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Toshio Mikami*
Hokkaido University

August 31, 2005

Abstract

We show the existence of a semimartingale of which one-dimensional
marginal distributions are given by the solution of the Fokker-Planck
equation with the p-th integrable drift vector (p > 1).

AMS (MOS) SUBJECT CLASSIFICATION NUMBERS: 93E20
A shortened version of the title: Semimartingales from the FP equation

1 Introduction.

Let M;(R?) denote the complete separable metric space, with a weak topol-
ogy, of Borel probability measures on R? (d > 1).

Let b : [0,1] x R? — R? be measurable and {P;(dx)}o<i<1, € M;i(RY),
satisfy the following Fokker-Planck equation: for f € Cp?([0,1] x R?) and
t e [0,1],

*Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan;
mikami@math.sci.hokudai.ac.jp; phone & fax no. 81/11/706/3444; partially supported
by the Grant-in-Aid for Scientific Research, No. 15340047, 15340051 and 16654031, JSPS.
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[ @) Pde) = [ 50.2)Pu(d) ()

/ /Rd(af s, ) ;Af(s,x)—i— < b(s,z), D, f(s,x) >>Ps(dx),

where A := Y4 | 0?/022, D, := (0/0x;)%_,, and < -,- > denotes the inner
product in R
Inspired by Born’s probabilistic interpretation of a solution to Schrodinger’s

equation, Nelson proposed the problem of the construction of a diffusion pro-
cess { X () }o<t<1 for which the following holds (see [20]):

t
X() = X(O)+ [ s X(s)ds+W(t) (t[0,1]), (12

0
P(X(t) € dx) = P(dx) (te€l0,1]), (1.3)

where {W(t) }o<i<1 is a 0[X (s) : 0 < s < t]-Wiener process.

The first result was given by Carlen [2] (see also [23]). It was generalized,
by Mikami [12], to the case where the second order differential operator
has a variable coefficient. The further generalization and almost complete

resolution was made by Cattiaux and Léonard [3-6] (see also [1, 13-15] for
the related topics). But in these papers, they assumed that

/O1 dt/Rd 1b(t, 2)|2P,(dz) < o0 (1.4)

for some b for which (1.1) holds. This is called the finite energy condition
for {Pt(dx)}ogtgl.

Remark 1.1 It is known that b is not unique for { P/(dx)}o<i<1 in (1.1) (see

[12] or [3-6]).

In this paper we consider Nelson’s problem under a weaker assumption
than (1.4): there exists p > 1 such that

/ dt/ b(t, z)[P P (dx) < oo (1.5)

for some b for which (1.1) holds. We call (1.5) the generalized finite energy
condition for {P;(dz)}o<i<1.



Let L(t,z;u) : [0,1] x RY x R — [0,00) be continuous and be convex
in u. Let A denote the set of all R%valued, continuous semimartingales
{X(t) }o<t<1 on a complete filtered probability space such that there exists a
Borel measurable 3y : [0,1] x C([0, 1]) — R? for which
(i) w — Px(t,w) is B(C([0,t]))-measurable for all ¢ € [0, 1], where B(C([0,t]))
denotes the Borel o-field of C'([0,¢]) and B(C([0,t])); denotes the left hand
side limit of ¢t — B(C([0,t])),

(ii) {Wx(t) == X(t) — X(0) — f5 Bx (s, X)ds}o<i<1 is a o[ X (5) : 0 < s < t]-
Wiener process.
For Py and P, € M;(R%), put

V(By, P1) = inf{EUOIL(t,X(t);ﬁX(t,X))dt]‘

PX(t) ' =P(t=0,1),X € A}, (1.6)

v(Py, Pr) (1.7)
- mf{ / 1 [ Bt bt ) P, da)at| P, ) = Pde) (¢ = 0,1),
(P(t,d2)}oeicr C My (RY), (b(t, ), P(t, dz)) satisfies (1.1)}.
In [12] where u +— L is quadratic, we proved and used the following:
V(Py, P1) = v(Py, Py). (1.8)

Remark 1.2 As a typical case, when L = |ul?, the minimizer of V(Py, P;)
is known to be the h-path process for the space-time Brownian motion (see
[7, 18] and the references therein). It is known that its zero-noise limit exists
and is the unique minimizer of Monge’s problem (see [16, 19]).

In this paper we prove (1.8) for a more general function L by the duality
theorem for V. To make the point clearer, we describe [18] briefly. For P,
and P; € M (R%), put

V(P P =sp{ [ (L) Ady) — [ eO.a)Po(d)f, (19
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where the supremum is taken over all classical solutions ¢ to the following
Hamilton-Jacobi-Bellman equation:

dp(t, )
ot

+ %Agp(t,x) +H(t: Daglt, 7)) = O((2) € (0,1) x RY)(1.10)
p(1,) € CFRY

(see Lemma 3.1). Here for (t,z,2) € [0,1] x R? x RY,

H(t,z;2) := sup{< z,u > —L(t,x;u)}. (1.11)
ueRd

The following was proved in [18] and is called the duality theorem for the
stochastic optimal control problem (1.6).

Theorem 1.1 (Duality Theorem) Suppose that (A.1)-(A.4) in section 2
hold. Then for any Py and P, € M;(R?),

V(po,pl) :V(Po,Pl)(E [0,00]) (112)
Suppose in addition that V (FPy, Py) is finite. Then V (P, Py) has a minimizer
and for any minimizer {X (t) }o<t<1 of V(Py, P1),

Bx(t, X) = bx(t, X (1)) := E[Bx(t, X)|(t, X (t))]. (1.13)

Remark 1.3 (1.12) can be considered as a counterpart in the stochastic op-
timal control theory of the duality theorem in the Monge-Kantorovich problem
(see [10, 17, 21, 22] and the references therein).

Using a similar result to (1.8) on small time intervals C [0, 1], we prove
that for P := {Pt(dx>}0§t§1 C Ml(Rd),

V(P) = v(P), (1.14)

where

V(P) i mf{EUO1 L(t,X(t);ﬁX(t,X))dt} ‘PX(t)l _P0<t<1),Xe A},
(1.15)



v(P): 1nf{/ dt/ (t,x;b(t,x))P;(dx)|b satisfies (1. 1)} (1.16)

In particular, the existence of a minimizer of V(P) implies that of a semi-
martingale for which (1.2)-(1.3) hold. When p = 2 in (1.5), this semimartin-
gale is Markovian. But we do not know if it is also true even when 1 < p < 2.
This is our future problem.

In section 2 we state our result which will be proved in section 4. Technical
lemmas are given in section 3.

I would like to dedicate this paper to Professor Wendell H. Fleming on
the occasion of his seventy seventh birthday. I would like to thank him for
his constant encouragement since I was a student of his.

2 Main result.

In this section we state our result.
We state assumptions on L.
(A.1). There exists p > 1 such that

i g L @)« (t ) € [0,1] x RT}

|u|—o0 ]u|1’

(A.2).

L(t,z;u) — L(s,y; u)
1+ L(s,y;u)
where the supremum is taken over all (t,z) and (s,y), € [0, 1] x R4, for which

It —s| <ei, |z —y| < ey and all u € R

(A.3). (i)L(t,z;u) € C3([0,1] x R x R : [0, 0)),

(i) D2L(t, z;u) is positive definite for all (¢, z,u) € [0,1] x R% x R4,

(iii) sup{L(t z;0): (t,7) €]0,1] x R4} is finite,

(iv) | D L(t,z;u)|/(1 4+ L(t, z;u)) is bounded,
(
(A.

AL(eq,e9) :=sup — 0 aseq, g0 — 0,

v) sup{|D, L(t z;u)|: (t,2) € [0,1] x RY, |u| < R} is finite for all R > 0.
4). (i) AL(0, 00) is finite, or (ii) p =2 in (A.1).

Remark 2.1 (7). (A.3, ii) implies that L(t, z;u) is strictly convex in u. (ii).
(14 |ul®)P/? (p > 1) satisfies (A.1)-(A.3) and (A.4,3).
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We state that (1.8) holds.

Theorem 2.1 Suppose that (A.1)-(A.4) hold. Then for any Py and P, €
M;(RY),

V(P07P1> :U(PO,P1>(€ [0,00]) (21)
The following is our main result (see (1.15)-(1.16) for notations).

Theorem 2.2 Suppose that (A.1)-(A.4) hold. Then
(i) for any P := {Py(dx)}o<i<1 C M1 (RY),

V(P) =v(P)(€ [0, )). (2.2)
(ii) For any P := {P,(dx)}o<i<1, C M1(RY), for which v(P) is finite, there

exist a unique minimizer b,(t,z) of v(P) and a minimizer X € A, of V(P).
In particular, for any minimizer X € A, of V(P),

Bx (t, X) = by(t, X (¢)) (2.3)
and (1.2)-(1.3) with b = b, hold.

Remark 2.2 [f v(P) is finite, then the generalized finite energy condition
(1.5) holds from (A.1).

3 Lemmas.

In this section we give technical lemmas.
In the same way as to A, we define the set of semimartingales A4; in
C([t,1]). We recall the following result.

Lemma 3.1 ([8, p. 210, Remark 11.2] ) Suppose that (A.1) and (A.3)
hold. Then for any f € C°(RY), the HIB equation (1.10) with ¢(1,-) = f
has a unique solution ¢ € CY2([0,1] x RY) N CYY([0, 1] x RY), which can be
written as follows:

pltr) = sup { EL(X()IX(0) = (3.1)

XeA;
_Eth L(s, X (s); Bx (s, X))ds | X (t) = x] }

6



where for the mazimizer X € A, the following holds:
Bx (s, X) = D.H(s, X(s); Dap(s, X (s))).

Fix Py € Mi(RY). For f € Cy(R?), put

V*(f):= su x)P(dx) — V (P, P) ¢, .

=, s TP - V(R P} (32)

()= s { [ f@)Pd) - o(F P)}. (33)
PeM;(Rd) /R

The following lemma plays a crucial role in the proof of Theorem 2.1.

Lemma 3.2 (i) Suppose that (A.3, i, ii) hold. Then for any Qo and @y €
M (RY),

V(Qo, Q1) > v(Qo, Q1) (3.4)

(i1) Suppose in addition that (A.1) and (A.3) hold. Then for any f €
Cye(RY),

Vi) Z (). (3.5)
(Proof) We first prove (i). For X € A for which E[fy L(t, X (t); Bx(t, X))dt]
is finite and for which PX(¢)™' = Q; (t = 0,1), (bx(t,z), P(X(t) € dz))
satisfies (1.1) with (b(¢,z), P(dx)) = (bx(t, x) P(X(t) € dx)) (see (1.13)
for notation). Indeed, for any f € C?([0,1] x R%) and t € [0,1], by Itd’s
formula,
| FE2)P(X(E) € da) = [ £(0.2)P(X(0) € da) (3.6)
= Elf(t, X(t)) — (0, X(0))]
- [as E[ (SaX( ) S OS5, X))+ < x(s, X), Daf (5, X(5)) ]
_ / dsE [M + 1Af(s X (s))+ < bx(s, X(5)), Daf(s, X(s)) >]
- / / (8f Af(s,x)+ < bx(s,z), Dy f(s,x) >)P(X(s) € dx).
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Hence, from Remark 2.1, (i), by Jensen’s inequality,

E { Ji "L X (1): Bx(t, X))dt] (3.7)
> EUOlL(t,X(t);bX(t,X(t)))dt}
= /01 dt [ Lt bx(t,2) P(X (1) € dr) > v(Qo, Q).
Next we prove (ii). For @ in (3.1) and {(b(t, z), P(t, dz))}o<rer for which

{P(t,dz)}o<i<1 € M1(R%) and (1.1) with P(0,dx) = Py holds,

/Rd f(z)P(1,dx) — /Rd (0, 2)Py(dx) < /01 dt o L(t,z;b(t,z))P(t, dz).
(3.8)
Indeed, take ¢ € C®°(R? : [0, 00)) for which ¢(x) =1 (|z| < 1) and ¢(z) =
(x| > 2) and put ¥g(z) := ¢ (x/R) for R > 0. Then from (1.1),

[ Unla / e P(0, dx) (3.9)

i
+/ dt/ [<D$w3 ms0(tsv)>+ Ap(z)e(t, o)

+ < b(t,2), Daton(z) > o1, x)]P(t, dz).

+ Ag&(t x)+ < b(t,z), Dyp(t, x) >}P(t,dw)

Let R — oo. Then we obtain (3.8) from (1.10), (A.1) and Lemma 3.1.
Lemma 3.1 and (3.8) implies (ii). Indeed,

v (f) = sup{/Rd P(1,dx) / dt/ (t,x;0(t,x))P(t,dx)| (3.10)
P(O dl‘) Pg(dl’) {P(t dx)}ogtgl C M ( )
(b(t, z), P(t, dz)) satisfies (1.1).}

/Rd ©(0,2)Py(dz) (from (3.8))

IN
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— sup{ B[r(x() - [ 200 e )t
PX(0) =P, X € A} (from Lemma 3.1)

— V'(f).D

Let (©, B, {B:}:>0, P) be a complete filtered probability space, X, be a
(Byp)-adapted random variable, and {W(¢)};>o denote a d-dimensional (B;)-
Wiener process for which W (0) = o (see e.g., [11]). For a Ri-valued, (B;)-
progressively measurable stochastic process {u(t)}o<i<1, put

_ X, +/ s)ds + W(t) (t e [0,1]). (3.11)
Then the following is known.

Lemma 3.3 Suppose that E[f, |u(t)|dt] is finite. Then {X*(t)}o<i<i € A
and

Bxu(t, X") = Elu(t)| X"(s),0 < s < {] (3.12)
(see [11, p. 270]). Besides, by Jensen’s inequality,
E[ /O LX) u(t))dt} > E[ /O UL XU (1): Byt XU))dt} L (3.13)

For P := {P,(dz)}o<i<1 € M;1(R?) and n > 1, put

V,(P) = inf{EU;L(t,X(t);ﬂX(t,X))dtH (3.14)
PX(t)' =P (t: i z:o,---,2”>,X eA},

w(P) = inf{/ dt/ (t, 2: b(t, ) P(t, d) (3.15)

P(t,dz) = P,(dx) (t = = 0,---,2”),

(P(t, d2)yocrer € M(RY), (b(t, ), P(t, dz)) satisfies (1.1)}.

Then we have



Lemma 3.4 Suppose that (A.1)-(A.4) hold. Then for any P := {P,(dx)}o<t<1 C
M (RY) andn > 1,

un(P) = Vi (P). (3.16)

(Proof) For i =0,---,2" — 1, put

1
on

Voa(P) = inf{EUO L(t,X(t);ﬁX(t,X))dt”

PX(0)" = Py (1=0, %)X e Al @

Uni(P) (3.18)
= inf{/2 dt/ (t,z;b(t,x))P(t,dx)

P(t,dz) = P,  (d) ( 0,

) AP bocre . © MR,

o
(b(t,x), P(t,dx)) satisfies (1.1) on [0,1/2"]}.
Then, from Theorem 2.1,
on—1 on—1
0 (P) = > 0,:(P) = > V,.(P). (3.19)
=0 i=0
Since V,,(P) > v, (P) from (3.6)-(3.7), we only have to prove the following:
on_1
5" Vi(P) = Vi (P). (3.20)
i=0

Suppose that the left hand side of (3.20) is finite. For i = 0,---2" — 1,
take a minimizer X,,; of V,,;(P) (see Theorem 1.1), and put

10



Pn(dX|C([O71]:Rd)> = Pn,o<dX|C([o,2Ln]:Rd)> (3.22)

o os(57) = ¥ (35))
) on on

n (C([0,1] : RY), B(C([0,1] : R?))). Under the completion of this measure,
the coordinate process { X, (t)}o<i<1 satisfies the following:

2" -1 mln(H'l,) ;
Xo(t) = X, (0)+ 3 / o bn,i(s—;,xn(s))ds+wxn(t) 0<t<1),
i—o Jmin(5w,
(3.23)

where b,,; denotes the drift vector of X,,; (see Theorem 1.1). In particular,
PX,t)' =P, (t=14/2",i=0,---,2"), which implies (3.20). O

4 Proofs.

In this section we prove our results given in section 2.

When L = |ul?, the following proof extremely simplifies that of [12
Lemma 2.5].
(Proof of Theorem 2.1). Lemma 3.2, (i) and the following complete the proof:

v(Fy, Py) (4.1)

- fecs*olide{ Rdf r)P(dx) —v (f)} (from (3.3))

> sup {/ x) Py (dz) V*(f)} (from Lemma 3.2, (ii))
fecpe(ra) /RS
= V(Fy, P1) (from Theorem 1.1 (see (3.10))).0

(Proof of Theorem 2.2). We first prove (i). From (3.6)-(3.7), V(P) > v(P).
Therefore we only have to show that

v(P) > V(P). (4.2)
Suppose that v(P) is finite. Then, from Lemma 3.4,

11



and X, constructed in (3.23) is a minimizer of V,,(P).

Let b, denote the drift vector of {X,(t)}o<i<i. It is easy to see that
{(Xn(t), J3ba(s, Xp(s))ds) : t € [0,1]},5; is tight in C([0,1] : R*?) from
(A.1) (see [23, Theorem 3] or [9]). Take a weakly convergent subsequence
{( X, (), [ by, (5, X, (8))ds) : t € [0,1]}x>1 such that

h}gg}le{/ L(t, Xn(t); by(s, Xn(s)))dt} (4.4)
- ,}LHSOE[/ L(tvxnk@)%bnk(&Xnk(s)))dt}

Let {(X(t), A(t)) }eo denote the limit of {(X,, (2), Jo bny (5, Xy (8))ds) : t €
[0, 1]}k>1 as B — oo. Then {X () =X (0)—A(t) }repaisao[X(s) : 0 < s < -
Wiener process and {A(t)}icp,1) is absolutely continuous (see [23, Theorem
5] or [9]). We can also prove, in the same way as in the proof of [15, (3.17)],
the following: from (4.3)-(4.4), (A.2) and (A.3, ii) (see Remark 2.1, (i)),

v(P) 2 liminf B[ [ L0 X000 e, Xo(0)1] (1.5
- o] s 4
> E{ /0 1L<t,X(t);ﬁX(t,X)>dt} (from Lemma 3.3)
> V(P).

1

Here E denotes the mean value by the completion of PX(-)~" and we used

the fact that P(X (t) € dx) = Py(dx) for all t € [0,1]. Indeed,

P(X(t) € dz) = lim P<X<[227;t]>€ d:l:> weakly,

n—oo

2"t
P(X<[2"])E d:zc): Ppny (dz) — F(dx) asn — oo weakly.
2n

12



Next we prove (ii). Suppose that v(P) is finite. Then (2.2) and (4.5)
show the existence of a minimizer X of V(P). In the same way as in (3.7),
Theorem 2.2, (i) and the strict convexity of u +— L(t,z;u) (see Remark 2.1,
(1)) imply that Ox(t, X) = bx(t, X (t)) and bx(¢,x) is a minimizer of v(P).

Let by and by be minimizers of v(P). Then for any A € (0,1), \by (¢, z) +
(1 — \)ba(t, x) satisfies (1.1), and

(4.6)

IN

/ / (t, 3 Aba (£, 22) + (1 — Nba(t, 2)) P(da)
< )\/ / (t,2;01(t, ) Py(dx) + (1 — A / / L(t, z;by(t, x)) P(dx)

The strict convexity of u +— L(t, z;u) implies the uniqueness of a minimizer
of v(P).O
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