True Lies

SOCREAL, Sapporo, 25 October 2013

Thomas Ågotnes
University of Bergen, Norway, and
Southwest University, Chongqing, China
Joint work with
Hans van Ditmarsch
Yanjing Wang

Introduction

- A true (or self-fulfilling) lie, is a lie that becomes true when it is made
- Example: Thomas' party
- Logical vs. non-logical true lies
- Outline:
- Background
- Formalising true lies
- The logic of true lies

Background

Public Announcement Logic (Plaza, 1989)

$$
\varphi::=p\left|K_{i} \varphi\right| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right|\left\langle\varphi_{1}\right\rangle \varphi_{2}
$$

ϕ_{1} is true, and ϕ_{2} is true after ϕ_{1} is announced

Formally:

$$
\begin{aligned}
& M=\left(S, \sim_{1}, \ldots, \sim_{n}, V\right) \quad \sim_{i} \text { equivalence rel. over S } \\
& M, s \models K_{i} \phi \quad \Leftrightarrow \quad \forall t \sim_{i} s M, t=\phi \\
& M, s \models\left\langle\phi_{1}\right\rangle \phi_{2} \quad \Leftrightarrow \quad M, s \models \phi_{1} \text { and } M \mid \phi_{1}, s \models \phi_{2}
\end{aligned}
$$

The model resulting from removing states where ϕ_{1} is false Dual: $\hat{K}_{i} \phi \equiv \neg K_{i} \neg \phi$

Formalising true lies

Lies

- Dimensions:
- Who is the lier: one of the agents in the system, or an outsider?
- Who are being lied to (and what do the others know about that)?
-What are the agent's attitude to possible lies?
- Credulous agents: believe everything
- Skeptical agents: believe everything consistent with their existing beliefs
- ...

Lies

- Here:
- Two cases: one of the agents in the system + outside observer
- Public lie, to all other agents
- Credulous/skeptical agents

True lies from the outside

Untruthful announcements: link-cutting semantics

Unbelievable lie
M :

$\left.M\right|_{\neg q}$:
$\bullet_{s}^{p, q}$
${ }_{\bullet} \neg^{p, q}$

Believable lie:
$\left.M\right|_{\phi}, s \models \neg \bigvee_{i \in A g} B_{i} \perp$
$\Leftrightarrow M, s \models \bigwedge_{i \in A_{g}} \hat{B}_{i} \phi$

Models of lying

Already seen:

- reflexivity is not preserved under luinn
- seriality preserved only for

We will write B (belief) instead of K (knowledge)
Preservation of transitivity:

Formalising lies: made by an agent outside the system

Given: pointed model M, s
Pre-condition: $M, s \models \neg \phi$
Additional pre-condition for believable lies:
$M, s \models \bigwedge_{i \in A g} \hat{B}_{i} \phi$
Consequence: $\left.M\right|_{\phi}, s$ obtained by cutting links to $\neg \phi$-states for all agents

True lies: from the outside

,
(typically K(D)45)

Example: from the outside
ϕ is a true lie in M, s iff $M, s \models \neg \phi$ and $\left.M\right|_{\phi}, s \models \phi$
$\phi_{0}=p \wedge B_{b} p$

$\left.M_{0}\right|_{\phi_{0}}: ~ \bullet \bullet_{s}^{p} \quad \bullet_{t}^{p}$
ϕ_{0} is a true lie in M_{0}, s
ϕ_{0} is not a true lie in M_{0}, t
ϕ_{0} is not a believable true lie in M_{0}, s

Example: from the outside
ϕ is a true lie in M, s iff $M, s \models \neg \phi$ and $\left.M\right|_{\phi}, s \models \phi$
$\phi_{1}=p \rightarrow B_{b}\left(\neg p \rightarrow B_{b} \neg p\right)$

$=p \rightarrow \neg \hat{B}_{b}\left(\neg p \wedge \hat{B_{b}} p\right)$

ϕ_{1} is a believable true lie in M_{0}, s

Example: proper true lie
ϕ is a true lie iff $\forall M \forall s: M,\left.s \models \neg \phi \Rightarrow \quad M\right|_{\phi}, s \models \phi$

$$
\phi_{1}=p \rightarrow B_{b}\left(\neg p \rightarrow B_{b} \neg p\right)
$$

Proposition. ϕ_{1} is a true lie in

- KB (the class of all symmetric models)
- K45 (the class of all transitive and Euclidian models)

True lies from the inside

Untruthful announcements by an agent a inside the system

Unbelievable lie

Lie by agent a, possible pre-conditions

$$
\begin{aligned}
& \neg \phi \\
& \neg B_{a} \phi \\
& B_{a} \neg \phi \\
& \neg\left(B_{a} \phi \vee B_{a} \neg \phi\right)
\end{aligned}
$$

Formalising lies: made by an agent a in the system
Given: pointed model M, s
Pre-condition: $M, s \models B_{a} \neg \phi$
Additional pre-condition for believable lies:
$M, s \models \bigwedge_{i \in A g} \hat{B}_{i} \phi$
Consequence: $\left.M\right|_{B_{a} \phi} ^{a}, s$ obtained by cutting links to $\neg B_{a} \phi$-states for all agents $b \neq a$

True lie by agent a, possible post-conditions

ϕ

$B_{a} \phi$

True lies: from the inside

believable

and $M, s \models \bigwedge_{b \in A g} \hat{B}_{b} B_{a} \phi$
ϕ is a true lie by a in M, s iff $M, s \models B_{a} \neg \phi$ and $M\left|\left.\right|_{B_{a} \phi} ^{a}, s \models \phi\right.$
ϕ is a true lie by a iff $\forall M_{\uparrow} \forall s:\left(M, s \models B_{a} \neg \phi \Rightarrow \quad M| |_{B_{a} \phi}^{a}, s=\phi\right.$
believable \int and $\left.M, s \models \bigwedge_{b \in A g} \hat{B}_{b} B_{a} \phi\right)$
In some model class
(typically K(D)45)

Example: from the inside
ϕ is a true lie by a in M, s iff $M, s \models B_{a} \neg \phi$ and $\left.M \left\lvert\, \begin{array}{c}B_{a} \phi, b \\ a, b \\ a \\ a\end{array}\right.\right)=\phi$

$$
\begin{aligned}
\phi_{1} & =p \rightarrow B_{b}\left(\neg p \rightarrow B_{b} \neg p\right) \\
& =p \rightarrow \neg \hat{B}_{b}\left(\neg p \wedge \hat{B}_{b} p\right)
\end{aligned}
$$

$$
M_{0}: \bigcap_{s}^{p} \longleftrightarrow b \bullet_{t}
$$

ϕ_{1} is a believable true lie by a in M_{0}, s

Example: proper true lie by a

ϕ is a true lie by a iff $\forall M \forall s: M,\left.s \models B_{a} \neg \phi \Rightarrow \quad M\right|_{B_{a} \phi} ^{a}, s \models \phi$

$$
\phi_{1}=p \rightarrow B_{b}\left(\neg p \rightarrow B_{b} \neg p\right)
$$

Proposition. ϕ_{1} is a true lie by any $a \neq b$ in $K T B$ (the class of all reflexive and symmetric models).
ϕ_{0} is a true lie by a in M_{0}, s
ϕ_{0} is not a true lie by a in M_{0}, t
ϕ_{0} is not a believable true lie by a in M_{0}, s
(it can be shown that ϕ_{0} is not a believable true lie on any
S. 5 madel)
.. but not in K(D)45

$$
\phi_{1}=p \rightarrow B_{b}\left(\neg p \rightarrow B_{b} \neg p\right)
$$

Relations to (un)successful updates

$$
\begin{aligned}
\text { True lie in } M, s: & M, s \models \neg \phi \text { and }\left.M\right|_{\phi}, s \models \phi \\
\text { Successful update in } M, s: & M, s \models \phi \text { and }\left.M\right|_{\phi}, s \models \phi \\
\text { Unsuccessful update in } M, s: & M, s \models \phi \text { and }\left.M\right|_{\phi}, s \models \neg \phi
\end{aligned}
$$

Other definitions

Self-refuting truth: $\quad \forall M, s \quad M,\left.s \models \phi \quad \Rightarrow \quad M\right|_{\phi}, s \models \neg \phi$

True lie:
Successful formula:
Impossible lie: $\forall M, s \quad M,\left.s \models \neg \phi \quad \Rightarrow \quad M\right|_{\phi}, s \models \phi$ $\forall M, s \quad M,\left.s \models \phi \quad \Rightarrow \quad M\right|_{\phi}, s=\phi$

Moore sentences again

$$
\phi=p \wedge \neg K_{b} p
$$

- Unsuccessful
- Self-refuting

Characterisations

- Positive formulae are successful (van Benthem, Visser)

$$
\phi::=p|\neg p| \neg \phi|\phi \wedge \phi| \phi \wedge \phi \mid B_{i} \phi
$$

- Complete syntactic characterisation of successful formulae has been an open problem for a long time
- Breakthrough: Holliday and Icard (AiML 2010)
- Characterises the class of (un)successful as well as self-refuting formulae for the case of one agent only
- Basic result: "Moorean" phenomena is the source of all unsuccessfulness and self-refutation

Open problems

- Holliday and Icard's result do not carry over to the multi-agents setting, or to agents without negative introspection
- Non-Moorean unsuccessful formulae exist
- True lies: even more difficult?
\qquad

Action models for private lies

$\phi::=\top|p| \neg \phi|\phi \wedge \phi| B_{i} \phi|\langle!\phi\rangle \phi|\left\langle\ell^{i} \phi\right\rangle \phi \mid\langle$ IF ϕ THEN $p \mapsto \phi\rangle \phi$


```
    \(\mathcal{M}, w \vDash p \quad \Leftrightarrow \quad p \in V(w)\)
    \(\mathcal{M}, w \vDash \neg \phi \quad \Leftrightarrow \mathcal{M}, w \not \models \phi\)
\(\mathcal{M}, w \vDash \phi \wedge \psi \quad \Leftrightarrow \quad \mathcal{M}, w \vDash \phi\) and \(\mathcal{M}, w \vDash \psi\)
\(\mathcal{M}, w \vDash B_{i} \psi \quad \Leftrightarrow \quad\) for all \(v\) such that \(w \rightarrow_{i} v: \mathcal{M}_{v} \vDash \psi\)
\(\mathcal{M}, w \vDash\langle\star\rangle \phi \quad \Leftrightarrow \mathcal{M}, w \vDash \operatorname{Pre}\left(\mathcal{U}_{\star}\right)\) and \(\mathcal{M} \otimes \mathcal{U}_{\star},(w, u) \vDash \phi\)
```


The party example

Updated model $(\mathcal{M} \otimes \mathcal{U})$

Example (continued)

Updated model $(\mathcal{M} \otimes \mathcal{U})$

The update model \mathcal{U}^{\prime} for IF $B_{1} p_{2}$ THEN $p_{1} \mapsto \mathrm{~T}$:

$\left.f^{1,2}\right)$
I

Updated model $\left(\mathcal{M} \otimes \mathcal{U} \otimes \mathcal{U}^{\prime}\right)$

Example (continued)

The update model $\mathcal{U}^{\prime \prime}$ for ! p_{1} :

Updated model $\left(\mathcal{M} \otimes \mathcal{U} \otimes \mathcal{U}^{\prime} \otimes \mathcal{U}^{\prime \prime}\right)$

Example (continued)

Updated model $\left(\mathcal{M} \otimes \mathcal{U} \otimes \mathcal{U}^{\prime} \otimes \mathcal{U}^{\prime \prime} \otimes \mathcal{U}^{\prime \prime \prime}\right)$

$p_{1} p_{2}$

Example (continued)

$\mathcal{M}, w \vDash \neg p_{1} \wedge \neg p_{2} \wedge\left\langle\ell_{1} p_{2}\right\rangle\left\langle\mathbf{I F} B_{1} p_{2}\right.$ THEN $\left.p_{1} \mapsto T\right\rangle\left\langle!p_{1}\right\rangle\left\langle\mathbf{I F} B_{2} p_{1}\right.$ THEN $\left.p_{2} \mapsto T\right\rangle p_{1} \wedge p_{2} \wedge B_{1,2}\left(p_{1} \wedge p_{2}\right)$

Summary

- Formalised true lies
- Many subtleties
- Related to other Moorean phenomena
- Characterisation is hard
- Future work:
- Understanding relationships
- Lying games

