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Analysis of errors in linear-optics quantum computation

Shigeki Takeuchi*
Mitsubishi Electric Corporation, Advanced Technology R&D Center, Amagasaki, Hyogo 661-8661 Japan
and PRESTO Project, Japan Science and Technology Corporation, Kawaguchi, Saitama, 332-0012 Japan

~Received 27 September 1999; published 31 March 2000!

The origin of errors in quantum computation implemented by linear optics is studied. The systematic errors
of quantum gates, phase relaxation, amplitude dumping, and misreadout are considered as error sources, and
the errors which occurred in a four-bit Deutsch-Jozsa algorithm experiment are categorized according to the
sources. The increase in the error rate with the expansion of the input size in the Deutsch-Jozsa algorithm is
also studied and it was found that the demonstration of 11 qubits using linear optics and a single photon with
less than a 20% error rate is achievable by the technique used in the experiment.

PACS number~s!: 03.67.Lx, 42.30.2d

I. INTRODUCTION

Quantum computation is a new concept which utilizes
quantum superposition states for ultrafast parallel processing
@1–3#. There have been several proposals for the actual real-
ization of quantum computers@4–6#. Of these, nuclear-
magnetic-resonance quantum computation~NMR-QC! has
played the role of a test bed for these algorithms@7,8#. How-
ever, NMR-QC has the following restrictions: the input qu-
bits are prepared in ‘‘hot mixed states,’’ and the results are
always given by an average over a huge number of quantum
systems. Therefore there is a class of algorithms which can-
not be performed by NMR-QC@9#.

Quantum computation using linear optics and a single
photon is an alternative test bed for quantum computation. In
contrast to NMR-QC, the initial qubits can be prepared in
pure states and the result can be given not by an average but
by a single quantum computation. In quantum algorithms,
appropriate unitary transformations are applied to quantum
registers. Recket al. found that linear optics can be used to
realize any unitary transformation@10#. A theoretical pro-
posal of quantum computation using linear optics was given
by Takeuchi@11#, and later a similar idea was suggested
independently by Cerfet al. @12#. Recently, an experimental
demonstration of the four-bit Deutsch-Jozsa~DJ! quantum
computation algorithm@13# using linear optics and a single
photon whose size was equivalent to 3 qubits was reported
@14#. In the experiment, the answer was given with an error
rate of less than 8%.

In this paper, we report a quantitative analysis of the
sources of error in linear optics computation. In quantum
computation, error is caused by several sources: systematic
errors in quantum gates, phase relaxation, amplitude dump-
ing, and misreadout. We estimated the effect of each source
in the four-bit DJ experiment, and succeeded in reproducing
the error rate which appeared in the experiment by using the
sum of the estimated error rates according to the sources.

We also studied the increase in the error rate when the
size of the input digits is expanded to 2k bits and estimated

the errors of the expanded system using the error parameters
of the four-bit DJ experiment. We concluded that a quantum
computation of 11 qubits using linear optics is achievable
with less than a 20% error rate using the technique used in
the experiment. When we consider the limit of NMR-QC to
be ten qubits, and this result suggests that linear optics quan-
tum computation is one of the most practical test beds for
quantum computation.

We also found that the main source of error was caused
by the dark counts of the photon detectors when the size of
the system was increased, and that the increase in error rates
depends on the answers~‘‘not even’’ and ‘‘not uniform’’! to
the DJ problem. We think this kind of error analysis will
help to invent a type of algorithm which is tolerant to the
source of error.

The rest of the paper is structured into six sections: Sec-
tion II consists of an introduction to the implementation of
quantum computation using linear optics. Section III de-
scribes the sources of errors in the linear optics quantum
computation and an analysis of the effect of the sources in a
simple optical system. Section IV consists of the result of the
four-bit DJ experiment together with the experimental setup.
In Sec. V, a quantitative analysis of the error in the experi-
ment is given. We discuss the increase in error rate with the
number of qubits used in the algorithm in Sec. VI. In Sec.
VII, we conclude with a summary of this paper.

II. OPTICAL IMPLEMENTATION OF QUANTUM
COMPUTATION USING LINEAR OPTICS

Any quantum algorithm is compatible with a proper quan-
tum circuit. Deutsch also showed that any quantum logic
gate can be constructed using universal quantum gates, such
as rotation gates for a single qubit and controlledNOT gates
for two qubits. In the linear optics quantum computation, we
use the modes of a single photon for several qubits and po-
larization for one qubit. For example, if we needk qubits for
a quantum computation, we can preparek21 qubits using
2k21 modes and one qubit by polarization. In the following,
we show that simple linear optical devices such as beam
splitters and phase shifters act as quantum gates for these
qubits.

An example of a quantum circuit with a single qubit is
*Present address: RIES, Hokkaido University, Sapporo, 060-0812
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shown in Fig. 1~a!. The quantum circuit contains ap phase-
shift gate between a pair of Hadamard gates:u0& is trans-
formed to (u0&1u1&)/A2 and u1& to (u0&2u1&)/A2. When
the input qubitua& is u0&, the qubitub& should beu1&. In this
sense this circuit works as aNOT gate in total.

An optical implementation of this circuit is the Mach-
Zehnder interferometer shown in Fig. 1~b!. A qubit is repre-
sented by 2 modes,u0& and u1&. The transformation of a
50:50 beam splitter is given as follows:

1

A2
S 1 i

i 1D . ~1!

When the beam splitter is supplemented with two2p/2
phase shifters in modeu1&, it acts on these two modes as in
the following transformation@12#:

R5
1

A2
S 1 1

1 21D , ~2!

which is same with the Hadamard transformation. Suppose
the initial qubit ua&5u0& by putting a single photon into
input modeu0&, we will detect the photon in the output mode
u1&. Here the path difference between the two modes should
be adjusted to 0.

Figure 1~c! is another example of implementation. In this
case, the polarization of a photon is used to implement a
qubit: horizontal polarization corresponds tou0& and vertical
polarization tou1&. Each of the two Hadamard gates is real-
ized by ap/2 phase shifter whose optical axis~shown as a
dotted line! was set at 22.5° from the vertical axis, and ap/2
phase shifter was implemented by anotherl/2 wave plate
which acts as an optical delay between the vertical and hori-
zontal polarizations.

Another example of a quantum circuit of two qubits
shown in Fig. 2~a!. When the stateua&ub&5u0&u0& is input,
the output state will be a uniform superposition of the states;
ua&ub&5(u0&u0&1u0&u1&1u1&u0&1u1&u1&)/2. The optical
system uses four modes to implement these two qubits. The
first Hadamard transformation is realized by beam splitter 1
~BS1! and BS2, and the second one is realized by BS3 and
BS4. This implementation is used as a part of the optical

system in the four-bit DJ experiment. Another implementa-
tion is also possible using polarization for qubituA&, and two
modes for qubituB&.

Linear optics quantum computation has some advantages
over NMR-QC’s: we can prepare initial qubits in a pure state
or any mixed state, and we can also perform ‘‘a single quan-
tum computation’’ using a single photon. It was also shown
that any quantum algorithm can be implemented by linear
optics @12#. Although it may not be suitable for large-scale
computation because it requires 2N21 paths for the demon-
stration withN qubits, it will be used as an alternative test
bed of quantum computing.

III. SOURCES OF ERROR IN LINEAR OPTICS
QUANTUM COMPUTATION

Here we study the sources of error in the linear optics
quantum computation. The main sources of error in quantum
computation can be listed as follows:~1! Systematic error of
quantum gates,~2! phase relaxation,~3! amplitude dumping,
and ~4! misreadout of the computation result.

In quantum circuits, qubits are rotated by a given angle at
quantum gates. ‘‘The systematic error of quantum gates’’ is
the difference between the actual rotation angle and the sup-
posed one. ‘‘Phase relaxation’’ means the broadening of the
phase distribution of the wave function. The phase relaxation
squashes the quantum interference, and increases the error of
the computation. In linear optics quantum computation, the
surface roughness of the optics, the fluctuation of the reflec-
tive index of the air, and the misalignment of the optics are
of this type. ‘‘Amplitude dumping’’ of the wave function
occurs when photons are absorbed or reflected unintention-
ally in the optical system. ‘‘Misreadout’’ corresponds to the
dark counts in the experiment using a single photon. Some of
them are caused by stray photons and some by the intrinsic
noise of the photon detector.

In this section, we analyze the effect of these sources in
the simple optical system shown in Fig. 3. This optical sys-
tem is a Michelson interferometer which is equivalent to the
system shown in Fig. 1~b!. A single photon is put into mode
1 of a 50:50 beam splitter and the result is detected by a
photon detector at output mode 1 or 2. When the path length
x1 andx2 are set to be equal and no error source exists, the
photon should be detected by detector D1 at output mode 1.
In the following, we consider nonideal cases with error
sources.

FIG. 1. ~a! An example of a quantum circuit using a single
qubit, which is equivalent to aNOT gate.~b! An implementation of
the quantum circuit using two optical modes.~c! Another imple-
mentation using polarization of a single photon.

FIG. 2. ~a! An example of a quantum circuit of two qubits.~b!
An implementation of the quantum circuit using four optical modes.
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A. The systematic errors of quantum gates

In the optical system shown in Fig. 3, the two Hadamard
gates in Fig. 1~a! are implemented by a beam splitter BS. In
this case, the error of the splitting ratio of the beam splitter is
one of the systematic errors. The transformation of the beam
splitter with a pair of2p/2 phase shifters in modeu1& is
given as follows:

R~u!5S cos
u

2
sin

u

2

sin
u

2
2cos

u

2

D , ~3!

whereu corresponds to the rotation angle of a qubit.
There is another source of systematic error. When the

path difference is not adjusted to be 0~or the supposed
value!, it is equivalent to where an unnecessary phase-shift
gate is added to the optical system. The effect of the path
difference is given by the following transformation
L(x1 ,x2):

L~x1 ,x2!5S expS 2p ix1

l D 0

0 expS 2p ix2

l D D , ~4!

wherex1 ,l,x2 mean twice the optical length of path 1, the
wave length of the incident photon, and twice the optical
length of path 2 plusl/2. Using these two equations, the
wave function at the output mode is given as follows:

S c1

c2
D 5R~u!L~x1 ,x2!R~u!S 1

0D ~5!

5S exp~ ikx1!cos2
u

2
1exp~ ikx2!sin2

u

2

@exp~ ikx1!2exp~ ikx2!#sin
u

2
cos

u

2

D , ~6!

wherek52p/l. Whenu5p/2 andk(x12x2)5p, the out-
put statet(c1 ,c2) becomest(0,1) which is equivalent to the

result of the quantum circuit shown in Fig. 1 without any
error. The detection probability at the output modes is given
as follows:

P15c1* c1 ~7!

512
1

2
@12cosk~x12x2!#sin2u, ~8!

P25
1

2
@12cosk~x12x2!#sin2u. ~9!

First let us consider the case where the parameters should
be set asu5p/2 andx12x250. The probabilities are pre-
sumed to beP151, P250. When we have systematic errors,
these parameters are given asu5p/21du and k(x12x2)
5db . In this case, the error rateE(0) is given as follows:

E~0!5~12P1!5P2 ~10!

5
1

2
~12cosdb!cos2du ~11!

;
1

4
db

2 . ~12!

In the last approximation, we neglected the terms higher than
the second order of error. Similarly, when we consider the
case where the parameters should be set asu5p/2 and
k(x12x2)5p, the error rateE(p) is written by

E~p!5P15~12P2!

512
1

2
~11cosdb!cos2du ~13!

;
1

4
db

21du
2 . ~14!

B. The effect of phase relaxation

Next, let us study the phase relaxation of the wave func-
tion, which results in the increase of error through the loss of
the quantum interference effect. In an extreme case when the
distribution of the phase is uniform from 0 to 2p, no inter-
ference appears. In linear optics quantum computation, the
main causes of the phase relaxation are~a! the surface rough-
ness of the optics,~b! the fluctuation in the reflective index
of air, and~c! an imperfect overlap of the wave front because
of the misalignment of the optics. These processes can be
taken into account using a phase parameterd j in the trans-
formationL(x1 ,x2):

L8~x1 ,x2!5S expS 2p ix1

l
1d1D 0

0 expS 2p ix2

l
1d2D D .

~15!

FIG. 3. A schematic diagram of the optical system for the quan-
tum circuit shown in Fig. 1~a!.
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Because~a! and~b! are stochastic processes, we may assume
d j has a Gaussian distribution. For~c! we may also assume a
Gaussian distribution when the photon number density has a
Gaussian distribution in its radius. Therefore, we assumed j
is a Gaussian distributionv(d j ,G j ),

v~d j ,G j !5S 1

4pG j
D 1/2

e2(d j
2/4G j ). ~16!

Calculating the output statet(c1 ,c2) using Eq.~5! with
L8(x1 ,x2) instead ofL(x1 ,x2), the photon detection prob-
ability at output mode 1 is given as follows:

P15E
2`

`

v~d1 ,G1!E
2`

`

v~d2 ,G2!c1* c1dd1 dd2 ~17!

512
1

2
@12exp~2G12G2!cos~kdx!#sin2u. ~18!

As shown above, the total phase relaxation parameter of the
systemG is given by G total5G11G2. Similarly, when we
have an additional source of phase relaxation, we can have
G total by just summing them.

In this case, the error rateE(0) andE(p) are calculated
as follows:

E~0!5
1

4
db

21
1

2
G total , ~19!

E~p!5du
21

1

4
db

21
1

2
G total . ~20!

C. Amplitude dumping

The amplitude dumping of wave functions corresponds to
the optical loss in linear optics quantum computation. We
adopt the following matrix which describes the unbalanced
loss in each path of the interferometer:

ND5S exp~2a! 0

0 exp~2b!
D . ~21!

Then the wave function at the output mode of the interfer-
ometers with loss is given as follows:

S c1

c2
D 5R~u!NDL~x1 ,x2!R~u!S 1

0D ~22!

5S exp~2a!exp~ ikx1!cos2
u

2
1exp~2b!exp~ ikx2!sin2

u

2

@exp~2a!exp~ ikx1!2exp~2b!exp~ ikx2!#sin
u

2
cos

u

2

D . ~23!

The detection probabilityP1 andP2 is given by,

P15e22acos4
u

2
1e22bsin4

u

2
1

1

2
e2a2bsin2ucos~kdx!,

~24!

P25
1

2
sin2uS e22a1e22b

2
2e2a2bcos~kdx! D . ~25!

On the other hand, the output from an interferometer with
a balanced loss exp(2A) and a phase relaxationG can be
written as follows:

P15exp~2A!S 12
1

2
@12exp~2G!coskdx#sin2u8D ,

~26!

P25exp~2A!S 1

2
@12exp~2G!coskdx#sin2u8D . ~27!

When we compare these equations for the terms of
cos(kdx), we have the following relations:

exp~2A!5exp~22a!cos2
u

2
1exp~22b!sin2

u

2
, ~28!

exp~2G8!5
2e2a2b

e22a1e22b
, ~29!

sin2u85sin2u
e22a1e22b

2S e22acos2
u

2
1e22bsin2

u

2D . ~30!

It is interesting to see that the output of the Michelson
interferometer with unbalanced loss is the same as that
whose loss is balanced but where phase relaxation and beam
splitting ratio errors occur. However, note that the output
state t(c1 ,c2) is different. The output state form the inter-
ferometer with an unbalanced loss still maintains coherence.
Therefore, this interpretation of the unbalanced loss is not
adaptable in general. The error rate with loss is discussed in
the next subsection.
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D. Weak light as the source of photons

As an easy way to put single photons into the optical
system, we may use weak coherent light. In this case, pho-
tons are input to the system randomly. We cannot know
when each of them is injected and a single quantum compu-
tation is performed by the photon. One way to solve this
problem is to set photon detectors on all the output modes of
the beam splitters. In this example, we set two detectors D1
and D2. A quantum computation was performed when one of
them detected a photon.

First, let us calculate the error rate assuming that the de-
tectors have 100% quantum efficiency and no dark counts.
When we assumeNin photons are put into the system, the
numbers of counts by detectors D1 and D2 are given by
NinP1 and NinP2, therefore Ntotal is given by Ntotal
5Nin(P11P2). When we considerE(0)5NinP2 /Ntotal and
E(p)5NinP1 /Ntotal , the total loss exp(2A) appears in the
numerator and the denominator commonly and is dimin-
ished. Therefore, in this simple case, the error ratesE(0) and
E(p) are given by Eqs.~19! and ~20! with Eqs. ~28!–~30!.
Note that when the loss is balanced, i.e., whena5b, the
amplitude dumping cause no errors.

Next, let us consider the effect of the quantum efficiency
and the dark count of the detectors. WhenNin photons are
put into input mode 1, the photon counting ratesN1 andN2
at each detector are as follows:

N15N0h1P11N1
dark, ~31!

N25N0h2P21N2
dark, ~32!

whereN1
dark,N2

dark are the dark count rates andh1 andh2 are
the quantum efficiencies of the detectors. The total count rate
Ntotal is given byNtotal5N11N2. For simplicity, let us as-
sume that systematic error, phase relaxation, and loss do not
exist. In this simple case,E(0) andE(p) can be given as
follows:

E~0!5
N2

dark

N0h11N1
dark1N2

dark
, ~33!

E~p!5
N1

dark

N0h11N1
dark1N2

dark
. ~34!

E. Another error analysis method based on the superposition
of modes with error parameters

In the above subsections, we used matrices for each op-
tics, path differences, and losses. However, when the size of
the optical system increases, the number of matrices and pa-
rameters which represents errors become huge, and it be-
comes difficult to categorize the error according to the type
of source. In this section, we introduce another method
which is convenient for analyzing errors in an optical system
with many optics.

In Eq. ~23!, c1 is written in the superposition of wave
functions of each path exp(2a)cos2(u/2)exp(ikx1) and exp

(2b)sin2(u/2)exp(ikx2). We may write these wave functions
as

f j5ajexp@ i ~a j1d j !#, ~35!

then we can calculate the photon detection probabilityP1 as
follows:

P15E
2`

` E
2`

`

)
i 51

2

v~d j ,G j !U(
j 51

2

f j , f ( j )U2

dd1 dd2 ~36!

5(
i 51

2

ai
212a1a2exp~2G12G2!cos~a12a2!. ~37!

Let us consider the error of an interferometer whose path
difference is set at 0. In this case, the error rateE(0) is given
as follows:

E~0!512P1 ~38!

5E1~0!1E2~0!, ~39!

E1~0!512(
i 51

2

ai
212a1a22cos~a12a2!, ~40!

E2~0!52@12exp~2G12G2!#a1a2cos~a12a2!, ~41!

whereE1(0) represents the effect of the systematic errors,
and E2(0) shows the effect of phase relaxation. When we
consider the caseu5p/21du andk(x12x2)5db , then we
have a15(12sindu)/2 and a25(11sindu)/2. Then, we
have E1(0)5db

2/4 and E2(0)5G/2, respectively, which is
consistent with the result given in Eq.~19!.

This method is especially useful to categorize the errors
for the optical system in which modes are symmetrical.

IV. FOUR-BIT DJ EXPERIMENT

In this section, we describe the experiment which demon-
strated the DJ algorithm with four-bit input reported else-
where @14#, which is modified to explain the details suffi-
ciently to analyze the source of errors in the experiment.

A. Deutsch-Jozsa problem

First, let us introduce the problem of the Deutsch-Jozsa
algorithm. Suppose we are given an array of 2N digits. We
call the arrays ‘‘even’’ when they include as many 1’s as 0’s
~example$1,0,1,0% for N52), and ‘‘uniform’’ when they are
filled with only 0’s or 1’s~example$1,1,1,1%). The problem
for the Deutsch-Jozsa algorithm is to find the correct answer
between ‘‘the given array is not even’’ and ‘‘the given array
is not uniform.’’ When the array satisfies both cases, either
of them can be the answer. A classical computer needsN
11 steps in the worst case, however, a quantum computer
can find the answer withO„ln(N)… steps@13#.1

1O is Landau’s symbol:h(x)5O„g(x)… means h(x)/g(x) is
bounded forx→`.
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Our quantum computer solved the problem with four-bit
inputs, for which three qubits are required in the Deutsch-
Jozsa algorithm; two qubits were used as the address register
and 1 as the accumulator for the given oracle. In the com-
puter, four optical paths were used for the address register
and the polarization of the photon was used for the accumu-
lator.

The computation was performed as follows. First, the
computer is initialized for the computation. Second, ‘‘the
oracle’’ ~a four-bit digit! was given to the computer and is
converted to the appropriate voltage applied to the electro-
optic ~E/O! modulators in the system. Then, we put a single-
photon with vertical polarization to the input port of this
‘‘quantum computer,’’ and observed the detector at the out-
put port to find whether it detected the photon or not. If the
photon is detected, the answer is that the given oracle$ f ( i )%
is not even. If the photon is not detected, the answer is that
the given oracle$ f ( i )% is not uniform. The reason why this
computer works will be explained in the next section.

B. Experimental setup

The experimental setup is shown in Fig. 4. A vertically
polarized 694 nm beam from a laser diode passes through the
spatial filter and was attenuated by the neutral density filters
to very weak light~up to 0.5 pW!. When such a weak beam
was used, the average number of photons present in the op-
tical system~length of each path is 1 m! was 331023. And
the probability to find two or more photons in the coherent
length of 10 cm (; width of a single photon wave packet!
was less than 331024. In this sense, the computation was
performed using the quantum phenomenon ofsingle-photon
interference. All shutters in the optical system except the one
for the reference light were open during the computation.

After passing through three beam splitters, the wave func-
tion of a single photon is converted to a uniform superposi-
tion of the states passing through four optical paths. When
the beam splitters are 50/50, the transformation of these three
beam splitters is given using Eq. 1 as follows:

1

2 S 1 iA2 i 0

i A2 21 0

i 0 1 iA2

21 0 i A2

D . ~42!

Therefore, the wave function of the photon after these beam
splitters can be described as follows@11#:

I 15F a1

a2

a3

a4

G @p#5
1

2 F 1

i

i

21

G @0#, ~43!

where ai describes the amplitude of the wave function at
Path i shown in Fig. 4, and@p# describes the state of the
polarization;@0# is the basis of the vertical polarization, and
@1# is that of the horizontal polarization. The phase factors
according to the optical length of each path will be consid-
ered later. This transformation is equivalent to the implemen-
tation of the quantum circuit shown in Fig. 2~b! except for
the phase factor. We use E/O modulators~Gsenger
PM0202s! to embed the oracle$ f ( j )% in the system. The
modulators rotate the polarization of photons when and only
when f ( j )51. After the modulation, the wave function be-
comes:

1

2 S F 1

0

0

0

G @ f ~1!#1 iF 0

1

0

0

G @ f ~2!#1 iF 0

0

1

0

G @ f ~3!#2F 0

0

0

1

G @ f ~4!#D .

~44!

Next, quarter-wave plates act as phase shifters, which change
the phase of the wave function byp/2 only when the polar-
ization of the photons is vertical. After the phase shifters, the
mirrors reflect back the wave function. The wave plates
added anotherp/2 phase shift according to the state of po-
larization. Then the E/O modulators rotate the polarization
again to the original state. The state of the photon after the
E/O modulators is written as follows:

I 25
1

2 F ~21! f (1)

i ~21! f (2)

i ~21! f (3)

2~21! f (4)

G @0#. ~45!

The transformation of three beam splitters can be written as
follows:

1

2 S 1 i i 21

iA2 A2 0 0

i 21 1 i

0 0 iA2 A2

D . ~46!

After passing the three beam splitters again, the compo-
nentc3,[0] of the wave function at output mode 3 with ver-
tical polarization~@0#! is written as

FIG. 4. A schematic diagram of the optical system for the
Deutsch-Jozsa algorithm with four-bit inputs.
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c3,[0]5 i ~21! f (1)2 i ~21! f (2)1 i ~21! f (3)2 i ~21! f (4)

~47!

5(
j 51

4

~21! f ( j )exp~ if j !, ~48!

where f j is the phase corresponding to the optical path
length of pathj and the additional phase factors due to the
reflection at the beam splitters.

Before the computation we adjusted the path length ac-
cording to the following initialization procedure. Switching
the shutters in the paths, and settingf (1)5 f (4)51 and
f (2)5 f (3)50, the visibilities of the interference between
Path 2 and Path 4 , Path 1 and Path 2, and Path 3 and Path 4
are observed sequentially and the tilt angles of the mirrors
were adjusted to obtain the maximum visibilities, which
were up to 98%. Next, we control the length of Path 4 to set
the interferometers to a dark condition~almost no photons
observed at the output port! with 0.5 nm precision using
piezoactuators attached directly to each of the mirrors. Using
Eq. ~48!, the output of the interference between Path 2 and
Path 4 is proportional to

u~21! f (2)exp~ if2!1~21! f (4)exp~ if4!u2

52@12cos~f22f4!#. ~49!

Therefore, setting the interferometer to the dark condition
corresponds to having the conditionf25f4. In the same
way, we realized the conditionf15f2 andf35f4 by set-
ting the interference between Path 1 and Path 2, and Path 3
and Path 4 to the dark condition, respectively. The interfer-
ence of the reference light~632.8 nm! was used for the pre-
cise control of the path lengths. The optical system was also
passively stabilized against thermal drifts for at least 10 s
without active control.

Because the phase factorsf j in Eq. ~48! are set to be
identical in the initialization procedure, the probability of the
detection of the photon at the output port is written as

P„$ f ~ j !%…5
1

16U(j 51

4

~21! f ( j )U2

, ~50!

whereP50 for the ‘‘even’’ input, and 1 for the ‘‘uniform’’
input.

We used a single-photon counting module~SPCM-AQ,
EG&G! as the photon detection device. The observed dark
count in the experimental set up was 23103 counts/s on
average.

For a given oracle, the photons were counted for 0.1 s. By
running the initialization procedure at intervals of 10 s, we
succeeded in continuing computation for tens of minutes.
This initialization procedure was automatically performed by
a personal computer, which also generated the four-bit digits
and collected the data.

When the answer of our quantum computer for the given
input is wrong, it is termed an ‘‘error.’’ The error rate can be
calculated by the photon detection probabilityP„$ f ( j )%…
with the given oracle$ f ( j )%.

When we use weak light as the source of photons, we
somehow have to know when a photon is not detected. One
solution is to put three other photon detectors at the open
output of the beam splitters. When we observe the photon
detection signal from them, we regard it as an event ‘‘non-
detection.’’ In this experiment we set the detector only at the
output port. In order to derive the detection probability,

P~$ f ~ j !%!5
N„$ f ~ j !%…

Ntotal
, ~51!

whereN($ f ( j )%) is the photon counting rate with the oracle
$ f ( j )%, we have to estimateNtotal which is the number of
total ‘‘photon detection events’’ of all detectors. As is ex-
plained in a later section, we estimatedNtotal as 6.003105

counts/s by @3Ndet(even)1Ndet(uni f orm)#, where
Ndet(even) andNdet(uni f orm) were averages of the count
rates for the even inputs and uniform inputs. The experimen-
tal results are shown in Fig. 5. The vertical axis shows the
four-bit digits given to the computer. The horizontal axis
shows the probabilityP of photon observation at the output
port. The theoretical values in an ideal condition without any
error sources given by Eq.~50! are shown by the solid lines
in Fig. 5. The experimental values plotted as the black dots
were calculated by Eq.~51!.

This result shows that we can determine whether the
statement ‘‘the given oracle$ f ( j )% is not even’’ or ‘’the
given oracle$ f ( j )% is not uniform’’ is correct with the aver-
age error rates of 2.57% and 7.72%, respectively, by the
observation of a single photon.

V. QUANTITATIVE ANALYSIS OF THE ERROR IN THE
FOUR-BIT DJ EXPERIMENT

In this section, we analyze the errors in the four-bit DJ
experiment quantitatively according to the sources which are
considered in Secs. III. In Secs. III A to III D, we analyzed
the optical system corresponding to the quantum circuit of a
single qubit using 232 matrices onto 2 optical modes. Simi-
larly, it is possible to analyze the system of the four-bit DJ
experiment using 838 matrices. However, when we con-

FIG. 5. The photon detection probability for the given four-bit
digits $f~i!%. The theoretical values with no errors are shown by
solid lines, the experimental values are plotted as black dots, and
the result of the simulation is plotted as empty squares.
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sider the transformations by optics one by one, the number of
parameters each of which represents an error caused by each
of the optics is huge and it is not convenient to classify the
errors according to the type of source. Therefore in the fol-
lowing analysis, we analyze the system by the path represen-
tation method we introduced in Sec. III E.

In the experiment, we used weak coherent light as the
source of photons and we just detected the photon at the
output mode. In order to derive the errors of a single quan-
tum computation, we assume in the following analysis that
the additional detectors had been set to the other three output
modes, and their quantum efficiency and dark count rates
were the same as the detector set at the output mode. We call
an event ‘‘detection’’ when a photon is detected by D1, and
a ‘‘nondetection’’ when detected by the other detectors.

We also assume that the losses in each arm are balanced.
Under these assumptions, as we have already seen in Sec. III,
the effect of loss in the optical system and the quantum ef-
ficiency can be considered simply as the reduction of the
number of input photons. In the following, we first estimate
the photon counting rate at the detector in the output mode,
and derive the average error rate for the case when the input
digits are even or uniform. Then we categorize the errors
which occurred in the experiment quantitatively.

A. Detection probability of the signal photon

In Sec. III E, we used two states,f1 andf2, to analyze
the Mach-Zehnder interferometer. Similarly we use four
statesf j , f ( j ) according to the pathj in Fig. 4, wheref ( j ) is
the j th digit of the input. Nowf j , f ( j ) is given as follows:

f j , f ( j )5aj , f ( j )e
i (a j , f ( j )1d j ), ~52!

a j , f ( j )5b j1 f ~ j !~p1g j !, ~53!

whereaj , f ( j ) ,a j , f ( j ) are the amplitude and phase of the wave
function. Errors in the phasea j , f ( j ) can be described withb j
which is independent off ( j ) andg j which should be added
only when f ( j )51. aj , f ( j ) does not include the effect of
amplitude dumping by balanced loss.

The detection probability of the signal photon can be cal-
culated ash exp(2A)P1, whereh is the quantum efficiency
of the detectors,A is a real parameter which corresponds to
the effect of balanced loss, andP1 is given as follows:

P15E
2`

`

•••E
2`

`

)
i 51

4

v~d i ,G i !U(
i

f i , f ( i )U2

dd1 . . . dd4

~54!

5(
i 51

4

ai
21(

i . j
2aiajexp~2G i2G j !cos~a i , f ( i )2a j , f ( j )!.

~55!

When the number of photons put into input mode wasNin
counts/s, the number of the event ‘‘detection’’Ndet is given
as follows:

Ndet5Ninh exp~2A!P11Ndark . ~56!

The number of the events ‘‘nondetection’’ is given byNnon
5Ntotal2Ndet . Under the assumption on the loss and the
quantum efficiency given above,Ntotal is given as follows:

Ntotal5Ninh exp~2A!14Ndark . ~57!

As a result,Nnon is given as follows:

Nnon5Ninexp~2A!h~12P1!13Ndark . ~58!

Therefore,Pdet and Pnon which are the probabilities of
the events detection and nondetection are written as follows:

Pdet5
Ndet

Ntotal
, ~59!

Pnon5
Nnon

Ntotal
. ~60!

Using these relations, we can estimate the error rate of the
quantum computation.

B. The average error rate for the case ‘‘even’’

First, let us consider the average error rate for the six
patterns of even inputs. For the even inputs, the result should
be nondetection in an ideal case. Therefore, the error rate for
the even inputs is given by the probability of the detection
events for the even inputs. Using Eqs.~56!, the averaged
detection rateNdet(even) can be described as follows:

Ndet~even!5
1

6 (
$ f ( i )%5even

S N0H (
i 51

4

ai
21(

i . j
2aiaj

3~21! f ( i )1 f ( j )exp~2G i2G j !

3cos~b i2b j !J 1NdarkD
5N0H (

i 51

4

ai
22(

i . j

2

3
aiajexp~2G i2G j !

3cos~b i2b j !J 1Ndark , ~61!

where N05Ninhexp(2A), and we used the relation
($ f ( i )%5even(21) f ( i )1 f ( j )522 for ; i , j . Neglecting the
terms higher than the second order of error,E(even)
5Pdet(even) is given as follows:

E~even!5E1~even!1E2~even!1E3~even! ~62!

E1~even!5(
i 51

4

ai
22(

i . j

2

3
aiajcos~b i2b j !, ~63!

E2~even!5(
i . j

2

3
aiaj@12exp~2G i2G j !#cos~b i2b j !,

~64!
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E3~even!5
Ndark

Ntotal
, ~65!

whereE1(even),E2(even), andE3(even) describes the ef-
fect of systematic errors~systematic errors of beam splitting
ratio, and imperfect initialize of the phase!, the effect of
phase relaxation, and the error caused by the dark count,
respectively. The neglected terms are for the second order of
these terms.

C. The average error rate for the ‘‘uniform’’ case

Next we consider the case where the result is a nondetec-
tion for uniform input. For the uniform inputs, the result
should ideally be detection. Therefore, the error rate for the
uniform inputs is given by the probability of the nondetec-
tion events for the uniform inputs. There are two uniform
input patterns: one is filled with 0’s and the other with 1’s.
Using Eq. ~60!, the average of E(uni f orm)
5Pnon(uni f orm) for these two cases is calculated as fol-
lows:

E~uni f orm!5E1~uni f orm!1E2~uni f orm!

1E3~uni f orm!, ~66!

E1~uni f orm!512(
i 51

4

ai
22(

i . j
aiaj@cos~b i2b j !1cos~b i

1g i2b j2g j !#, ~67!

E2~uni f orm!5(
i . j

aiaj$@12exp~G i2G j !#cos~b i2b j !

1cos~b i1g i2b j2g j !%, ~68!

E3~uni f orm!5
3Ndark

Ntotal
. ~69!

Hence E1(uni f orm), E2(uni f orm), and E3(uni f orm)
show the effects of systematic errors, phase relaxation, and
dark count, respectively.

D. The estimation ofNtotal

We estimated the total countNtotal as follows. Adding
3Ndet(even) to Ndet(uni f orm), we have

3Ndet~even!1Ndet~uni f orm!

53FN0S (
i 51

4

ai
22(

i . j

2

3
aiaj@exp~2G i2G j !#

3cos~b i2b j !D 1NdarkG1N0S (
i 51

4

ai
21(

i . j
2aiaj

3@exp~2G i2G j !#cos~b i2b j !D 1Ndark ~70!

5N0S 4(
i 51

4

ai
2D 14Ndark , ~71!

where we neglectedg j . As shown in Appendix B,( i 51
4 ai

2

;1/41du
2/2, wheredu represents the systematic error of the

beam splitters. Whendu
2 is sufficiently small,( i 51

4 ai
2;1 and

Eq. ~71! becomeN014Ndark5Ntotal . Therefore we used it
in the quantitative analysis in the next section.

E. Estimation of errors according to the sources
in the four-bit DJ experiment

We estimatedaj , f ( j ) by the following procedure. If we set
the shutter ST1 in Fig. 2 to open and ST2 to ST4 to closed,
the intensity of the laser beam at the output port will be
proportional to the following probability:

P5uai , f ( i )u2. ~72!

The difference between estimatedai ,0 andai ,1 was less than
1023, so we neglected the difference and put the averageai

of them in Table I. We adapt the normalization( i 51
4 ai51

which is explained in Appendix B.2

We also estimated phase relaxation parameterG j as fol-
lows. In the experiment, we first measured the visibility for
each of the Michelson interferometers. The visibility of the
Michelson interferometer is given by

2aiaj

ai
21aj

2
exp~2G i2G j !. ~73!

The estimated2G i2G j for each interferometer is given
in Table II. In the list, onlyG i1G j , which includesG3, is
twice as large as others. Therefore, we assumed that onlyG3
is different from the others. As a result, we haveG15G2
5G4;5.531023,G3;1.531022 which were shown in
Table I.

Next, we estimate the errorb i according to the path dif-
ference. In the experiment, each interferometer was initial-
ized to have a dark condition and we recorded the output
count rates. Using Eqs.~53! and ~55! with a i and G i , we
estimatedb i as shown in Table I.

2Strictly speaking, this normalization is not adaptable because we
observed output mode 3 instead of output mode 1. However, the
error of the beam splitting ratio of BS1 was small in the experiment
so that we did adapt this normalization.

TABLE I. Estimatedai j .

i ai b i G i

1 0.274 0.600 0.0055
2 0.250 0.244 0.0055
3 0.257 0.157 0.015
4 0.218 0.0 0.0055
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The observed dark count rate in the experiment was 2.0
3103 counts/s, andNtotal was estimated to 6.003105

counts/s in Sec. IV. HenceNdark /Ntotal was estimated to be
0.0033.

Putting these parameters into Eqs.~63! to ~65! and Eqs.
~67! to ~69!, we can estimate the errors caused by each
source. The estimated errors are listed in Table III. First, the
error rate which appeared in the experiment was well repro-
duced by the sum of the estimated errors. For both of the
answers, systematic error was the main cause of error: 72%
in the case of even, and 70% in the case of uniform. In
particular, the misadjustment of the path difference (db) was
the dominant systematic error. The error caused by the phase
relaxation was three times larger for uniform than for even.
This is consistent with the ratio of coefficients ofaiaj in Eqs.
~64! and ~68!. The dark count has a similar relation as we
expected from the Eqs.~65! and ~69!. The discrepancy be-
tween the sum of the estimated errors and the experimentally
observed error rates may be mainly caused by the fact that
we neglect the phase error between the statef ( i )50 and
f ( i )51 by settingg i50 in the analysis.

Using the estimated parameters in Table I, we simulated
the photon detection probability using Eqs.~55! and ~56!.
The simulated data are shown as empty squares in Fig. 5.
These data points were symmetrical with respect to the cen-
ter because we setg i50. The main difference between the
simulation and the experimental data may be caused by this
simplification.

VI. ESTIMATION OF ERRORS IN THE EXPERIMENT
OF THE DEUTSCH-JOZSA ALGORITHM

WITH A 2 k-BIT INPUT

We can also construct an optical system for the Deutsch-
Jozsa algorithm with a 2k-bit input by preparing 2k optical
paths. In this section, we analyze the increase in error rate as
a function of the input sizek.

An optical system for 2k-bit input is shown in Fig. 6. A

single photon wave function reaches a uniform superposition
state in 2k modes using 2k21 beam splitters. In each modei,
the polarization is rotated only whenf ( i )51, and the con-
ditional p/2 phase shift occurs at the wave plates. We use
weak coherent light as the source of photons, therefore, we
set the photon detectors at each of the output modes of beam
splitters as shown in Fig. 6, and we consider the photon
detection signal from the detector 1 as a detection event and
those from the other detectors nondetection. This optical sys-
tem is a straightforward expansion of the system shown in
Fig. 4.

As described in Sec. V, we assume that the quantum ef-
ficiencies and dark count rates are the same for each other,
and that the losses in each arm are balanced. The wave func-
tion at output mode 1 is the superpositon of the components
given by Eqs.~52! and ~53!. Therefore, we can deriveNdet
~the number of detection events per second.!, Nnon ~the num-
ber of nondetection events per second!, andNtotal as follows:

P5(
i 51

2N

ai
21(

i . j
2aiaj@exp~2G i2G j !#cos~a i , f ( i )2a j , f ( j )!,

~74!

Ndet5N0P1Ndark , ~75!

Nnon5N0~12P!1~2k21!Ndark , ~76!

Ntotal5N012kNdark . ~77!

For the even inputs, the result should be nondetection in
an ideal case. Therefore, the error rate for the even inputs is
given by the probability of the detection events for the even
inputs. Using these equations,E(even)5Pdet(even), which
is the probability of the detection event for the even input, is
given as follows:

FIG. 6. A schematic diagram of the optical system for the
Deutsch-Jozsa algorithm with 2k-bit input.

TABLE II. Estimation ofG j .

Interferometer Visibility

2aiaj

ai
21aj

2
exp(2Gi2Gj) G i1G j

Main ~mode 2,4! 0.979 56 0.9904 0.9890 1.10631022

Sub1~mode 1,2! 0.9845 0.9956 0.9888 1.1331022

Sub2~mode 3,4! 0.9655 0.9859 0.9793 2.0931022

TABLE III. The estimated errors according to the sources in the
four-bit Deutsch Jozsa experiment.

Source of errors Even Uniform

Systematic error 1.82% 5.01%
Phase relaxation 0.37% 1.10%
Dark count 0.33% 1.00%
Total 2.52% 7.11%
Experiment 2.57% 7.72%
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E~even!5
N0

Ntotal
S (

i 51

2k

ai
22

2

2k21
(
i . j

aiaj

3@exp~2G i2G j !#cos~b i2b j !D 1
Ndark

Ntotal

~78!

;E1~even!1E2~even!1E3~even!, ~79!

E1~even!5(
i 51

2k

ai
22

2

2k21
(
i . j

aiajcos~b i2b j !, ~80!

E2~even!5
2

2k21
(
i . j

aiaj@12exp~2G i2G j !#

3cos~b i2b j !, ~81!

E3~even!5
Ndark

Ntotal
. ~82!

We neglected the terms higher than the second order of the
sources. The derivation of the coefficient 2/(2k21) is given
in Appendix A. HereE1(even),E2(even), and E3(even)
correspond to the imperfect gates, the phase relaxation, and
the darkcount, respectively.

First let us consider the effect of systematic errors,
E1(even). We assume that a beam splitter BS(i , j ) is repre-
sentated by the transformationR(p/21d i , j ) where R is
given in Eq. ~2!. In this case, as shown in Appendix B,

( i 51
2k

ai
2 and( i . jaiaj can be approximated as follows.

(
i 51

2k

ai
25

11kdu
2

2k
, ~83!

(
i . j

aiaj5
2k212kdu

2

2k11
, ~84!

where

du
25

1

k (
i 51

k
1

2i 21 (
j 51

2i 21

sin2 d i , j . ~85!

We also introduce a parameterdb as follows which repre-
sents the systematic error of the path difference.

cos~b i2b j !.12db
2 . ~86!

Using Eqs.~83! to ~85!, E1(even) can be calculated as fol-
lows:

E1~even!.
kdu

2

2k21
1

db
2

2k
. ~87!

Next, let us consider the error caused the phase relaxation,
E2(even). In the previous section, we listed the following

sources:~a! the surface roughness of the optics,~b! the fluc-
tuation of the reflactive index of the air, and~c! nonperfect
overlap of the wave front because of the misalignment of the
optics. The effect of source~b! can be eliminated by putting
the whole system into a vaccum. The source~c! is a matter of
the alignment of the optics and is independent of the input
size. Here we analyze the effect of the increase in the number
of optics in an optical path. As we saw in Sec. III, the phase
relaxation parameterG i will increase linearly with the num-
ber of optics in a path. The number of optics in a path is
2k14. When we assume a phase relaxation parameter
caused by an optics isG, we can calculateE2(even) as
follows:

E2~even!;
12exp@2~4k18!G#

2k
. ~88!

The effect of dark count for the error rateE3(even)is con-
stant fork. We summarized these results in Table IV

Next, let us calculate the error rate for the uniform inputs.
For the uniform inputs, the result should be detection in an
ideal case. Therefore, the error rate for the uniform inputs is
given by the probability of the nondetection events for the
uniform inputs. Therefore, E(uniform) is given by
Pnon(uniform), which is an average of the probabilities for
the nondetection events with uniform inputs. Hence,

E~uni f orm!5Pnon~uni f orm! ~89!

5
N0

Ntotal
H 12(

i 51

2k

ai
22(

i . j
2aiaj@exp~2G i2G j !#

3cos~b i2b j !J 1
2k21

Ntotal
Ndark ~90!

;E1~uni f orm!1E2~uni f orm!1E3~uni f orm!,
~91!

E1~uni f orm!512(
i 51

2k

ai
22(

i . j
2aiajcos~b i2b j !,

~92!

TABLE IV. The errors categorized according to the sources in
the Deutsch-Jozsa quantum computer with 2k-bit input.

Source of errors Even Uniform

Imperfect Gate
kdu

2

2k21
1

db
2

2k
db

2

Phase Relaxation
12exp~2~4k18!G!

2k
12exp(2(4k18)G)

Dark count
Ndark

Ntotal

~2k21!Ndark

Ntotal
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E2~uni f orm!5(
i . j

2aiaj@~2exp~G i2G j !#cos~b i2b j !,

~93!

E3~uni f orm!5
2k21

Ntotal
Ndark , ~94!

where E1(uni f orm), E2(uni f orm), and E3(uni f orm)
correspond to the effect of imperfect gates, phase relaxation,
and the dark count, respectively. Using Eqs.~83! and ~84!,
E1(uni f orm) is given by

E1~uni f orm!;db
2 . ~95!

The effect of phase relaxationE2(uni f orm) can be written
as follows:

E2~uni f orm!;12exp@2~4k18!G#. ~96!

The effect of dark countE3(uni f orm) is given by (2k

21)Ndark /Ntotal . We also summarize these results in Table
IV.

The estimated error rates for the even and uniform inputs
are shown in Figs. 7~a! and 7~b!. These graphs are plotted
using the parameters found in the analysis of the four-bit
experiment in Sec. V:du

250.0033,db
250.05,G50.00098,

and Ndark /Ntotal50.0033. The number of input digits is

given by 2k. In other words, the number of qubits which is
simulated in the system isk11.

In Fig. 7~a!, the errors caused by imperfect gates~solid
circles! and phase relaxation~crosses! decrease rapidly with
the increase ofk, and the error rate is almost given by the
dark count~empty squares! whenk is large. At first glance,
this decrease in the error rate may seem unreasonable, how-
ever it can be explained as follows. For the even inputs, the
result should be nondetection in an ideal case. Therefore, the
error rate for the even inputs is given by the probability of
the detection events for the even inputs. Let us consider a
situation where the phases of the wave functions are at ran-
dom and no quantum interference occurs. When the size is
k52 and the system has four output ports, the detection
probability at an output port is given by 0.25, which is the
error rate for an even input. When the size of the system
increases, the number of the output mode increases to 2k and
the detection probability at an output mode is proportional to
22k. This is why the error rate decreases with an increase of
k.

Figure 7~b! shows the estimated error rate for uniform
input, or the probability of a nondetection event with uni-
form inputs, plotted as empty circles. The error rate caused
by dark count~empty squares! rapidly increases and is domi-
nant with a largek. This is because the number of detectors
which are set at all the output ports increases as 2k with size
k. The dark counts of the detectors except D1 increases the
nondetection events.

It is also interesting that the error caused by phase relax-
ation ~crosses! linearly increases in this region but not so
rapidly, and the effect of systematic errors is constant. There-
fore, the best way to improve the error rate is to decrease the
dark count. We observed 2000 counts/s dark counts in the
four-bit DJ experiment, however, we can decrease the rate
down to 50 counts/s using commercially available detectors
~for example, a special version of SPCM-AQ by EG & G!
and tight shielding for stray photons. We plotted the error
rates with this small darkcount rate~50 counts/s! using
double squares and the total error rates by double circles.
The result shows that just by improving the dark count rates,
we can perform the DJ algorithm experiment with a 210 in-
put, which is equivalent to 11 qubits, with less than a 20%
total error rate.

It is also possible to decrease the error rate caused by the
darkcount using a single photon source. One can create a pair
of photons by use of spontaneous parametric down conver-
sion ~SPDC!. By inputting one of them to the input port of
the computer and with the other photon detected by a high-
quantum-efficiency single-photon counting system@15,16#,
we can determine the time when the computation is per-
formed. In this case, we do not need detectors except for
detector D1 in Fig. 6 when the loss of the photon in the
system is negligible. In reality, the correlation of the photon
pair created by SPDC is not so high, however, we can im-
prove the error rate by employing coincident counting be-
tween the detectors set at the output modes and the detector
which determine when the computation is performed.

FIG. 7. The estimated error rate caused by the systematic errors,
phase relaxation, and dark counts of the photon detectors in the
optical system of the DJ algorithm with 2k-bit input.
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VII. CONCLUSION

In this paper, we have reported the quantitative analysis of
the source of errors in linear optics computation. First we
categorized the error in a simple one-qubit linear optics
quantum computer according to the sources: systematic er-
rors in quantum gates, phase relaxation, amplitude dumping,
and misreadout. Then we estimated the effect of each error
source in the four-bit DJ experiment, and succeeded in re-
producing the error rate which appeared in the experiment by
using the sum of the estimated error rates according to the
sources. We also estimated the errors which occur in the
optical system for the 2k-bit Deutsch-Jozsa algorithm. We
found that the error is almost constant for the answer ‘‘not
even,’’ however, it increases exponentially withk for the
answer ‘‘not uniform.’’ The main source of the error is
caused by the dark counts of the photon detectors. We also
found that the demonstration of quantum computation of 11
qubits using linear optics is achievable with the present tech-
nique used in the four-bit DJ experiment with commercially
available detectors with smaller dark counts~50 counts/s!.

With 11 qubits it is possible to realize several important
proposals for quantum computation experimentally. For ex-
ample, a experimental demonstration of DiVincenzo’s error
correcting code@17# is possible using six qubits. The factor-
ing of small numbers using Shor’s quantum algorithm@18#
will be also possible within 11 qubits. It was confirmed in
this paper that linear optics quantum computation is a prac-
tical test bed for these proposals.

Another interesting result of this paper is that the effect of
the error sources strongly depended on the answers~in this
case, ‘‘not even’’ and ‘‘not uniform’’! of the quantum com-
putation. This result suggests the possibility of designing an
algorithm whose results are not effected so much by the
sources of error.
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APPENDIX A: DERIVATION OF THE
COEFFICIENT 2 Õ„2kÀ1…

From Eq.~75!,

Ndet5N0S (
i 51

2N

ai
21(

i . j
2aiaj@exp~2G i2G j !#

3cos~a i , f ( i )2a j , f ( j )!D 1Ndark . ~A1!

Calculating the average ofNdet for the case$ f ( l )% is even
(2kC2k21 combinations!,

(
$ f ( l )%

Ndet

2kC2k21

5N0F(
i 51

2N

ai
21

1

2kC2k21
(
i . j

2aiajexp~2G i

2G j !S (
$ f ( l )%

cos~a i , f ( i )2a j , f ( j )! D G1Ndark .

~A2!

When we assumeb i2b j50 andg j50, We have the fol-
lowing equation:

F~ i , j ![ (
$ f ( l )%

cos~a i , f ( i )2a j , f ( j )!

5 (
$ f ( l )%

~21! f ( i )1 f ( j ). ~A3!

The meaning of this equation is summing (21) f ( i )1 f ( j ) for
all $ f ( l )% which is even when ani , j pair is given. There are
2k22C2k21 patterns of even$ f ( l )% for the cases wheref ( i ) is
not equal tof ( j ), i.e., $ f ( i ), f ( j )%5$1,0% or $0,1%. In such
cases, (21) f ( i )1 f ( j )521. On the other hand, there are
2k22C2k commutations for the case$ f ( i ), f ( j )%5$0,0% or
$1,1%. In such cases, (21) f ( i )1 f ( j )511. Therefore, one can
calculate Eq.~A3! as follows:

F~ i , j !522
~2k22!!

~2k21!! ~2k21!!
. ~A4!

Dividing by 2kC2k21 and multipling by 2~the coefficient of
aiaj in the original equation!, we finally have the coefficient:

2
2

2k21
. ~A5!

APPENDIX B: THE DERIVATION

OF ( iÄ1
2k

ai , ( iÄ1
2k

ai
2 AND ( iÌ jaiaj

Here we derive( i 51
2k

ai ,( i 51
2k

ai
2 and ( i . jaiaj . We as-

sume that the matrix of the beam splitter BS(i , j ) is given by
Eq. ~2! with the parameteru5p/21d i , j , whered i , j denotes
the systematic error. In this case,a1 ,a2 , . . . ,a2k is given as
follows:

a15
12sind1,1

2

12sind2,1

2
•••

12sindk,1

2
, ~B1!

a25
12sind1,1

2

12sind2,1

2
•••

11sindk,1

2
, ~B2!

•••••••••,

a2k5
11sind1,1

2

11sind2,2

2
•••

11sindk,2k21

2
, ~B3!
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where we used cos2(p/41di,j /2)5(12sindi,j)/2. Therefore,
we can have the following relation:

(
i 51

2k

ai51. ~B4!

Next we calculate( i 51
2k

ai
2 . Using Eqs.~B1! and~B2!, we

have

a1
21a2

25S 12sind1,1

2 D 2S 12sind2,1

2 D 2

. . . S 12sindk21,1

2 D 2

3
11sin2dk,1

2
. ~B5!

When we consider the terms up to the second order ofd i , j ,
we can approximate this equation as follows:

a1
21a2

2;
1

2 S 12sind1,1

2 D 2S 12sind2,1

2 D 2

. . . S 12sindk21,1

2 D 2

1
sin2dk,1

22k21
. ~B6!

Similarly, we havea3
21a4

2 as follows:

a3
21a4

2;
1

2 S 12sind1,1

2 D 2S 12sind2,1

2 D 2

. . . S 12sindk21,1

2 D 2

1
sin2dk,2

22k21
. ~B7!

Thus, we have( i 51
4 ai

2 as follows:

(
i 51

4

ai
2;

1

4 S 12sind1,1

2 D 2S 12sind2,1

2 D 2

•••S 12sindk22,1

2 D 2

1
sin2dk21,1

22k22
1

sin2dk,11sin2dk,2

22k21
. ~B8!

As a result, we have following equation:

(
i 51

2k

ai
2;

1

2k
1(

i 51

k

(
j 51

2i 21

sin2d i , j

2k1 i 21
. ~B9!

Using the average of the systematic error for the beam split-

ters ati stepsd i
25(( j 51

2i 21
sin2 di,j)/2

i 21,

(
i 51

2k

ai
2;

1

2k
1

1

2k (
i 51

k

d i
2. ~B10!

This equation suggests that an accidental systematic error of
a beam splitter near the root of the tree of the paths causes a
serious increase in error. Using parameterdu

2 which is an
average ofd i

2 , we have following equation:

(
i 51

2k

ai
2;

1

2k
1

k

2k
du

2. ~B11!

Using these results,( i . jaiaj is given as follows.

(
i . j

aiaj5
1

2 S S (
i 51

2k

ai D 2

2(
i 51

2k

ai
2D , ~B12!

5
2k212kdu

2

2k11
. ~B13!
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