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Violation of local uncertainty relations as a signature of entanglement
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Entangled states represent correlations between two separate systems that are too precise to be represented
by products of local quantum states. We show that this limit of precision for the local quantum states of a pair
of N-level systems can be defined by an appropriate class of uncertainty relations. The violation of such local
uncertainty relations may be used as an experimental test of entanglement generation.
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I. INTRODUCTION

As more and more experimental realizations of entangle-
ment sources become available, it is necessary to develop
efficient methods of testing the entanglement produced by
such sources@1–6#. In particular, the output of entanglement
sources is usually in a mixed state due to various decoher-
ence effects. For such mixed states, it can be a difficult task
to distinguish whether the output is really entangled, or
whether it is separable into some mixture of nonorthogonal
product states. Although there are simple formal criteria if
the complete density matrix is known, the experimental de-
termination of all matrix elements of an output state requires
considerable experimental efforts@7#. It is therefore desirable
to simplify the verification of entanglement by reducing it to
the observation of only a few characteristic statistical prop-
erties. One well-known statistical property of entanglement
is the violation of Bell’s inequalities, and previous experi-
ments often relied on this property as proof of entanglement
@4,8#. However, the requirements for Bell’s inequality viola-
tions are usually more restrictive than the conditions for en-
tanglement@9#, and the experiments still require a compari-
son of at least four different correlation measurements. These
complications arise from the fact that Bell’s inequalities test
the possibility of local hidden variable models. For entangle-
ment verification, it is not necessary to exclude hidden vari-
able models, since entanglement can be defined entirely
within the context of conventional quantum theory, without
any reverence to alternative models. A more efficient method
may therefore be the definition of a boundary between en-
tangled states and nonentangled states in terms of expecta-
tion values of special operators called entanglement wit-
nesses@10,11#. Each witness operator defines a statistical
limitation for separable states derived directly from the to-
pology of Hilbert space. However, the construction of wit-
nesses that can be tested with only a few local von Neumann
measurements is still a highly nontrivial task@6#. Since the
experimental verification of optical entanglement typically
uses local von Neumann measurements, it may be desirable
to express the criteria for entanglement directly in terms of
the measurement statistics obtained in such experiments.

In this paper, we therefore propose an alternative ap-

proach to entanglement verification based on the observation
that entanglement seems to overcome the uncertainty limit
by allowing correlations between sets of noncommuting
properties of two systems to be more precise than any local
definition of these properties could ever be. Since this preci-
sion in the correlations between two spatially separated sys-
tems is the property that originally leads to the discovery and
definition of entanglement@12,13#, a quantitative evaluation
of local uncertainty violations may provide one of the most
precise experimental measures of entanglement. A general-
ized characterization of entanglement as a suppression of
noise below the local quantum limit may also be useful in the
study of teleportation errors and related problems of quan-
tum communication@14–16# and in the evaluation of the
increased precision achieved by applications of entanglement
such as quantum lithography@17# or atomic clock synchro-
nization @18,19#.

In the following, we first reformulate the uncertainty prin-
ciple, adapting it to arbitrary properties ofN-level systems.
This reformulation of uncertainty provides unconditional
limitations for the predictabilities of measurement outcomes
for any selection of noncommuting physical properties. We
can then derive local uncertainty limits valid for all nonen-
tangled states. Since no separable quantum state can over-
come these limits, any violation of such local uncertainty
relations is an unambiguous proof of entanglement. Some
typical examples are provided and the possibility of obtain-
ing a quantitative measure of entanglement from local uncer-
tainties is discussed.

II. SUM UNCERTAINTY RELATIONS FOR N-LEVEL
SYSTEMS

The use of uncertainty arguments to study entanglement is
well known from continuous variable systems@12,20,21#.
However, these arguments are based on the conventional
product uncertainty of position and momentum. This product
uncertainty is based on the observation that an eigenstate of
position must have infinite momentum uncertainty and vice
versa. InN-level systems, all physical properties have upper
and lower bounds, making infinite uncertainties impossible.
Consequently, the products ofN-level uncertainties will al-
ways be zero if the system is in an eigenstate of one of the
properties concerned. This means that the product uncertain-
ties derived from the commutation relations of operators do*Electronic address: h.hofmann@osa.org
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not provide a generally valid uncertainty limit forN-level
systems. In order to obtain a quantitative definition of uncer-
tainty limits, it is therefore necessary to reformulate and
adapt the uncertainty principle toN-level systems.

In its most general form, the uncertainty principle states
that it is never possible to simultaneously predict the mea-
surement outcomes for all observables of the system. In
terms of quantum theory, the relevant observables of the sys-
tem are represented by a set of Hermitian operators$Âi%.
The uncertainty ofÂi for any given quantum state is then
defined as the statistical variance of the randomly fluctuating
measurement outcomes,

dAi
25^Âi

2&2^Âi&
2. ~1!

This positive property of the quantum state can only be zero
if the quantum state is an eigenstate ofÂi , representing per-
fect predictability of the measurement outcome. We can
therefore conclude that a quantum state with zero uncertainty
in all the propertiesÂi must be a simultaneous eigenstate of
all the operators in$Âi%. If there is no such simultaneous
eigenstate, there must be a nontrivial lower limitU.0 for
the sum of the uncertainties,

(
i

dAi
2>U. ~2!

The limit U is defined as the absolute minimum of the un-
certainty sum for any quantum state. It therefore represents a
universally valid limitation of the measurement statistics of
quantum systems.

SinceU represents a global minimum, it may be difficult
to determine its value in cases where the operatorsÂi have a
complicated form. However, there are a number of signifi-
cant cases where this limit is fairly easy to determine. For
N-level systems, one such fundamental limit can be obtained
using the spin algebra of the corresponding spinl 5(N
21)/2 system with

~ L̂x
21L̂y

21L̂z
2!uc&5 l ~ l 11!uc& ~3!

for any stateuc&. The expectation values ofL̂ i define a vec-
tor with a maximal length equal to the extremal eigenvalues
of 6 l along any axis. We therefore obtain the uncertainty
limit

~4!

This uncertainty relation defines an absolute limit to the pre-
cision of spin variables in anyN-level system. For the com-
monly studied case of two-level systems, the spin variables
are often expressed in terms of the normalized Pauli matrices
ŝ i , which have eigenvalues of61 instead of61/2. The
sum uncertainty relation for the Pauli matrices is then given
by

ds1
21ds2

21ds3
2>2. ~5!

This uncertainty relation provides a quantitative description
of the fact that only a single-spin component of a two-level
system can have a well-defined value. It is also possible to
formulate an uncertainty relation for only two spin compo-
nents by noting thatds i

2<1. This simplified uncertainty re-
lation reads

ds1
21ds2

2>1. ~6!

This is indeed the correct uncertainty minimum. For general
spin l systems, such a simple derivation of theL̂x-L̂y uncer-
tainty is not possible, since the maximal uncertainty ofL̂z is
equal tol 2 and therefore exceeds the uncertainty limit for all
three spin components. Nevertheless, there exists an uncer-
tainty limit of L̂x and L̂y for any value ofl, sinceL̂x and L̂y
do not have any common eigenstates. Forl 51, we have
determined this limit by optimizing the spin squeezing prop-
erties of states with average spins in thex-y plane. The result
reads

dLx
21dLy

2>
7

16
. ~7!

In the L̂z basis, the minimum uncertainty state of this relation
is given by

uf&5
A5

4
e2 ifu21&1

A6

4
u0&1

A5

4
e1 ifu11&. ~8!

It may be interesting to note that this minimum uncertainty
state has anL̂z uncertainty ofdLz

255/8, so that the total of
all three spin uncertainties exceeds the limit set in relation
~4! by 1/16. Relation~7! is therefore more than just a trun-
cated version of Eq.~4!.

III. LOCAL UNCERTAINTY LIMITS

It is now possible to apply the sum uncertainty relations to
define the correlation limit for separable states. In general, a
pair of quantum systemsA andB can be characterized by the
operator propertiesÂi and B̂i with the sum uncertainty rela-
tions given by

(
i

dAi
2>UA ,

(
i

dBi
2>UB . ~9!

It may be worth noting that the two Hilbert spaces of systems
A and B do not need to have the same dimension. In prin-
ciple, local uncertainty limits can be derived for anyN3M
system. Nor is it necessary that there exists any specific re-
lation between the propertiesÂi andB̂i other than that there
is exactly one propertyÂi in A for every propertyB̂i in B.
The operator propertiesÂi1B̂i then define a set of joint
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properties of the two systems that can determined by local
measurements ofÂi andB̂i , respectively. For product states,
the measurement values are uncorrelated and the uncertain-
ties of Âi1B̂i are equal to the sum of the local uncertainties,

d~Ai1Bi !
25dAi

21dBi
2

for r̂5r~A! ^ r~B!. ~10!

Therefore, the measurement statistics of product states are
limited by the uncertainty relation

(
i

d~Ai1Bi !
2>UA1UB . ~11!

Moreover, this uncertainty limit also applies to all mixtures
of product states, since the uncertainties of a mixture are
always equal to or greater than the averaged uncertainties of
the components. For the general case ofr̂5(mpmr̂m and an
arbitrary propertyŜ, this relation between the uncertainties
of a mixture and the uncertainty of its components can be
obtained from

~12!

It follows from this result that the uncertainty relation~11!
for product states also applies to a mixture of product states,

(
i

d~Ai1Bi !
2>UA1UB

for any r̂5(
m

pmr̂m~A! ^ r̂m~B!. ~13!

Any violation of this uncertainty limit therefore proves that
the quantum state cannot be separated into a mixture of prod-
uct states. However, entangled states can overcome this limi-
tation, since entanglement describes correlations that are
more precise than the ones represented by mixtures of prod-
uct states. The violation of any local uncertainty relation of
the form~13! is therefore a sufficient condition for the exis-
tence of entanglement.

IV. VIOLATION OF LOCAL UNCERTAINTY RELATIONS

To illustrate how entanglement can overcome the local
uncertainty limit defined by Eq.~13!, it may be useful to
consider the properties of maximally entangled states. Using
the Schmidt basesun&A andun&B for A andB, these states can
be written as

uEmax&A;B5
1

AN
(

n
un;n&A;B . ~14!

Such maximally entangled states appear to violate the uncer-
tainty principle because any property of systemA can be
determined by a corresponding measurement on systemB.
That is, a measurement of an eigenvalue ofÂi in A projects
the quantum state inB into the eigenstate of2B̂i with the
same eigenvalue as the one obtained forÂi in A. This means
that, for any set of operatorsÂi in A, there is a set of corre-
sponding operators2B̂i in B such that the measurement re-
sult of Âi is always equal to the measurement result of
2B̂i . In more formal terms,uEmax&A;B is a simultaneous
eigenstate of allÂi1B̂i with eigenvalues of zero@22#. Maxi-
mally entangled states can thus have a total uncertainty of
zero in all propertiesÂi1B̂i , maximally violating the uncer-
tainty relation~13!, with

~Âi1B̂i !uEmax&A;B50 and (
i

d~Ai1Bi !
250

for ^nuB̂i un8&52^n8uÂi un&. ~15!

Experimentally, it is then possible to evaluate how close a
given mixed state output is to an intended maximally en-
tangled state by measuring the remaining uncertainty due to
imperfections in the entanglement generation process. To ob-
tain a quantitative estimate of the quality of entanglement
generation, the measured uncertainty can be compared with
the uncertainty limit ofUA1UB52U for separable states.
Specifically, the relative violation of local uncertainty may
be defined as

CLUR512

(
i

d~Ai1Bi !
2

2U
. ~16!

Since some amount of entanglement is necessary to over-
come the uncertainty limit,CLUR provides a quantitative es-
timate of the amount of entanglement verified by the viola-
tion of local uncertainty. In particular, it may be interesting
to determine the minimal amount of entanglement necessary
to obtain a given value of local uncertainty violationCLUR
for various local uncertainty relations. Once such relations
are known, it will be possible to obtain reliable estimates of
entanglement from local uncertainty violations without addi-
tional assumptions about the quantum state.

V. APPLICATION TO ENTANGLEMENT BETWEEN TWO
SPIN-1 SYSTEMS

In general, any uncertainty relation of the type given by
Eq. ~2! can be used to define an uncertainty limit for nonen-
tangled states according to relation~13!. However, in most
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cases it will be convenient to define the limit in a highly
symmetric way. This can be achieved for anyN-level system
by using the spin uncertainty~4!. The local uncertainty rela-
tion for separable states of two spinl 5(N11)/2 systems is
given by

d@Lx~A!1Lx~B!#21d@Ly~A!1Ly~B!#2

1d@Lz~A!1Lz~B!#2>2l . ~17!

Any state that violates this uncertainty relation must be en-
tangled. The optimal result of zero total uncertainty is ob-
tained for the singlet state, defined by

@ L̂ i~A!1L̂ i~B!#usinglet&A;B50. ~18!

Experimental methods of generating such singlet states for
three-level systems (l 51) have been realized using optical
parametric down-conversion to create photons entangled in
their spatial degrees of freedom@1,2#, or to create entangle-
ment between the polarization properties of a pair of two
photon states@3,4#. The relative violation of local uncertain-
ties defined by Eq.~16! may serve as an easily accessible
quantitative measure of the achievements represented by
these experiments.

In order to minimize the experimental effort involved in
characterizing the entanglement of three-level systems, it is
also possible to use the local uncertainty limit based on re-
lation ~7!,

d@Lx~A!1Lx~B!#21d@Ly~A!1Ly~B!#2>
7

8
. ~19!

This inequality requires only two measurement settings cor-
responding to 18 measurement probabilities for its verifica-
tion. For comparison, the experimental verification of a
Bell’s inequality violation reported in Ref.@4# required four
settings and 36 measurement probabilities. Moreover, the op-
timization of the Bell’s inequality violations required mea-
surements at additional settings, while the measurement set-
tings for the local uncertainty relation~19! are defined by the
symmetry of the experimental setup and do not have to be
varied. Unfortunately, the measurement data given in Ref.
@4# are not sufficient to allow an analysis of the local uncer-
tainties of this entanglement source. However, the measure-
ment result was interpreted using a simplified noise model
given in theL̂x basis by

r̂5ps~ usinglet&^singletu!1
~12ps!

3
~ u11;21&

3^11;21u1u0;0&^0;0u1u21;11&^21;11u!,

~20!

that is, the correlation along thex axis of the spin is assumed
to be perfect, while the other two correlations fluctuate with

d@Lx~A!1Lx~B!#250,

d@Ly~A!1Ly~B!#25
4

3
~12ps!,

d@Lz~A!1Lz~B!#25
4

3
~12ps!. ~21!

For this model, the relative violation of the local uncertainty
relation ~19! is equal to

CLUR5
32ps211

21
. ~22!

Using the value ofps50.69 reported in Ref.@4#, the relative
violation of relation~19! achieved in this experiment should
be equal toCLUR50.53. It might be interesting to compare
this value with direct measurements of local uncertainty vio-
lations in future experiments.

VI. UNCERTAINTY VIOLATION AND CONCURRENCE
IN 2Ã2 SYSTEMS

For two-level systems, the uncertainty relations~5! and
~6! define two different criteria for entanglement verification.
The local uncertainty relation based on Eq.~5! reads

d@s1~A!1s1~B!#21d@s2~A!1s2~B!#2

1d@s3~A!1s3~B!#2>4. ~23!

This uncertainty relation is useful in order to identify the
level of singlet-state entanglement in a noisy mixture. It in-
cludes all three Pauli matrices and is therefore not sensitive
to any anisotropy in the noise distribution. The local uncer-
tainty relation based on Eq.~6! reads

d@s1~A!1s1~B!#21d@s2~A!1s2~B!#2>2. ~24!

This local uncertainty relation can be tested with only two
measurement settings. It may therefore be useful in cases
where it is necessary to test for entanglement with only a
limited number of measurements. Since one of the three
Pauli matrices is not considered, this condition for separabil-
ity is sensitive to noise anisotropies. In particular, it corre-
sponds to Eq.~23! if the uncertainty inŝ3(A)1ŝ3(B) is
close to 2, and is more difficult to violate otherwise.

While a precise characterization of experimentally gener-
ated quantum states is very difficult, a measurement of the
uncertainties can provide a comparatively simple test of an
essential entanglement property. A complete illustration of
the many kinds of errors in entanglement generation, which
can increase the uncertainty levels and thus degrade the en-
tanglement, is beyond the scope of this paper. In fact, the
uncertainty limits presented above are useful precisely be-
cause they do not require a full characterization of the statis-
tics given by the complete density matrix. Nevertheless, it
may be useful to look at one specific example to illustrate the
relationship between the uncertainty boundaries and the ac-
tual entanglement of the density matrix. The most simple
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case is given by a mixture of a maximally noisy state and the
intended maximally entangled state often referred to as a
Werner state@9#,

r̂5~12ps!
1

4
1̂1psusinglet&^singletu. ~25!

Here, the parameterps represents the fraction by which the
intended entangled state exceeds the background noise. For
pairs of two-level systems, the amount of entanglement of
any quantum state can be expressed in terms of the concur-
rence C @23,24#. For Werner states, the concurrence isC
5max$(3ps21)/2,0%. It is interesting to compare this pre-
cise measure of the total entanglement of the two systems
with the relative violations of local uncertainty defined by
relation~23!. Since the Werner state is completely isotropic,
the uncertainties of each componentŝ i(A)1ŝ i(B) are given
by

d@s i~A!1s i~B!#252~12ps!. ~26!

Therefore, relation~23!, which gives equal weight to each
component, appears to be optimally suited as a measure of
entanglement for this class of states. This expectation is in-
deed confirmed by the relative violation of local uncertainty,
which is in this case precisely equal to the concurrence,

CLUR512
12ps

3
5C. ~27!

This result shows that for some class of states, the concur-
rence is exactly equal to the amount of noise suppression
achieved in the total spin variables. It is an interesting ques-
tion how large this class of states is. At present, we would
like to note that it is straightforward to extend the result to
arbitrary mixtures of Bell states. In general, it seems to be
quite significant that the relative violation of uncertainty can
be used as an estimate of the concurrence, even though the
experimental effort involved in any precise determination of
the concurrence greatly exceeds the effort required to mea-
sure the relative violation of local uncertainty.

In this context, it may also be interesting to consider un-
certainty relation~24!, which requires only two measurement
settings. Clearly, this uncertainty limit is more difficult to
overcome because it does not include the correlations in the
third componentŝ3(A)1ŝ3(B). As a result, the relative
violation of this uncertainty for Werner states is lower than
the concurrenceC by

CLUR8 512
12ps

2
5C2

12C

2
. ~28!

However, since the relative violation of Eq.~24! is always
lower than the relative violation of Eq.~23!, CLUR8 may pro-
vide a useful lower bound for an experimental estimate of
the concurrence using only two measurement settings.

VII. FURTHER POSSIBILITIES AND OPEN QUESTIONS

As explained in Sec. II, uncertainty relations can be for-

mulated for any operator set$Âi%. It is therefore possible to
optimize the choice of operators in the local uncertainty re-
lation with respect to a given physical situation. In particular,
it may be possible to classify entangled states according to
the types of local uncertainty relations they violate. In any
case, it should be kept in mind that the examples given here
are far from complete.

As mentioned in Sec. III, local uncertainty relations can
also be formulated forN3M entanglement, where the di-
mensionality of the two Hilbert spaces is different. One ap-
plication of this possibility may be the investigation of mul-
tipartite entanglement, where it allows the formulation of
bipartite uncertainty limits for various partitions of the mul-
tipartite system@25#.

As noted in the Introduction, local uncertainties may also
be useful as a characterization of the increased precision ob-
tained from entanglement in applications such as teleporta-
tion, lithography, and clock synchronization@16–19,22#. On
the other hand, quantum information protocols usually define
entanglement with respect to distillability by local operations
and classical communication. This raises the question how
the two concepts are related to each other. Does the distilla-
tion of entanglement actually decrease the uncertainty in the
nonlocal correlation, or does it merely redistribute the quan-
tum fluctuations@26#?

These are just a few of the questions raised by the possi-
bility of quantifying the violation of local uncertainty rela-
tions by entangled states. A systematic classification of local
uncertainty relations may thus provide many new insights
into the physical properties of entangled states.

VIII. CONCLUSIONS

In conclusion, we have generalized the uncertainty prin-
ciple to uncertainty sums of arbitrary sets of physical prop-
erties and derived local uncertainty relations valid for all
separable states of a pair ofN-level quantum systems. Any
violation of these local uncertainty relations indicates that
the two systems are entangled. The relative violation of a
local uncertainty provides a quantitative measure of this en-
tanglement property and may be used to evaluate experimen-
tal entanglement generation processes. It should also be pos-
sible to obtain valid estimates of the total entanglement from
uncertainty measurements. Specifically, the relative violation
of local uncertainty is actually equal to the concurrence for
some 232 cases. In more general cases, it may be possible
to identify the minimal amount of entanglement necessary to
obtain the observed level of local uncertainty violation, thus
establishing a more precise relation between the local uncer-
tainty violation and the total entanglement of the system.
Local uncertainty relations may thus provide an interesting
starting point for further investigations into the physical
properties of entanglement.
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