HOKKAIDO UNIVERSITY

Title	The automorphism groups of the vertex operator algebras V +L : general case
Author(s)	Shimakura, Hiroki
Citation	Mathematische Zeitschrift, 252(4), 849-862 https:/doi.org/10.1007/s00209-005-0890-x
Issue Date	2006-04
Doc URL	The original publication is available at www.springerlink.com. handle.net/2115/5783
Rights	article (author version)
Type	MZ252-4.pdf
File Information	

Instructions for use

The automorphism groups of the vertex operator algebras V_{L}^{+}: general case

Hiroki SHIMAKURA*
Department of Mathematics, Hokkaido University
Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido, 060-0810, Japan.
e-mail: shimakura@math.sci.hokudai.ac.jp

Abstract

In this article, we give a method of calculating the automorphism groups of the vertex operator algebras V_{L}^{+}associated with even lattices L. For example, by using this method we determine the automorphism groups of V_{L}^{+}for even lattices of rank one, two and three, and even unimodular lattices.

Introduction

Let L be a (positive-definite) even lattice and let V_{L}^{+}be the fixed-points of the VOA V_{L} associated with L under an automorphism $\theta_{V_{L}}$ lifting the -1 -isometry of L. The automorphism groups $\operatorname{Aut}\left(V_{L}^{+}\right)$of the VOAs V_{L}^{+}were described in [DG1] for lattices L of rank 1, in [DG2] for lattices L of rank 2, and in [Sh] for lattices L without roots. The primary purpose of this article is to generalize the method of calculating $\operatorname{Aut}\left(V_{L}^{+}\right)$in $[\mathrm{Sh}]$ to all even lattices L.

Let V be a VOA and let G be an automorphism group of V. Then the subspace V^{G} of points fixed by G is a subVOA. Clearly $N_{\operatorname{Aut}(V)}(G)$ acts on V^{G}. Then the question arises as to whether or not any automorphism of V^{G} comes from $N_{\text {Aut }(V)}(G)$. Take V to be the VOA V_{L} and G to be the group generated by the involution $\theta_{V_{L}}$. Then the quotient group H_{L} of $C_{\mathrm{Aut}\left(V_{L}\right)}\left(\theta_{V_{L}}\right)$ by the subgroup $\left\langle\theta_{V_{L}}\right\rangle$ acts faithfully on V_{L}^{+}. In [DG2] it was shown that $\operatorname{Aut}\left(V_{L}^{+}\right)$coincides with H_{L} if L does not have vectors of norm 2 or 4 and the rank of L is greater than 1 . In this article, we can obtain a definitive answer: $\operatorname{Aut}\left(V_{L}^{+}\right)$is larger than H_{L} if and only if L is obtained by Construction B or is isomorphic to the E_{8}-lattice.

We recall the method of [Sh]. Let S_{L} denote the set of all isomorphism classes of irreducible V_{L}^{+}-modules. Then $\operatorname{Aut}\left(V_{L}^{+}\right)$acts on S_{L}. It was shown that the stabilizer of

[^0]the isomorphism class [0] ${ }^{-}$of the irreducible V_{L}^{+}-module V_{L}^{-}is equal to the subgroup H_{L}. The orbit Q_{L} of $[0]^{-}$was determined when L has no roots. Moreover, Q_{L} was regarded as a subset of an elementary abelian 2-group by using the fusion rules of V_{L}^{+}. Hence there exists a group homomorphism from $\operatorname{Aut}\left(V_{L}^{+}\right)$to a general linear group over \mathbb{F}_{2}. Then by using the kernel and image $\operatorname{Aut}\left(V_{L}^{+}\right)$can be described.

The main result of this article is the following: The orbits Q_{L} are determined for all even lattices L (Theorem 4.3). This allows us to determine the automorphism group of V_{L}^{+}.

We explain our method of determining Q_{L}. Since the action of $\operatorname{Aut}\left(V_{L}^{+}\right)$on Q_{L} preserves the graded dimensions and fusion rules, we obtain some necessary conditions satisfied by elements of Q_{L}. For any element W of untwisted type in S_{L} satisfying the conditions, we will show that there exists an automorphism exchanging [0] ${ }^{-}$and W. To do this, we use a characterization of even lattices obtained by Construction B (Theorem 2.2) and certain automorphisms given in [FLM]. Thus we obtain sufficient and necessary conditions for isomorphism classes of untwisted type to belong Q_{L}. Moreover we will classify even lattices L such that Q_{L} contains isomorphism classes of twisted type. Determining isomorphism classes of twisted type in Q_{L}, we obtain the orbit Q_{L}.

Throughout this article, we will work over the field \mathbb{C} of complex numbers unless otherwise stated. We denote the set of integers by \mathbb{Z} and the rings of integers modulo p by \mathbb{Z}_{p}. We often identify \mathbb{Z}_{2} with the field \mathbb{F}_{2} of two elements. Let Ω_{n} denote the set $\{1,2, \ldots, n\}$ for $n \in \mathbb{Z}_{>0}$. We view the power set of Ω_{n} as an n-dimensional vector space over \mathbb{F}_{2} naturally. For a code C and $l \in \mathbb{Z}$, let C_{l} denote the set of codewords of C of weight l. For a subset U of an n-dimensional vector space \mathbb{R}^{n} over the real field \mathbb{R} and $m \in \mathbb{R}$, let U_{m} denote the set of vectors in U of norm m. For a lattice L, the dual lattice of L is denoted by L^{*}. For a group G and its subgroup $H, N_{G}(H)$ and $C_{G}(H)$ denote the normalizer and centralizer of H in G respectively. Let V be a VOA and let $\left(M, Y_{M}\right)$ be a V-module. For an automorphism g of V, let $M \circ g$ denote the V-module ($M, Y_{M \circ g}$) defined by $Y_{M \circ g}(v, z)=Y_{M}(g v, z), v \in V$.

Acknowledgments. The author would like to thank Professor Atsushi Matsuo for valuable suggestions and helpful advice. He also thanks Professor Masahiko Miyamoto for useful comments and Professor Toshiyuki Abe for reading the manuscript.

1 Preliminaries

In this section, we recall or give some definitions and facts necessary in this article.

1.1 Construction B

In this subsection, we recall a standard method for constructing lattices from linear binary codes.

Let n be a positive integer and let $\left\{\alpha_{i} \mid i \in \Omega_{n}\right\}$ be an orthogonal basis of \mathbb{R}^{n} satisfying $\left\langle\alpha_{i}, \alpha_{j}\right\rangle=2 \delta_{i, j}$. For a subset $J \subset \Omega_{n}$, we set $\alpha_{J}=\sum_{i \in J} \alpha_{i}$. Let C be a binary code of length n. Then

$$
\begin{equation*}
L_{B}(C)=\sum_{c \in C} \mathbb{Z} \frac{1}{2} \alpha_{c}+\sum_{i, j \in \Omega_{n}} \mathbb{Z}\left(\alpha_{i}+\alpha_{j}\right) \tag{1.1}
\end{equation*}
$$

is called the lattice obtained by Construction B from C. We note that $L_{B}(C)$ is even if and only if C is doubly even. We call $\left\{ \pm \alpha_{i} \mid i \in \Omega_{n}\right\}$ a frame of $L_{B}(C)$ with respect to the expression (1.1). The following lemma is easy to prove.
Lemma 1.1. $\left|L_{B}(C)_{2}\right|=8\left|C_{4}\right|$.

1.2 Vertex operator algebra V_{L}^{+}

In this subsection, we review some properties of the vertex operator algebra V_{L}^{+}. For the details of its construction, see [FLM].

Let L be a (positive-definite) even lattice and let \hat{L} be a central extension:

$$
1 \rightarrow\left\langle\kappa_{L} \mid \kappa_{L}^{2}=1\right\rangle \rightarrow \hat{L} \rightarrow L \rightarrow 1
$$

such that $[a, b]=\kappa_{L}^{\langle\bar{a}, \bar{b}\rangle}$ for $a, b \in \hat{L}$. Let $\theta_{\hat{L}}$ be an involution of \hat{L} induced by the -1 isometry of L. Set $K_{L}=\left\{a^{-1} \theta_{\hat{L}}(a) \mid a \in \hat{L}\right\}$. Then K_{L} is a normal subgroup of \hat{L}. Let V_{L} denote the VOA associated with L. The automorphism $\operatorname{group} \operatorname{Aut}\left(V_{L}\right)$ of V_{L} contains an involution $\theta_{V_{L}}$ induced by $\theta_{\hat{L}}$. Its fixed-points on V_{L} is denoted by V_{L}^{+}. Then V_{L}^{+}is a subVOA of V_{L}.

In [DN2, AD], it was shown that any irreducible V_{L}^{+}-module is isomorphic to one of $V_{\lambda+L}^{ \pm}\left(\lambda \in L^{*} \cap(L / 2)\right), V_{\mu+L}\left(\mu \in L^{*} \backslash(L / 2)\right)$ and $V_{L}^{T_{\chi}, \pm}$, where T_{χ} is an irreducible \hat{L} / K_{L}-module with central character χ. In this article, we use the following notation: $[\mu]$, $[\lambda]^{ \pm}$and $[\chi]^{ \pm}$denote the isomorphism classes of $V_{\mu+L}, V_{\lambda+L}^{ \pm}$and $V_{L}^{T_{\chi}, \pm}$ respectively. The isomorphism classes $[\mu],[\lambda]^{ \pm}$are called untwisted type and the isomorphism classes $[\chi]^{ \pm}$ are called twisted type.
Note 1.2. In this article, we take an involution on $V_{L}^{T_{x}}$ induced by the identity operator on T_{χ} and consider the ± 1-eigenspace $V_{L}^{T, \pm}$. However in $[\mathrm{FLM}]$ an involution on $V_{L}^{T_{\chi}}$ induced by the -1 -isometry on T_{χ} is used.

The fusion rules of V_{L}^{+}were determined in [Ab, ADL]. In particular the following hold.
Lemma 1.3. [Ab, ADL]
(1) Let λ be a vector in $L^{*} \cap(L / 2)$. Then the fusion rules $[0]^{-} \times[\lambda]^{ \pm}=[\lambda]^{\mp}$ hold.
(2) Let λ be a vector in $L^{*} \cap(L / 2)$ satisfying $\langle\lambda, \lambda\rangle \in \mathbb{Z}$. Then the fusion rule $[\lambda]^{\varepsilon} \times[\lambda]^{\varepsilon}=$ $[0]^{+}$holds for any $\varepsilon \in\{ \pm\}$.
(3) Let W_{1} and W_{2} be isomorphism classes of irreducible modules of V_{L}^{+}. If isomorphism classes of twisted type appear in $W_{1} \times W_{2}$ then one of W_{1} and W_{2} is of twisted type.

1.3 Automorphism groups of V_{L} and V_{L}^{+}

In this section, we review the results on automorphism groups of V_{L} and V_{L}^{+}for even lattices L.

We start by recalling the automorphism group of V_{L}. For a lattice L, we denote by $O(L)$ the group of automorphisms of L which preserve the bilinear form. Let $O(\hat{L})$ denote the group of automorphisms of \hat{L} which preserve the bilinear form on the quotient of \hat{L} by its normal subgroup of order 2 . For $g \in O(\hat{L})$, let \bar{g} denote the linear automorphism of L defined by $\bar{g}(\bar{a})=\overline{g(a)}, a \in \hat{L}$. We view an element $f \in \operatorname{Hom}\left(L, \mathbb{Z}_{2}\right)$ as the automorphism of \hat{L} which sends a to $\kappa_{L}^{f(\bar{a})} a$. Hence we obtain an embedding $\operatorname{Hom}\left(L, \mathbb{Z}_{2}\right) \subset O(\hat{L})$. In Proposition 5.4.1 of [FLM], the following sequence is exact:

$$
\begin{equation*}
1 \rightarrow \operatorname{Hom}\left(L, \mathbb{Z}_{2}\right) \hookrightarrow O(\hat{L}) \stackrel{\hookrightarrow}{\rightarrow} O(L) \rightarrow 1 \tag{1.2}
\end{equation*}
$$

In [DN1], the automorphism group $\operatorname{Aut}\left(V_{L}\right)$ of V_{L} was described as follows:
Proposition 1.4. [DN1, Theorem 2.1] Let L be an even lattice. Then $\operatorname{Aut}\left(V_{L}\right)=$ $N\left(V_{L}\right) O(\hat{L})$, where $N\left(V_{L}\right)=\left\langle\exp \left(v_{0}\right) \mid v \in\left(V_{L}\right)_{1}\right\rangle$ is a normal subgroup of $\operatorname{Aut}\left(V_{L}\right)$. Moreover, $\operatorname{Aut}\left(V_{L}\right) / N\left(V_{L}\right)$ is isomorphic to a quotient group of $O(L)$.

In [Do] it was shown that any irreducible V_{L}-module is isomorphic to $V_{\lambda+L}$ for some $\lambda \in L^{*}$. The group $\operatorname{Aut}\left(V_{L}\right)$ acts on the set of isomorphism classes of irreducible $V_{L^{-}}$ modules as follows.

Lemma 1.5. (1) Any element of $N\left(V_{L}\right)$ fixes all isomorphism classes of irreducible $V_{L^{-}}$ module.
(2) Let g be an element of $O(\hat{L})$ and let λ be a vector in L^{*}. Then g sends the isomorphism class of $V_{\lambda+L}$ to that of $V_{\bar{g}^{-1}(\lambda)+L}$.
Now, let us consider automorphisms of V_{L}^{+}. By the definition of V_{L}^{+}, the centralizer $C_{\text {Aut }\left(V_{L}\right)}\left(\theta_{V_{L}}\right)$ acts on V_{L}^{+}. Set

$$
H_{L}=C_{\operatorname{Aut}\left(V_{L}\right)}\left(\theta_{V_{L}}\right) /\left\langle\theta_{V_{L}}\right\rangle .
$$

Then H_{L} acts faithfully on V_{L}^{+}, and $H_{L} \subset \operatorname{Aut}\left(V_{L}^{+}\right)$. Let S_{L} denote the set of all isomorphism classes of irreducible V_{L}^{+}-modules. Then H_{L} is characterized as follows.

Lemma 1.6. [Sh, Proposition 3.10] The group H_{L} is the stabilizer of [0] ${ }^{-}$under the action of $\operatorname{Aut}\left(V_{L}^{+}\right)$on S_{L}.

Since $\theta_{V_{L}}$ belongs to the center of $O(\hat{L}), H_{L}$ contains $O(\hat{L}) /\left\langle\theta_{V_{L}}\right\rangle$.
Lemma 1.7. [Sh, Proposition 2.9] For $g \in O(\hat{L}) /\left\langle\theta_{V_{L}}\right\rangle$, we have

$$
\begin{aligned}
{[\mu] \circ g } & =\left[\bar{g}^{-1}[(\mu)], \mu \in L^{*} \backslash(L / 2),\right. \\
\left\{[\lambda]^{ \pm} \circ g\right\} & =\left\{\left[\bar{g}^{-1}(\lambda)\right]^{ \pm}\right\}, \lambda \in L^{*} \cap(L / 2), \\
{[0]^{ \pm} \circ g } & =[0]^{ \pm} .
\end{aligned}
$$

Moreover for $\lambda \in L^{*} \cap(L / 2)$ there exists an automorphism h of V_{L}^{+}such that $[\lambda]^{+} \circ h=[\lambda]^{-}$.

Let Q_{L} denote the orbit of $[0]^{-}$under the action of $\operatorname{Aut}\left(V_{L}^{+}\right)$on S_{L}. Since automorphisms of a VOA preserves the fusion rules and the graded dimensions, we have the following inclusions:

Lemma 1.8. [Sh, Lemma 3.12] Let L be an even lattice of rank n.
(1) If $n \neq 8,16$ then $Q_{L} \subseteq\left\{[0]^{-},[\lambda]^{ \pm}\left|\lambda \in L^{*} \cap(L / 2),\left|(\lambda+L)_{2}\right|=2 n+\left|L_{2}\right|\right\}\right.$.
(2) If $n=8$ then $Q_{L} \subseteq\left\{[0]^{-},[\lambda]^{ \pm},[\chi]^{-}\left|\lambda \in L^{*} \cap(L / 2),\left|(\lambda+L)_{2}\right|=2 n+\left|L_{2}\right|\right\}\right.$, where χ ranges over the central characters of \hat{L} / K_{L} with $\chi\left(\kappa K_{L}\right)=-1$.
(3) If $n=16$ then $Q_{L} \subseteq\left\{[0]^{-},[\lambda]^{ \pm},[\chi]^{+}\left|\lambda \in L^{*} \cap(L / 2),\left|(\lambda+L)_{2}\right|=2 n+\left|L_{2}\right|\right\}\right.$, where χ ranges over the central characters of \hat{L} / K_{L} with $\chi\left(\kappa K_{L}\right)=-1$.

Recall that a lattice L is said to be 2-elementary if $2 L^{*} \subset L$, and said to be totally even if both $\sqrt{2} L^{*}$ and L are even.

Lemma 1.9. (1) [Sh, Proposition 3.14] If Q_{L} contains isomorphism classes of twisted type then L is 2-elementary totally even.
(2) [Sh, Lemma 3.6] If L is 2-elementary totally even then isomorphism classes of twisted type with the same sign are conjugate under the action of $\operatorname{Aut}\left(V_{L}^{+}\right)$.

1.4 Extra automorphisms of V_{L}^{+}

In this subsection we review automorphisms of V_{L}^{+}not in H_{L} from [FLM].
Let C be a doubly even code of length n and let L be the lattice obtained by Construction B from C with frame $\left\{\alpha_{i} \mid i \in \Omega_{n}\right\}$. In Chapter 11 of [FLM], an automorphism σ not in H_{L} was constructed. This automorphism satisfies $[0]^{-} \circ \sigma=\left[\alpha_{1}\right]^{+}$. Lemma 1.6 shows that $\sigma \notin H_{L}$. By Lemma 1.7, there exists an automorphism h of V_{L}^{+}such that $\left[\alpha_{1}\right]^{+} \circ h=\left[\alpha_{1}\right]^{-}$.

We now assume that C contains the all-ones codeword. Let us see the action of σ on some isomorphism classes of irreducible V_{L}^{+}-modules. Set $\beta_{n}=\alpha_{\Omega_{n}} / 4$ and $\gamma_{n}=$ $\alpha_{\Omega_{n}} / 4-\alpha_{1}$. By the assumption, vectors β_{n} and γ_{n} belong to $L^{*} \cap(L / 2)$. By [FLM, Theorem 11.5.1], $\left\{\left[\beta_{n}\right]^{ \pm} \circ \sigma,\left[\gamma_{n}\right]^{ \pm} \circ \sigma\right\}=\left\{\left[\chi_{1}\right]^{ \pm},\left[\chi_{2}\right]^{ \pm}\right\}$for some central characters χ_{i} of \hat{L} / K_{L}. Comparing the graded dimensions, we obtain $\left\{\left[\beta_{n}\right]^{ \pm} \circ \sigma\right\}=\left\{\left[\chi_{1}\right]^{+},\left[\chi_{2}\right]^{+}\right\}$and $\left\{\left[\gamma_{n}\right]^{ \pm} \circ \sigma\right\}=\left\{\left[\chi_{1}\right]^{-},\left[\chi_{2}\right]^{-}\right\}$.

The result is summarized in the following lemmas.
Lemma 1.10. [FLM] Let L be an even lattice obtained by Construction B with frame $\left\{\alpha_{i}\right\}$. Then the orbit of $[0]^{-}$contains $\left[\alpha_{1}\right]^{ \pm}$. In particular the cardinality of the orbit of $[0]^{-}$is greater than 1.

Lemma 1.11. [FLM] Let L be the even lattice obtained by Construction B from a doubly even code C containing the all-one codeword. Let $\varepsilon \in\{ \pm\}$.
(1) The orbit of the isomorphism classes $\left[\beta_{n}\right]^{\varepsilon}$ contains isomorphism classes of twisted type with sign + .
(2) The orbit of the isomorphism classes $\left[\gamma_{n}\right]^{\varepsilon}$ contains isomorphism classes of twisted type with sign -.

2 Characterization of even lattices obtained by Construction B

In this section, we characterize even lattices obtained by Construction B. We will later use our characterization to determine the automorphism group of V_{L}^{+}.

Let L be a (positive-definite) even lattice of rank n. We set

$$
\begin{equation*}
R_{L}=\left\{\lambda+L \in L^{*} / L\left|\lambda \in L / 2,\left|(\lambda+L)_{2}\right| \geq 2 n+\left|L_{2}\right|\right\} .\right. \tag{2.1}
\end{equation*}
$$

Note 2.1. The definition of R_{L} comes from the necessary conditions satisfied by isomorphism classes of untwisted type in Q_{L} (cf. Lemma 1.8).

Then even lattices obtained by Construction B are characterized as follows.
Theorem 2.2. Let L be an even lattice of rank n. Then the following conditions are equivalent:
(1) L is obtained by Construction B.
(2) The set R_{L} is not empty.

To prove this theorem, we need some lemmas.
Lemma 2.3. Let L be an even lattice of rank n and let $\lambda+L$ be an element of R_{L}. Then $(\lambda+L)_{2}$ contains an orthogonal basis of \mathbb{R}^{n}.

Proof. Since L is even and $\lambda \in L^{*}$, the norms of vectors in $\lambda+L$ are contained in $\langle\lambda, \lambda\rangle+2 \mathbb{Z}$. It follows from $(\lambda+L)_{2} \neq \phi$ that $\langle\lambda, \lambda\rangle \in 2 \mathbb{Z}$. Hence $L^{\prime}=L+\mathbb{Z} \lambda$ is an even lattice and L_{2}^{\prime} forms a root system. In particular, the inner products of vectors in $(\lambda+L)_{2}$ are contained in $\{0, \pm 1, \pm 2\}$.

Let $Y_{r}=\left\{y_{1}, \ldots, y_{r}\right\}$ be a subset of $(\lambda+L)_{2}$ such that $\left\langle y_{i}, y_{j}\right\rangle=2 \delta_{i, j}$. We set $\tilde{Y}_{r}=\left\{ \pm y \mid y \in Y_{r}\right\}$. Then $\left|\tilde{Y}_{r}\right|=2 r$. To prove this lemma, we will show that if $r<n$ then there exists a vector in $(\lambda+L)_{2}$ orthogonal to Y_{r}. Define

$$
X\left(Y_{r}\right)=\left\{x \in(\lambda+L)_{2} \mid\left\langle x, y_{i}\right\rangle \in\{ \pm 1\} \text { for }{ }^{\exists} i \in \Omega_{r}\right\},
$$

where $\Omega_{r}=\{1,2, \ldots, r\}$. Clearly $\tilde{Y}_{r} \cap X\left(Y_{r}\right)=\phi$. For $x \in X\left(Y_{r}\right)$, we set

$$
\begin{equation*}
m(x)=\min \left\{i \in \Omega_{r} \mid\left\langle y_{i}, x\right\rangle \in\{ \pm 1\}\right\} . \tag{2.2}
\end{equation*}
$$

Set $X\left(Y_{r}\right)^{+}=\left\{x \in X\left(Y_{r}\right) \mid\left\langle x, y_{m(x)}\right\rangle=1\right\}$. Then $\left|X\left(Y_{r}\right)\right|=2\left|X\left(Y_{r}\right)^{+}\right|$. Since $\mid x-$ $\left.y_{m(x)}\right|^{2}=|x|^{2}+\left|y_{m(x)}\right|^{2}-2\left\langle x, y_{m(x)}\right\rangle=2$ for $x \in X\left(Y_{r}\right)^{+}$, we consider the map ρ : $X\left(Y_{r}\right)^{+} \rightarrow\left\{\{ \pm v\} \mid v \in L_{2}\right\}, x \mapsto\left\{ \pm\left(x-y_{m(x)}\right)\right\}$.

Let us show that ρ is injective. First we suppose $x-y_{m(x)}=x^{\prime}-y_{m\left(x^{\prime}\right)}$. If $m(x)=m\left(x^{\prime}\right)$ then $x=x^{\prime}$. So we may assume that $m(x)<m\left(x^{\prime}\right)$. By the definition of Y_{r} and (2.2)

$$
\begin{equation*}
\left\langle y_{m(x)}, y_{m\left(x^{\prime}\right)}\right\rangle=\left\langle x^{\prime}, y_{m(x)}\right\rangle=0 . \tag{2.3}
\end{equation*}
$$

Hence we have

$$
2=\left\langle x-y_{m(x)}, x^{\prime}-y_{m\left(x^{\prime}\right)}\right\rangle=\left\langle x, x^{\prime}-y_{m\left(x^{\prime}\right)}\right\rangle .
$$

Since both x and $x^{\prime}-y_{m\left(x^{\prime}\right)}$ belong to L_{2}^{\prime}, we have $x=x^{\prime}-y_{m\left(x^{\prime}\right)}$. However it contradicts $(\lambda+L) \cap L=\phi$ since $x \in \lambda+L$ and $x^{\prime}-y_{m\left(x^{\prime}\right)} \in L$.

Next we suppose $x-y_{m(x)}=y_{m\left(x^{\prime}\right)}-x^{\prime}$. If $m(x)=m\left(x^{\prime}\right)$ then $x+x^{\prime}=2\left(y_{m(x)}\right)$ and $|x|^{2}=\left|x^{\prime}\right|^{2}=\left|y_{m(x)}\right|^{2}=2$. Hence $x=x^{\prime}=y_{m(x)}$, which is a contradiction. So we may assume $m(x)<m\left(x^{\prime}\right)$. Then by (2.3), we have

$$
2=\left\langle x-y_{m(x)}, y_{m\left(x^{\prime}\right)}-x^{\prime}\right\rangle=\left\langle x, y_{m\left(x^{\prime}\right)}-x^{\prime}\right\rangle,
$$

which implies that $x=y_{m\left(x^{\prime}\right)}-x^{\prime}$. However, it contradicts $(\lambda+L) \cap L=\phi$. Hence ρ is injective. This shows that $\left|X\left(Y_{r}\right)^{+}\right| \leq\left|L_{2}\right| / 2$, namely $\left|X\left(Y_{r}\right)\right| \leq\left|L_{2}\right|$. Since $\tilde{Y}_{r} \cap X\left(Y_{r}\right)=$ ϕ, we have $\left|\tilde{Y}_{r} \cup X\left(Y_{r}\right)\right| \leq 2 r+\left|L_{2}\right|$. So, if $r<n$ then there exists $x \in(\lambda+L)_{2}$ such that $x \notin X\left(Y_{r}\right) \cup Y_{r}$, namely $\left\langle x, Y_{r}\right\rangle=0$. Therefore $(\lambda+L)_{2}$ contains an orthogonal basis of \mathbb{R}^{n}.

Lemma 2.4. Let L be an even lattice of rank n. For $\lambda+L \in R_{L}$, there exist a doubly even code C and a frame in $\lambda+L$ such that $L=L_{B}(C)$.

Proof. By Lemma 2.3, $\lambda+L$ contains vectors $e_{1}, e_{2}, \ldots, e_{n}$ satisfying $\left\langle e_{i}, e_{j}\right\rangle=2 \delta_{i, j}$. Since $2 \lambda \in L$, we have $e_{i} \pm e_{j} \in L$. Set $E=\oplus_{i=1}^{n} \mathbb{Z} e_{i}$ and $L^{\prime}=L+\mathbb{Z} \lambda$. Then L^{\prime} / E is a subspace of $E^{*} / E \cong \mathbb{Z}_{2}^{n}$. So we regard L^{\prime} / E as a binary code C of length n. We can choose a basis B in $\left\{ \pm e_{i} \mid i \in \Omega_{n}\right\}$ so that L is the lattice obtained by Construction B from C with frame B (cf. the proof of [Sh, Proposition 1.8]).

Proof of Theorem 2.2. Suppose (1). Let $\left\{\alpha_{i}\right\}$ be the frame. Then $\left|\left(\alpha_{1}+L\right)_{2}\right|=2 n+$ $\left|L_{2}\right|$, and $\alpha_{1}+L \in R_{L}$. Hence (1) $\Rightarrow(2)$. It follows from Lemma 2.4 that (2) \Rightarrow (1).

Remark 2.5. The proof of Theorem 2.2 implies that $\left|(\lambda+L)_{2}\right|=2 n+\left|L_{2}\right|$ for any $\lambda+L \in R_{L}$.

Let us show some lemmas by using Theorem 2.2. Let L be the even lattice obtained by Construction B from a doubly even code C of length n with frame $\left\{ \pm \alpha_{i} \mid i \in \Omega_{n}\right\}$. Set $\beta_{n}=\alpha_{\Omega_{n}} / 4$ and $\gamma_{n}=\alpha_{\Omega_{n}} / 4-\alpha_{1}$.

Lemma 2.6. The following conditions are equivalent:
(1) $\gamma_{n}+L \in R_{L}$.
(2) $n=8$ and C contains the all-one codeword.

Proof. Suppose (2). Since C contains the all-one codeword, $\gamma_{8} \in L / 2$. Clearly $\gamma_{8} \in L^{*}$. It is easy to see that
$\left(\gamma_{8}+L\right)_{2}=\left\{ \pm\left(\alpha_{\Omega_{8}} / 4-\alpha_{i}\right), \alpha_{\Omega_{8}}-\alpha_{c} / 2+\alpha_{j}, \alpha_{\Omega_{8}}-\alpha_{c} / 2-\alpha_{k} \mid c \in C_{4}, i \in \Omega_{8}, j \in c, k \in \Omega_{8} \backslash c\right\}$.
Hence $\left|\left(\gamma_{8}+L\right)_{2}\right|=16+8\left|C_{4}\right|=16+\left|L_{2}\right|$ by Lemma 1.1. Thus $\gamma_{8}+L \in R_{L}$.
Conversely, we suppose (1). Since the norm of γ_{n} is minimal in $\gamma_{n}+L$ and it is $1+n / 8$, the rank n of L must be 8 . Since $\gamma_{8} \in L / 2$, we obtain $\alpha_{\Omega_{8}} / 2 \in L$. Hence the all-one codeword belongs to C.

Lemma 2.7. The following conditions are equivalent:
(1) $\beta_{n}+L \in R_{L}$.
(2) $n=16$ and C contains a subcode isomorphic to the Reed-Muller code $R M(1,4)$.

Proof. Let k be the dimension of C. Suppose (2). In [PLF], doubly even codes of length 16 containing the all-one codeword were classified. In particular doubly even codes of length 16 containing $R M(1,4)$ can be classified. Hence we obtain $\left|C_{4}\right|=0,4,12,28$ for $k=5,6,7,8$ respectively. So $32+\left|L_{2}\right|=2^{k}$. On the other hand,

$$
\begin{equation*}
\left(\beta_{16}+L\right)_{2}=\left\{\beta_{16}-\alpha_{c} / 2 \mid c \in C\right\} . \tag{2.4}
\end{equation*}
$$

Hence $\left|\left(\beta_{16}+L\right)_{2}\right|=2^{k}$. Therefore $\beta_{16}+L \in R_{L}$.
Conversely we suppose (1). Since the norm of β_{n} is minimal in $\beta_{n}+L$ and it is $n / 8$, the rank n of L must be 16. By Lemma 2.3, $\left(\beta_{16}+L\right)_{2}$ contains an orthogonal basis F. Set $\tilde{F}=\{ \pm v \mid v \in F\}$. By (2.4), $\tilde{F}=\left\{\beta_{16}-\alpha_{c} / 2 \mid c \in D\right\}$ for some subset D of C. Clearly $|D|=32$. Let d be an element of D. Set $D^{0}=d+D$. Then $\tilde{F}^{0}=\left\{\beta_{16}-\alpha_{c} / 2 \mid c \in D^{0}\right\}$ is a set of 32 vectors, two of which are equal, opposite, or orthogonal. Since D^{0} contains the all-zero codeword, D^{0} consists of the all-zero and all-one codewords and 30 codewords with weight 8 . Moreover, the cardinality of any intersection of codewords with weight 8 in D^{0} is 0,4 or 8 . Hence D^{0} must be isomorphic to the Reed-Muller code $R M(1,4)$. Therefore C contains a subcode isomorphic to the Reed-Muller code $R M(1,4)$.

3 Automorphism groups of V_{L}^{+}for even unimodular lattices of rank 8 and 16

In this section, we determine the automorphism groups of V_{L}^{+}for even unimodular lattices of rank 8 and 16. In particular, we will compare $\operatorname{Aut}\left(V_{L}^{+}\right)$with its subgroup $H_{L} \cong$ $C_{\operatorname{Aut}\left(V_{L}\right)}\left(\theta_{V_{L}}\right) /\left\langle\theta_{V_{L}}\right\rangle$.

Let L be an even unimodular lattice of rank 8 or 16 . Then the VOA V_{L}^{+}has exactly 4 isomorphism classes of irreducible V_{L}^{+}-modules $[0]^{ \pm}$and $\left[\chi_{0}\right]^{ \pm}$, where χ_{0} is the unique faithful character of \hat{L} / K_{L}. Since the graded dimensions of $\left[\chi_{0}\right]^{+}$and $\left[\chi_{0}\right]^{-}$are different, the cardinality of the orbit Q_{L} of $[0]^{-}$is 1 or 2 . In the following subsections, we will determine $\left|Q_{L}\right|$.

3.1 Automorphism group of V_{L}^{+}for the even unimodular lattice of rank 8

In this subsection, we study the automorphism group of $V_{E_{8}}^{+}$, where E_{8} is the unique even unimodular lattice of rank 8 up to isomorphism.

Lemma 3.1. There are automorphisms of $V_{E_{8}}^{+}$mapping [0]- to $\left[\chi_{0}\right]^{-}$. In particular $Q_{E_{8}}$ contains isomorphism classes of twisted type.

Proof. The degree 1 subspace of $V_{E_{8}}^{+}$forms the simple Lie algebra of type D_{8} under the 0-th product and $V_{E_{8}}^{+} \cong V_{D_{8}}$. By [Do], $V_{D_{8}}$ has exactly 4 non-isomorphic irreducible modules $V_{\lambda+D_{8}}, \lambda+D_{8} \in D_{8}^{*} / D_{8}$.

On the other hand, there exists an involution τ of the root lattice of type D_{8} such that τ exchanges two elements of D_{8}^{*} / D_{8}. By Lemma 1.5 (2), lifts of τ exchange two isomorphism classes of irreducible $V_{D_{8}}$-modules. This shows that there are automorphisms of $V_{E_{8}}^{+}$mapping $[0]^{-}$to $\left[\chi_{0}\right]^{-}$.

Proposition 3.2. The group $H_{E_{8}}$ is a normal subgroup of $\operatorname{Aut}\left(V_{E_{8}}^{+}\right)$of index 2. In particular $\operatorname{Aut}\left(V_{E_{8}}^{+}\right) / H_{E_{8}} \cong \mathbb{Z}_{2}$.

Proof. Lemma 3.1 shows that the cardinality of the orbit $Q_{E_{8}}$ of [0] ${ }^{-}$is 2. By Lemma 1.6 $H_{E_{8}}$ is a subgroup of the index 2 of $\operatorname{Aut}\left(V_{E_{8}}^{+}\right)$.

3.2 Automorphism groups of V_{L}^{+}for even unimodular lattices of rank 16

In this subsection, we study the automorphism groups of V_{L}^{+}for even unimodular lattices L of rank 16. It is known that $E_{8} \oplus E_{8}$ and Γ_{16} are the only even unimodular lattices of rank 16 up to isomorphism (cf. [CS]). We note that the root sublattice of Γ_{16} is of type D_{16}.

Let U be a root lattice of type $D_{8} \oplus D_{8}$. Let N be an even overlattice of U such that $|N: U|=2$ and $N_{2}=U_{2}$. It is easy to check that N is unique up to isomorphism. Since the determinant of N is 4 , there are three unimodular overlattices of N. In particular even unimodular lattices $E_{8} \oplus E_{8}$ and Γ_{16} are obtained as overlattices of N.

Lemma 3.3. Any element of $\operatorname{Aut}\left(V_{N}\right)$ of V_{N} fixes all isomorphism class of irreducible V_{N}-modules.

Proof. The automorphism group $O(N)$ of N acts on N^{*} / N. Since unimodular overlattices of N are non-isomorphic, $O(N)$ fixes all elements of N^{*} / N. By Lemma 1.5 (2), we obtain this lemma.

Lemma 3.4. The VOAs $V_{\Gamma_{16}}^{+}$and $V_{E_{8} \oplus E_{8}}^{+}$are isomorphic to V_{N}.
Proof. First we consider the lattice $E_{8} \oplus E_{8}$. Since $V_{E_{8}}^{+}$is isomorphic to $V_{D_{8}}, V_{E_{8} \oplus E_{8}}^{+}$ contains a subVOA V isomorphic to V_{U}. Since V_{U} is rational, $V_{E_{8} \oplus E_{8}}^{+}=V \oplus M$ as V module for some V-module M. By the classification of irreducible modules of V_{U} ([Do]), M is isomorphic to the irreducible V_{U}-module $V_{\lambda+U}$, where $\lambda+U \in U^{*} / U$ satisfying $\langle\lambda, U\rangle=N$. Since $V_{N}=V_{U} \oplus V_{\lambda+U}$ is a simple current extension of $V_{U}, V_{E_{8} \oplus E_{8}}^{+}$has a unique VOA structure extending its V-module structure (cf. Proposition 5.3 in [DM]) and $V_{E_{8} \oplus E_{8}}^{+} \cong V_{N}$.

Next, we consider the lattice Γ_{16}. Since the root sublattice of Γ_{16} is $D_{16}, V_{\Gamma_{16}}^{+}$contains $V_{D_{16}}^{+}$. The degree 1 subspace of $V_{D_{16}}^{+}$forms a simple Lie algebra of type $D_{8} \oplus D_{8}$ under the 0 -th product and $V_{D_{16}}^{+} \cong V_{U}$. Similarly to the argument above, we obtain $V_{\Gamma_{16}}^{+} \cong V_{N}$.

This lemma shows that the cardinality of the orbit Q_{L} of $[0]^{-}$is 1 for any even unimodular lattice L of rank 16. By Lemma 1.6 $\operatorname{Aut}\left(V_{L}^{+}\right)$is coincides with H_{L}.
Proposition 3.5. The automorphism group $\operatorname{Aut}\left(V_{L}^{+}\right)$of V_{L}^{+}coincides with H_{L} for any even unimodular lattice L of rank 16 .

4 The orbit of the isomorphism class of V_{L}^{-}

In this section, we determine the orbit Q_{L} of $[0]^{-}$. We note that Q_{L} was determined in [Sh] when L has no roots.

Lemma 4.1. The orbit Q_{L} contains the isomorphism class $[\lambda]^{\varepsilon}$ for any $\lambda \in R_{L}, \varepsilon \in\{ \pm\}$.
Proof. By Lemma 1.8 any isomorphism class of untwisted type in Q_{L} must be $[\lambda]^{\varepsilon}$ for some $\lambda \in R_{L}$ and $\varepsilon \in\{ \pm\}$. Conversely by Lemma 1.10 and $2.4 Q_{L}$ contains [$\left.\lambda\right]^{\varepsilon}$ for all $\lambda+L \in R_{L}$ and $\varepsilon \in\{ \pm\}$.

So let us discuss the cases where Q_{L} contains isomorphism classes of twisted type. We consider the following three conditions on even lattices L :
(a) L is obtained by Construction B from a doubly even code of length 8 containing the all-one codeword.
(b) L is obtained by Construction B from a doubly even code of length 16 containing a subcode isomorphic to the first order Reed-Muller code $R M(1,4)$ of length 16.
(c) L is isomorphic to the E_{8}-lattice.

Proposition 4.2. The orbit Q_{L} contains isomorphism classes of twisted type if and only if L satisfies (a), (b) or (c).

Proof. By Lemma 1.11, 2.6, 2.7 and 3.1 if L satisfies (a), (b) or (c) then Q_{L} contains isomorphism classes of irreducible V_{L}^{+}-modules of twisted type.

So we suppose that Q_{L} contains an isomorphism class $[\chi]^{\varepsilon}$ of twisted type. Then by Lemma 1.8 the rank of L is 8 or 16 , and $\varepsilon=-$ and + if $n=8$ and 16 respectively. Moreover by Lemma 1.9 (1) L is 2-elementary totally even. If L is unimodular then L is isomorphic to one of $E_{8}, E_{8} \oplus E_{8}$ and Γ_{16}. By the result of the previous section, L must be isomorphic to E_{8}. Hence L satisfies (c).

We now assume that L is not unimodular. Let us show that Q_{L} contains $[\lambda]^{\delta}$ for some $\lambda \in L^{*} \cap(L / 2), \delta \in\{ \pm\}$. By comparing the coefficients of q in the graded dimensions of V_{L}^{-}and $V_{L}^{T_{\chi}, \varepsilon}$, the theta series of L is written by the Dedekind-eta series. By using the transformation formula on theta series of lattices and their dual lattices, we can describe the theta series of L^{*}. In particular, $L^{*} \backslash L$ has vectors of norm 2 (cf. the proof of Proposition 3.14 in $[\mathrm{Sh}])$. Let λ be an element of L^{*} such that $(\lambda+L)_{2} \neq \phi$. Let g be an element of $\operatorname{Aut}\left(V_{L}^{+}\right)$such that $[0]^{-} \circ g=[\chi]^{\varepsilon}$. By Lemma 1.3 (1), we obtain $[\chi]^{\varepsilon} \times\left([\lambda]^{+} \circ g\right)=[\lambda]^{-} \circ g$. By Lemma 1.3 (3) one of $[\lambda]^{ \pm} \circ g$ must be of twisted type. By comparing the graded dimensions, it has the same $\operatorname{sign} \varepsilon$. By Lemma 1.9 (2), Q_{L} contains $[\lambda]^{\delta}$ for some $\delta \in\{ \pm\}$. By Lemma $1.8 \lambda+L \in R_{L}$. Thus L is obtained by Construction B from a code C by Theorem 2.2.

Since L is 2 -elementary totally even, C contains the all-one codeword. Hence (a) holds if the rank of L is 8 . Consider the case where $n=16$. Since the theta series of L is described in terms of the weight enumerator of C, we can describe the weight enumerator of C. By using the classification of even codes of length 16 [PLF], (b) holds if the rank of L is 16 .

By Lemma 1.8, 1.9, 4.1 and Proposition 4.2, the orbit Q_{L} is determined.
Theorem 4.3. Let L be an even lattice of rank n.
(1) If L satisfies (a) or (c) then $Q_{L}=\left\{[0]^{-},[\lambda]^{ \pm},[\chi]^{-}\left|\lambda \in L^{*} \cap(L / 2),\left|(\lambda+L)_{2}\right|=\right.\right.$ $\left.2 n+\left|L_{2}\right|\right\}$, where χ ranges over the central characters of \hat{L} / K_{L} with $\chi\left(\kappa K_{L}\right)=-1$ and $\varepsilon=+$.
(2) If L satisfies (b) then $Q_{L}=\left\{[0]^{-},[\lambda]^{ \pm},[\chi]^{+}\left|\lambda \in L^{*} \cap(L / 2),\left|(\lambda+L)_{2}\right|=2 n+\left|L_{2}\right|\right\}\right.$, where χ ranges over the central characters of \hat{L} / K_{L} with $\chi\left(\kappa K_{L}\right)=-1$.
(3) If L does not satisfy neither (a), (b) nor (c) then $Q_{L}=\left\{[0]^{-},[\lambda]^{ \pm} \mid \lambda \in L^{*} \cap\right.$ $\left.(L / 2),\left|(\lambda+L)_{2}\right|=2 n+\left|L_{2}\right|\right\}$.
By Lemma 1.6, Theorem 2.2 and 4.3, we have the following corollary.
Corollary 4.4. The automorphism group $\operatorname{Aut}\left(V_{L}^{+}\right)$of V_{L}^{+}is greater than H_{L} if and only if the even lattice L satisfies one of the following:
(1) L is obtained by Construction B.
(2) L is isomorphic to the E_{8}-lattice.

5 A method of determining of the shape of the automorphism group of V_{L}^{+}

In this section, we give a method of determining the shape of $\operatorname{Aut}\left(V_{L}^{+}\right)$for an arbitrary even lattice L. This method is a generalization of that in [Sh, Section 3.4]. For the conditions (a), (b) and (c), see the previous section. If L satisfies (c) then $\operatorname{Aut}\left(V_{L}^{+}\right)$is determined in Section 3.1.

First we consider the lattice L satisfying neither (a), (b) nor (c). Then $Q_{L}=$ $\left\{[0]^{-},[\lambda]^{ \pm} \mid \lambda \in R_{L}\right\}$, and $P_{L}=\left\{[0]^{+}\right\} \cup Q_{L}$ has an elementary abelian 2-group structure under the fusion rules (cf. [Sh, Proposition 3.17]). So we obtain a group homomorphism φ_{L} from $\operatorname{Aut}\left(V_{L}^{+}\right)$to $G L\left(P_{L}\right)$. Since the kernel of φ_{L} is a subgroup of H_{L}, it can be determined. Moreover the index of $\varphi\left(H_{L}\right)$ in $\operatorname{Im} \varphi_{L}$ is equal to the cardinality of Q_{L}. Hence we can determine the image of φ_{L}. Therefore we can calculate the shape of $\operatorname{Aut}\left(V_{L}^{+}\right)$in principle.

Suppose that L satisfies (a) or (b). In this case, we consider the set S_{L} of all isomorphism classes of irreducible V_{L}^{+}-modules. Since L is 2-elementary totally even, S_{L} has an elementary abelian 2-group structure under the fusion rules (cf. [Ab, ADL] and [Sh, Proposition 3.4]). Moreover S_{L} has a natural quadratic form associated with a nonsingular symplectic form preserved by the action of $\operatorname{Aut}\left(V_{L}^{+}\right)$(cf. [Sh, Theorem 3.8]). Hence we obtain a group homomorphism ψ_{L} from $\operatorname{Aut}\left(V_{L}^{+}\right)$to the orthogonal group $O\left(S_{L}\right)$ associated with the quadratic form. Similarly to the case above, we can determine the image and kernel of ψ_{L}, and we can describe the shape of $\operatorname{Aut}\left(V_{L}^{+}\right)$in principle.

Note 5.1. For many important lattices L without roots, the shapes of $\operatorname{Aut}\left(V_{L}^{+}\right)$were determined in [Sh, Section 4] by using this method.

6 Automorphism groups of VOSAs V_{L}^{+}for odd lattices

Let L be an odd lattice. In this section, we consider the vertex operator superalgebra V_{L}^{+}. For $i \in\{0,1\}$, set $L^{i}=\{v \in L \mid\langle v, v\rangle \equiv i(2)\}$. Then L^{0} is an even sublattice of L. We will describe $\operatorname{Aut}\left(V_{L}^{+}\right)$by using $\operatorname{Aut}\left(V_{L^{0}}^{+}\right)$.

Let $\operatorname{Aut}\left(V_{L^{0}}^{+} ; V_{L^{1}}^{+}\right)$denote the subgroup of $\operatorname{Aut}\left(V_{L_{0}}^{+}\right)$fixing the isomorphism class of $V_{L^{1}}^{+}$. Let α be a vector in L^{1}. Then $2 \alpha \in L^{0}$ and $\langle\alpha, \alpha\rangle \in \mathbb{Z}$. By Lemma 1.3 (2) $[\alpha]^{+} \times[\alpha]^{+}=[0]^{+}$. Let τ denote the involution acting as $(-1)^{i}$ on $V_{L^{i}}^{+}$. Applying [Sh, Theorem 3.3] to our case, we obtain $C_{\operatorname{Aut}\left(V_{L}^{+}\right)}(\tau) /\langle\tau\rangle \cong \operatorname{Aut}\left(V_{L^{0}}^{+} ; V_{L^{1}}^{+}\right)$.

On the other hand, any automorphism of V_{L}^{+}preserves both $V_{L^{0}}^{+}$and $V_{L^{1}}^{+}$since the graded dimensions of $V_{L^{0}}^{+}$and $V_{L^{1}}^{+}$are in $\mathbb{Z}[[q]]$ and in $\mathbb{Z} q^{1 / 2}[[q]]$ respectively. Hence $C_{\operatorname{Aut}\left(V_{L}^{+}\right)}(\tau)=\operatorname{Aut}\left(V_{L}^{+}\right)$. Therefore we have the following proposition.

Proposition 6.1. Let L be an odd lattice. Then $\operatorname{Aut}\left(V_{L}^{+}\right) \cong\langle\tau\rangle . \operatorname{Aut}\left(V_{L^{0}}^{+} ; V_{L^{1}}^{+}\right)$.

Since the shape of $\operatorname{Aut}\left(V_{L^{0}}^{+}\right)$can be described by the method given in the previous section, $\operatorname{Aut}\left(V_{L}^{+}\right)$can be determined in principle.

7 Examples

In this section, we calculate $\operatorname{Aut}\left(V_{L}^{+}\right)$for some lattices by using the method of Section 5 .

7.1 Even lattices of rank one, two and three

In this section, we determine $\operatorname{Aut}\left(V_{L}^{+}\right)$for even lattices of rank one two and three.
Let L be an even lattice L of rank n. Suppose that $n \leq 3$. By Theorem 4.3, $Q_{L}=$ $\left\{[0]^{-},[\lambda]^{ \pm} \mid \lambda \in R_{L}\right\}$. So we consider R_{L}. By Theorem 2.2, let us consider even lattices obtained by Construction B. It is easy to see that a code C of length n is doubly even if and only if C consists of the all-zero codeword. Hence L is obtained by Construction B if and only if $L \cong 2 A_{1}, \sqrt{2}\left(A_{1} \oplus A_{1}\right)$ or $\sqrt{2} A_{3}$. If L is not obtained by Construction B then $\operatorname{Aut}\left(V_{L}^{+}\right) \cong C_{\operatorname{Aut}\left(V_{L}\right)}\left(\theta_{V_{L}}\right) /\left\langle\theta_{V_{L}}\right\rangle$. The case where $L \cong \sqrt{2} A_{3}$ was done in Theorem 4.3 of [Sh]. So let us consider the automorphism groups of V_{L}^{+}for $2 A_{1}$ and $\sqrt{2}\left(A_{1} \oplus A_{1}\right)$.

First we consider the case where $L \cong 2 A_{1}$. Let γ be a generator of L. Then $R_{L}=$ $\{\gamma / 2+L\}$. Hence $Q_{L}=\left\{[0]^{-},[\gamma / 2]^{ \pm}\right\}$. Set $P_{L}=\left\{[0]^{+}\right\} \cup Q_{L}$. Then P_{L} has an elementary abelian 2-group structure under the fusion rules and, $P_{L} \cong \mathbb{F}_{2}^{2}$. So we obtain a group homomorphism $\varphi_{L}: \operatorname{Aut}\left(V_{L}^{+}\right) \rightarrow G L\left(P_{L}\right)$. On the other hand, $H_{L} \cong \mathbb{Z}_{2}$ and its generator exchanges $[\gamma / 2]^{+}$and $[\gamma / 2]^{-}$. Since $\operatorname{Ker} \varphi_{L}$ is a subgroup of H_{L}, φ_{L} is injective. Clearly $\varphi_{L}\left(H_{L}\right)$ is a maximal subgroup of $G L\left(P_{L}\right) \cong S_{3}$. Since $\operatorname{Aut}\left(V_{L}^{+}\right)$contains automorphisms not in H_{L} (cf. Lemma 1.10), φ_{L} is surjective. Thus we obtain $\operatorname{Aut}\left(V_{L}^{+}\right) \cong S_{3}$.

Next let us consider the case where $L \cong \sqrt{2}\left(A_{1} \oplus A_{1}\right)$. Let $\left\{a_{1}, a_{2}\right\}$ be a basis of L satisfying $\left\langle a_{i}, a_{j}\right\rangle=4 \delta_{i, j}$. Set $a_{i}^{*}=a_{i} / 4$ and $b=2\left(a_{1}^{*}+a_{2}^{*}\right)$. Then $\left\{a_{1}^{*}, a_{2}^{*}\right\}$ is a basis of the dual lattice of L and $R_{L}=\{b+L\}$. So $Q_{L}=\left\{[0]^{-},[b]^{ \pm}\right\}$. Set $P_{L}=\left\{[0]^{+}\right\} \cup Q_{L}$. Then P_{L} has an elementary abelian 2-group structure under the fusion rules and $P_{L} \cong \mathbb{F}_{2}^{2}$. So we obtain a group homomorphism $\varphi_{L}: \operatorname{Aut}\left(V_{L}^{+}\right) \rightarrow G L\left(P_{L}\right)$. On the other hand, H_{L} is isomorphic to the direct product of the dihedral group of order 8 and the group of order 2. The kernel of φ_{L} is isomorphic to 2^{3}, and H_{L} contains elements exchanging $[b]^{+}$ and $[b]^{-}$. So $\varphi_{L}\left(H_{L}\right)$ is a maximal subgroup of $G L\left(P_{L}\right) \cong S_{3}$. Since Aut $\left(V_{L}^{+}\right)$contains automorphisms not in H_{L}, φ_{L} is surjective. Therefore we obtain $\operatorname{Aut}\left(V_{L}^{+}\right) \cong 2^{3} . S_{3}$. It is easy to check that $\operatorname{Aut}\left(V_{L}^{+}\right) \cong S_{4} \times \mathbb{Z}_{2}$.

The result is summarized in the following proposition.
Proposition 7.1. Let L be an even lattice of rank one, two or three. Then

$$
\operatorname{Aut}\left(V_{L}^{+}\right) \cong\left\{\begin{array}{cc}
S_{3} & \text { if } L \cong 2 A_{1}, \\
S_{4} \times \mathbb{Z}_{2} & \text { if } L \cong \sqrt{2}\left(A_{1} \oplus A_{1}\right), \\
\left(2^{2}: S_{4}\right) \cdot S_{3} & \text { if } L \cong \sqrt{2} A_{3}, \\
C_{\operatorname{Aut}\left(V_{L}\right)}\left(\theta_{V_{L}}\right) /\left\langle\theta_{V_{L}}\right\rangle & \text { otherwise }
\end{array}\right.
$$

Note 7.2. The automorphism groups of V_{L}^{+}for lattices of rank one and two were already obtained in [DG1] and [DG2] respectively by using the action of $\operatorname{Aut}\left(V_{L}^{+}\right)$on certain homogeneous subspaces of V_{L}^{+}. In the articles, more precise structures of $\operatorname{Aut}\left(V_{L}^{+}\right)$were described.

7.2 Even unimodular lattices

Let L be an even unimodular lattice. Since the determinant of any lattice obtained by Construction B is not $1, L$ is not obtained by Construction B. Hence $R_{L}=\phi$ by Theorem 2.2. By Theorem 4.3, $\left|Q_{L}\right|=2$ if $L \cong E_{8}$, and $\left|Q_{L}\right|=1$ if $L \nsubseteq E_{8}$. By Lemma 1.6 and Proposition 3.2, we obtain the following proposition.

Proposition 7.3. Let L be an even unimodular lattice of rank n. Then

$$
\operatorname{Aut}\left(V_{L}^{+}\right) \cong\left\{\begin{array}{cl}
\left(C_{\operatorname{Aut}\left(V_{L}\right)}\left(\theta_{V_{L}}\right) /\left\langle\theta_{V_{L}}\right\rangle\right) \cdot \mathbb{Z}_{2} & \text { if } \operatorname{rank} L=8, \\
C_{\operatorname{Aut}\left(V_{L}\right)}\left(\theta_{V_{L}}\right) /\left\langle\theta_{V_{L}}\right\rangle & \text { if } \operatorname{rank} L \geq 16 .
\end{array}\right.
$$

References

[Ab] T. Abe, Fusion rules for the charge conjugation orbifold, J. Algebra, 242 (2001), 624-655.
[AD] T. Abe and C. Dong, Classification of irreducible modules for the vertex operator algebra V_{L}^{+}: general case. J. Algebra 273 (2004), 657-685
[ADL] T. Abe, C. Dong and H. Li, Fusion rules for the vertex operator algebras $M(1)^{+}$ and V_{L}^{+}, Comm. Math. Phys. 253 (2005), 171-219.
[CS] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, 3rd Edition, Springer, New York, 1999.
[Do] C-Y. Dong, Vertex algebras associated with even lattices, J. Algebra 160 (1993), 245-265.
[DG1] C. Dong and R.L. Griess, Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra 208 (1998), 262-275.
[DG2] C. Dong and R.L. Griess, The rank two lattice type vertex operator algebras V_{L}^{+} and their automorphism groups, math.QA/0409409, preprint.
[DM] C. Dong and G. Mason, Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not. 56 (2004), 2989-3008.
[DN1] C-Y. Dong and K. Nagatomo, Automorphism groups and Twisted modules for lattice Vertex operator algebras, Comtemp. Math. 248 (1999), 117-133
[DN2] C-Y. Dong and K. Nagatomo, Representations of vertex operator algebra V_{L}^{+} for rank one lattice L, Comm. Math. Phys. 202 (1999), 169-195.
[FHL] I. Frenkel, Y. Huang, J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993).
[FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Pure and Appl. Math., Vol.134, Academic Press, Boston, 1989.
[PLF] V. Pless, J.S. Leon, and J. Fields, All Z_{4} codes of type II and length 16 are known, J. Combin. Theory Ser. A 78 (1997), 32-50.
[Sh] H. Shimakura, The automorphism group of the vertex operator algebra V_{L}^{+}for an even lattice L without roots, J. Algebra 280 (2004), 29-57.

[^0]: *The author was supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists and COE grant of Hokkaido University.

