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Analysis of errors in linear-optics quantum computation

Shigeki TakeucHi
Mitsubishi Electric Corporation, Advanced Technology R&D Center, Amagasaki, Hyogo 661-8661 Japan
and PRESTO Project, Japan Science and Technology Corporation, Kawaguchi, Saitama, 332-0012 Japan
(Received 27 September 1999; published 31 March 000

The origin of errors in quantum computation implemented by linear optics is studied. The systematic errors
of quantum gates, phase relaxation, amplitude dumping, and misreadout are considered as error sources, and
the errors which occurred in a four-bit Deutsch-Jozsa algorithm experiment are categorized according to the
sources. The increase in the error rate with the expansion of the input size in the Deutsch-Jozsa algorithm is
also studied and it was found that the demonstration of 11 qubits using linear optics and a single photon with
less than a 20% error rate is achievable by the technique used in the experiment.

PACS numbd(s): 03.67.Lx, 42.30-d

I. INTRODUCTION the errors of the expanded system using the error parameters
of the four-bit DJ experiment. We concluded that a quantum

Quantum computation is a new concept which utilizescomputation of 11 qubits using linear optics is achievable
quantum superposition states for ultrafast parallel processingith less than a 20% error rate using the technique used in
[1-3]. There have been several proposals for the actual realhe experiment. When we consider the limit of NMR-QC to
ization of quantum computerf4—6]. Of these, nuclear- be ten qubits, and this result suggests that linear optics quan-
magnetic-resonance quantum computatiBtMR-QC) has  tum computation is one of the most practical test beds for
played the role of a test bed for these algoritjhi§]. How-  quantum computation.
ever, NMR-QC has the following restrictions: the input qu- We also found that the main source of error was caused
bits are prepared in “hot mixed states,” and the results ardy the dark counts of the photon detectors when the size of
always given by an average over a huge number of quantuithe system was increased, and that the increase in error rates
systems. Therefore there is a class of algorithms which carfiepends on the answef$ot even” and “not uniform”) to
not be performed by NMR-QQC9]. the DJ problem. We think this kind of error analysis will

Quantum computation using linear optics and a singlé1elp to invent a type of algorithm which is tolerant to the
photon is an alternative test bed for quantum computation. ligource of error.
contrast to NMR-QC, the initial qubits can be prepared in The rest of the paper is structured into six sections: Sec-
pure states and the result can be given not by an average bi@n Il consists of an introduction to the implementation of
by a single quantum computation. In quantum algorithmsguantum computation using linear optics. Section Il de-
appropriate unitary transformations are applied to quantur§cribes the sources of errors in the linear optics quantum
registers. Reclet al. found that linear optics can be used to computation and an analysis of the effect of the sources in a
realize any unitary transformatigii0]. A theoretical pro- Simple optical system. Section IV consists of the result of the
posal of quantum computation using linear optics was giveriour-bit DJ experiment together with the experimental setup.
by Takeuchi[11], and later a similar idea was suggestedIn Sec. V, a quantitative analysis of the error in the experi-
independently by Cerét al.[12]. Recently, an experimental ment is given. We discuss the increase in error rate with the
demonstration of the four-bit Deutsch-Joz§a)) quantum  number of qubits used in the algorithm in Sec. VI. In Sec.
computation algorithni13] using linear optics and a single VII, we conclude with a summary of this paper.
photon whose size was equivalent to 3 qubits was reported
[14]. In the experiment, the answer was given with an error
rate of less than 8%.

In this paper, we report a quantitative analysis of the
sources of error in linear optics computation. In quantum Any quantum algorithm is compatible with a proper quan-
computation, error is caused by several sources: systematiom circuit. Deutsch also showed that any quantum logic
errors in quantum gates, phase relaxation, amplitude dummgate can be constructed using universal quantum gates, such
ing, and misreadout. We estimated the effect of each sourcas rotation gates for a single qubit and controlken gates
in the four-bit DJ experiment, and succeeded in reproducindor two qubits. In the linear optics quantum computation, we
the error rate which appeared in the experiment by using thase the modes of a single photon for several qubits and po-
sum of the estimated error rates according to the sources. larization for one qubit. For example, if we nekdubits for

We also studied the increase in the error rate when the quantum computation, we can prep&rel qubits using
size of the input digits is expanded t§ Bits and estimated 2k~! modes and one qubit by polarization. In the following,

we show that simple linear optical devices such as beam
splitters and phase shifters act as quantum gates for these
*Present address: RIES, Hokkaido University, Sapporo, 060-081gubits.
Japan. An example of a quantum circuit with a single qubit is

II. OPTICAL IMPLEMENTATION OF QUANTUM
COMPUTATION USING LINEAR OPTICS
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FIG. 1. (@) An example of a quantum circuit using a single
qubit, which is equivalent to &oT gate.(b) An implementation of FIG. 2. (a) An example of a quantum circuit of two qubit)
the quantum circuit using two optical modeds) Another imple-  An implementation of the quantum circuit using four optical modes.
mentation using polarization of a single photon. ] . . ]

system in the four-bit DJ experiment. Another implementa-

shown in Fig. 1a). The quantum circuit contains phase- tion is also pos§ible using polarization for quity, and two
shift gate between a pair of Hadamard gai€s: is trans- modes for qubitB). _
formed to (0)+|1))/\2 and|1) to (|0)—|1))/y2. When Linear optics quantum computation has_so_me advantages
the input qubifa) is |0), the qubit|b) should be1). In this V€' NMR-QC's: we can prepare initial qubits in a pure state
sense this circuit worké asNoT gate in total or any mixed state, and we can also perform “a single quan-

An optical implementation of this circuit is the Mach- tum computation™ using a single phot.on. It was also shpwn
Zehnder interferometer shown in FiglhL A qubit is repre- that any quantum algorithm can be implemented by linear

sented by 2 moded0) and|1). The transformation of a optics[12]. Although it may not be suitable for large-scale
50:50 beam splitter is given as follows: computation because it require 2 paths for the demon-

stration withN qubits, it will be used as an alternative test
bed of quantum computing.

1 /(1 i
\/E i 1). @ I1l. SOURCES OF ERROR IN LINEAR OPTICS
QUANTUM COMPUTATION
When the beam splitter is supplemented with twar/2 Here we study the sources of error in the linear optics
phase shifters in modd.), it acts on these two modes as in quantum computation. The main sources of error in quantum
the following transformation12]: computation can be listed as followd) Systematic error of
quantum gateg2) phase relaxation3) amplitude dumping,
1(1 1 and(4) misreadout of the computation result.
R= E( 1 - 1) ) 2 In quantum circuits, qubits are rotated by a given angle at

quantum gates. “The systematic error of quantum gates” is
the difference between the actual rotation angle and the sup-
which is same with the Hadamard transformation. Supposgosed one. “Phase relaxation” means the broadening of the
the initial qubit|a)=[0) by putting a single photon into phase distribution of the wave function. The phase relaxation
input mode{0), we will detect the photon in the output mode squashes the quantum interference, and increases the error of
|1). Here the path difference between the two modes shoulthe computation. In linear optics quantum computation, the
be adjusted to 0. surface roughness of the optics, the fluctuation of the reflec-
Figure Xc) is another example of implementation. In this tive index of the air, and the misalignment of the optics are
case, the polarization of a photon is used to implement a&f this type. “Amplitude dumping” of the wave function
qubit: horizontal polarization corresponds|@ and vertical  occurs when photons are absorbed or reflected unintention-
polarization to|1). Each of the two Hadamard gates is real-ally in the optical system. “Misreadout” corresponds to the
ized by aw/2 phase shifter whose optical axishown as a dark counts in the experiment using a single photon. Some of
dotted ling was set at 22.5° from the vertical axis, and&  them are caused by stray photons and some by the intrinsic
phase shifter was implemented by anothé?2 wave plate noise of the photon detector.
which acts as an optical delay between the vertical and hori- In this section, we analyze the effect of these sources in
zontal polarizations. the simple optical system shown in Fig. 3. This optical sys-
Another example of a quantum circuit of two qubits tem is a Michelson interferometer which is equivalent to the
shown in Fig. 2a). When the stat¢a)|b)=|0)|0) is input,  system shown in Fig.(b). A single photon is put into mode
the output state will be a uniform superposition of the statesl of a 50:50 beam splitter and the result is detected by a
|a)|b)=(]0)|0)+|0)|1)+|1)|0)+|1)|1))/2. The optical photon detector at output mode 1 or 2. When the path length
system uses four modes to implement these two qubits. The, andx, are set to be equal and no error source exists, the
first Hadamard transformation is realized by beam splitter Jphoton should be detected by detector D1 at output mode 1.
(BS1) and BS2, and the second one is realized by BS3 anth the following, we consider nonideal cases with error
BS4. This implementation is used as a part of the opticakources.
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Q Photon result of the quantum circuit shown in Fig. 1 without any
DEtegj’rQ error. The detection probability at the output modes is given
ClFeuztor as follows:
- B %_%5__% y A %
irror
— [ v |
Detector B =1- E[1— cosk(x, —X,) |sir?é, €)
bz P %z A toss “Phase ) 2
E ;v Loss Relaxation
Il _Ph 1 .
% Relefion P,=5[1—cosk(x; ~xp) sir?. 9)
- Mirror

First let us consider the case where the parameters should
FI(_S. 3_. A schematig diagram of the optical system for the quantye get ag9= 7/2 andx;—x,=0. The probabilities are pre-
tum circuit shown in Fig. (). sumed to bé®>; =1, P,=0. When we have systematic errors,
A. The systematic errors of quantum gates these para_meters are given as 7-r/2_+ 5(_, and k(x;—X5)
' = dg. In this case, the error rat&(0) is given as follows:
In the optical system shown in Fig. 3, the two Hadamard
gates in Fig. (a) are implemented by a beam splitter BS. In E(0)=(1-Py)=P; (10
this case, the error of the splitting ratio of the beam splitter is

one of the systematic errors. The transformation of the beam 1 2
splitter with a pair of— /2 phase shifters in modd) is =3 (1= cosdg)cos s, (1)
given as follows:
1
6 6 ~ Z‘S%' (12
cos;  sin;
R(0)= 0 R 3 In the last approximation, we neglected the terms higher than
Sin§ _COSE the second order of error. Similarly, when we consider the
case where the parameters should be sepasr/2 and
where # corresponds to the rotation angle of a qubit. K(xy=X2) =, the error ratee(a) is written by

There is another source of systematic error. When the
path difference is not adjusted to be(6r the supposed
value, it is equivalent to where an unnecessary phase-shift

E(m)=P1=(1-P,)

. . 1

gate is added to the optical system. The effect of the path =1— = (1+c0s35)c0g 5, (13)
difference is given by the following transformation 2

L(Xq,X2):

1o o
ex N 0
L(Xy,Xp)= . , 4 .
(x1,%2) 0 F{ZW'XZ) @ B. The effect of phase relaxation
A Next, let us study the phase relaxation of the wave func-

) ) tion, which results in the increase of error through the loss of
wherex, ,\,x, mean twice the optical length of path 1, the 4,0 4 antum interference effect. In an extreme case when the
wave length of the incident .photon, and twice the opticalgisyribution of the phase is uniform from 0 tos2 no inter-
length of path 2 plus\/2. Using these two equations, the tgrence appears. In linear optics quantum computation, the
wave function at the output mode is given as follows: main causes of the phase relaxation@ehe surface rough-

1 ness of the opticgb) the fluctuation in the reflective index
) (5) of air, and(c) an imperfect overlap of the wave front because
of the misalignment of the optics. These processes can be
taken into account using a phase parameéjein the trans-
formationL(Xq,X5):

(¢ﬂ=mmumm»mm(

U 0

6 0
exp(ikxl)coszz + exp(ikxz)sinzz

= , (6) 2mixXy
i i .0 0 exp ——+ 8, 0
[explikxy) —exp(i x2)]5|n20052 L' (%0, %) = -
TIX2
wherek=2m/\. When §= /2 andk(x, — x,) = 7, the out- 0 exp( N
put state'(y,,¥,) becomes(0,1) which is equivalent to the (15)
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Becausda) and(b) are stochastic processes, we may assume In this case, the error rate(0) andE(#) are calculated
d; has a Gaussian distribution. F@) we may also assume a as follows:
Gaussian distribution when the photon number density has a

Gaussian distribution in its radius. Therefore, we assame 1 1
is a Gaussian distribution(s; ,T';), E(0)= Z‘%Jr 5T total- (19
1/2 )
= ——| e (54ry)
o(6;,T) 47TFJ-) e M), (16 L1, 1
E(m)= 83+ 795+ 5 otar- (20
Calculating the output staté i ,4,) using Eq.(5) with
L'(X1,Xo) instead ofL(xy,X,), the photon detection prob-
ability at output mode 1 is given as follows: C. Amplitude dumping

% o The amplitude dumping of wave functions corresponds to
Pl:f w(51,rl)f w(8,,T'2) 7 1d6,dS, (17)  the optical loss in linear optics quantum computation. We

o o adopt the following matrix which describes the unbalanced
loss in each path of the interferometer:

1
=1—5[1—exr(—l“l—l“z)cos{kéx)]sinza. (18) exp(— ) 0
- o7l o exd—B)) @)
As shown above, the total phase relaxation parameter of the
systemlI is given byl =1T'1+1T5. Similarly, when we
have an additional source of phase relaxation, we can havehen the wave function at the output mode of the interfer-
I"iota) DY just summing them. ometers with loss is given as follows:

(l/fl

1
wz) =R(6)NDL(X1,XZ)R(G)(O) (22

. 0 _ .0
exp— a)exp(|kx1)c052§ +exp — ,B)exp(lkxz)smzz

_ . (23
[exp(— a)explikx,) —exp(— ﬂ)exmkxz)]singcog

The detection probability?; and P, is given by, 0 0
exp(—A)=exp— 2a)co§§ +exp(— 2,8)sin2§, (28)

0 6 1
P,= e*Z“coé‘E +e Psirf = + Ee*“*Bsinzacos(k&(),

2
(24) 2e @ p

exp—I'")= ———, (29

1 e 2%t+e 28 e *te

Pzzzsinze T—e“‘*cos{k&x)). (25)

e72a+e72ﬁ

On the other hand, the output from an interferometer with sin* 6’ =sin’6 P . (30
a balanced loss exp(d) and a phase relaxatiohi can be 2 e’zaco§§+efzﬁsin2§

written as follows:

It is interesting to see that the output of the Michelson
interferometer with unbalanced loss is the same as that
(26)  whose loss is balanced but where phase relaxation and beam
splitting ratio errors occur. However, note that the output
state'(y,,4,) is different. The output state form the inter-
ferometer with an unbalanced loss still maintains coherence.
Therefore, this interpretation of the unbalanced loss is not
When we compare these equations for the terms o&daptable in general. The error rate with loss is discussed in
coskaox), we have the following relations: the next subsection.

Plzexp(—A)( 1— %[1—exq—1“)cosk5x]sin20’),

P2=exp(—A)(%[1—exp(—l“)cosk5x]sin20’). (27)
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D. Weak light as the source of photons (— B)sir’(6/2) expikx,). We may write these wave functions

As an easy way to put single photons into the optical@S
system, we may use weak coherent light. In this case, pho- _ .
tons are input to the system randomly. We cannot know éj=ajexi(a;+ )], (39
when each of them is injected and a single quantum compypen we can calculate the photon detection probalilifyas
tation is performed by the photon. One way to solve thisig|ows:
problem is to set photon detectors on all the output modes of

the beam splitters. In this example, we set two detectors D1 o (o 2 2 2
and D2. A quantum computation was performed when one oP1= f [T w(8;.T)| 2 i1y d61d8, (36)
them detected a photon. Tl el =1
First, let us calculate the error rate assuming that the de- 2
tectors have 100% quantum efficiency and no dark counts. _ 2 . _
When we assumél;, photons are put into the system, the Z’l At 2aapexp— 1y I)cosda; — az). 37

numbers of counts by detectors D1 and D2 are given by . .
Ni,P; and Ni,P,, therefore Ny is given by Nioga Let us consider the error of an interferometer whose path

=N, (P1+ P,). When we consideE(0)= Ni,P,/Nyya and difference is set at 0. In this case, the error E&¢0) is given
E(m)=N,,P; /N, the total loss expfA) appears in the s follows:

numerator and the denominator commonly and is dimin- E(0)=1-P, (38)
ished. Therefore, in this simple case, the error r&t) and
E(r) are given by Eqgs(19) and(20) with Egs.(28)—(30). =E,(0)+E»0), (39)
Note that when the loss is balanced, i.e., when 3, the
amplitude dumping cause no errors. 2
Next, let us consider the effect of the quantum efficiency E1(0)=1—21 ai2+ 2a;a,—cod a;— ay), (40)
=

and the dark count of the detectors. Wheyy photons are
puLlo ut mode 1, e photon couning g andN: - g(0) 2131~ Jyascosan ), 41
where E;(0) represents the effect of the systematic errors,
and E,(0) shows the effect of phase relaxation. When we
dark consider the casé= 7/2+ 5, andk(x;—X,) = &5, then we
No=Ng72P2+ N, (32)  have a;=(1-singy)/2 and a,=(1+sind,)/2. Then, we
have E1(0)=5f;/4 and E»(0)=T"/2, respectively, which is
whereN{**,N3** are the dark count rates angd and», are  consistent with the result given in E€L9).
the quantum efficiencies of the detectors. The total count rate This method is especially useful to categorize the errors
Niotal IS given byNiqia=N;+N,. For simplicity, let us as-  for the optical system in which modes are symmetrical.
sume that systematic error, phase relaxation, and loss do not

N;=Ng 7, P+ N, (31)

exist. In this simple caseé5(0) andE(#) can be given as IV. FOUR-BIT DJ EXPERIMENT
follows:
In this section, we describe the experiment which demon-
Ndark strated the DJ algorithm with four-bit input reported else-
E(0)= 2 , (33  Wwhere[14], which is modified to explain the details suffi-
Ng 7y + NSk N dark ciently to analyze the source of errors in the experiment.
Ndark A. Deutsch-Jozsa problem
E(m)= - . (34) . .
N0n1+Ncljark+ chiark First, let us introduce the problem of the Deutsch-Jozsa

algorithm. Suppose we are given an array of digits. We
call the arrays “even” when they include as many 1's as 0’s
E. Another error analysis method based on the superposition (example{l,O,l,Q for N=2), and “uniform” when they are
of modes with error parameters filled with only O’s or 1's(example{1,1,1,3). The problem
In the above subsections, we used matrices for each O[ggr the Deutsch.-Jozsa algprithm is to find the corr_ect answer
tics, path differences, and losses. However, when the size G€tween “the given array is not even” and “the given array
the optical system increases, the number of matrices and pk NOt uniform.” When the array satls_fles both cases, either
rameters which represents errors become huge, and it b8t them can be the answer. A classical computer néé¢ds
comes difficult to categorize the error according to the typet™ 1 Steps in the worst case, however, a quantum computer
of source. In this section, we introduce another methodan find the answer witd(In(N)) steps[13].
which is convenient for analyzing errors in an optical system
with many optics.
In Eq. (23), ¢, is written in the superposition of wave !0 is Landau’s symbol:h(x)=0(g(x)) meansh(x)/g(x) is
functions of each path exp(@)coS(0/2)expikx;) and exp  bounded forx— .

052302-5



SHIGEKI TAKEUCHI PHYSICAL REVIEW A 61 052302

LD  He-Ne Therefore, the wave function of the photon after these beam
Mirror $65 MM)LG3ERA M} splitters can be described as follofsL]:

Spatial D
Path 3 Fijer a, 1

S .
Path B , Shutters ap 1 I
Path 1 | = =] |lPl=3| Lo, (43
\:r?(;:th 4 oo Mirror 3
ED -n,d (mode 1)  'x

o X @B Splitt
BS2 & & eam Splitter
2 0% ND Filters
Highpass Filter g
Photon Detector

A /4 plate

m

where a; describes the amplitude of the wave function at
Pathi shown in Fig. 4, andp] describes the state of the
polarization;[0] is the basis of the vertical polarization, and
FIG. 4. A schematic diagram of the optical system for the[1] is that of the horizontal polarization. The phase factors
Deutsch-Jozsa algorithm with four-bit inputs. according to the optical length of each path will be consid-
, _ered later. This transformation is equivalent to the implemen-
_ Our quantum computer solved the problem with four-bitiaiion of the quantum circuit shown in Fig(8 except for
inputs, for which three qubits are required in the Deutschy,q phase factor. We use E/O modulatof§senger

Jozsa algorithm; two qubits were used as the address registsrvlozozg to embed the oracléf(j)} in the system. The

and 1 as the accumulator for the given oracle. In the com- N
puter, four optical paths were useg for the address registenrwdl"lat.O rs rotate the polar|zat|qn of photons when _and only
and the polarization of the photon was used for the accumu\é":enf(”: 1. After the modulation, the wave function be-

lator. mes:
The computation was performed as follows. First, the
computer is initialized for the computation. Second, “the 1 0 0 0

oracle” (a four-bit digiy was given to the computer and is

! ; 1|0 1 0 0
converted to the appropriate voltage applied to the electro— [F(D)]+i| _|[F2)]+i] . |[f(3)]—] . |[f(4)]
optic (E/O) modulators in the system. Then, we put a single-2| | O 0 1 0
photon with vertical polarization to the input port of this 0 0 0 1
“quantum computer,” and observed the detector at the out-
put port to find whether it detected the photon or not. If the

photon is detected, the answer is that the given orddlie } . .
is not even. If the photon is not detected, the answer is thdl€Xt, quarter-wave plates act as phase shifters, which change

the given oracldf(i)} is not uniform. The reason why this the phase of the wave function by/2 only when the polar-

computer works will be explained in the next section. ization of the photons is vertical. After the phase shifters, the
mirrors reflect back the wave function. The wave plates
added anothe#r/2 phase shift according to the state of po-
larization. Then the E/O modulators rotate the polarization

The experimental setup is shown in Fig. 4. A vertically a4ain to the original state. The state of the photon after the
polarized 694 nm beam from a laser diode passes through th& modulators is written as follows:

spatial filter and was attenuated by the neutral density filters
to very weak light(up to 0.5 pW. When such a weak beam

B. Experimental setup

was used, the average number of photons present in the op- (-1

tical system(length of each path is 1 ywas 3x 10 3. And 1| i(-1)f

the probability to find two or more photons in the coherent l2=5 i(—1)/® [0]. (45
length of 10 cm ¢ width of a single photon wave pachet

was less than 810 . In this sense, the computation was —(—1)'®

performed using the quantum phenomenorsiofjle-photon

interference. All shutters in the optical system except the onghe transformation of three beam splitters can be written as

for the reference light were open during the computation. fgjlows:
After passing through three beam splitters, the wave func-

tion of a single photon is converted to a uniform superposi-

tion of the states passing through four optical paths. When 1 ! : -1
the beam splitters are 50/50, the transformation of these three 11iv2 V2 0 o0
beam splitters is given using Eqg. 1 as follows: 21 i -1 1 i (46)
1 iy2 i o 0 0 V2 2
11 i V2 -1 o0
A 0 1 iz (42 After passing the three beam splitters again, the compo-
: : nent s o) of the wave function at output mode 3 with ver-
-1 0 i NA tical polarization([0]) is written as

052302-6
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Yajo=i(— 1M =i(= 1) @+i(- 1)@ =i(-1)"@ 5 s , -
(47) S ® experiment ®
= o simulation
4 i} — theory
. O
=2 (—1)'Vexplig), (48) £
=1 ©
S oo .
where ¢; is the phase corresponding to the optical path £ LN =
length of pathj and the additional phase factors due to the 2 °
; ; o ok B oo o008 4
reflection at the beam splitters. o0 .
a 52852852852

Before the computation we adjusted the path length ac-
cording to the following initialization procedure. Switching
the shutters in the paths, and settihgl)=f(4)=1 and I
f(2)=f(3)=0, the visibilities of the interference between
Path 2 and Path 4 , Path 1 and Path 2, and Path 3 and Patrbﬁ
are obse_rved sequentla_llly and the_t'lt angl_e_s _o_f_the MIMOTYylid lines, the experimental values are plotted as black dots, and
were adjusted to obtain the maximum visibilities, Whichhq result of the simulation is plotted as empty squares.
were up to 98%. Next, we control the length of Path 4 to set

the interferometers to a dark conditigalmost no photons When we use weak light as the source of photons, we

observed at the output porwith 0.5 nm precision Using  s,mehow have to know when a photon is not detected. One
piezoactuators attached dlr_ectly to each of the mirrors. Usingq tion is to put three other photon detectors at the open
Eq. (48), the output of the interference between Path 2 an‘%utput of the beam splitters. When we observe the photon
Path 4 is proportional to detection signal from them, we regard it as an event “non-
. . detection.” In this experiment we set the detector only at the
(= 1) @exp(i )+ (— 1) @exp(i ¢s) |2 output port. In ordereo derive the detection probabili)t/y,
=2[1-cog ¢~ d4)]. (49)

. N{f(j)})
Therefore, setting the interferometer to the dark condition PHf(DH= Niotal (52)
corresponds to having the conditiab,= ¢,. In the same

way, we realized the conditioph, = ¢, and 5= 4 by set-  \yhereN({f(j)1) is the photon counting rate with the oracle
ting the interference between Path 1 and Path 2, and Path 3(1-)}, we have to estimat®l,,., which is the number of

and Path 4 to the dark condition, respectively. The interferygia| “photon detection events” of all detectors. As is ex-
ence of the reference ligli632.8 nm was used for the pre- plained in a later section, we estimatigh,,, as 6.00< 10°
cise control of the path lengths. The optical system was alsgynts/s by [3Nge(even)+Ngo(uniform)], where
passively stabilized against thermal drifts for at least 10 Nyeeven) andNge{uniform) were averages of the count

without active control. , rates for the even inputs and uniform inputs. The experimen-
Because the phase factogg in Eq. (48) are set to be 5 results are shown in Fig. 5. The vertical axis shows the

identigal in the initialization procedure, the_probability of the four-pit digits given to the computer. The horizontal axis
detection of the photon at the output port is written as shows the probabilitp? of photon observation at the output
4 2 port. The theoretical values in an ideal condition without any

E (—1)fM (50) error sources given by E¢50) are shown by the solid lines
=1 in Fig. 5. The experimental values plotted as the black dots
were calculated by Ed51).
whereP =0 for the “even” input, and 1 for the “uniform” This result shows that we can determine whether the
input. statement “the given oracléf(j)} is not even” or “the

We used a single-photon counting mody®&PCM-AQ,  given oracle{f(j)} is not uniform™ is correct with the aver-
EG&G) as the photon detection device. The observed darkge error rates of 2.57% and 7.72%, respectively, by the
count in the experimental set up was<20® counts/s on observation of a single photon.
average.

o=
QOO r rrrOO00r—r+r—
SOO000Orrrr—rr—

put digits {f(i)}

FIG. 5. The photon detection probability for the given four-bit
its {f(i)}. The theoretical values with no errors are shown by

=

_ 1
PAf()D= 15

For a given oracle, the photons were counted for 0.1 s. By,, QUANTITATIVE ANALYSIS OF THE ERROR IN THE
running the initialization procedure at intervals of 10 s, we FOUR-BIT DJ EXPERIMENT

succeeded in continuing computation for tens of minutes.
This initialization procedure was automatically performed by In this section, we analyze the errors in the four-bit DJ
a personal computer, which also generated the four-bit digitexperiment quantitatively according to the sources which are
and collected the data. considered in Secs. lll. In Secs. Il A to Il D, we analyzed
When the answer of our quantum computer for the giverthe optical system corresponding to the quantum circuit of a
input is wrong, it is termed an “error.” The error rate can be single qubit using X2 matrices onto 2 optical modes. Simi-
calculated by the photon detection probabil®({f(j)}) larly, it is possible to analyze the system of the four-bit DJ
with the given oracldf(j)}. experiment using 88 matrices. However, when we con-
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sider the transformations by optics one by one, the number ofhe number of the events “nondetection” is given Ny,
parameters each of which represents an error caused by eaetN,,;4— Nget. Under the assumption on the loss and the
of the optics is huge and it is not convenient to classify thequantum efficiency given abovd,,; is given as follows:
errors according to the type of source. Therefore in the fol-
lowing analysis, we analyze the system by the path represen- Niotal= Nin 7 €Xp(—A) +4Ngqrk - (57
tation method we introduced in Sec. Ill E.

In the experiment, we used weak coherent light as thé\s a resultN, is given as follows:
source of photons and we just detected the photon at the
output mode. In order to derive the errors of a single quan- Nnon= Nin€Xp(—A) 7(1—P1)+3Ngark- (58)
tum computation, we assume in the following analysis that . i
the additiF())naI detectors had been set to the o'?her th?/ee outpyt Therefore,Pdet_and Pnon Which are the pro_babllltles of
modes, and their quantum efficiency and dark count rate e events detection and nondetection are written as follows:

were the same as the detector set at the output mode. We call

an event “detection” when a photon is detected by D1, and pdet:M, (59)
a “nondetection” when detected by the other detectors. Ntotal

We also assume that the losses in each arm are balanced.
Under these assumptions, as we have already seen in Sec. I, P Nnon (60)
the effect of loss in the optical system and the quantum ef- """ Niotal

ficiency can be considered simply as the reduction of the

number of input photons. In the following, we first estimate Using these relations, we can estimate the error rate of the
the photon counting rate at the detector in the output modeguantum computation.

and derive the average error rate for the case when the input

digits are even or uniform. Then we categorize the errors B. The average error rate for the case “even”

which occurred in the experiment quantitatively. . . .
P d y First, let us consider the average error rate for the six

patterns of even inputs. For the even inputs, the result should

be nondetection in an ideal case. Therefore, the error rate for
In Sec. Il E, we used two stateg, and ¢,, to analyze the even inputs is given by the probability of the detection

the Mach-Zehnder interferometer. Similarly we use fourevents for the even inputs. Using Ed$6), the averaged

statese; ¢(;) according to the pathin Fig. 4, wheref(j) is  detection rateN4e(€ven) can be described as follows:

the jth digit of the input. Nowg; ¢(;, is given as follows:

A. Detection probability of the signal photon

4
1
(a5 ) — 2 A,
qu’f(j):aj’f(j)el( J-f(J)+5J), (52) Ndet(even) 6 {f(i)}Zzeven (NO[ izl a +i2>j 2alal
aj iy =B+ (D (T + ), (53 X(=1)'OF Wexp(—I—T))

wherea, ¢(j), @; 1(j) are the amplitude and phase of the wave

functionj. I(Ej)rror]s 5;1) the phase, ¢(;, can be described wits; X cog By _'Bi)} + Ndark)

which is independent off(j) andy; which should be added

only when f(j)=1. a; ;) does not include the effect of 4 2

amplitude dumping by balanced loss. = NO| 2 aiZ—E zaiaexp—I'i—T7)
The detection probability of the signal photon can be cal- =1 =) 3

culated asy exp(—A)P;, where 7 is the quantum efficiency

of the detectorsA is a real parameter which corresponds to xcos(,Bi—Bj)] + Ngark: (61)

the effect of balanced loss, af) is given as follows:

2 where No=N;,7exp(—A), and we used the relation
ds; ...dd, Sitiy—even(— 1) O TW=—2 for Vi j. Neglecting the
terms higher than the second order of err&feven)
(54) =Pyef€VEN) IS given as follows:

B 4
P,= fﬁx I1 w(5i-ri)’§i: i 1)

—wi=1

4
= + +
:zl ai2+2 2a,a,exp(— T, —T)Co8 1)~ tp.11). E(even)=E;(even)+Ey(even)+Es(even) (62

- (55) ‘

2
El(even)=Z:1 aiz—i; §aiajcos([3i—,8]), (63

When the number of photons put into input mode \Mgs
counts/s, the number of the event “detectioNye; is given

. 2
as follows: Ex(even) =3 zaia[1-exp~I;~T))]cos B~ ),
1>]
Nget=Nin7 €xp(—A)P1+Nyark- (56) (64)
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Ngark TABLE |. Estimateda;; .
E;(even) = N (65)
total i a; Bi Fi
whereE, (even),E,(even), andE;(even) describes the ef- 1 0.274 0.600 0.0055
fect of systematic errorésystematic errors of beam splitting 2 0.250 0.244 0.0055
ratio, and imperfect initialize of the phasehe effect of 3 0.257 0.157 0.015
phase relaxation, and the error caused by the dark cound, 0.218 0.0 0.0055

respectively. The neglected terms are for the second order of
these terms.

e

+
C. The average error rate for the “uniform” case ANdark (71)

Next we consider the case where the result is a nondetec-
tion for uniform input. For the uniform inputs, the result Where we neglected; . As shown in Appendix BX{
should ideally be detection. Therefore, the error rate for the- 1/4+ 85/2, wheres, represents the systemat|c error Of the
uniform inputs is given by the probability of the nondetec- beam splitters. Whelﬁ2 is sufficiently smaIIZ 18 21 and
tion events for the uniform inputs. There are two uniformEq. (72 becomeN0+4Ndark Niotar- Therefore we used it
input patterns: one is filled with 0’s and the other with 1's.in the quantitative analysis in the next section.
Using Eq. (60, the average of E(uniform)

=P,on(uniform) for these two cases is calculated as fol- E. Estimation of errors according to the sources

lows: in the four-bit DJ experiment
E(uniform)=E;(uniform)+E,(uniform) We estimated,; ¢(;) by the following procedure. If we set
. the shutter ST1 in Fig. 2 to open and ST2 to ST4 to closed,
+Eg(uniform), (66)  the intensity of the laser beam at the output port will be
proportional to the following probability:
4
E,(uniform)= E E aj[cod Bi— B;) +cod B; P=la 1. (72)
= i>
The difference between estimateg, anda; ; was less than
= )] (67 fo anda,

103, so we neglected the difference and put the aveege
of them in Table I. We adapt th%e normalizatian 1aI 1
. _ _ _ _ which is explained in Appendix B.
Ez(umform)—izj daf{[1—expl'i=T;)Jcod B~ Bj) We also estimated phase relaxation paramEieas fol-
lows. In the experiment, we first measured the visibility for
+eod Bit+yi— B~ vt (68) each of the Michelson interferometers. The visibility of the
Michelson interferometer is given by

3Ndark

Ez(uniform)= . 69
3 ) total ( ) 2a;a l

exp—Ii—T). (73
a+
Hence Eq(uniform), E,(uniform), and Ez(uniform)

show the effects of systematic errors, phase relaxation, and The estimated-T';— I'; for each interferometer is given

dark count, respectively. in Table II. In the |IS'[ onIyF +T';, which includesl s, is
twice as large as others. Therefore, we assumed thatlonly
D. The estimation ofN g is different from the others. As a result, we have=TI",

, , =I",~5.5x10 3 I';~1.5x10"2 which were shown in
We estimated the total couM,, as follows. Adding  14ple |.

3Nge{€ven) to Nge{uniform), we have Next, we estimate the errgs; according to the path dif-

; ference. In the experiment, each interferometer was initial-
3Ngef€ven) +Ngefuniform .
ael €0+ Noed ) ized to have a dark condition and we recorded the output

2 count rates. Using Eq$53) and (55) with «; andI’;, we
=3|Nop 21 al-> zaigjlexp—Ii=T))] estimatedB; as shown in Table I.
i= i>]
4
22
X o9 Bi— Bj) | T Ngark| +No izl + |2>] 2a;a; %Strictly speaking, this normalization is not adaptable because we

observed output mode 3 instead of output mode 1. However, the
error of the beam splitting ratio of BS1 was small in the experiment
+ Ngark (700 so that we did adapt this normalization.

X[exp(—I';—T;)]cog Bi— B))

052302-9



SHIGEKI TAKEUCHI PHYSICAL REVIEW A 61 052302

TABLE II. Estimation ofI';. phot O
258, Splitting Ratio Circulator
E
Interferometer  Visibility a1'2+aj2 exp(-I-T)) Ii+T; et z "f |4|-|611.
k-1 steps
Main (mode 2,4 0.97956 0.9904  0.9890  1.1860 ? 8¢ gk 2 | S
Subl(mode 1,2 0.9845 0.9956 0.9888 1.5310 2 ) ’
Sub2(mode 3,4 0.9655 0.9859  0.9793  2.6910 2 Detectors
E/O Modulators
. . see e Phase Shifters
The observed dark count rate in the experiment was 2.0
x 10> counts/s, andN.y, was estimated to 6.0010° Mirrors
counts/s in Sec. IV. Hendd 4,1/ Niota) Was estimated to be
0.0033. R S

Putting these parameters into E¢83) to (65) and Egs.
(67) to (69), we can estimate the errors caused by each FIG. 6. A schematic diagram of the optical system for the
source. The estimated errors are listed in Table III. First, th&eutsch-Jozsa algorithm wittit input.
error rate which appeared in the experiment was well repro-

duced by the sum of the estimated errors. For both of thgjngle photon wave function reaches a uniform superposition
answers, systematic error was the main cause of error: 72%ate in ¥ modes using -1 beam splitters. In each mode
in the case of even, and 70% in the case of uniform. Inpe polarization is rotated only whef{i)=1, and the con-
particular, the misadjustment of the path differenég)(was  ditional #/2 phase shift occurs at the wave plates. We use
the dominant systematic error. The error caused by the phaggeak coherent light as the source of photons, therefore, we
I’e|axati0n was three timeS Iarger fOI’ Uniform than f0r eVen.Set the photon detectors at each of the Output modes Of beam
This is consistent with the ratio of CoefﬁCientS&}aj in Eqs sp"tters as shown in F|g 6, and we consider the photon
(64) and (68). The dark count has a similar relation as we detection signal from the detector 1 as a detection event and
expected from the Eqg65) and (69). The discrepancy be- those from the other detectors nondetection. This optical sys-
tween the sum of the estimated errors and the experimental%m is a Straightforward expansion of the System shown in
observed error rates may be mainly caused by the fact thatig. 4.
we neglect the phase error between the sfgt¢=0 and As described in Sec. V, we assume that the quantum ef-
f(i)=1 by settingy; =0 in the analysis. ficiencies and dark count rates are the same for each other,
Using the estimated parameters in Table |, we simulate@nd that the losses in each arm are balanced. The wave func-
the photon detection probability using E¢$5) and (56).  tion at output mode 1 is the superpositon of the components
The simulated data are shown as empty squares in Fig. Biven by Eqs.(52) and (53). Therefore, we can derivil
These data points were symmetrical with respect to the cenithe number of detection events per secprd,,,, (the num-

ter because we set;=0. The main difference between the per of nondetection events per secprahdN,q 5, as follows:
simulation and the experimental data may be caused by this

simplification.
2N
VI. ESTIMATION OF ERRORS IN THE EXPERIMENT P=2, al+ 2> 2aaj[exp(—T'—T))]cod a; i)~ a; 1()),
OF THE DEUTSCH-JOZSA ALGORITHM o . (74)
WITH A 2 “-BIT INPUT

We can also construct an optical system for the Deutsch-
Jozsa algorithm with a'2bit input by preparing ¥ optical Ngetr=NoP + Ngark, (75)
paths. In this section, we analyze the increase in error rate as
a function of the input sizé&.

An optical system for &bit input is shown in Fig. 6. A Npon=No(1—P)+ (2%~ 1)Ngark, (76)
TABLE lll. The estimated errors according to the sources in the
four-bit Deutsch Jozsa experiment.
P Niotal= No+ 2kNdark- (77)

Source of errors Even Uniform
Systematic error 1.82% 5.01% For the even inputs, the result should be nondetection in
Phase relaxation 0.37% 1.10% an ideal case. Therefore, the error rate for the even inputs is
Dark count 0.33% 1.00% given by the probability of the detection events for the even
Total 2.52% 7.11% inputs. Using these equatioris(even) = Py.{even), which
Experiment 2.57% 7.72% is the probability of the detection event for the even input, is

given as follows:
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TABLE IV. The errors categorized according to the sources in

E(even)= aiz_ k2 2 aa, the Deutsch-Jozsa quantum computer witkbR input.
Niotal | i1 2¢—1i>j
Source of errors Even Uniform
X[ex— T, T Joos B~ ) | + oo k& &
bl b Niotal Imperfect Gate R &
zkfl 2k
(78
Phase Relaxation ~_SP@KTOD) 1 b (@k+8)D)
~E;(even)+E,(even)+Es(even), (79 2
k N 2~ 1)N
z 5 2 Dark count _dark (27~ 1)Naar
E.(even)= >, a?— Y > aa;codBi—B;), (80) Neotal Notar
1= —1i>j

2
E,(even)= 51 .Z‘, ag[1—exp —TI;—-T))]

X cos i~ ), (81

Ndark

Es;(even) = (82

total

We neglected the terms higher than the second order of t
sources. The derivation of the coefficient #421) is given

in Appendix A. HereE(even),E,(even), and Ez(even)
correspond to the imperfect gates, the phase relaxation, a
the darkcount, respectively.

First let us consider the effect of systematic errors,
E,(even). We assume that a beam splitter B$ is repre-
sentated by the transformatioR(7/2+ 5; ;) where R is
given in Eg. (2). In this case, as shown in Appendix B,

k .
37_,a7 and=;-;a;a; can be approximated as follows.

2 14k
2:1ai: ok 83
k_1_ 2
S ag-t 84
where
, 1 K 1 oi—1 .
59:E Z{ F Z Slﬂ2 5| j (85)

We also introduce a parametéf as follows which repre-
sents the systematic error of the path difference.

cos Bi— ;) =1-65.

Using EQgs.(83) to (85), E;(even) can be calculated as fol-
lows:

(86)

2
ko2 +@
2k—1 2k'

E.(even)=

(87

Next, let us consider the error caused the phase relaxatio
E,(even). In the previous section, we listed the following

h

n

sourcesia) the surface roughness of the opti@s), the fluc-
tuation of the reflactive index of the air, arid nonperfect
overlap of the wave front because of the misalignment of the
optics. The effect of sourcd) can be eliminated by putting
the whole system into a vaccum. The soui@es a matter of

the alignment of the optics and is independent of the input
size. Here we analyze the effect of the increase in the number
%f optics in an optical path. As we saw in Sec. lll, the phase
rélaxation parametdr; will increase linearly with the num-
ber of optics in a path. The number of optics in a path is
20||<+4. When we assume a phase relaxation parameter
caused by an optics i§, we can calculate&e,(even) as
follows:

1—exd —(4k+8)I']
2k '

E,(even)~ (88)

The effect of dark count for the error rakg(evenis con-
stant fork. We summarized these results in Table IV

Next, let us calculate the error rate for the uniform inputs.
For the uniform inputs, the result should be detection in an
ideal case. Therefore, the error rate for the uniform inputs is
given by the probability of the nondetection events for the
uniform inputs. Therefore, E(uniform) is given by
PLon(uniform), which is an average of the probabilities for
the nondetection events with uniform inputs. Hence,

E(uniform)=P,,(uniform) (89
2k
Ng )
= 1- 2, a?- > 2aalexg —T—T))]
Niotal = =5
2k~
X codq Bi— Bj) N Ndark (90
total
~E (uniform)+Ey(uniform)+E;(uniform),
(93)
2k
. Ei(uniform)=1— a?— >, 2a,a;co8 B~ ),
, i=1 >
(92
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0.04 . given by Z. In other words, the number of qubits which is
‘?\ e systematic error simulated in the system is+ 1.
R : ggff‘foﬁfxa“on _In Fig. 7(a), the errors caused by imperfect gateslid
o <\ o total circles and phase relaxatioftrosses decrease rapidly with
© \ the increase ok, and the error rate is almost given by the
= 0.02} \\ i dark count(empty squareswhenk is large. At first glance,
g this decrease in the error rate may seem unreasonable, how-
@D ever it can be explained as follows. For the even inputs, the
- ] result should be nondetection in an ideal case. Therefore, the
error rate for the even inputs is given by the probability of
0 ;\E\Q\E\*;;:k* & the detection events for the even inputs. Let us consider a
1 10 situation where the phases of the wave functions are at ran-
(@) k dom and no quantum interference occurs. When the size is
0.41= Systomatic amor 7 ; k=2 and the system has four output ports, the detection
% Phase relaxation | [ probability at an output port is given by 0.25, which is the
|| o totat ] error rate for an even input. When the size of the system
D darkcount (50 cps) . .
= e total (50 cps) f increases, the number of the output mode increase’$ an@
g the detection probability at an output mode is proportional to
% 0.2r / / 27K, This is why the error rate decreases with an increase of
k.
T ﬂ/;ﬁw././‘/ / Figure 1b) shows the estimated error rate for uniform
= input, or the probability of a nondetection event with uni-
o Wﬂ—/’lﬁﬁj‘d form inputs, plotted as empty circles. The error rate caused

) 1 k 10 by dark coun{empty squaresapidly increases and is domi-
nant with a largek. This is because the number of detectors
which are set at all the output ports increases ‘awith size
k. The dark counts of the detectors except D1 increases the

FIG. 7. The estimated error rate caused by the systematic errorQ,Ond_eteCt'or_' event_s.
phase relaxation, and dark counts of the photon detectors in the !t iS @lso interesting that the error caused by phase relax-
optical system of the DJ algorithm withit input. ation (crosses linearly increases in this region but not so
rapidly, and the effect of systematic errors is constant. There-

fore, the best way to improve the error rate is to decrease the
Ex(uniform) =Y, 2a;a[(—exp(I;—T'j)]cos B — B)), dark count. We observed 2000 counts/s dark counts in the
= (93) four-bit DJ experiment, however, we can decrease the rate
down to 50 counts/s using commercially available detectors
ok_1 (for example, a special version of SPCM-AQ by EG & G
Naark: (94  and tight shielding for stray photons. We plotted the error
rates with this small darkcount raté0 counts/s using
where E;(uniform), E,(uniform), and Es(uniform)  double squares and the total error rates by double circles.
correspond to the effect of imperfect gates, phase relaxatior,he result shows that just by improving the dark count rates,
and the dark count, respectively. Using E(83) and (84),  we can perform the DJ algorithm experiment with 8 -
E;(uniform) is given by put, which is equivalent to 11 qubits, with less than a 20%
total error rate.

It is also possible to decrease the error rate caused by the
darkcount using a single photon source. One can create a pair
of photons by use of spontaneous parametric down conver-
sion (SPDQ. By inputting one of them to the input port of

E,(uniform)~1—exq — (4k+8)I]. (96)  the computer and with the other photon detected by a high-
guantum-efficiency single-photon counting systgh,16,

The effect of dark counEs(uniform) is given by (¥  we can determine the time when the computation is per-

—1)Ngark/Niotar- We also summarize these results in Tableformed. In this case, we do not need detectors except for

V. detector D1 in Fig. 6 when the loss of the photon in the

The estimated error rates for the even and uniform inputsystem is negligible. In reality, the correlation of the photon
are shown in Figs. (& and 1b). These graphs are plotted pair created by SPDC is not so high, however, we can im-
using the parameters found in the analysis of the four-biprove the error rate by employing coincident counting be-
experiment in Sec. V:§2= 0.00335,23=0.051“=0.00098, tween the detectors set at the output modes and the detector
and Ngark/Niota=0.0033. The number of input digits is which determine when the computation is performed.

Es(uniform)= Noo
ota

Ey(uniform)~&5. (95)

The effect of phase relaxatidg,(uniform) can be written
as follows:
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VIl. CONCLUSION Calculating the average Mg, for the case{f(l)} is even

In this paper, we have reported the quantitative analysis o?zkczk_l combinationj;

the source of errors in linear optics computation. First we N oN
categorized the error in a simple one-qubit linear optics det =N, E ai2+ 2 2a,aexp( T
guantum computer according to the sources: systematic ers)} kCok-1 i=1 KCok—1 i>]

rors in quantum gates, phase relaxation, amplitude dumping,
and misreadout. Then we estimated the effect of each error
source in the four-bit DJ experiment, and succeeded in re- i (
producing the error rate which appeared in the experiment by o
using the sum of the estimated error rates according to the (A2)
sources. We also estimated the errors which occur in the
optical system for the '2bit Deutsch-Jozsa algorithm. we When we assumg;— ;=0 andy;=0, We have the fol-
found that the error is almost constant for the answer “notowing equation:
even,” however, it increases exponentially wikhfor the
answer “not uniform.” The main source of the error is F(i,j)= cod a; ()~
caused by the dark counts of the photon detectors. We also {f(H}
found that the demonstration of quantum computation of 11
qubits using linear optics is achievable with the present tech-
nique used in the four-bit DJ experiment with commercially
available detectors with smaller dark cou®® counts/s

With 11 qubits it is possible to realize several importantThe meaning of this equation is summing 1)f® 0 for
proposals for quantum computation experimentally. For exall {f(I)} which is even when anj pair is given. There are
ample, a experimental demonstration of DiVincenzo’s error,«_,Cok_4 patterns of evefif (1)} for the cases wherfi) is
correcting codg17] is possible using six qubits. The factor- not equal tof(j), i.e., {f(i),f(j)}={1,0t or {0,1}. In such
ing of small numbers using Shor's quantum algoritit8]  cases, ¢1)"W*f)=—1. On the other hand, there are
will be also possible within 11 qubits. It was confirmed in ,_,C,x commutations for the casgf(i),f(j)}={0,0} or
this paper that linear optics quantum computation is a pracf1,1}. In such cases,« 1){O+1W= 4+ 1. Therefore, one can

+Ndark-

cos @ ¢(iy~ & i(j))

@j £(j))

(—1)fO+10), (A3)
fm

—

tical test bed for these proposals. calculate Eq(A3) as follows:
Another interesting result of this paper is that the effect of
the error sources strongly depended on the anstirerihis o (2k=2)!
case, “not even” and “not uniform} of the quantum com- FlL)=—2——— 7 (A4)
putation. This result suggests the possibility of designing an (2"=DHEmH

algorithm whose results are not effected so much by th

sources of error. ?Dlwdmg by ,kC,k-1 and multipling by 2(the coefficient of

a;a; in the original equatiop we finally have the coefficient:
2
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APPENDIX B: THE DERIVATION
k
OF 32 a;, 3% a2 AND Sijaia

Here we derives? ,a;,3% a2 and 3i-;aa;. We as-
ume that the matrix of the beam splitter B$) is given by
g.(2) with the parameted= 7/2+ &; ;, whered; ; denotes

the systematic error. In this cas®,,a,, . .. a5 is given as
follows:
APPENDIX A: DERIVATION OF THE 1-sind;,1-sind,; 1-sind,
COEFFICIENT 2/(2—1) ay=—p R 5 (B1)

From Eq.(75),
1-sind;;1—sind,;  1+sindy;

5 3 3 ,

a2: (BZ)
2N

Nger= NO( > ai2+i2>j 2ea[exp—Ii-Tp1 ,

i=1
1+sindy; 1+sind,,  1+sinSy 1
- Rl 5 ,

azk: (B3)

X cog a; 1)~ @ 1(j)) | T Naark- (AL)
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where we used c6$rr/4+5,,]-/2):(1—sin5|,j)/2. Therefore,

we can have the following relation:

(B4)

2k
_2 a;=
i=1

Next we calculateS2 la Using Egs(B1) and(B2), we
have

PHYSICAL REVIEW A 61 052302

s o [1—sinsyg\?(1-sins,,)\? 1-sindy_14)2
1+Ssirf sy,
XT’. (B5)

When we consider the terms up to the second orde%; pf
we can approximate this equation as follows:

aj+as~ =

2 2 2

Similarly, we havea3+ a3 as follows:

1

1 ( 1—sin 51,1) 2( 1—sin 52,1> 2 ( 1—sin 5“,1) 2

2 2
a3+a4~—(

2 2 2

Thus, we haves!_,a? as follows:

ﬁ a2 E 1_Sin6]_yl 2 1_Sin52Yl 2' - 1_Sin5k,2Yl 2
=1 2 2 2
S SISy 1+ SIS
k—1,1 k,1 k,2 (88)
22k72 22k71
As a result, we have following equation:
2k 2| 1
Sl
2
a-~— B9
2@ ,21 2 et (89

Using the average of the systematic error for the beam split-

ters ati stepséz—(z2 1smzd )2t

2k 1 X

(B10)

1—sin 61’1) 2( 1-sind,,

sirfdy 1
5 e (B6)

2 l—Sinﬁk,ll 2 S|nz5k2
[, st -

This equation suggests that an accidental systematic error of
a beam splitter near the root of the tree of the paths causes a
serious increase in error. Using parameﬁ%rwhich is an
average oféiz, we have following equation:

, 1 Kk
El al~ 2kt 5% (B11)
Using these results;;-;a;a; is given as follows.
2 ok
EaaJ ((E al) - aiz), (B12)
i=1
2k—1-ké?
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