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We investigate the single-mode operation of a quantum optical nonlinearp phase-shift gate implemented by
a single two-level atom in one-dimensional free space. Since the single-mode property of the input photons at
the atom is not preserved in the interaction at the atom, we analyze the efficiency of single-mode operation that
can still be achieved. We show how the input pulse shape can be optimized to obtain high efficiencies for the
nonlinear single-mode operation. With this analysis, we obtain an optimal single-mode transmittance per
photon of 78% for the successful nonlinearp phase-shift operation.
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I. INTRODUCTION

The progress of photon manipulation technologies can
open the door to the implementation of quantum-information
technologies, which may enable us to greatly improve the
acquisition, transmittance, and processing of information[1].
Since standard optical technologies allow us to control inter-
ference effects even at the single-photon level, the photon is
a strong candidate for quantum-information media. In this
case, the processing of the binary information encoded into
photonic states can be achieved by combining linear optical
elements with nonlinear photon-photon switching devices. In
particular, a nonlinear phase shift ofp per photon would be
useful to perform conditional operations between a control
qubit and a target qubit e.g., in a quantum controlled-NOT

(CNOT) gate[1,2]. However, it is still difficult to achieve such
a strong nonlinearity at the single-photon level. Single-atom
cavity quantum electrodynamics(cavity QED) may offer a
possible solution to this problem. This is because a very
effective coupling between a single atom and the light field
can be achieved in small optical cavities. In fact, an atomic
nonlinearity at the single-photon level has already been dem-
onstrated experimentally using single-atom cavity QED
methods[3]. Based on a semiclassical analysis, we have
pointed out that this method could be used to realize ap
phase-flip operation at the single-photon level if a one-sided
cavity is used[4]. However, a semiclassical theory is not
sufficient to evaluate the effects of a single atom nonlinearity
on arbitrary quantum states of the light field. For this reason,
it is necessary to develop fully quantum mechanical descrip-
tions of the interaction between the light field continuum and
a single atom[5,6].

In our previous work, we have investigated the photon-
photon interaction at a two-level atom by solving the
Schrödinger equation of one-dimensional light field propaga-

tion to and from the atom[7,8]. The results of these investi-
gations have shown that the spatiotemporal coherence of a
light field pulse is changed significantly by the interaction
with the two-level atom. That is, even though the interaction
is restricted to a single transversal mode, a single-mode
model is not sufficient to describe the effects of the single-
atom nonlinearity on an input field, because there is an infi-
nite continuum of longitudinal mode into which the photons
can be scattered. However, the encoding of quantum infor-
mation in optical pulses usually requires that the pulse shape
is a well-defined superposition of the longitudinal mode and
does not change as a result of the operations performed. It is
therefore an open question how much the unavoidable mul-
timode scattering will reduce the efficiency of a quantum
nonlinear shift operation implemented by a single atom in a
cavity.

In this paper, we analyze the single-mode efficiency of the
nonlinear shift gate implemented by a single two-level atom
in a cavity by defining a coherent Gaussian pulse as the
single optical mode carrying the quantum information[9].
We can then evaluate the multimode output of the field-atom
interaction by identifying the components of the output state
where all photons are found in the Gaussian pulse mode thus
defined. Output photons that have been scattered into other
modes by the interaction are then treated as losses. By se-
lecting an appropriate pulse shape, and by taking into ac-
count a delay time caused by the absorption of photons at the
atom, we found that a single-mode transmittance of 78% is
possible for the successful implementation of a quantum op-
tical nonlinear shift operation.

II. RESPONSE OF THE ATOMIC NONLINEARITY
TO A SINGLE-MODE INPUT PULSE

The model of a single two-level atom in one-dimensional
free space is shown in Fig. 1(a). The physical realization of
this model can be implemented by a two-level atom coupled
with a single mode of a one-sided cavity in the bad cavity
regime[4,7]. Here, we assume that the spontaneous emission
rate through the cavity mode is much larger than the sponta-
neous emission rate through noncavity modes. The cavity
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geometry is shown in Fig. 1(b). The input field of the one-
dimensional free space shown in Fig. 1(a) corresponds to the
input of the one-sided cavity in Fig. 1(b), and the output field
in Fig. 1(a) corresponds to the output of the one-sided cavity
in Fig. 1(b). Note that we assume perfect mode matching
between the input field and the cavity. Likewise, the beam
profile of the output field is determined by the emission pat-
tern of the cavity mode. We thus assume an optimized align-
ment of the linear optics in the setup in order to investigate
the inherent limitations of the efficiency caused by the un-
avoidable changes to the spatiotemporal coherence of the
input pulse. In order to apply the nonlinearity of the atom-
cavity system to an arbitrary quantum state of a single-mode
light field, we now consider the case of a well-defined input
pulse, as indicated in Fig. 1(a). It is then possible to treat the
quantum state of this pulse as a single-mode quantum state,
even though it is actually propagating in the infinite con-
tinuum of free-space modes.

In order to describe the light field pulse propagating in the
free field as a single optical mode, we have to define the
pulse shape in terms of the continuous modes of the free-
space field. Conventionally, this field continuum is repre-
sented in terms of the plane-wave modes defined by the
wave vectork. However, since our previous results have
been derived in real space, it is more convenient to use the
real-space representation of the field continuum here. It is

then possible to define the creation operator Aˆ
l
† of the single

pulse mode as

Â l
† =E dx CAsx + ldâ†sxd, s1d

whereCAsx+ ld is the normalized function defining the spe-
cific pulse shape. This definition allows us to separate the

light field into a single mode A and an infinite number of
orthogonal modes that can be distinguished from A. Note
that the spatial coordinatex is defined in a coordinate system
moving at the speed of light, so that the propagation dynam-
ics of the pulse is effectively included in the definition of the
pulse mode[7,8]. The variablel then represents the precise
timing of the pulse. In the following, we will therefore refer
to it as the delay of the pulse. As we will show below, this
parameter is particularly useful in the analysis of the output.
At the moment, it will be sufficient to assume thatl =0.

Using this creation operator, it is possible to define the
spatiotemporal wave functions of each photon number state
in the pulse. Specifically, the zero-, one-, and two-photon
states read

u0A
l l = uVacl,

u1A
l l = A l

†uVacl =E dx CAsx + lduxl,

u2A
l l =

1
Î2

A l
†A l

†uVacl

=E dx1 dx2 CAsx1 + ldCAsx2 + ldux1;x2l. s2d

As explained above, the coordinatesx, x1, and x2 are the
spatial coordinates in the coordinate system moving at the
velocity of light. The indices 1 and 2 ofx1 and x2 in the
two-photon component identify the two particles. The spatial
features of the probability amplitudes given by the wave
function CA correspond to the spatial features of the pulse
mode A. Thus, the wave functionCAsxd characterizes the
single-mode-one photon component. Likewise, the wave
function CAsx1dCAsx2d characterizes the single-mode two-
photon component, where the wave functions of both par-
ticles overlap perfectly. It is thus possible to describe the
spatiotemporal feature of the single-mode Fock statesunA

l l.
Any quantum state of the single-mode input pulse can

now be expanded in the photon number basis of the pulse
mode A. In this basis, an arbitrary input state can be defined
by the probability amplitudesCn of the photon number states
unA

l=0l. In the following, we assume that the contributions
with photon numbers greater than 2 are negligible. Note that
this situation can be realized either by controlling the photon
number precisely, e.g., by using single-photon sources, or by
using weak coherent input light. In either case, the spa-
tiotemporal coherence of a general single-mode input state
can then be expressed using the real-space representations of
the one- and two-photon components,

uclin = C0u0A
l=0l + C1u1A

l=0l + C2u2A
l=0l

= C0uVacl + C1E dx CAsxduxl

+ C2E dx1 dx2 CAsx1dCAsx2dux1;x2l. s3d

The light pulse characterized by the above input state is

FIG. 1. (a) Schematic of the atomic nonlinear shift gate and(b)
physical realization of the one-dimensional atom.
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propagating at the velocity of light in the input field of the
schematic shown in Fig. 1(a). In our previous work[7], we
derived the unitary time evolution operator in the Hilbert
spaces for the one-photon component and the two-photon
component by solving the Schrödinger equation of the inter-
action between a one-dimensional field and a single atom.
The output state in the far field can then be obtained by
integrating the input wave functions with the matrix descrip-
tion of the unitary operator in real space,

uclout = C0uVacl + C1E dx Coutsxduxl

+ C2E dx1 dx2 Coutsx1;x2dux1;x2l,

with

Coutsxd =E dx8u1 photonsx;x8dCAsx8d

and

Coutsx1;x2d =E dx18 dx28 usx1,x2;x18,x28dCAsx18dCAsx28d.

s4d

The matrix elementsusx1,x2;x18 ,x28d are given by

usx1,x2;x18,x28d = u1photonsx1;x18d ·u1 photonsx2;x28d

+ DuNonlinsx1,x2;x18,x28d,

with

u1 photonsx;x8d = dsx − x8d −
2G

c
e−sG/cdsx8−xd

for x ø x8, otherwise 0,

and

DuNonlinsx1,x2;x18,x28d

= −
4G2

c2 e−sG/cdsx18+x28−x1−x2d for x1,x2 , Minfx18,x28g. s5d

The output wave functionsCoutsxd andCoutsx1;x2d describe
the spatial feature of the output state in the far field of the
atom shown in Fig. 1(a). The spatiotemporal features of the
one- and two-photon input components are generally not pre-
served in the output, due to the atomic response described by
the matrix elementsusx1,x2;x18 ,x28d. This means that the
single-mode Fock statesunA

l l will not be sufficient to de-
scribe the output state, since this state includes photons in
other modes. In the following, we therefore analyze which
component of the output state can still be described in terms
of a single-mode pulse state using the single-mode photon
number basisunA

l l for a fixed value of the delayl.

III. SINGLE-MODE OUTPUT COMPONENTS
OF THE ATOMIC NONLINEARITY

In order to analyze what component of the output state
can be represented by the single-mode basisunA

l l, we have to

apply a mathematical operation to the output state that re-
moves any component with photons in modes other than the
single-pulse mode A. Since this operation effectively filters
out any components that cannot be represented as single-
mode states of the pulse mode A, we will refer to this opera-
tion as a filter operation in the following. This filter operation
can be described by the Hermitian operator

F̂Asld = uVaclkVacu + u1A
l lk1A

l u + u2A
l lk2A

l u. s6d

Here, u1A
l l and u2A

l l represent the one- and two-photon Fock
states described by the spatiotemporal wave functionsCAsxd
andCAsx1dCAsx2d, respectively. Since the mode selected by
the filter operation is a pulse mode, the timing of the filter
operation given by the delayl is an important variable. When
the delay time isl =0, the mode passing the filter corresponds
to an input pulse that has passed the atom without absorption
and reemission. By increasing the delay time, the delay
caused by the temporary absorption of photons can be com-
pensated. Note that the delay timel must be the same for
both the one- and the two- photon components, since the
condition for single-mode operation is that the two compo-
nents are Fock states of the same mode.

In order to obtain an intuitive understanding of the above
filter process, it may be useful to think of a hypothetical
device that could perform the operation described by the op-

eratorF̂Asld. Such a linear optics filter device would transmit
only the pulse mode A with a probability of 1, while all other
modes would be reflected. The filter operation would then be
controlled by postselecting only the cases where all photons
are transmitted. It should be noted that the practical imple-
mentation of such a device may require a significant techno-
logical effort, since it must combine time-dependent gating
with a sufficiently narrow spectral response. In the follow-

ing, we therefore use the filter operationF̂Asld only as a
mathematical tool to identify a well-defined single-mode
component within the multimode output of the nonlinear
atom-cavity system.

We can now analyze the component of the output state
that can be described as a single-mode quantum state of a
pulse mode A delayed byl. If we describe the operation of
the atom-cavity system by the unitary operator uˆatom and
limit the input to the pulse mode A withl =0, the operation of
the atom-cavity system under the condition that all output
photons are in the delayed pulse mode can be described as

Ŝdevice; F̂Asldûatom

= uVaclkVacu − h1u1A
l lk1A

l=0u − h2u2A
l lk2A

l=0u,

where

h1 = − k1A
l uûatomu1A

l=0l = −E dx CA
p sx + ldCoutsxd

and
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h2 = − k2A
l uûatomu2A

l=0l

= −E dx1 dx2 CA
p sx1 + ldCA

p sx2 + ldCoutsx1,x2d. s7d

It is thus possible to identify a conditional single-mode op-

eration Ŝdevice within the nonlinear multimode operation
ûatom. For the analysis of the single-mode efficiency of the

atomic deviceŜdevice, it will be useful to separate this opera-
tion into two components, a nonlinear phase-shift operation

ÛNS and a loss operationL̂,

Ŝdevice= L̂ÛNS,

where

L̂ = uVaclkVacu + h1u1A
l lk1A

l u + h2u2A
l lk2A

l u

and

ÛNS= uVaclkVacu − u1A
l lk1A

l=0u − u2A
l lk2A

l=0u. s8d

The loss operation then determines the probability of a suc-
cessful single-mode operation,

Psuccess= kcuL̂†L̂uclout = uC0u2 + h1
2uC1u2 + h2

2uC2u2. s9d

The probability of success thus depends on the photon num-
ber distribution of the input state. Since the probability of
success for the vacuum component is always 1, this depen-
dence can be conveniently expressed in terms of a transmit-
tance per photon. The single-photon transmittance is then
given byh1

2, while the transmittance per photon in the two-
photon case is given byh2. As long as the sign ofh2 is

positive, the operationŜdevice thus represents a single-mode

nonlinear p phase-shift operationÛNS with photon losses

given byL̂. Note that, ifh2 becomes negative,L̂ itself causes

a nonlinear phase shift, canceling the effect ofÛNS.
The single-mode transmittance of the nonlinear shift op-

eration can now be optimized by varying the pulse shape A
and the delayl between the input and the output. It is then
possible to determine optimized conditions for the single-
mode operation on an arbitrary input state.

IV. OPTIMIZATION OF THE NONLINEAR SHIFT GATE

We can now find the optimal efficiency of the nonlinear
operation by selecting the delay timel and the input pulse
length. In the following, we consider Gaussian input pulses
with varying pulse lengths given by

CAsxd = e−x2/scTd2/ÎN,

where

N = Îsp/2dscTd2. s10d

The transmittances depend strongly on the input pulse length
and the delay time of the filter, since photon absorption and
reemission processes are sensitive to the spatiotemporal co-
herence of the light field. In general, the loss operator de-

scribes nonlinear losses. This means that the transmittance
per photon is different in the one-two-photon case. To opti-
mize both cases at the same time, we choose the condition of
linear transmittance,h1

2=h2. This condition allows us to in-
terpret the transmittance as a linear optics effect, where each
photon has the same probability of being lost. In particular,
this condition greatly simplifies the calculation of total losses
in complicated networks. Note that the condition of linear
transmittance can always be fulfilled by adjusting the delay
time l of the output filter at a fixed pulse lengthT. The
optimization of the transmittance can then be accomplished
by varying the only remaining parameterT.

The maximal transmittance ofh1
2=0.78, under the condi-

tion of linear transmittanceh1
2=h2, has been obtained nu-

merically in the vicinity of a pulse duration ofT=1.3/G and
a delay time ofl =0.9/G by varying the input pulse duration
T and the delay time of the filterl. The dependence of the
transmittancesh1

2 andh2 on the pulse durationT at the delay
time of l =0.9/G is shown in Fig. 2(a). The thin line and the
solid line correspond to the one-photon transmittanceh1

2 and
the two-photon transmittanceh2, respectively. The one-
photon transmittanceh1

2 increases rapidly until up to a pulse
duration ofT=0.5/G and then slowly approaches 1. For in-
put pulse durations much smaller than the dipole relaxation
time 1/G, the input pulse suffers almost no delay by absorp-

FIG. 2. (a) Transmittancesh1
2 (thin line) and h2 (solid line)

depending on the pulse durationT at a delay time ofl =0.9/G and
(b) transmittancesh1

2 (thin line) and h2 (solid line) depending on
the delay timel at a pulse duration ofT=1.3/G. The condition for
the linear transmittance,h2=h1

2, is fulfilled at the crossing points of
the two lines.
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tion and reemission. The low one-photon transmittanceh1
2

shown in Fig. 2(a) for such short pulses therefore originates
from the difference between the delay timel =0.9/G of the
filter and the actual arrival time of the output pulse, corre-
sponding to a delay ofl =0. For long pulses, the one-photon
output component becomes almost identical to the one-
photon input component in terms of pulse length and pulse
shape, and the delay in the arrival time is now much smaller
than the input pulse lengthT. The one-photon transmittance
h1

2 therefore approaches 1, as shown in Fig. 2(a). On the
other hand, the two-photon transmittanceh2 has a maximum
near a pulse duration ofT=1/G, and then begins to decrease,
eventually approaching −1, where the output two-photon
wave function at the atom is identical with the input two-
photon wave function, except for the delay timel. This is
because the nonlinear effect only occurs if the two photons
are within about 1/G of each other[7]. Therefore, the non-
linear response of the atom is maximal near a pulse duration
of T=1/G and the linear response is dominant for input
pulses much longer thanT=1/G.

The dependence of the transmittancesh1
2 and h2 on the

delay timel at the pulse duration ofT=1.3/G is shown in
Fig. 2(b). The thin line and the solid line correspond to the
one-photon transmittanceh1

2 and the two-photon transmit-
tance h2, respectively. The maxima of the one- and two-
photon transmittance are delayed due to absorption at the
atom. The difference of the delay time of the two maxima is
roughly equal to the dipole relaxation time 1/G. Specifically,
the one-photon maximum is delayed compared to the two-
photon maximum. This difference between the two-cases
suggests that the reemission from the atom occurs sooner in
the two-photon case. It can therefore be interpreted as an
effect of stimulated emission[10]. This delay between the
one- and two-photon output appears to be one of the reasons
why we cannot get beyond a linear transmittance of 0.78.

The optimal linear transmittance is given by the crossing
points of the one-and two-photon transmittances in Fig. 2(a)
and 2(b). Note that, in Fig. 2(a), there are two crossing points
at a pulse duration ofT=1.0/G and 1.3/G, respectively. The
change of transmittance in the region between the two points
is only about 0.01. This means that the linear transmittances
are not very sensitive to the input pulse duration between
T=1.0/G and T=1.3/G, which may make it easier to opti-
mize pulse duration in experiments. The result of 0.78 at a
pulse duration ofT=1.3/G and a delay time ofl =0.9/G

means that a successful nonlinearp phase shift can be
achieved, where 78% of the input photons are transmitted in
single mode by the nonlinear device. Our result shows how
the choice of the pulse length and the output delay time
affects the nonlinear operation of the single-atom device. The
efficiency of 78% is the maximal efficiency achieved with
Gaussian input pulses when there are no additional losses in
the device. In the presence of losses, induced e.g., by imper-
fect mode matching of the input beam and the cavity mode,
or by spontaneous emission into noncavity modes, the effi-
ciency will be reduced accordingly. While a detailed analysis
of such losses is beyond the scope of this paper, it may be
worth noting that linear losses could be included in the
model by applying an additional linear loss operator. A
simple estimate of the total efficiency can then be obtained
by multiplying the idealized efficiency with the actual linear
transmittivity of the device at resonance.

V. CONCLUSIONS

We have investigated the efficiency for the single-mode
operation of a nonlinearp phase shift implemented using an
atom-cavity system by analyzing the multimode property of
the output photons from the one-dimensional atom. The
maximal transmittance ofh1

2=0.78 under the condition of
linear transmittanceh1

2=h2 has been obtained numerically in
the vicinity of a pulse duration ofT=1.3/G and a delay time
of l =0.9/G by varying the input pulse durationT and the
delaytime of the filterl. The numerical results for Gaussian
input pulses indicate that the efficiency is very sensitive to
the input pulse length and to the delay time of the pulse
mode filter. Our analysis for the single-mode operation
clearly shows theimportance of the input pulse length and the
delay time for the realization of successful single-mode op-
eration using atomic devices. Specifically, the optimized ef-
ficiency of 78% for single-mode operation indicates that
nonlinear devices based on atomic nonlinearities could in-
deed be useful for quantum-information processing, if proper
pulse lengths and delay lines are used.
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