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Experimental demonstration of a three-qubit quantum computation algorithm
using a single photon and linear optics
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~Received 17 February 1999; published 3 August 2000!

A quantum computer that gives us the result of a single quantum computation has been constructed. The
quantum register was realized by modes and polarization of photons, and the unitary transformation was
implemented with linear optics. For each quantum computation, the answer to the Deutsch Jozsa problem for
any four-bit digit is given by a single-photon detection signal with a small error rate of less than 4%.

PACS number~s!: 03.67.Lx, 42.30.2d

1Quantum computation is a new concept that utilizes
quantum superposition states for ultrafast parallel processing
@1–3#. Deutsch and Jozsa found that quantum computers can
segregate arrays of digits exponentially faster than classical
computers@4#, and the discovery was followed by Shor’s
famous factoring algorithm@5#. There have been several pro-
posals for the actual realization of quantum computers@6–8#.
Demonstrations of a quantum logic gate using single quanta
have been performed@9,10#. However, the demonstration of
algorithms has not been performed using a single-quantum
system.

Nuclear magnetic resonance quantum computation
~NMR-QC! was invented as a promising idea to realize
quantum algorithms. The nuclear spins of a molecule in so-
lution were adopted as qubits. Each of the molecules in the
solution works as an individual quantum computer. So far,
only NMR-QC has played the role of a test bed for these
algorithms @11–14#. However, this test bed has the weak
point that the results are always given by an average over a
huge number of quantum systems, so ‘‘projection measure-
ment’’ phenomena cannot be demonstrated by NMR-QC.

Projection measurement plays an important role in quan-
tum computation. For the Deutsch-Jozsa algorithm, the struc-
ture was carefully selected so that the answer can be given
by a single quantum computation@15#. In this sense, the
experiment performed by NMR@13# did not demonstrate the
heart of the algorithm sufficiently. As is pointed out in Ref.
@14#, the famous scheme of quantum error correction@16#
based on projection measurement cannot be tested by NMR-
QC.

In addition, the input qubits were prepared in ‘‘hot mixed
states’’ in the NMR-QC experiments performed. Because of
these two problems, there is a class of quantum algorithms
that cannot be solved efficiently by NMR-QC@17#.

Quantum computation using linear optics is an alternative
important test bed for quantum computing. If we use a single
photon for computation, the result is given not by an average
but by a single quantum computation. In quantum algo-
rithms, appropriate unitary transformations are applied to
quantum registers. Recket al. @18# found that linear optics

can be used to realize any unitary transformation. A theoret-
ical proposal for quantum computation using linear optics
was given by Takeuchi@19#, and later a similar idea was
suggested independently@20#.

Here we report an experimental demonstration of the
Deutsch-Jozsa quantum computation algorithm using linear
optics and a single photon. In the experiment, the initial state
was pure and the answer is given by single-photon detection
so that the key aspect of the Deutsch-Jozsa algorithm of ob-
taining the answer witha single quantum computationis
fully demonstrated. The experiment is equivalent to three
qubits, which is the largest size of today’s quantum comput-
ers. Our results also imply that quantum computation using
linear optics is as practical as NMR-QC.

First, let us introduce the problem of the Deutsch-Jozsa
algorithm. Suppose we are given an array of 2N digits. We
call the arrays ‘‘even’’ when they include as many 1’s as 0’s
~e.g., $1,0,1,0% for N52), and ‘‘uniform’’ when they are
filled with only ‘0’s or ‘1’s ~e.g.,$1,1,1,1%). The problem for
the Deutsch-Jozsa algorithm is to find the correct answer
between ‘‘the given array is not even’’ and ‘‘the given array
is not uniform.’’ When the array satisfies both cases, either
of them can be the answer. A classical computer needsN
11 steps in the worst case. However, a quantum computer
can find the answer withO„log(N)… steps@4#.1

Our quantum computer solves the problem with four-bit
inputs, for which three qubits are required in the Deutsch-
Jozsa algorithm; two qubits are used as the address register
and one as the accumulator for the given oracle. In our com-
puter, four optical paths are used for the address register and
the polarization of the photon is used for the accumulator.
Our quantum computer is used as follows. First, the com-
puter is initialized for the computation. Second, the oracle~a
four-bit digit! is given to the computer and is converted to
the appropriate voltage applied to the E/O~electro-optic!
modulators in the system. Then we put a single photon with
vertical polarization into the input port of this quantum com-
puter, and observe the detector at the output port to find
whether it detects the photon or not. If the photon is detected,

*Present address: RIES, Hokkaido University, Sapporo 060-0812,
Japan.

1O is the Landau symbol:h(x)5O„g(x)… meansh(x)/g(x) is
bounded forx→`.
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the answer is that the given oracle$ f ( j )% is not even. If the
photon is not detected, the answer is that the given oracle
$ f ( j )% is not uniform.

The experimental setup is shown in Fig. 1. The vertically
polarized 694 nm beam from a laser diode passes through the
spatial filter and is attenuated by neutral density~ND! filters
to very weak light~up to 0.5 pW!. When such a weak beam
was used, the average number of photons present in the op-
tical system was 331023, and the probability of finding two
or more photons in the coherent length of 10 cm (; width of
a single photon wave packet! was less than 331024. In
addition, the number of incident photons was much less than
the saturation level of the photon detector. In this sense, the
computation was performed using the quantum phenomenon
of single-photoninterference. All shutters in the optical sys-
tem except the one for the reference light were open during
the computation.

The transformation of a 50:50 beam splitter is given as
follows @21#:

1

A2
S 1 i

i 1D . ~1!

After passing through three beam splitters, the wave function
of a single photon is converted to a uniform superposition of
the states passing through four optical paths. When the beam
splitters are 50:50, the transformation of these three beam
splitters is given using Eq.~1! as follows:

1

2 S 1 iA2 i 0

i A2 21 0

i 0 1 iA2

21 0 i A2

D . ~2!

Therefore, the wave function of the photon after passing
these beam splitters can be described as follows@19#:
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where ai describes the amplitude of the wave function at
path i shown in Fig. 1, and@p# describes the state of the
polarization;@0# is the basis of the vertical polarization and
@1# is that of the horizontal polarization. The phase factors
according to the optical length of each path will be consid-
ered later. We use E/O modulators~Gsenger PM0202s! to
embed the oracle$ f ( j )% in the system. The modulators rotate
the polarization of photons when and only whenf ( j )51.
After the modulation, the wave function becomes
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Next, quarter wave plates act as phase shifters, that change
the phase of the wave function byp/2 only when the polar-
ization of the photons is vertical. After the phase shifters, the
mirrors reflect back the wave function. The wave plates add
anotherp/2 phase shift according to the state of polarization.
Then the E/O modulators rotate the polarization to the origi-
nal state again. The state of the photon after the E/O modu-
lators is written as follows:

I 25
1

2F ~21! f (1)

i ~21! f (2)

i ~21! f (3)

2~21! f (4)

G @0#. ~5!

The transformation of three beam splitters can be written as
follows:

1

2 S 1 i i 21

iA2 A2 0 0

i 21 1 i

0 0 iA2 A2

D . ~6!

After passing the three beam splitters again, the component
c3,[0] of the wave function at output mode 3 with vertical
polarization~@0#! is written as

c3,[0]5 i ~21! f (1)2 i ~21! f (2)1 i ~21! f (3)2 i ~21! f (4)

~7!

5(
j 51

4

~21! f ( j )3exp~ if j !, ~8!

where f j is the phase corresponding to the optical path
length of pathj and the additional phase factors due to the
reflection at the beam splitters.

FIG. 1. Schematic diagram of the optical system for the
Deutsch-Jozsa algorithm with four-bit inputs.
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Before the computation, we adjust the path length accord-
ing to the following initialization procedure. Switching the
shutters in the paths, and settingf (1)5 f (4)51 and f (2)
5 f (3)50, the visibilities of the interference between path 1
and path 3 , path 1 and path 2, and path 3 and path 4 are
observed sequentially and the tilt angles of the mirrors are
adjusted to obtain the maximum visibilities, which were up
to 98%. Next, we control the length of path 1 to set the
interferometers to a dark condition~almost no photons ob-
served at the output port! with 0.5 nm precision using piezo-
actuators attached directly to each of the mirrors. Using Eq.
8, the output of the interference between path 1 and path 3 is
proportional to

u~21! f (1) exp~ if1!1~21! f (3) exp~ if3!u2

52@12cos~f12f3!#. ~9!

Therefore setting the interferometer to the dark condition
corresponds to having the conditionf15f3. In the same
way, we realize the conditionsf15f2 andf35f4 by set-
ting the interference between path 1 and path 2, and path 3
and path 4, respectively, to the dark condition. The interfer-
ence of the reference light~632.8nm! was used for precise
control of the path lengths. The optical system was also pas-
sively stabilized against thermal drifts for at least 10 s with-
out active control.

Because the phase factorsf j in Eq. ~8! are set to be
identical in the initialization procedure, the probability of the
detection of the photon at the output port is

P„$ f ~ j !%…5
1

16U(j 51

4

~21! f ( j )U2

. ~10!

P50 for the even input and 1 for the uniform input.
We used a single-photon counting module~SPCM-AQ,

EG&G! as the photon detection device. The observed dark
count in the experimental setup was less than 43103

counts/s.
For a given oracle, the photons were counted for 0.1 s. By

running the initialization procedure at intervals of 10 s, we
succeeded in continuing computation for tens of minutes.
This initialization procedure was automatically performed by
a personal computer, which also generates the four-bit digits
and collects the data.

When the answer of our quantum computer is wrong for
the given input, it is termed an ‘‘error.’’ The error rate can be
calculated from the photon detection probabilityP„$ f ( j )%…
with the given oracle$ f ( j )%.

When we use weak light for the source of photons, we
somehow have to know when a photon is not detected. One
solution is to put three other photon detectors at the open
output of the beam splitters. When we observe a photon de-
tection signal from them, we regard the event as ‘‘not de-
tected.’’ In this experiment we just set the detector at the
output port. In order to derive the detection probability

P„$ f ~ j !%…5
N„$ f ~ j !%…

Ntotal
, ~11!

whereN„$ f ( j )%… is the photon counting rate with the oracle
$ f ( j )%, we have to estimateNtotal , which is the number of
total photon detection events of all detectors. In this paper,
we estimatedNtotal by (Nmax1Nmin), where Nmax is the
maximum photon counting rate (5.703105 counts/s! ob-
served with oracles$ f ( j )%5$0,0,0,0% andNmin is the mini-
mum counting rate~6360 counts/s! at $ f ( i )%5$1,0,0,1%. The
experimental results are shown in Fig. 2. The vertical axis
shows the four-bit digits given to the computer. The horizon-
tal axis shows the probabilityP of photon observation at the
output port. The theoretical values given by Eq.~10! are
shown by the solid lines in Fig. 2. The experimental values
plotted as the black dots are calculated by Eq.~11!.

This result shows that we can determine whether the
statement ‘‘the given oracle$ f ( j )% is not even’’ or ‘‘the
given oracle$ f ( j )% is not uniform’’ is correct with the small
average error rates of 2.7% and 4.0%, respectively, by the
observation of a single-photon. Recently, we succeeded in
analyzing the sources of errors quantitatively and found that
the imperfection of the path length adjustment in the initial-
ization procedure was the main cause. The subtle differences
of the probabilities for intermediate cases~i.e., 1,0,1,1! from
the theoretically predicted value of 25% seemed to come
from the same source. The details of the analysis will be
reported elsewhere@22#.

We emphasize that the answer to the Deutsch-Jozsa prob-
lem was given here by a single quantum computation. The
experiment thus exactly demonstrates the essence of the
original Deutsch-Jozsa algorithm@15#. This is an important
feature of linear optics quantum computation when com-
pared with the NMR-QC method. The observation of a stop
bit of the quantum computer@23# and the quantum error
correcting codes@16# are examples in which the projection
measurement plays an important role. Although the imple-
mentation using linear optics is not suitable for large-scale
computation because it requires 2N21 paths for the demon-
stration withN qubits, we believe it will become an impor-
tant testing ground for quantum computation.

Let us briefly discuss the number of calculation steps. In
quantum computation, the number of steps is regarded as the
number of unitary transformations applied to the quantum
register. Hence we should count the number of layers of the

FIG. 2. The photon detection probability for the given four-bit
digits f ( j ). The theoretical values with no errors are shown by the
solid lines, and the experimental values are plotted as black dots.
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optics that the photon wave function was actually affected
by. In our system, the total number of steps was eight~two
for initial beam splitting, four for E/O modulators and wave
plates for a round trip, and two for final beam splitting!. It is
also interesting that the calculation of a four-bit digit can be
performed using only a single photon. It is not the number of
particles, but the number of the degrees of freedom of the
particles, that is important for computation. After the sub-
mission of this paper, an experiment using Glover’s algo-

rithm with two qubits and a proposed system of three qubits
were reported independently@24#.

I would like to thank Professor Oliver Wright and Dr.
Toshiro Isu for their fruitful comments on this paper and the
members of the Quantum Devices Team at ATRC for their
help with the experiment. The author is affiliated with the
PRESTO project of the Japan Science and Technology Cor-
poration.
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