemisphere region remain smooth longer than those 1 and 2 are stable. While the vortex sheet evolves stably

in the southern hemisphere region as the differdngeI’,

up to t=17, five rolling-up spirals appear afté=21. We

increases. It is closely related to the linear stability resultalso plot the evolution forI(;,I',)=(—,— ), in which
(15); the vortex sheet in the northern hemisphere region hagll modes are unstable in Fig. 11, and the evolution for
more linearly stable low spectra than that in the southerqI", T',)=(2.57,—4.57), in which 6,(t) and ¢,(t) for n

hemisphere region.

V. LONG TIME EVOLUTION

=1, 2, and 3 are stable in Fig. 12. These evolutions show
that as the number of stable low spectra increases, the vortex
sheet tends to remain stable for longer time, but it eventually
evolves into a complex structure with more rolling-up spi-
rals.

We observe this phenomenon from a spectral point of

Because of the singularity formation, it is impossible 10 ;e\, Figure 13 shows the evolution of the Fourier coeffi-
compute evolution of vortex sheet beyond the critical time.jents 6,(t) for n=1,.,10 whenT;=15r and T,

In the same way as in the computation of 2D vortex sheets,. _ 3 5. The initial spectrump, (t) is neutrally stable and

introducing an artificial parametet, we consider the follow-
ing regularized equation:

1 27 sing’ sin(g—¢")
th__PVf > a', (17)
4 o 1l—cosyto
12 ; . . .
= =xls= -

10 + Iy =05r, Tp =251 —u |
o [y =151, [, =-3.51 s
E
z
s
=]
D
£
[72]

0 (x )

FIG. 8. Singularity times of the vortex sheets for variags I'y, andI",
with 'y +T',=—27. WhenI';>T',, the vortex sheets in the northern hemi-

the other spectra are sufficiently small urtti# 15. Hence,

the vortex sheet evolves stably up to this time. Atterl5,
while 6,(t) and 6,(t) remain small because of the linear
stability, some of the unstable high spectra grow large, which
leads to the rolling-up of the vortex sheet. The Fourier coef-
ficients 65(t) and 6,¢(t) are dominant spectra in the solution
after t=20, which indicates that the five spirals emerge.
Thus, as the number of stable low spectra increases, owing to
the pole vortices, the vortex sheet evolves stably for a longer
time. However, once the unstable spectra arise and grow
large, the vortex sheet rolls up and develops into many
rolling-up spirals. Moreover, since the number of spirals is
determined by the dominant unstable high spectra in the so-
lution, the vortex sheet tends to have more spirals as the
linearly stable low spectra increases.

Finally, we note that the roll-up structure depends on the
regularization parametes. Figure 14 shows the roll-up
structure of the vortex sheet after long time evolution for
variouso. Each solution has five spirals, while these spirals
have more winding as tends to zero. Thus the solution is
likely to converge to five rolling-up spirals with infinitely
tight winding wheno— 0. However, wherr is too small, the
evolution is quite unstable numerically and many small-scale

sphere regions remain smooth longer than those in the southern hemisphere . . . .
regions. As the difference in the strengths of the pole vortices increases, tH@!liNg-Up spirals appear in the numerical solution due to

vortex sheet blows up later due to the linear stability.

insufficient accuracy. Hence, many discretizing points and
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FIG. 9. Evolution of the vortex sheet &= /3 fromt=13 to 19 when  FIG. 10. Evolution of the vortex sheet 8= /3 fromt=17 to 23 when
I'y=0 andI',=0, in which the first spectra of disturbance are linearly I'y=1.57 andI',=— 3.5, in which the first and the second spectra are
stable. Four spirals moving westward appear. linearly stable. Five spirals moving westward appear.
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FIG. 12. Evolution of the vortex sheet 8= /3 from t=29 to 35 when
FIG. 11. Evolution of the vortex sheet &= /3 from t=3 to 9 when I'y'=2.57 andI',=—4.5m, in which the first, the second, and the third
I'y=—m andI',= — m, in which all spectra are unstable. One big rolling-up spectra are linearly stable. Seven rolling-up spirals appear moving west-

spiral appears moving westward. ward.
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FIG. 13. Evolution of the spectri@,(t)| for n=1,...,10 up tat=23 when
I'y=1.57 andI',= — 3.57. While the spectra,(t) and 6,(t) are neutrally
stable, the other spectra are unstable and grow rapidly. The Fourier coeffi-

cients 65(t) and 6,((t) are dominant in the solution, which results in the
appearance of the five rolling-up spirals in Fig. 10.

higher precision arithmetic are required to verify the conver-
gence of the solution whem— 0.

VI. CONCLUSION AND DISCUSSION

We have considered the motion of a single vortex sheet
on the surface of a unit sphere with fixed point vortices at the
poles. First, we derive the equation for the vortex sheet on
the sphere from the equations fidrpoint vortices.

Second, we have investigated the linear stability for the
steady solution located at a line of latitude. When there is no
pole vortex on a sphere, the first spectigt) and ¢4(t)
become neutrally stable. This is an effect of the curvature of
the sphere on the linear stability. Furthermore, depending on
the position of the stationary vortex sheet and the strengths
of pole vortices, it is possible to stabilize more low spectra or
to destabilize all spectra. On the other hand, for sufficiently
largen, the Fourier spectra,(t) and ¢,(t) become inevita-
bly unstable and their exponentially growing rate approach
asymptotically tox,~|n|/2sir? 6,, which is the same as
Kelvin—Helmholtz instability for planar flow. A similar sta-
bility result is observed in the study of a 2D vortex sheet in
the presence of background shear fiwf

Third, although some low spectra in the solution are lin-
early stable, the vortex sheet itself evolves unstably; we
verify numerically that the curvature singularity appears in
the vortex sheet in finite time regardless of the linear stabil-
ity, while the appearance of the singularity is getting later as
the vortex sheet has more stable spectra. Numerical compu-
tation of the equations regularized by the vortex method
shows that the vortex sheet develops into more rolling-up
spirals as it has more linearly stable spectra, although it
evolves stably for a longer time owing to the stability of the
low spectra. These phenomena are largely due to the rapid
growth of the high spectra that the linear stability is unable to
control.

Last, we discuss a connection between the vortex sheet
and a band of constant vorticity on the sphere. Generall
speaking, the vortex sheet is derived from the band of vor-

Takashi Sakajo

IX—IG. 14. Roll-up structure of the vortex sheet for various regularization

parametersr: (8) 0=0.08, (b) 0=0.12,(c) 0=0.16, and(d) 6=0.2. The

ticity when its thickness tends to zero, keeping the circulasrengths of the pole vortices afg=1.57 andT',= —3.57. As o tends to

tion fixed. In fact, Benedetto and Pulviretitshowed that 2D  zero, the vortex sheet has five spirals with more winding.
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