Mitochondrial and nuclear DNA analysis revealed a cryptic species and genetic introgression in Littorina sitkana (Mollusca, Gastropoda)

Author(s)
Azuma, Noriko; Yamazaki, Tomoyasu; Chiba, Susumu

Citation
Genetica, 139(11-12): 1399-1408

Issue Date
2011-12-01

Doc URL
http://hdl.handle.net/2115/54514

Right
The final publication is available at link.springer.com

Type
article (author version)

File Information
6)Genetica139.pdf
Mitochondrial and nuclear DNA analysis revealed a cryptic species and genetic introgression in *Littorina sitkana* (Mollusca, Gastropoda)

Noriko Azuma¹, Tomoyasu Yamazaki², Susumu Chiba¹

¹ Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido, Japan
² Shellfish Museum of Rankoshi, Rankoshi, Hokkaido, Japan

Corresponding: Noriko Azuma

E-mail: n3azuma@bioindustry.nodai.ac.jp
Phone: +81-152-48-3910
FAX: +81-152-48-3920
Abstract

We investigated mitochondrial and nuclear DNA genotypes in nominal *Littorina sitkana* samples from 2 localities in Eastern Hokkaido, northern Japan. Our results indicated the existence of cryptic species. In the analysis of partial mitochondrial Cytchrome *b* gene sequences, haplotypes of *L. sitkana* samples were monophyletic in a phylogenetic tree with orthologous sequences from other *Littorina* species, but were apparently separated in 2 clades. One included typical *L. sitkana* (CBa clade) samples, which formed a clade with an allopatric species, *L. horikawai*. The other, CBb, was independent from CBa and *L. horikawai*. Haplotypes of the mitochondrial 16S rRNA gene also separated into 2 clades. We additionally examined intron sequence of the heat shock cognate 70 (HSC70) nuclear gene and identified 17 haplotypes. These were also separated into 2 clades, HSCa and HSCb. Among the examined Hokkaido samples, 60% of individuals were heterozygotes. However, each heterozygote consisted of haplotypes from the same clade, HSCa or HSCb, and no admixture of HSCa and HSCb haplotypes was observed. These results indicate reproductive isolation between the 2 clades. Among the genotyped Hokkaido samples, 93% of individuals had CBa + HSCa or CBb + HSCb genotypes, and 7% had CBb + HSCa genotypes. The discrepancy between the mtDNA and nuclear DNA haplotypes in a few individuals may have been caused by genetic introgression due to past hybridization.

Key words: periwinkle, speciation, reproductive isolation, Cytb, 16S, HSC70
INTRODUCTION

Recent applications of molecular genetic approaches for reconstructing phylogenies have successfully uncovered reproductive isolation and speciation among closely related species within the same locality (e.g., Avise 2000; Barraclough and Vogler 2000; Templeton 2001). In shell-bearing mollusks, shell characters have contributed to taxonomy and are regarded as useful tools for species identification. However, in some cases, molecular evidence has revealed the existence of cryptic species that cannot be distinguished by shell morphologies (e.g., Liu et al. 2011; Puillandre et al. 2009). There are several examples of gastropod phenotypes, which can become genetically adapted or plastically changed in response to environmental factors (Dewitt and Scheiner 2004; Piersma and Gils 2010). Therefore, species identification using shell characters may be misleading if within species variation is high and/or a high level of similarity in shell morphology can be observed among species.

High levels of intraspecific shell variation are common in the genus *Littorina* (Mollusca, Gastropoda), and convergent evolution and/or ancestral effect can lead to shell character similarities in different *Littorina* species (Reid 1996; Johannesson 2003). Such variable shell characters have attracted many researchers, and *Littorina* species have been used as models for evolutionary studies, not only for morphological, but also for evolution, phylogeny and genetic research (e.g., Galindo et al. 2010; Graham et al. 2006; Hollander et al. 2006; Johannesson 2003; Johannesson et al. 1995; Kyle and Boulding 2000, Lee and Boulding 2009 and 2010; Panova et al. 2011; Reid 1996; Reid et al. 1996; Rolán-Alvarez 2007; Sokolova and Portner 2003; Sokolova et al. 2000; Williams et al. 2003).
In Sitka Periwinkles, *Littrina sitkana* Philippi, the main focus of the present study, extreme variability in shell form has been observed (reviewed by Reid 1996). The phenotypic characters of the shell surface, such as smooth or riblet surface phenotypes, are thought to be plastic as Boulding et al. (1993) observed and related to environment gradients, especially wave action (Yamazaki and Goshima 2012). *L. sitkana* develops without a pelagic larval stage, and is common in intertidal zones on rocky and boulder shores throughout the northern Pacific, from Oregon to the Bering Sea, the Okhotsk Sea, and the northern Sea of Japan (Reid 1996). The species was first described by Philippi (1846) based on a ribbed shell from Sitka, Alaska (lectotype figured by Reid, 1996: fig. 56A).

The smooth-shelled type, which is abundant on the eastern Hokkaido coast, has been considered as one of the intraspecific variants (e.g., Reid 1996; Zaslavskaya 2006). Revealing the taxonomy of *L. sitkana* has been complicated due to the variability in shell characters and the wide distribution. Many phenotypes have been reported, but these have been classified as intraspecific variants as reviewed by Reid (1996). Some authors have considered smooth-shelled forms (named as *L. kurila*, *L. subtenebrosa*, *L. atkana* and others) to represent distinct species, and their synonymy with *L. sitkana* (see Reid 1996) needs to be tested with molecular data.

Genetic variation within *L. sitkana* has been investigated for Russian (Zaslavskaya 1995 and 2006; Zaslavskaya and Pudovkin 2005), North American (Boulding et al. 1993; Kyle and Boulding 2000, Lee and Boulding 2009, Marko et al. 2010), and Japanese (Nohara 1999) populations. Zaslavskaya (1995 and 2006) reported 3 unknown species, including *L. sp1*, *sp2*, and *sp3*, based on allozyme studies. The collected specimens of these unidentified species were mixed with *L. sitkana*, or assumed *L.
sitkana, in the Russian Far East. The findings were unique and informative; however, allozyme data cannot be compared with the sequence data available in databases such as GenBank. Sequence data can be used to investigate the status of newly found species relative to previously reported ones.

The objective of the present study was to evaluate the status of cryptic Littorina sitkana species, found on the eastern Hokkaido coast, using molecular genetic markers. To clarify relationships among typical L. sitkana and potential cryptic species, we used 3 molecular markers, including partial sequences of the cytochrome b (Cytb) gene and the 16S rRNA (16S) gene in mitochondrial DNA, and intron sequences of the heat shock cognate 70 (HSC70) gene in nuclear DNA. Sequences of Cytb and 16S have previously been used to reconstruct intraspecific and interspecific Littorina phylogenies (Kyle and Boulding 2000; Kim et al. 2003; Lee and Boulding 2009; Marko et al. 2010; Reid et al. 1996). Consequently, many orthologous sequences from other Littorina species are available in the GenBank database. The HSC70 region has recently been acknowledged as an effective marker for population genetic studies of Littorina species with intraspecific variation (Lee and Boulding 2009 and 2010). We employed this marker to examine the existence of reproductive barriers, as well as to confirm genetic clustering indicated by the mtDNA analysis. We discuss the speciation and hybridization between the 2 clade found in the present study and the discrepancies between our results and the new species suggested by Zaslavskaya (1995 and 2006).
MATERIALS AND METHODS

Sample collection and DNA extraction

Samples regarded as *Littorina sitkana* were collected from 2 localities of Eastern Hokkaido, Utoro, and Kushiro (Table 1, Fig. 1). The species was identified based on habitat (upper intertidal to supralittoral zone on rocky shores) and shell character observations. We selected individuals with blackish or purple-brown smooth shells (Fig. 2, A-C), the most common shell forms of *L. sitkana* on the east coast of Hokkaido (Reid 1996) and identical to Type C in Nohara (1999), described as having a smooth surface without sculptures. The smooth-shelled *L. sitkana* strongly resemble 4 other Pacific species, *L. subrotundata*, *L. aleutica*, *L. natica*, and *L. kasatka* (Reid 1996; Reid and Golikov 1991; Reid et al. 1991; Reid et al. 1996; Zaslavskaya, 1995 and 2006). However, there are no records of *L. subrotundata*, *L. aleutica*, or *L. natica* from the Japanese coast. *L. kasatka* is observed less frequently than *L. sitkana*, *L. subrotundata*, *L. aleutica*, and *L. natica* in collections (Reid 1996), and is probably less abundant than *L. sitkana* around Hokkaido. Three additional *Littorina* species, *L. brevicula*, *L. mandshurica*, and *L. squalida*, occur around Hokkaido, and all of these have ribs on their shells. Considering the above, most of the smooth-shelled periwinkles found on the eastern Hokkaido coast are likely to be *L. sitkana*. We also collected *L. horikawai* from the coast of Nejiko, Hirado Island off Kyushu (Table 1, Fig. 1). This species is regarded as a sister species of *L. sitkana* (Reid 1996; Reid et al. 1996), and is expected to be useful for comparisons in phylogenetic analyses. All collected samples were fixed in 99% ethanol.

We extracted genomic DNA from ca. 20 mg tissue of foot muscle from each of the
84 Hokkaido samples and 8 L. horikawai samples using either a PUREGENE™ kit (Qiagen) or a DNeasy™ Blood & Tissue kit (Qiagen), following the manufacture’s protocols. Extracted DNA was dissolved in 150–250 μL elution buffer.

Mitochondrial DNA analysis

Polymerase chain reactions (PCRs) for partial mtDNA Cytb sequences from all samples were carried out in separate 40 μL reactions, containing ca. 10 ng genomic DNA, 5 pmol each of the forward and reverse primers (F: CCTTCCCGCACCTCAAATCTTTT R: GCAAAGAAGCGAGTGAGGGTAGC; Lee and Boulding 2009) and 0.3 U TaKaRa Ex Taq (TaKaRa) following the manufacturers’ protocols. Thermal-cycle profiles consisted of an initial denaturation at 95°C for 1 min, followed by 35 cycles of 95°C for 45 s, 50°C for 30 s, and 72°C for 60 s, with a post-cycle extension at 72°C for 5 min. The same thermal conditions were also used for the 16S and HSC70 PCRs. The PCR products were purified with magnetic beads (AMPure, Agencourt, Bervery, MA), and were sequenced by Macrogen Japan Inc. (Tokyo, Japan) using the forward and reverse primers noted above. Sequences were aligned and edited to 428 bp using DNASIS-Mac v.3.5 (Hitachi) and ClustalX 1.81 (Thompson et al. 1997) software, and were deposited in the DDBJ database (Accession nos. AB665092–AB665101). Previously reported orthologous sequences for the Littorina species L. horikawai (GenBank accession no. U46797), L. kasatka (U46800), L. fabalis (U46808), L. compressa (U46811), L. obtusata (U46813), L. aleutica (U46789), L. saxatilis (U46817), L. subrotundata (U46828), and L. sitkana (GQ902751), and an L. sitkana cytochrome b pseudogene sequence (U46821) identified by Reid et al. (1996), were aligned and added to the data set for subsequent phylogenetic analysis.
A phylogenetic tree was reconstructed using Bayesian methods in MrBayes 3.12 (Ronquist and Huelsenbeck 2003). We applied the substitution model GTR + G + I, which was recommended as the best fitting substitution model for our data set by jModelTest 0.1.1 (Posada 2008; Guindon and Gascuel 2003). In the Bayesian analysis, the posterior probability distribution of trees was approximated by drawing a sample every 100 steps over 1,000,000 MCMC cycles, after discarding a burn-in of 250,000 cycles.

We used an additional mtDNA marker, 16S, and a nuclear DNA marker, HSC70, to resolve the following issues. Usage of multiple markers was expected to confirm and compliment the results of the Cytb analysis.

1. In the Cytb analysis, we could not compare our samples to *Littrina natica*, which is distributed in the neighboring area, the Kurile Islands, and sometimes has a similar shell shape to *L. sitkana*, because no Cytb sequence for this species was available in the database. Therefore, the possibility that samples of the newly found lineage were members of *L. natica* could not be rejected.

2. The observed haplotypes might have included pseudogene sequences. As our data did not include the entire full-length Cytb gene, the possibility that our sequences represented a pseudogene remained, even after we found no stop codon in the observed sequences.

3. The observed genetic divergence should be regarded as intraspecific variation if there was no reproductive barrier between the 2 lineages.

L. natica 16S sequences were available from the database, and examining linkage between 16S and Cytb types could be used as an approach to distinguish pseudogene sequences. Because the mitochondrial genome is circular and non-recombining,
sequence variation of functional genes on mtDNA must link between different gene
regions. However, pseudogene in the nuclear genome evolves randomly and do not
appear to be linked to functional mitochondrial genes. Thus, 16S was employed to
resolve the former 2 issues, and HSC70 in nuclear DNA was analyzed to resolve the
latter issue.

PCR and sequencing for partial 16S was carried out in the same manner as for
Cytb using the primers 16Sar: CGCCTGTATCAAAAACAT and 16Sbr:
CCGGTCTGAACGATCACGT (Simon et al. 1991). For comparative analysis, we
added reported Littorina species 16S rRNA sequences, including L. kasatka (GenBank
accession no. U46799), L. fabalis (U46807), L. natica (U46809), L. compressa
(U46810), L. obtusata (U46812), L. saxatilis (U46816), L. subrotundata (U46827), L.
aleutica (U46788), L. arcane (U46790), L. horikawai (U46796), and L. sitkana
(U46820). All sequences were aligned and edited for 434 bp, and newly identified
haplotypes were deposited in DDBJ (Accession nos. AB665316–665319). For
phylogenetic analysis, we used Bayesian methods with the GTR + I + G model of
nucleotide substitution. In this region, some insertion/deletion sites (indels) were
observed that could not be used as informative sites using a Bayesian approach. To
consider all of the sequence variations, including indels, maximum parsimony (MP)
methods were also employed, and deletions were treated as a fifth element in addition to
nucleotide substitutions, using PAUP* 4.0 (Swofford 2002). For the MP method, 100
MP trees with equal total branch lengths were chosen and reconstructed into a >50%
strict consensus tree. Bootstrap values were estimated to provide measures of relative
support for each branch using 1,000 replications.
Nuclear DNA analysis of HSC70 intron variation

The most important aim of nuclear DNA analysis was to test for reproductive isolation between 2 clades that were identified in the mtDNA analysis. Because samples from Kushiro included only 1 clade of Cytb, CBa (see Results), we used 6 representative individuals with different Cytb haplotypes. However, as samples from Utoro included members of both clades, CBa and CBb (see Results), all samples from this area were examined, with the exception of 3 individuals that were assumed to be L. kasatka following the mtDNA analysis. A partial fragment (ca. 650 bp) of HSC70 was amplified by PCR using the primers F: GGCACCTTTGACGTGTCAGTCC and R: TCCACAGGCTCCAGTGTGCCAC (Lee and Boulding 2009). Amplification by PCR, purification of the products, and direct sequencing were carried out in the same manner as for Cytb. Some samples showed heterozygosity; therefore, the corresponding PCR products were cloned with a TOPO TA Cloning® Kit (invitrogen) and were sequenced using universal M13 primers. Sequence variation was observed only in the intron region, so we trimmed both ends of each sequence to remove the exons, and edited the sequences to 287 bp. Unique sequences were deposited in DDBJ/GenBank with accession nos. AB665223–665239. Expected and observed heterozygosities for 32 individuals from Utoro, for which haplotypes were successfully identified, were calculated using Genepop (Raymond and Rouset 1995; Rouset 2008). Hardy-Weinberg equilibrium (HWE) was also tested using Genpop. Phylogenetic trees for the haplotypes were reconstructed in 2 ways, using both Bayesian and MP methods, because, similar to the 16S region, indels were observed within the HSC70 introns. For the Bayesian method, we selected the GTR + G + I model by using jModelTest 0.1.1. Indels were treated as a fifth element of nucleotide variation in the MP method, and reconstruction
of the consensus tree and estimation of bootstrap values for each branch were carried out in the same manner as for the 16S region. For the HSC70 region, we could not correctly align sequences from other *Littorina* species in Genbank due to the large number of indels observed among species, and because the *L. sitkana* HSC70 sequence in GenBank included only the exon region in which no variety was observed in our data. Therefore, we used only the newly identified sequences in the present study to reconstruct the phylogeny.

RESULTS

Mitochondrial DNA analysis

We found 13 unique Cytb *L. sitkana* haplotypes among the Hokkaido samples and 2 *L. horikawai* haplotypes (Fig. 3). Nucleotide variations were observed at 39 sites, and 33 of these were parsimoniously informative. One *L. horikawai* haplotype was identical to a previously reported sequence for this species (GenBank accession no. U46797), and the other has been newly identified in this study (LhCB4). The phylogeny of haplotypes is shown in Fig. 3. Haplotype names in Italics represent sequences previously reported in GenBank, and all others indicate newly identified haplotypes from the present study. Among the Utoro samples, 3 individuals had apparently distant haplotypes, LkCBU18, LkCBU42, and LkCBU36, which form a monophyletic clade with the *L. kasatka* sequence from GenBank (U46799). The Bayesian posterior probability value for this clade was 100%, indicating that the 3 individuals were either members of *L. kasatka* or of an unknown sister species. The remaining 10 haplotypes were monophyletic, but were separated into 2 clades. One clade was the CBa cluster, which included a
previously reported *L. sitkana* sequence assumed to be typical *L. sitkana*, and the other was the CBb cluster, potentially a different species. Genetic diversity between the CBa and CBb clades was estimated, using the uncorrected *p*-distance as 5.8%, and was considerably higher than observed levels of interspecific differentiation among other *Littorina* species, such as 1.2% between *L. saxatilis* and *L. compressa*, 2.1% between *L. fabalis* and *L. obstusata*, and 2.6% between *L. sitkana* and *L. horikawai* following our calculation from previously reported sequences. Interestingly, *L. horikawai*, which is considered as a different species in the current taxonomy and is endemic to southern Japan, was included in the CBa cluster.

In the analysis of partial 16S sequences, 4 haplotypes were found among the Hokkaido samples (Fig.4). Haplotype Lk16SU36 occurred in individuals that were regarded as *L. kasatka* following the Cytb analysis, and again formed a monophyletic cluster with a previously reported *L. kasatka* sequence. The 8 *L. horikawai* individuals had a single haplotype that was similar to the reported sequence for this species (GenBank accession no. U46796). Both the Bayesian and MP trees for the 16S region indicated an apparent separation of the 16Sa and 16Sb clades, and these corresponded to CBa and CBb, respectively (Fig. 4). The posterior probability and bootstrap support for clade 16Sb in the tree was in fact below significance level; however, non-monophyly of *L. sitkana* was confirmed, because *L. horikawai* was included. At the individual level, all of the individuals with CBa haplotypes showed 16Sa haplotypes, and all of the CBb individuals had 16Sb haplotypes. The 16Sb clade appeared to be independent from *L. natica*. These results indicated that members of the CBb clade were not *L. natica*, and that the Cytb region that we used in this study was not part of a pseudogene. The branching topology is different between the Cytb
and 16S trees, probably due to complex variations among 16S sequences, including
indels. Nevertheless, we successfully confirmed that there were 2 mitochondrial
lineages in the nominal species of *L. sitkana*.

Nuclear DNA Analysis of HSC70 intron

Among 6 and 39 individuals from Kushiro and Utoro, respectively, 27 individuals were
heterozygotes, indicating an observed heterozygosity of 60% for the examined
Hokkaido samples. Among the heterozygotes, 8 individuals (1 from Kushiro and 7 from
Utoro) failed to be genotyped during sequencing via subcloning. These were excluded
from the HWE analysis, but were assigned to the HSCa or HSCb clades as described
below. Thirty-two individuals from Utoro were successfully sequenced and were
assigned to 17 haplotypes. Among them, expected and observed heterozygosities were
estimated as 0.75 and 0.56, respectively, and deviation from HWE was significant (*p* <
0.0001), suggesting subdivision within the population. Both the Bayesian and MP trees
for the haplotypes revealed 2 distinctive clades, HSCa and HSCb, as displayed in Fig. 5.
We found that 8 *L. horikawai* individuals had only a single haplotype that was first
identified in the present study, and all of these were homozygotes. Similar to the
mtDNA analysis, this haplotype comprised a monophyletic clade with HSCa members.
Comparing the sequences of HSCa and HSCb, we identified key variations between 2
clades, including 4 nucleotide substitutions and 2 indels (see Table 2). The 8 individuals
that could not be successfully genotyped were assigned to either HSCa or HSCb using
these key variations. Admixture of 2 clades within a single individual (i.e.,
heterozygotes with HSCa and HSCb haplotypes) was not observed among the samples.
Linkage of mtDNA and HSC70 haplotypes

Linkage between Cytb, 16S, and HSC70 is shown in Table 3. This table exclusively includes individuals that were examined for all 3 markers and excludes some others that were assigned to Clade A or B using only one or two markers. In total, 93% of the genotyped samples from Hokkaido had CBa + 16Sa + HSCa or CBb + 16Sb + HSCb, and 7% had CBb + 16Sb + HSCa. Among the examined samples, Cytb and 16S haplotypes were completely linked. None of individuals showed a combination of CBa + HSCb.

DISCUSSION

Molecular evidence revealed separation of 2 clades of nominal *Littorina sitkana* in the east coast of Hokkaido. The sequence from GenBank with the accession number GQ902751 was reported in Marko et al. (2010) as the most abundant haplotype along the northeastern Pacific coast, including Sitka in Alaska, the type locality from where Philippi’s specimens were collected. The sequence appeared in the CBa group in the phylogenetic tree, as shown in Fig. 3, thus we believe that CladeA with the CBa and HSCa haplotypes contains typical *L. sitkana* specimens. The other, CladeB with the CBb and HSCb haplotype, may be a sister taxon of *L. sitkana*. We are aware that the phylogenetic trees based on 2 mtDNA markers, Cytb and 16S, were inconsistent with each other in some points, and that they failed to reconstruct precise phylogenies among the species. Other markers, such as mtDNA 12S rRNA or nuclear DNA 18S or 28SrRNA, may supply more accurate results. However, for the present study, we required molecular markers that exhibit variations within the species of interest. We detected high levels of genetic differentiation and reproductive isolation between *L.*
sitkana and CladeB, and our results implied that CladeB may be independent at the full
species level. Therefore, we tentatively treated L. sitkana and CladeB as different
species in the following discussion.

In the Utoro population, from which both L. sitkana sensu stricto (CladeA) and
CladeB specimens were collected, 25 individuals (64.1% of genotyped samples) were
heterozygous in the HSC70 region. This indicates that HSC70 alleles have been well
shuffled through mating and recombination. However, no heterozygotes were observed
with a combination of HSCa and HSCb, which correspond to L. sitkana and CladeB,
suggesting that a genetic barrier may exist between the 2 species. The exceptional
associations between HSC70 and mtDNA haplotypes (7% of genotyped samples from
Hokkaido had CBb + HSCa, see Table 3) can probably be attributed to genetic
introgression of mitochondrial DNA caused by occasional hybridization after separation
between L. sitkana and CladeB, as observed in many other species (e.g., Lamb and
Avise 1986; Mikhailova et al. 2009; Reid et al. 2006; Shimizu and Ueshima 2000;
Yamazaki et al. 2008; Wiwegweaw et al. 2009). Nevertheless, such hybridization events
found in the present study are unlikely to have occurred recently because no HSCa and
HSCb heterozygotes were observed in our investigation. Also, considering that no CBa
+ HSCb individuals were observed, it is assumed that directional hybridization has
occurred. For instance, CladeB females and L. sitkana males may have mated, and
offspring may have backcrossed with L. sitkana.

Among 3 of the new species suggested by Zaslavskaya (2006), Littorina sp1 is most
likely identical to CladeB. Littorina sp1 was genetically close to L. sitkana, but was
independent from it, like as CladeB. Littorina sp1 was collected from Kasatka Bay,
Itrup Island, which is the closest area to Utoro among the sampling sites of her study.
Zaslavskaya (2006) suggested that *L. sitkana* and *L. sp1* could be distinguished from one another based on shell morphology. The difference was shown on a photograph, but quantitative information and statistical analyses of morphometric data may be preferable to distinguish the new species from *L. sitkana*, which is a hyper-variable species in shell morphology. Based on the results of Zaslavskaya (2006) and this study, we recommend a revision of the current taxonomy and would like to encourage extensive work on morphology to facilitate description and nomenclature of this new species.

The results of the present study highlight the potential utility of molecular markers to elucidate the phylogeny and taxonomy of shell-bearing mollusks, which can be confused due to intraspecific variation and interspecific similarities in shell morphology. The combination of mitochondrial and nuclear DNA markers provided us with a multidimensional perspective for species identification, and such a method is expected to resolve taxonomic and phylogenetic problems in other species complexes in addition to *Littorina sitkana*.

ACKNOWLEDGEMENTS

We thank Akihiko Matsukuma for providing information about *Littorina horikawai*. We are sincerely grateful to 2 anonymous reviewers for helpful and encouraging comments. This study was supported by a Grant-in-Aid for Advanced Study Projects from the Tokyo University of Agriculture.
REFERENCES

371 University Press, Cambridge, MA.
372
373 Barraclough TG, Vogler AP (2000) Detecting the geographical pattern of speciation
374 from species-level phylogenies. Am Nat 155:419–434
375
376 Boulding EG, J. Buckland-Nicks J, Van Alstyne KL (1993) Morphological and
377 allosyme variation in Littorina sitkana and related Littorina species from the
378 northeastern Pacific. Veliger 36:43-68
379
381 Approaches. Oxford University Press, New York
382
384 sequencing in the marine snail Littorina saxatilis. J Evolution Biol
385 23:2004-2016
386
388 gradient and an associated barrier to gene exchange in Littorina saxatilis
389 Evolution 60:268-278
390
392 phylogenies by maximum likelihood. Syst Biol 52:696–704
393
396 19:1861-1872
397

Reid DG, Golikov AN (1991) *Littorina naticoides*, new species, with notes on the other smooth-shelles *Littorina* species from the northwestern Pacific. Nautilus

Sokolova IM, Pörtner HO (2003) Metabolic plasticity and critical temperatures for aerobic scope in a eurythermal marine invertebrate (*Littorina saxatilis*,...

their spawning habitat. J Herpetol 42:427–436

Figure legends

Fig. 1
Map of Japan displaying the 2 sampling sites in Hokkaido (inset A, *Littorina sitkana*) and 1 in Kyushu (inset B, *L. horikawai*).

Fig. 2

Fig. 3
Fifty-percent majority-rule Bayesian tree inferred from partial mitochondrial DNA Cytb sequences (428bp) using the GTR + G + I model. The tree was rooted using *L. kasatka* as the outgroup. Numbers above the branches represent Bayesian posterior probability values (%). Species names in italics correspond to sequences of related *Littorina* species previously reported in GenBank, and other names indicate haplotypes that were identified in the present study.

Fig. 4
Fifty-percent majority-rule Bayesian tree inferred from partial mitochondrial DNA 16S sequences (434 bp) using the GTR + G + I model. The tree was rooted using *L. kasatka* as the outgroup. Numbers above the branches represent Bayesian posterior probability values (%) and bootstrap values (%) from 1000 replications. The latter were calculated
after reconstruction of a maximum parsimony consensus tree, treating gaps as a fifth element. Species names in italics correspond to sequences of related *Littorina* species previously reported in GenBank, and other names indicate haplotypes that were identified in the present study.

Fig. 5

Fifty-percent majority-rule Bayesian tree (unrooted) inferred from partial nuclear DNA HSC70 intron sequences (287bp) using the GTR + G + I model. Numbers above the branches represent Bayesian posterior probability values (%) and bootstrap values (%) from 1000 replications, which were calculated after reconstruction of a maximum parsimony consensus tree treating gaps as a fifth element. Haplotypes were separated into 2 of the diverged clade, HSCa (CladeA, typical *L. sitkana*) and HSCb (CladeB, *L. sp.*).
Fig. 2
Fig. 3

Littorina sitkana species complex

CBa (typical L. sitkana)

CBb (potentially new species)

0.05 expected changes per site
Fig. 4

Lk16SU36
L. kasatka
L. subrotundata
Ls16SK1
L. silikane
L. horikawai
16Sa
Ls16SU1
Ls16SU3
16Sb
L. saxatilis
L. arcana
L. compressa
L. retica
L. oblusa
L. fabelis
L. aleutica

0.1 expected changes per site
Fig. 5

LHH1 (L. horkawai)

HSCa

HSCb

0.1 expected changes per site
Table 1. Collection locality, date, species, and sample size (no. of individuals) of the *Littorina* periwinkles examined in the present study. *Includes cryptic species revealed in the present study.

<table>
<thead>
<tr>
<th>Locality</th>
<th>(lat., long.)</th>
<th>Date (year, month)</th>
<th>Species</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hokkaido</td>
<td>Utoro (44°04'48"N, 145°00'25"E)</td>
<td>2010, Oct.</td>
<td>L. sitkana</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010, Oct.</td>
<td>L. kasatka</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Kushiro (42°06'18"N, 144°22'46"E)</td>
<td>2010, Oct.</td>
<td>L. sitkana</td>
<td>42</td>
</tr>
</tbody>
</table>

Table 2. Variation in observed partial HSC70 intron sequences in *nomina Littorina*. Haplotypes were separated into 2 of the diverged clade, HSCa (Clade A, typical *L. sitkana*) and HSCb (Clade B, *L. sp.*). N indicates a deletion and dots indicate similar nucleotides/deletions to the first listed haplotype (LsHU2). Nucleotides at sites 42, 57, 93, 107, 108, and 250 (in bold letters) are different between the 2 clades, and were used as discriminative keys for the 2 clades.

Clade	Haplotype	Site No.	42	57	82	93	107	108	110	118	141	142	146	176	181	183	227	228	233	255	257	262	279	290	291	316	
HSCa	LsHU2		T	G	A	G	N	A	G	A	A	G	A	C	T	C	T	T	A	T	T						
	LsHU9-2		•	•	G	•	•	•	A	•	•	A	•	N	N	•	•	•	G	•	•	•	•	•	•	•	•
	LsHU16		•	•	•	•	•	•	A	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU17		•	•	•	•	•	•	•	•	•	•	•	G	C	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU21-2		•	•	•	•	•	•	N	•	•	C	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU40		•	•	•	•	•	•	•	•	•	•	A	•	G	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU40-1		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU40-3		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU40-4		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU1		•	•	•	•	•	•	•	•	•	•	•	•	•	A	•	•	•	•	•	•	•	•	•	•	•
	LsHU1.2		•	•	•	•	•	•	•	•	•	•	A	•	•	C	•	•	•	•	•	•	•	•	•	•	•
	LsHU2		C	•	•	•	•	•	•	•	•	•	A	•	•	C	•	•	•	•	•	•	•	•	•	•	•
	LsHU7		•	•	G	G	•	•	•	A	•	•	A	•	G	A	•	G	•	•	•	•	•	•	•	•	•
	LsHU2-1		C	•	•	•	•	•	•	•	•	•	A	•	•	G	A	•	G	•	•	•	•	•	•	•	•
	LsHU2-2		C	•	•	•	•	•	•	•	•	•	A	•	•	C	•	•	•	•	•	•	•	•	•	•	•
	LsHU2-4		C	•	•	•	•	•	•	•	•	•	G	A	•	C	•	•	•	•	•	•	•	•	•	•	•
HSCb	LsHU1		C	C	A	G	A	A	•	•	•	A	•	G	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU4		C	C	G	G	A	A	•	•	•	A	•	G	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU10.2		C	C	G	G	A	•	•	•	A	•	G	•	•	C	•	G	•	•	•	•	•	•	•	•	•
	LsHU11.2		C	C	G	G	A	•	•	•	A	•	G	•	•	•	G	•	•	•	•	•	•	•	•	•	•
	LsHU14		C	C	G	G	A	•	•	•	•	A	•	G	•	•	•	•	•	•	•	•	•	•	•	•	•
	LsHU22		C	C	G	G	A	A	N	N	A	•	G	•	•	•	•	•	•	•	•	•	•	•	•	•	•
Table 3. Numbers of individuals (N) for each combination of DNA types of mtDNA Cytb (CBa or CBb), 16SrRNA (16Sa or 16Sb), and nuclear DNA HSC70 (HSCa or HSCb).

<table>
<thead>
<tr>
<th>Location</th>
<th>N</th>
<th>DNA type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utoro</td>
<td>11</td>
<td>CBa + 16Sa + HSCa</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>CBb + 16Sb + HSCa</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CBb + 16Sb + HSCb</td>
</tr>
<tr>
<td>Kushiro</td>
<td>6</td>
<td>CBa + 16Sa + HSCa</td>
</tr>
</tbody>
</table>