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Introduction

In this paper, we prove the following:

Theorem. Let C ⊂ P3 be a complex reduced irreducible space curve which is non-
degenerate (i.e., C is not contained in any plane). Let p: C → P2 be a general projection.
Then the topological fundamental group π1(P2 \ p(C)) is abelian.

When C is non-singular, the image of the general projection has only nodes as its
singularities, and hence the complement has an abelian fundamental group thanks
to Fulton–Deligne’s theorem on Zariski conjecture ([1, 2]). The point of our theorem
is that we make no assumptions on the singularities of the space curve C.

We apply this theorem to the problem of commutativity of fundamental groups of
complements to plane curves of a given degree with prescribed numbers of nodes and
cusps. Here a cusp means a germ of curve singularity which is analytically isomorphic
to a small neighborhood of the singular point of the affine curve x2 + y3 = 0. The
strongest result concerned with this problem is Nori’s result [5, proposition 6·5].
(Nori considered not only plane curves with only nodes and cusps but curves on
arbitrary surfaces with any kind of singularities.) LetC ⊂ P2 be a reduced irreducible
plane curve of degree d whose singular locus consists of n nodes and k cusps.

Theorem (Nori). Suppose that 2n + 6k < d2. Then π1(P2 \ C) is abelian.

We will prove a proposition which enlarges slightly the region of (d, n, k) on which
the commutativity of π1(P2 \ C) is guaranteed.

Proposition 1. Suppose that 2n > d2 − 5d + 8. Then π1(P2 \ C) is abelian.

1. Proof of Theorem

Let G denote the Grassmannian variety Grass (P1,P3) of all lines in P3, and let
(P3)ã be the dual projective space Grass (P2,P3) of P3. For a plane Π ∈ (P3)ã, we put

Σ(Π)÷ {l ∈ G; l ⊂ Π}.

We also put

U÷ {l ∈ G; C w l = �}.

When Π ∈ (P3)ã is general, no three points among C wΠ are co-linear. Indeed, let
B ⊂ (P3)ã be the Zariski open dense subset consisting of the planes which intersect C
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at its non-singular points transversely. Let Π0 ∈ B be a plane which serves as a base
point of B. Since C is irreducible, the monodromy group of the action of π1(B,Π0)
on the set C w Π0 is the full symmetric group, because the action is 2-transitive
and the monodromy group contains a simple transposition (cf. [4, Uniform Position
Lemma]). Hence if there exist co-linear three points among C wΠ for a general Π ∈
(P3)ã, then all points in C wΠ are on a line for a general Π. Note that this condition
is closed for the choice of Π in (P3)ã because C is non-degenerate. Thus all points in
CwΠ are on a line for every Π, which is absurd. Consequently, Σ(Π)\U is a union of
lines on Σ(Π)%P2, which is a normal crossing divisor when the plane Π is generally
chosen. Hence π1(Σ(Π) w U ) is abelian for a general Π because of Fulton–Deligne’s
theorem ([1–3]). Let I ⊂ (P3) ã ×G be the closed subvariety {(Π, l); Π ⊃ l}. The
second projection ρ2: I → G is a fibre bundle with fibres isomorphic to P1. Hence ρ2

induces an isomorphism π1(ρ−1
2 (U ))% π1(U ). Consider the projection ρ1: ρ2

−1(U ) →
(P3)ã. The fibre ρ−1

1 (Π) ⊂ ρ−1
2 (U ) over Π ∈ (P3)ã is isomorphic to Σ(Π) w U , which

is non-empty and non-singular for every Π. We apply Nori’s Lemma [5, lemma 1·5
(C)] to conclude that the inclusion of the fibre induces a surjection π1(Σ(Π) w U )→
→ π1(ρ−1

2 (U )) for a general Π. Hence π1(ρ−1
2 (U )) is abelian, and thus π1(U ) is also

abelian.
We fix a plane Π0 ⊂ P3 and denote byA the complement P3\Π0. Let JA ⊂ A×G be

the closed subvariety {(P, l); P ∈ l}. Consider the projection τ2: JA → G. If l=Π0,
then τ−1

2 (l) is isomorphic to A1, while if l ⊂ Π0, then τ−1
2 (l) is empty. Thus τ2 induces

an isomorphism π1(τ−1
2 (U ))%π1(U \Σ(Π0)). Since Σ(Π0) is of codimension 2 in G, we

have π1(U \ Σ(Π0))% π1(U ). Therefore, π1(τ−1
2 (U )) is isomorphic to π1(U ). We have

an isomorphism JA%A ×Π0 given by (P, l) 7→ (P, l wΠ0). Let τ̃2: A ×Π0 → G be
the morphism corresponding to τ2: JA → G via this isomorphism. Let D ⊂ G be the
Zariski closed subset G \ U . We provide it with the reduced structure. For P ∈ A,
consider the scheme theoretic intersection

DP÷ ({P} ×Π0) w τ̃−1
2 (D),

which is considered as a sub-scheme of Π0. If P ∈ C, then DP = Π0. Suppose that
P ^ C. Let p〈P 〉: C → Π0 denote the projection with the centre P . Then we see that
the reduced part (DP )red of DP coincides with the reduced part p〈P 〉(C)red of the
image of the projection p〈P 〉. Hence DP is a reduced divisor of Π0 if deg p〈P 〉(C) =
deg C.

Claim. There are at most finitely many points P ∈ A \C such that the degree of
p〈P 〉(C)red is less than the degree of C.

Since C w A ⊂ A is of codimension 2, Claim implies that the locus of all points
P ^ A such that the scheme theoretic intersection DP is not a reduced divisor of Π0

is of codimension 2 in A. Let P ∈ A be generally chosen. Applying [6, theorem 1],
we get π1(Π0 \p〈P 〉(C))%π1(τ̃−1

2 (U ))%π1(U ). Therefore π1(Π0 \p〈P 〉(C)) is abelian,
and Theorem is proved.

Proof of Claim. Suppose that there exists an irreducible curve Ξ ⊂ A\C such that
deg p〈P 〉(C)red < deg C for all P ∈ Ξ. Let P0 be a general point of Ξ andQ0 a general
point of C. Since P0 is not on C, the projection p〈P0〉: C → Π0 with the centre P0

must be of mapping degree > 2 onto its image. Thus there exists a point R0 ∈ C such



Fundamental groups of complements to plane curves 51
that Q0�R0 and p〈P0〉(Q0) = p〈P0〉(R0). Since Q0 is chosen generally, p〈P0〉(Q0) is a
non-singular point of p〈P0〉(C)red, and the morphism p〈P0〉: C → p〈P0〉(C)red is étale
at Q0 and at R0. This implies that the tangent lines l(Q0) and l(R0) of C at Q0 and
at R0, respectively, intersect each other in P3. Since P0 is also chosen generally on Ξ,
there exist small open neighbourhoods (in the sense of complex analytic geometry)
V ⊂ Ξ of P0 in Ξ and W ⊂ C of R0 in C, and an isomorphism f : V ∼−→W such that
p〈P 〉(Q0) = p〈P 〉(f (P )) for all P ∈ V . This implies that the tangent line l(R) of C at
R intersects l(Q0) for all R ∈ W . Therefore l(R) w l(Q0)� � for every non-singular
point R of C. However, consider the projection λ: C → P1 with the centre l(Q0).
Since C is non-degenerate, λ is surjective, and hence, by Sard’s theorem, λ is smooth
at a general point R ∈ C. This implies that l(R) w l(Q0) = � for a general R ∈ C,
and we get a contradiction.

2. Proof of Proposition 1

First note that if 2n > d2 − 5d + 8 and 2n + 2k < d2 − 4d + 3, then 2n + 6k is
automatically less than d2. Therefore, taking Nori’s theorem into account, we may
assume that the inequality 2n + 2k > d2 − 4d + 3 also holds.

Let ν: C̃ → C be the normalization of C. The genus of C̃ is given by

g = (d− 1)(d− 2)/2− n− k.

The assumed inequalities imply that

d > max (2g + 1, g + 3), and k 6 d− g − 3. (2·1)

Let L be the pull-back of OC(1) by ν, which is an invertible sheaf of degree d on
C̃. By the first inequality of (2·1), L is very ample and dim |L| = d − g. Let C ′ be
the image of the embedding of C̃ in Pd−g by L. Then C is obtained by a certain
projection C ′ → P2. Let Γ ⊂ Pd−g be the centre of this projection, which is a linear
subspace of codimension 3. Let T ⊂ Pd−g be the union of all lines tangent to C ′. Then
Γ intersects T at distinct k points P1, . . . , Pk, each of which corresponds to a cusp of
C bijectively. By the second inequality of (2·1), there exists a linear subspace Λ ⊂ Γ
of codimension 1 which contains P1, . . . , Pk. Let p〈Λ〉: C ′ → P3 be the projection
with the centre Λ. The image C ′′ ⊂ P3 is a non-degenerate curve, which has at least
k singular points Q1, . . . , Qk corresponding to P1, . . . , Pk ∈ Λ w T . The projection
p〈Γ〉: C ′ → C with the centre Γ factors as C ′ → C ′′ → C, and C ′′ → C maps Q1, . . . ,
Qk to the cusps of C bijectively. Therefore, C ′′ has k cusps and some nodes (possibly
none) as its only singularities. Thus the image p(C ′′) of the general projection of C ′′

to P2 has the same numbers and types of singular points as the original curve C.
Note that C and p(C ′′) are contained in an irreducible equisingular family of plane
curves, every member of which is obtained as an image of a projection from C ′′ ⊂ P3

to P2. Thus our main theorem implies that π1(P2 \ C) is abelian.

3. Examples

Let A denote the set of triples (d, n, k) with d ∈ Z>0, n ∈ Z>0 and k ∈ Z>0 for
which the following hold:

(i) There exists a reduced irreducible plane curve C ⊂ P2 of degree d with n nodes
and k cusps as its only singularities.
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(ii) For any plane curve C as in (i), π1(P2 \ C) is abelian.
Nori’s result says that if (d, n, k) satisfies (i) and 2n + 6k < d2, then (d, n, k) ∈A.

Using Proposition 1, we shall enlarge the known region of A.
Let C ⊂ Pn be a non-degenerate irreducible curve of degree d whose singular

locus consists of only nodes and cusps. Let k be the number of cusps. We write by
Tan (C) ⊂ Pn the union of all lines in Pn tangent to C at its non-singular points. The
following proposition is elementary:

Proposition 2. If P is a general point of Tan (C), then the image of the projection
C → Pn−1 with the centre P is of degree d, has only nodes and cusps as its singularities,
and the number of cusps is k + 1.

Let C be a non-singular curve of genus g, and L a line bundle on C of degree
d > max (2g + 1, g + 3). We embed C into Pd−g by |L|. Applying Proposition 2 to
C ⊂ Pd−g repeatedly, we obtain a non-degenerate space curve C ′ ⊂ P3 of degree
d with certain number of nodes (possibly none) and d − g − 3 cusps as its only
singularities. Let C ′′ ⊂ P2 be the image of a general projection C ′ → P2. Then C ′′ is
an irreducible plane curve of degree d with

n = (d2 − 5d + 8)/2 nodes and k = d− g − 3 cusps

as its only singularities. Since 2n > d2− 5d+ 8, Proposition 1 implies that (d, n, k) ∈
A. Thus, choosing a line bundle of degree > 6g + 10, we obtain a region of A not
covered by Nori’s theorem.

Note that there is another known region of A, which is given by the following
theorem due to Zariski [7]. Let R(d, k) ⊂ P∗(Γ(P2,O(d))) be the locus of all rational
plane curves C of degree d with n nodes and k cusps as its only singularities. Since
the genus of the normalization of C is 0, we have n = (d− 1)(d− 2)/2− k.

Theorem (Zariski). (1) The locus R(d, k) is non-empty if and only if k 6 3(d−2)/2.
(2) For a member C of R(d, k), π1(P2 \C) is abelian unless d is even and k = 3(d−2)/2.

Thus, if n + k = (d− 1)(d− 2)/2 and k 6 (3d− 7)/2, we have (d, n, k) ∈A.
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