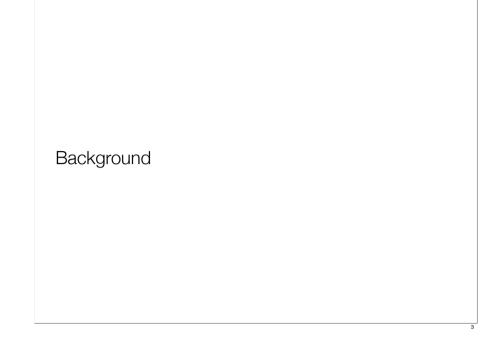
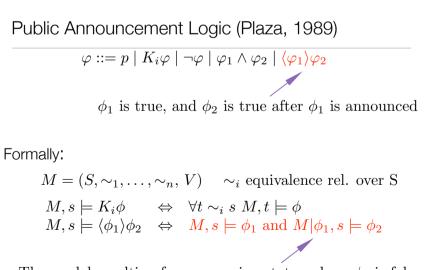
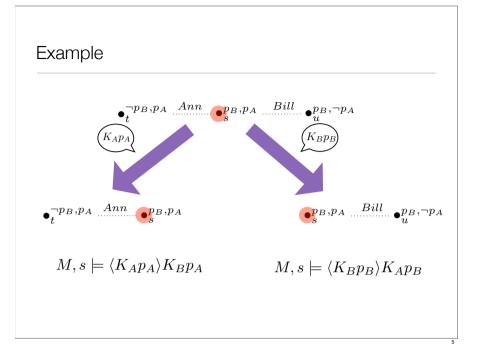
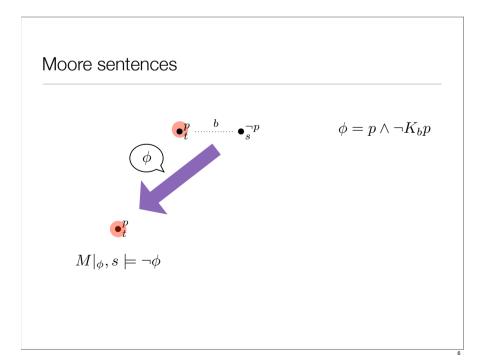
True Lies

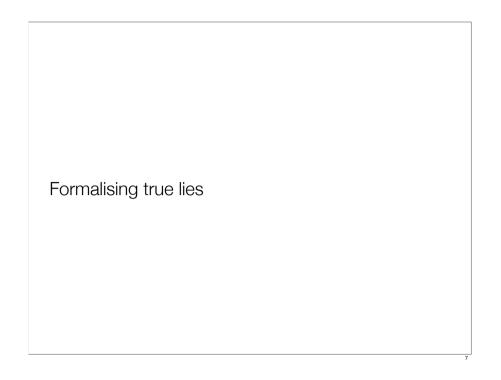
SOCREAL, Sapporo, 25 October 2013


Thomas Ågotnes University of Bergen, Norway, and Southwest University, Chongqing, China


Joint work with Hans van Ditmarsch Yanjing Wang


Introduction


- A true (or self-fulfilling) lie, is a lie that becomes true when it is made
- Example: Thomas' party
- Logical vs. non-logical true lies
- Outline:
 - Background
 - Formalising true lies
 - The logic of true lies

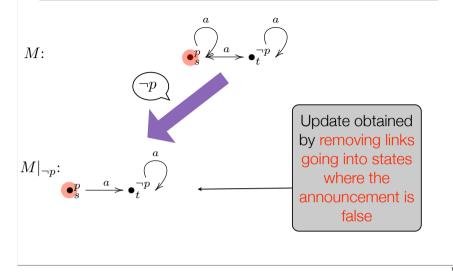


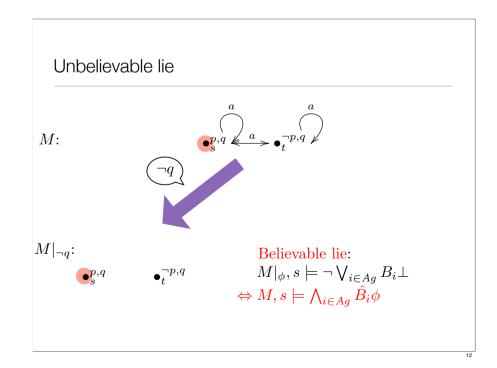
The model resulting from removing states where ϕ_1 is false Dual: $\hat{K}_i \phi \equiv \neg K_i \neg \phi$

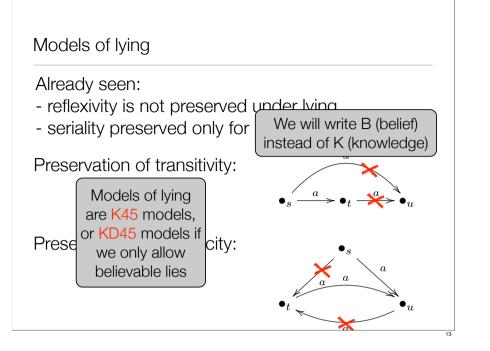
Lies

• Dimensions:

- Who is the lier: one of the agents in the system, or an outsider?
- Who are being lied to (and what do the others know about that)?
- What are the agent's attitude to possible lies?
 - Credulous agents: believe everything
 - Skeptical agents: believe everything consistent with their existing beliefs
- ...


Lies

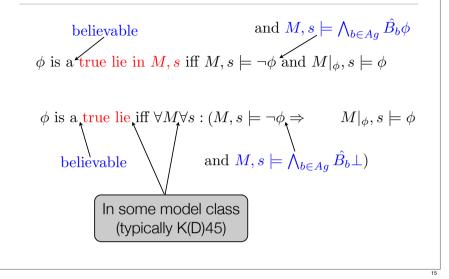

• Here:


- Two cases: one of the agents in the system + outside observer
- Public lie, to all other agents
- Credulous/skeptical agents

True lies from the outside

Untruthful announcements: link-cutting semantics

Formalising lies: made by an agent outside the system


Given: pointed model M, s

Pre-condition: $M, s \models \neg \phi$

Additional pre-condition for believable lies: $M, s \models \bigwedge_{i \in Ag} \hat{B}_i \phi$

Consequence: $M|_{\phi}, s$ obtained by cutting links to $\neg \phi$ -states for all agents

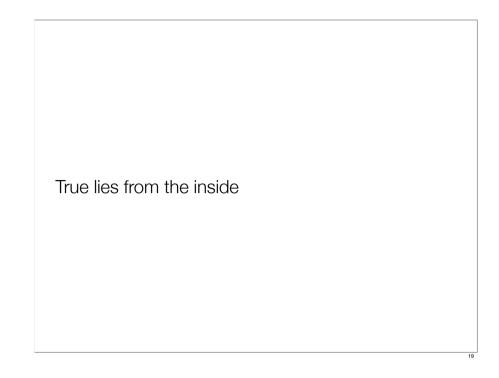
True lies: from the outside

Example: from the outside $\phi \text{ is a true lie in } M, s \text{ iff } M, s \models \neg \phi \text{ and } M|_{\phi}, s \models \phi$ $\phi_0 = p \land B_b p \qquad \qquad M_0: \quad \bigoplus_{s}^{p} \bigoplus_{t}^{t} \bigoplus_{t}^{p} \bigoplus_{t}^{t}$ $M_0|_{\phi_0}: \quad \bigoplus_{s}^{p} \bigoplus_{t}^{t} \bigoplus_{t}^{p}$ $\phi_0 \text{ is a true lie in } M_0, s$ $\phi_0 \text{ is not a true lie in } M_0, t$ $\phi_0 \text{ is not a believable true lie in } M_0, s$

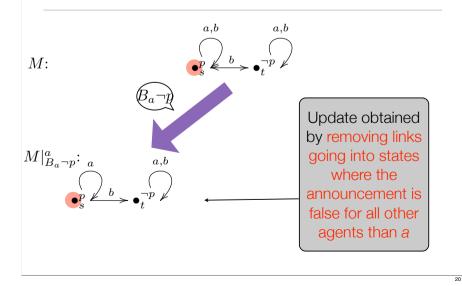
Example: from the outside

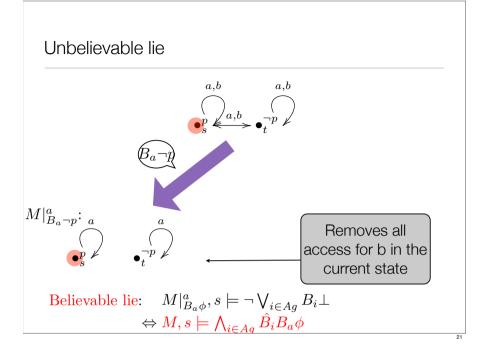
$$\begin{split} \phi \text{ is a true lie in } M, s &\models \neg \phi \text{ and } M|_{\phi}, s \models \phi \\ \phi_1 &= p \to B_b(\neg p \to B_b \neg p) \qquad M_0: \quad \underbrace{\bullet}_s^p \not \xleftarrow{b} \bullet \underbrace{\bullet}_t^{\neg p} \not \xleftarrow{b} \\ &= p \to \neg \hat{B}_b(\neg p \land \hat{B}_b p) \qquad \qquad b \\ M_0|_{\phi_1}: \quad \bullet_s^p \not \xleftarrow{b} \bullet \underbrace{\bullet}_t^{\neg p} \not \xleftarrow{b} \\ &= M_0|_{\phi_1}: \quad \bullet_s^p \not \xleftarrow{b} \bullet \underbrace{\bullet}_t^{\neg p} \not \xleftarrow{b} \\ &= M_0|_{\phi_1}: \quad \bullet_s^p \not \xleftarrow{b} \bullet \underbrace{\bullet}_t^{\neg p} \not \xleftarrow{b} \\ &= M_0|_{\phi_1}: \quad \bullet_s^p \not \xleftarrow{b} \bullet \underbrace{\bullet}_t^{\neg p} \not \xleftarrow{b} \\ &= M_0|_{\phi_1}: \quad \bullet_s^p \not \xleftarrow{b} \bullet \underbrace{\bullet}_t^{\neg p} \not e$$

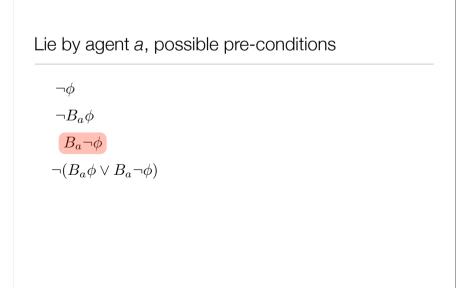
 ϕ_1 is a believable true lie in M_0, s


Example: proper true lie

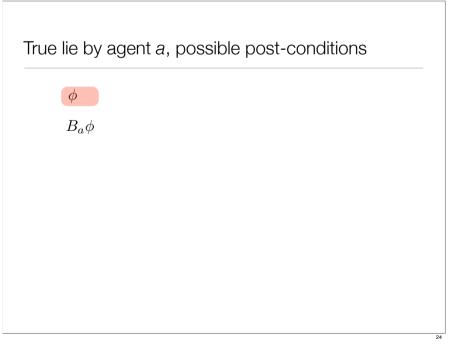
$$\phi \text{ is a true lie iff } \forall M \forall s: \ M, s \models \neg \phi \Rightarrow \qquad M|_{\phi}, s \models \phi$$

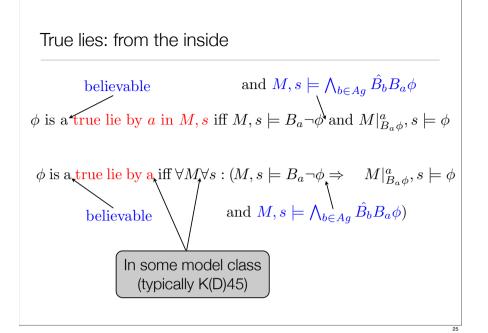

$$\phi_1 = p \to B_b(\neg p \to B_b \neg p)$$


Proposition. ϕ_1 is a true lie in


- KB (the class of all symmetric models)
- K45 (the class of all transitive and Euclidian models)

Untruthful announcements by an agent *a* inside the system


Formalising lies: made by an agent *a* in the system


Given: pointed model M, s

Pre-condition: $M, s \models B_a \neg \phi$

Additional pre-condition for believable lies: $M, s \models \bigwedge_{i \in Ag} \hat{B}_i \phi$

Consequence: $M|_{B_a\phi}^a$, s obtained by cutting links to $\neg B_a\phi$ -states for all agents $b \neq a$

Example: from the inside

 ϕ is a true lie by a in M, s iff $M, s \models B_a \neg \phi$ and $M|^a_{B_a\phi}, s \models \phi$

 $\phi_0 = p \wedge B_b p$

$$M_{0}: \quad \bigoplus_{s}^{p} \not \models \xrightarrow{b} \quad \bigoplus_{t}^{\neg p} \not \models$$
$$M_{0}|_{B_{a}\phi_{0}}^{a}: \quad \bigoplus_{s}^{p} \not \models \quad \bigoplus_{t}^{\neg p} \not \models$$

a.b

a,b

 ϕ_0 is a true lie by a in M_0, s ϕ_0 is not a true lie by a in M_0, t ϕ_0 is not a believable true lie by a in M_0, s (it can be shown that ϕ_0 is not a believable true lie on any S5 model) Example: from the inside

 $\phi \text{ is a true lie by } a \text{ in } M, s \text{ iff } M, s \models B_a \neg \phi \text{ and } M|_{B_a\phi}^a, s \models \phi$ $\phi_1 = p \rightarrow B_b(\neg p \rightarrow B_b \neg p) \qquad M_0: \quad \bullet_s^p \not \leftarrow \bullet_t^\neg p \not \leftarrow$ $= p \rightarrow \neg \hat{B}_b(\neg p \land \hat{B}_b p) \qquad M_0: \quad \bullet_s^p \not \leftarrow \bullet_t^\neg p \not \leftarrow$ $M_0|_{B_a\phi_1}^a: \quad \bullet_s^p \not \leftarrow \bullet_t^\neg p \not \leftarrow$

 ϕ_1 is a believable true lie by a in M_0, s

Example: proper true lie by a

 ϕ is a true lie by a iff $\forall M \forall s : M, s \models B_a \neg \phi \Rightarrow M|_{B_a\phi}^a, s \models \phi$

$$\phi_1 = p \to B_b(\neg p \to B_b \neg p)$$

Proposition. ϕ_1 is a true lie by any $a \neq b$ in KTB (the class of all reflexive and symmetric models).

.. but not in K(D)45 $\phi_1 = p \to B_b(\neg p \to B_b \neg p)$ $\bullet_s^{a} \bullet_t^{a} \bullet_t^{a,b} \bullet_t^{a,b}$

Other Moorean phenomena

Relations to (un)successful updates

True lie in M, s :	$M, s \models \neg \phi \text{ and } M _{\phi}, s \models \phi$
Successful update in M, s :	$M, s \models \phi$ and $M _{\phi}, s \models \phi$
Unsuccessful update in M, s :	$M, s \models \phi$ and $M _{\phi}, s \models \neg \phi$

Other definitions

Self-refuting truth:	$\forall M, s$	$M, s \models \phi$	\Rightarrow	$M _{\phi}, s \models \neg \phi$
True lie:	$\forall M, s$	$M,s\models \neg\phi$	\Rightarrow	$M _{\phi}, s \models \phi$
Successful formula:	$\forall M, s$	$M,s\models\phi$	\Rightarrow	$M _{\phi}, s \models \phi$
Impossible lie:	$\forall M,s$	$M,s\models \neg\phi$	\Rightarrow	$M _{\phi}, s \models \neg \phi$

32

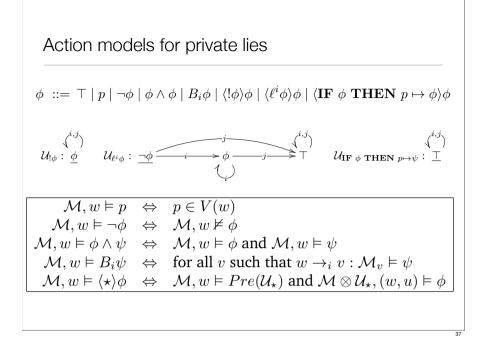
Moore sentences again

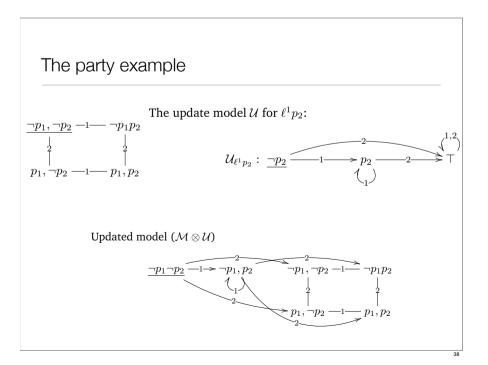
$$\phi = p \land \neg K_b p$$

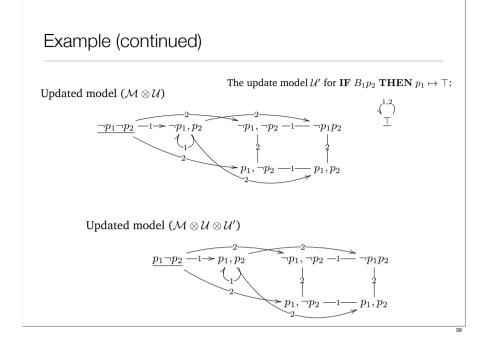
- Unsuccessful
- Self-refuting

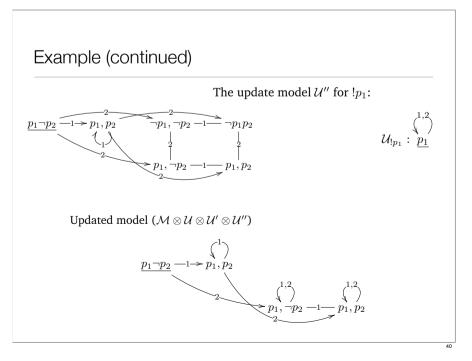
Open problems

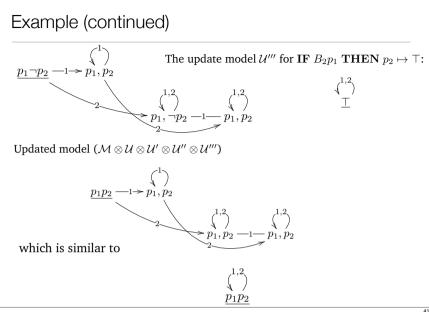
- Holliday and lcard's result do not carry over to the multi-agents setting, or to agents without negative introspection
 - Non-Moorean unsuccessful formulae exist
- True lies: even more difficult?

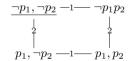

Characterisations


• Positive formulae are successful (van Benthem, Visser)


$$\phi ::= p \mid \neg p \mid \neg \phi \mid \phi \land \phi \mid \phi \land \phi \mid B_i \phi$$


- Complete syntactic characterisation of successful formulae has been an open problem for a long time
- Breakthrough: Holliday and Icard (AiML 2010)
 - Characterises the class of (un)successful as well as self-refuting formulae for the case of one agent only
 - Basic result: "Moorean" phenomena is the source of all unsuccessfulness and self-refutation


On the logic of private true lies



Summary • Formalised true lies Many subtleties

- Related to other Moorean phenomena
- Characterisation is hard
 - Understanding relationships

Example (continued)

 $\mathcal{M}, w \vDash \neg p_1 \land \neg p_2 \land \langle \ell_1 p_2 \rangle \langle \mathbf{IF} B_1 p_2 \mathbf{THEN} p_1 \mapsto \top \rangle \langle \mathbf{IF} B_2 p_1 \mathbf{THEN} p_2 \mapsto \top \rangle p_1 \land p_2 \land B_{1,2}(p_1 \land p_2)$