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Motion of a graph by R-curvature

Hitoshi Ishii?, Toshio Mikami??

Abstract

We show the existence of weak solutions to the PDE which describes

the motion by R-curvature in Rd, by the continuum limit of a class of

infinite particle systems. We also show that weak solutions of the PDE are

viscosity solutions and give the uniqueness result on both weak and viscosity

solutions.

1. Introduction

In [8] Firey proposed a mathematical model of the wearing process of

a convex stone rolling on a beach. In his model a stone evolves according
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to the Gauss curvature flow. (see, e.g., [1, 4, 5, 17] for the mathematical

developments regarding the Gauss curvature flow).

The crystalline approximation of a simple closed convex curve which

evolves according to the curvature flow was considered by Girão and Kohn

and is useful in the numerical analysis (see [10, 11]). We refer to [9] and the

references therein for the recent development of this topics.

In [14] we proposed and studied a two-dimensional random version of

[10]. We also generalized Firey’s argument to the case when the stone does

not necessarily have a convex shape and when the boundary of the stone is

given by the graph of an evolving function (see [15]).

In this paper we propose and study the stochastic approximations of

evolving functions which are generalizations of Gauss curvature flow con-

sidered in [15].

For u ∈ C(Rd) and x ∈ Rd, the following set is called the subdifferential

of u at x:

@u(x) ≡ {z ∈ Rd : u(y)− u(x) ≥< z, y − x > for all y ∈ Rd}, (1.1)

where < ·, · > denotes the inner product in Rd. For a set A Ω Rd and a

function v : A 7→ R, let epi(v) and v̂ denote, respectively, the epi-graph of

v, i.e., the set {(x, y) : x ∈ A, y ≥ v(x)}, and the convex envelope of v, i.e.,

the function whose epi-graph is the convex hull of epi(v), provided that it

exists.
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For R ∈ L1(Rd : [0,1), dx), R-curvature (or a generalized Gauss cur-

vature measure) which can be defined as follows plays a crucial role in this

paper.

Definition 1 (R-curvature). Let R ∈ L1(Rd : [0,1), dx). For u ∈

C(Rd), we define the R-curvature of (a graph of) u as the finite Borel

measure w(R, u, dx) on Rd given by (see e.g. [2, section 9.6]):

w(R, u,A) ≡
Z
∪x∈A@u(x)

R(y)dy for all Borel A Ω Rd. (1.2)

Remark 1. (i) w in (1.2) has another expression:

w(R, u,A) =
Z
∪x∈A@û(x)

R(y)dy for all Borel A Ω Rd (1.3)

since the Lebesgue measure of the set ∪x∈Rd{p ∈ @û(x) : p is singular}

is zero (p ∈ @û(x) is called singular if {(y, û(x)+ < p, y − x >) : y ∈

Rd}∩epi(û) contains at least two different points.) (see [2, section 9.4]). (ii)

w(1, u, dx) is also called the Monge-Ampère measure associated with u and

is useful in the study of the Monge-Ampère equation (see [2, 12]).

By the continuum limit of a class of infinite particle systems, we first

show the existence of the solution to the following equation (see Theorem

1 in Sect. 2).

Definition 2 (Motion by R-curvature). The graph of u ∈ C([0,1) ×

Rd) is called the motion by R-curvature if the following holds: for any

' ∈ Co(Rd) and any t ≥ 0,
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Z
Rd

'(x)u(t, x)dx−
Z
Rd

'(x)u(0, x)dx (1.4)

=
Z t

0
ds

Z
Rd

'(x)w(R, u(s, ·), dx).

Roughly speaking, our infinite particle systems {(Zn(t, z))z∈Zd/n}t≥0

satisfy that for any t ≥ 0 and any z ∈ Zd/n,

P (Zn(t + ∆t, z)− Zn(t, z) > 0) ∝ E[w(R, Ẑn(t, ·), {z})]∆t + o(∆t)

as ∆t → 0 (n ≥ 1), where Ẑn(t, ·) denotes a convex envelope of the function

z 7→ Zn(t, z) (see Sect. 2).

We also show the uniqueness result on and elementary properties of the

solutions to (1.4) (see Theorems 1 and 2 in Sect. 2).

Theorem 3 in Sect. 2 shows that a continuous solution to (1.4) is a

viscosity solution of the following PDE:

@u(t, x)/@t = χ(u,Du(t, x), t, x)Det+(D2u(t, x))R(Du(t, x)), (1.5)

where Du(t, x) ≡ (@u(t, x)/@xi)d
i=1, D2u(t, x) ≡ (@2u(t, x)/@xi@xj)d

i,j=1,

χ(u, p, t, x) ≡

8>><>>:
1 if p ∈ @u(t, x),

0 otherwise,

@u(t, x) denotes the subdifferential of the function x 7→ u(t, x), and for a

real d× d-symmetric matrix X,
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Det+X ≡

8>><>>:
DetX if X is nonnegative definite,

0 otherwise.

A continuous viscosity solution u to (1.5) is the Gauss curvature flow

when R(y) = (1 + |y|2)−(d+1)/2 and u(0, ·) is convex.

We give the definition of the viscosity solution to (1.5) for the reader’s

convenience.

Definition 3 (Viscosity solution). (see [15] and also [6]).

(i). We say that u ∈ USC((0,1) ×Rd) is a viscosity subsolution of (1.5)

if the following holds: whenever ' ∈ C2((0,1)×Rd) and u− ' attains its

maximum at (to, xo) ∈ (0,1)×Rd,

@'(to, xo)/@t ∑ χ(u,D'(to, xo), to, xo)Det+(D2'(to, xo))R(D'(to, xo)).

(ii) We say that u ∈ LSC((0,1)×Rd) is a viscosity supersolution of (1.5)

if the following holds: whenever ' ∈ C2((0,1)×Rd) and u− ' attains its

minimum at (to, xo) ∈ (0,1)×Rd,

@'(to, xo)/@t ≥ χ−(u,D'(to, xo), to, xo)Det+(D2'(to, xo))R(D'(to, xo)).

Here χ−(v, p, t, x) = 1 if p ∈ @v(t, x) and is not singular and if there exists

ε > 0 such that for all (s, y) ∈ (0,1)×Rd satisfying |y| > ε−1 and |s−t| < ε,

v(s, y) >< p, y > +ε|y|,
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and χ−(v, p, t, x) = 0, otherwise.

(iii) We say that a function u ∈ C((0,1) × Rd) is a viscosity solution of

(1.5) if it is both a viscosity subsolution and supersolution of (1.5).

Theorem 4 in Sect. 2 shows that a continuous viscosity solution to (1.5)

in the space of continuous functions v : [0,1)×Rd 7→ R for which

sup{|v(t, x)− v(0, x)| : (t, x) ∈ [0, T ]×Rd} < 1 for all T > 0 (1.6)

is unique and is also a solution to (1.4).

Theorem 5 in Sect. 2 shows that a continuous viscosity solution, to (1.5)

with R(y) = (1 + |y|2)−(d+1)/2, is unique in C([0,1) × Rd) under the

stronger assumption on the initial value than that in Theorem 4.

In Sect. 2 we give our main result which will be proved in Sect. 4. In

Sect. 3 we state and prove technical lemmas. Sect. 5 is the appendix.

We give the following notation. For any metric space A and B, the topol-

ogy of C(A : B) is induced by the uniform convergence on every compact

subsets of A, and for f and g ∈ C(Rd), we put

dC(Rd)(f, g) ≡
X
m≥1

2−m min( sup
|x|∑m

|f(x)− g(x)|, 1).

2. Main Result

We fix a sequence {εn}n≥1 of positive real numbers which converge to

zero as n →1, and introduce assumptions.
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(A.1). R ∈ L1(Rd : [0,1), dx), ||R||L1 ≡ R
Rd R(y)dy > 0 and h ∈ C(Rd :

R).

(A.2). The set @h(Rd) ≡ ∪x∈Rd@h(x) has a positive Lebesgue measure, i.e.,

@h(Rd) has a non-empty interior.

Under (A.1)-(A.2), for any n ≥ 1 and v : Zd/n 7→ R, put

µn,v(dβ) ≡ ndε−1
n {

X
z∈Zd/n

w(R, v̂, {z})δvn,z (dβ) (2.1)

+(||R||L1 − w(R, v̂,Rd))δv(dβ)},

where Zd/n := {z/n|z ∈ Zd}, and

vn,z(x) ≡

8>><>>:
v(x) + εn if x = z,

v(x) if x ∈ (Zd/n)\{z}.

Notice that w(R, v̂,Rd\(Zd/n)) = 0 (see Remark 1, (i) in Sect. 1).

Put also

Sn ≡ {v : Zd/n 7→ R|
X

z∈Zd/n

(v(z)− h(z)) < 1, (2.2)

(v(z)− h(z))/εn ∈ N ∪ {0} for all z ∈ Zd/n}.

Then Sn is countable and complete by the following metric: for u and v ∈ Sn,

dSn(u, v) ≡
X

z∈Zd/n

|u(z)− v(z)|.

For a bounded function f : Sn 7→ R and v ∈ Sn, put
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Anf(v) ≡
Z

Sn

(f(β)− f(v))µn,v(dβ). (2.3)

Then An generates jump-type Markov processes on Sn under (A.1)-(A.2)

(see e.g. [7, p. 162]).

Let {Zn(t, ·)}0∑t denote a Markov process on Sn, with a generator An

and with an initial condition Zn(0, z) = h(z) (z ∈ Zd/n).

For t ≥ 0 and x ∈ Rd, put

Xn(t, x) ≡ max(Ẑn(t, x), h(x)). (2.4)

We introduce additional assumptions and we state our first result.

(A.3). The closure of the set {x ∈ Rd : ĥ(x) < h(x)} does not contain any

line which is unbounded in two different directions.

(A.4). For any p 6∈ @h(Rd) and C ∈ R,

Z
Rd

max(< p, x > +C − h(x), 0)dx = 1. (2.5)

Theorem 1. Suppose that (A.1) and (A.3)-(A.4) hold. Then there exists

a unique continuous solution u to (1.4) with u(0, ·) = h. Suppose in addition

that (A.2) holds. Then the following holds: for any ∞ > 0 and T > 0,

lim
n→1P ( sup

0∑t∑T
dC(Rd)(Xn(t, ·), u(t, ·)) ≥ ∞) = 0. (2.6)

Remark 2. (i) (A.3) holds if h is convex. (ii) For any (p, C) ∈ (Rd \

@h(Rd)) × R, the set {x ∈ Rd :< p, x > +C > h(x)} is unbounded.
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Besides, if h is convex, then (A.4) holds. Indeed, the set {x ∈ Rd :< p, x >

+C > h(x)} is an open unbounded convex set.

The following theorem collects some of elementary properties of solutions

to (1.4) and hence those of the motion by R-curvature.

Theorem 2. Suppose that (A.1) holds. Let u ∈ C([0,1)×Rd) be a solu-

tion of (1.4) with u(0, ·) = h. Then:

(a) For each x ∈ Rd, the function t 7→ u(t, x) is nondecreasing in [0,1).

(b) If û(t, x) < u(t, x) for some (t, x) ∈ (0,1)×Rd, then u(s, x) = h(x) for

all s ∈ [0, t]. In particular, u = max(û, h) on [0,1)×Rd.

(c) For any (t, x) ∈ [0,1)×Rd,

u(t, x)− û(t, x) ∑ h(x)− ĥ(x). (2.7)

In particular, if h(x) = ĥ(x) for some x ∈ Rd, then u(t, x) = û(t, x). Or

equivalently, if @h(x) 6= ; for some x ∈ Rd, then @u(t, x) 6= ;.

Suppose in addition that (A.4) holds. Then:

(d) For any t > 0, @u(t,Rd) = @h(Rd). In particular,

Z
Rd

(u(t, x)− h(x))dx = t · w(R, h,Rd). (2.8)

(e) Let u ∈ C([0,1) × Rd) be the solution of (1.4) with u(0, ·) = ĥ. If

u(s, ·)− û(s, ·) 6= h− ĥ for some s ∈ (0,1), then u(t, ·)− û(t, ·) 6= 0 for all

t ≥ s.
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According to the above theorem, (a) any graph moves upward by R-

curvature, (b) those points on any graph moving by R-curvature do not

move as far as they stay in its cavities, (c) the height between any graph

moving by R-curvature and its convex envelope is nonincreasing as it evolves,

(d) any graph moving by R-curvature sweeps in time t > 0 a region with

volume given by t · w(R, h,Rd), and (e) for the motion of a graph by R-

curvature, taking its convex envelope at time t > 0 and evolving up to time

t starting with the convex envelope of the initial graph give different graphs

in general, if the initial graph is not convex.

We introduce

(A.5). R ∈ C(Rd : [0,1)),

and give the relation between the motion by R-curvature and the viscosity

solution of (1.5).

Theorem 3. Suppose that (A.1) and (A.5) hold. Then a continuous solu-

tion u to (1.4) with u(0, ·) = h is a viscosity solution to (1.5).

We introduce more assumptions to show that the viscosity solution to

(1.5) in the flamework of [15] is the motion by R-curvature.

(A.6). R(x) ≥ R(rx) for any r ≥ 1 and x ∈ Rd.

(A.7). infx6=o h(x)/|x| > 0.

(A.8). There exists a constant C > 0 such that h(x+y)+h(x−y)−2h(x) ∑ C

for all (x, y) ∈ Rd × U1(o), where U1(o) ≡ {y ∈ Rd : |y| < 1}.

Theorem 4. Suppose that (A.1) and (A.3)-(A.8) hold. Then there exists a

unique continuous viscosity solution u to (1.5) with u(0, ·) = h in the space
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of continuous functions v for which (1.6) holds. u is also a unique continuous

solution to (1.4) with u(0, ·) = h.

We give the uniqueness result for the viscosity solution to (1.5) in a

different flamework from that of [15], when the solution is a Gauss curvature

flow. Put

(A.1)’. R(y) = (1 + |y|2)−(d+1)/2 and h ∈ C(Rd : R).

For r > 0, define hr : Rd 7→ R by

hr(x) = inf{y ∈ R | Ur((x, y)) Ω epi(h)} (x ∈ Rd), (2.9)

and we introduce

(A.2)’.

inf
r>0

lim sup
θ↓1

sup
δ>0

lim inf
|x|→1

(h(θx)− δ|x|− hr(x)) > 0,

lim
θ↓1

{ sup
x∈Rd

(h(x)− h(θx))} = 0.

Then we have

Theorem 5. Suppose that (A.1)’-(A.2)’ hold. Then for any viscosity sub-

solution u and supersolution v, of (1.5) in the space C([0,1) ×Rd), such

that u(0, ·) ∑ h ∑ v(0, ·), u ∑ v.

Remark 3. (A.2)’ holds if there exists a convex function h0 : Rd 7→ R

such that h0(x) →1 as |x|→1 and that
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lim
|x|→1

[h(x)− h0(x)] = 0. (2.10)

(see Sect. 5 for the proof).

3. Lemmas

In this section we state and prove technical lemmas.

Lemma 1. Suppose that f : U2m(o) 7→ [0,1) is convex for some m ≥ 1.

Then

sup
|x|<m

f(x) ∑ |Um(o)|−1

Z
|x|<2m

f(x)dx. (3.1)

(Proof). For x and y ∈ Um(o), by the convexity of f ,

2f(x) ∑ f(x + y) + f(x− y).

Integrating the both sides on the set Um(o) with respect to dy, the proof is

over since f is nonnegative.

Q. E. D.

Lemma 2. Suppose that (A.1)-(A.2) hold. Then for any r ∈ (0, 1/2), n ≥

d1/2/r, m ≥ 1 and s and t for which 0 ∑ s ∑ t, the following holds almost

surely:

sup
|x|∑m

(Xn(t, x)−Xn(s, x)) (3.2)
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∑ 2{4r sup
|x|∑m+2,u=s,t

|Ẑn(u, x)| + sup
|x|,|y|∑m+1,|x−y|<2r

|h(x)− h(y)|}

+
X

z∈Zd/n,|z|∑m+1

(Zn(t, z)− Zn(s, z))n−d/|Ur(o)| + εn.

(Proof). For x = (xi)d
i=1 ∈ Rd, put [x] ≡ ([xi])d

i=1, where [xi] is an

integer such that [xi] ∑ xi < [xi] + 1. Then for any t ≥ 0 and x ∈ Rd,

0 ∑ Zn(t, [nx]/n)−Xn(t, [nx]/n) < εn. (3.3)

This is true, since

Zn(t, [nx]/n)

8>>>><>>>>:
∈ [Ẑn(t, [nx]/n), Ẑn(t, [nx]/n) + εn)

if Ẑn(t, [nx]/n) ≥ h([nx]/n),

= h([nx]/n) if Ẑn(t, [nx]/n) < h([nx]/n).

For x ∈ Um(o),

0 ∑ Xn(t, x)−Xn(s, x) (3.4)

∑ sup
|x−y|∑r

{|Xn(t, x)−Xn(t, [ny]/n)| + |Xn(s, [ny]/n)−Xn(s, x)|}

+
Z

Ur(x)
(Xn(t, [ny]/n)−Xn(s, [ny]/n))dy/|Ur(o)|.

Hence (3.2) holds by (2.4) and (3.3).

Indeed, for t ≥ 0, x ∈ Um(o) and y for which |x − y| ∑ r, if Xn(t, x) =

h(x) and Xn(t, [ny]/n) = h([ny]/n), then

|Xn(t, x)−Xn(t, [ny]/n)| ∑ sup
|x|,|ỹ|∑m+1,|x−ỹ|<2r

|h(x)− h(ỹ)|.
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If Xn(t, x) = Ẑn(t, x) and Xn(t, [ny]/n) = Ẑ(t, [ny]/n), then

|Xn(t, x)−Xn(t, [ny]/n)| ∑ 4r sup
|y|∑m+2,u=s,t

|Ẑn(u, y)|

by the following: for a convex function f : Rd 7→ R and r > 0,

sup{|f(x)− f(y)|/|x− y| : x 6= y, x, y ∈ Ur(o)} ∑ 2 sup
|z|∑r+1

|f(z)| (3.5)

(see e.g. [2, p. 20, Lemma 3.1]). If Xn(t, x) = Ẑn(t, x) and Xn(t, [ny]/n) =

h([ny]/n), then one can take a point y between x and [ny]/n so that

Ẑn(t, y) = h(y) by the intermediate value theorem, and

|Xn(t, x)−Xn(t, [ny]/n)|

∑ |Ẑn(t, x)− Ẑn(t, y)| + |h(y)− h([ny]/n)|

∑ 4r sup
|y|∑m+2,u=s,t

|Ẑn(u, y)| + sup
|x|,|ỹ|∑m+1,|x−ỹ|<2r

|h(x)− h(ỹ)|.

Q. E. D.

Lemma 3. Suppose that (A.1)-(A.2) hold. Then for any T > 0, n ≥ 2d1/2

and m ≥ 1,

P ( sup
0∑t∑T

Z
|x|∑m

{Ẑn(t, x) + 2 sup
|y|∑m+2

|ĥ(y)|}dx (3.6)

> 2d+1m( sup
|x|∑m+2

{2|ĥ(x)| + |h(x)|}|Um+2(o)| + T ||R||L1))

∑ εnn−dm−2( sup
|x|∑m+2

{2|ĥ(x)| + |h(x)|}|Um+2(o)| + T ||R||L1)−1.
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(Proof). For t ∈ [0, T ],

Z
|x|∑m

{Ẑn(t, x) + 2 sup
|y|∑m+2

|ĥ(y)|}dx (3.7)

∑ 2d
X

z∈Zd/n,|z|∑m+1

{Zn(t, z) + 2 sup
|y|∑m+2

|ĥ(y)|}n−d

∑ 2d{
X

z∈Zd/n,|z|∑m+1

(Zn(t, z)− Zn(0, z))n−d

−
Z t

0
ds

X
z∈Zd/n,|z|∑m+1

w(R, Ẑn(s, ·), {z})}

+2d( sup
|x|∑m+2

{2|ĥ(x)| + |h(x)|}|Um+2(o)| + T ||R||L1),

since w(R, Ẑn(s, ·), Um+2(o)) ∑ ||R||L1 . Here we used the fact that a convex

function takes its maximum on the boundary of the set where it is defined

and that Zn(t, z) + |ĥ(z)| ≥ 0.

Hence by Doob-Kolmogorov’s inequality (see [13, p. 34]), the following

completes the proof: by Itô’s formula (see [7, p. 162] or [13, p. 66]), for any

s and t for which 0 ∑ s ∑ t and any ' ∈ Cb(Rd),

E[|
X

z∈Zd/n

'(z)(Zn(t, z)− Zn(s, z))n−d (3.8)

−
Z t

s

X
z∈Zd/n

'(z)w(R, Ẑn(u, ·), {z})du|2]

= E[
Z t

s

X
z∈Zd/n

'(z)2w(R, Ẑn(u, ·), {z})du]εnn−d.

Q. E. D.

Lemma 4. Suppose that (A.1)-(A.2) hold. Then for any η and T > 0, the

following holds: for sufficiently small δ > 0,
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lim
n→1P ( max

1∑i∑[T/δ]+1
dC(Rd)(Xn(iδ, ·), Xn((i− 1)δ, ·)) ≥ η) = 0. (3.9)

(Proof). Take m for which 2−m < η/2, and take also r ∈ (0, 1/2) such

that

r ∑ (η/64)|Um+2(o)|{2d+2(m + 2)( sup
|x|∑2(m+2)+2

{2|ĥ(x)|

+|h(x)|}|U2(m+2)+2(o)| + (T + 1)||R||L1)}−1,

2 sup
|x|,|y|∑m+1,|x−y|<2r

|h(x)− h(y)| < η/8.

Then for any δ ∈ (0,min(1, η|Ur(o)|/(8||R||L1))) and any n ≥ d1/2/r, by

Lemmas 1-2,

P ( max
1∑i∑[T/δ]+1

dC(Rd)(Xn(iδ, ·), Xn((i− 1)δ, ·)) ≥ η) (3.10)

∑ P ( sup
0∑t∑T+1

Z
|x|∑2(m+2)

{Ẑn(t, x) + 2 sup
|y|∑2(m+3)

|ĥ(y)|}dx > 2d+2(m + 2)

×( sup
|x|∑2(m+3)

{2|ĥ(x)| + |h(x)|}|U2(m+3)(o)| + (T + 1)||R||L1))

+
X

1∑i∑[T/δ]+1

P (|
X

z∈Zd/n,|z|∑m+1

(Zn(iδ, z)− Zn((i− 1)δ, z))n−d

−
Z iδ

(i−1)δ

X
z∈Zd/n,|z|∑m+1

w(R, Ẑn(s, ·), {z})ds| ≥ |Ur(o)|(η/8− εn)).

Indeed, from Lemma 1, for any t ≥ 0,

sup
|x|∑m+2

|Ẑn(t, x)| ∑ sup
|x|∑m+2

{Ẑn(t, x) + 2 sup
|y|∑2(m+3)

|ĥ(y)|} (3.11)
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∑ 1
|Um+2(o)|

Z
|x|∑2(m+2)

{Ẑn(t, x) + 2 sup
|y|∑2(m+3)

|ĥ(y)|}dx,

since

inf
|x|∑2(m+2)

{Ẑn(t, x) + 2 sup
|y|∑2(m+3)

|ĥ(y)|} ≥ 0. (3.12)

(3.10) together with Lemma 3 and (3.8) completes the proof.

Q. E. D

Lemma 5. Suppose that (A.1)-(A.2) hold. Then for any n ≥ 1, the fol-

lowing holds almost surely: for any t ≥ 0 and x ∈ Rd,

Xn(t, x) = max(X̂n(t, x), h(x)). (3.13)

(Proof). From (2.4) and [16, p. 56, Prop. 2.31],

Ẑn(t, x) ∑ X̂n(t, x) (3.14)

= inf{
dX

i=0

∏iXn(t, xi) : ∏i ≥ 0, xi ∈ Rd(i = 0, · · · , d)

,
dX

i=0

∏i = 1,
dX

i=0

∏ixi = x}

∑ inf{
dX

i=0

∏iZn(t, xi) : ∏i ≥ 0, xi ∈ Zd/n(i = 0, · · · , d)

,
dX

i=0

∏i = 1,
dX

i=0

∏ixi = x} = Ẑn(t, x).

Q. E. D.

Lemma 6. Suppose that (A.1) and (A.3)-(A.4) hold. Take functions f and

fn ∈ C(Rd) (n ≥ 1) such that fn = max(f̂n, h) (n ≥ 1), that fn → f in
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C(Rd) as n → 1 and that
R
Rd(f(x) − h(x))dx is finite. Then @f(Rd) =

@h(Rd) and f̂n → f̂ in C(Rd) as n →1. In particular, f = max(f̂ , h) and

the following holds: for any ' ∈ Co(Rd),

lim
n→1

Z
Rd

'(x)w(R, fn, dx) =
Z
Rd

'(x)w(R, f, dx). (3.15)

(Proof). We first show that @f(Rd) = @h(Rd).

@h(Rd) Ω @f(Rd) since f ≥ h.

@f(Rd) Ω @h(Rd) by (A.4) since for any x0 ∈ Rd for which @f(x0) 6= ;

and any p ∈ @f(x0), the following implies that p ∈ @h(x0):

Z
Rd

max(< p, x− x0 > +f(x0)− h(x), 0)dx ∑
Z
Rd

(f(x)− h(x))dx < 1.

Since fn ≥ f̂n ≥ ĥ and {fn}n≥1 is uniformly bounded on every compact

subset of Rd, there exists a convergent subsequence {f̂nk}k≥1 in C(Rd) (see

[2, p. 21, Theorem 3.2]). We denote by g the limit of f̂nk as k → 1. It is

easy to see that f = max(g, h) and that f ≥ f̂ ≥ g ≥ ĥ.

Suppose that f̂ 6= g. Then there exist x1 and x2 ∈ Rd and p ∈ @f̂(x1)∩

@g(x2) such that

< p, x− x1 > +f̂(x1) >< p, x− x2 > +g(x2) for all x ∈ Rd (3.16)

since @f̂(Rd) = @g(Rd) from the above argument.

For sufficiently large k ≥ 1, one can take (∏k,i, xk,i)d
i=0 ∈ ([0, 1] ×

Rd)d+1 such that
Pd

i=0 ∏k,i = 1,
Pd

i=0 ∏k,ixk,i = x2, h(
Pd

i=0 tixk,i) >
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f̂nk(
Pd

i=0 tixk,i) for all ti ≥ 0 (i = 0, · · · , d) for which
Pd

i=0 ti = 1 and for

which ti = 0 if ∏k,i = 0, and that

0 ∑
dX

i=0

∏k,ih(xk,i)− f̂nk(x2) < 1/k.

Indeed, since f(x2) = h(x2) ≥ f̂(x2) > g(x2) by (3.16), fnk(x2) = h(x2) >

f̂nk(x2) for sufficiently large k ≥ 1, and hence from [16, p. 56, Prop. 2.31],

f̂nk(x2) = inf{
dX

i=0

∏ifnk(yi) : ∏i ≥ 0, yi ∈ Rd(i = 0, · · · , d) (3.17)

,
dX

i=0

∏i = 1,
dX

i=0

∏iyi = x2}

= inf{
dX

i=0

∏ih(yi) : ∏i ≥ 0, yi ∈ Rd(i = 0, · · · , d)

,
dX

i=0

∏i = 1,
dX

i=0

∏iyi = x2, h(
dX

i=0

tiyi) > f̂nk(
dX

i=0

tiyi)

(ti ≥ 0, ti = 0 if ∏i = 0(i = 0, · · · , d),
dX

i=0

ti = 1)}

by approximating the intersection of the graph of y = f̂nk(x) and that of

the supporting hyperplane of y = f̂nk(x) at x = x2 from the inside.

In (3.17) we used the following argument. Suppose that there exist

j ∈ {1, · · · , d} and ∏i > 0, yi ∈ Rd(i = 0, · · · , j) for which h(yi) >

f̂nk(yi)(i = 0, · · · , j), Pj
i=0 ∏i = 1 and

Pj
i=0 ∏iyi = x2. Suppose also that

there exists ti ≥ 0(i = 0, · · · , j) for which
Pj

i=0 ti = 1, ỹ ≡ Pj
i=0 tiyi(6= x2)

and f̂nk(ỹ) = fnk(ỹ). Put ∏ ≡ mini=0,···,j(∏i/ti) (∈ (0, 1)). Then
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∏ +
X

i=0,···,j,∏i/ti>∏

(∏i − ∏ti) = 1,

∏ỹ +
X

i=0,···,j,∏i/ti>∏

(∏i − ∏ti)yi = x2,

∏h(ỹ) +
X

i=0,···,j,∏i/ti>∏

(∏i − ∏ti)h(yi) <
jX

i=0

∏ih(yi)

by the convexity of f̂nk , since

h(ỹ) ∑ f̂nk(ỹ) = fnk(ỹ), f̂nk(yi) < h(yi) = f(yi) (i = 0, · · · , j).

Here one can assume, without loss of generality, that (ỹ, f̂nk(ỹ)) is on the

supporting hyperplane of y = f̂nk(x) at x = x2. Therefore one can find

a point y between x2 and ỹ such that h(y) > f̂nk(y) and that there exists

positive numbers ∏, ∏i (i = 0, · · · , j,∏i/ti > ∏) for which the following holds:

∏ +
X

i=0,···,j,∏i/ti>∏

∏i = 1,

∏y +
X

i=0,···,j,∏i/ti>∏

∏iyi = x2,

∏h(y) +
X

i=0,···,j,∏i/ti>∏

∏ih(yi) <
jX

i=0

∏ih(yi).

Since f̂(x2) > g(x2), {xk,i : ∏k,i > 0, i = 0, · · · , d}k≥1 is not bounded.

Therefore, by (A.3), there exists a sequence {m(k)}k≥1 Ω N such that
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{xm(k),i,∏
−1
m(k),i}k≥1 is bounded and that |Pj 6=i,j=0,···,d, ∏m(k),jxm(k),j | →

1 as k → 1, for some i ∈ {0, · · · , d}. Hence epi(g) contains a line which

is infinite in one direction, which intersects with epi(f̂) in another one and

which contains (x2, g(x2)). This contradicts (3.16).

(3.15) can be proved by [2, p. 119, Th. 9.1].

Q. E. D.

Lemma 7. Suppose that R ∈ L1(Rd : [0,1), dx). Take continuous so-

lutions u1 and u2, to (1.4), for which u1(0, ·) ∑ u2(0, ·) and for which

@u1(t,Rd) Ω @u2(t,Rd) for all t ≥ 0. Then u1 ∑ u2.

(Proof). Suppose that u1 ∑ u2 is not true. For ε > 0, put

Vε = {(t, x) ∈ (0, ε−1)×Rd;u2(t, x) + εt < u1(t, x)}.

Then for sufficiently small ε > 0, the set Vε is open and the volume |Vε| > 0.

If (τ, ξ) ∈ Vε and p ∈ @u1(τ, ξ), then p ∈ @u2(τ, η) for some η.

Besides, (τ, η) ∈ Vε. Indeed, put

l(x) := u1(τ, ξ)+ < p, x− ξ > for all x ∈ Rd.

Then u2(τ, x)−l(x) attains the minimum over Rd at a point η. If (τ, x) 6∈ Vε,

then

u2(τ, x) ≥ u1(τ, x)− ετ ≥ l(x)− ετ, (3.18)

and
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u2(τ, η)− l(η)− ετ (3.19)

∑ u2(τ, ξ)− l(ξ)− ετ < u1(τ, ξ)− l(ξ)− 2ετ = −2ετ.

An immediate consequence is that

Z
Vε

w(R, u1(t, ·), dx)dt ∑
Z

Vε

w(R, u2(t, ·), dx)dt. (3.20)

Take a nondecreasing sequence {ηn}n≥1 of nondecreasing C1-functions

such that

ηn(r) = 0 for all r ∑ 0, ηn(r) = 1 for all r ≥ 1
n

, (3.21)

and for r ∈ R, put

≥n(r) =
Z r

0
ηn(s)ds. (3.22)

Then for any x ∈ Rd and t ∈ (0, ε−1),

0 ∑ ≥n(u1(t, x)− u2(t, x)− εt) (3.23)

=
Z t

0
ηn(u1(s, x)− u2(s, x)− εs)(u1(ds, x)− u2(ds, x)− εds).

(Notice that the function t 7→ ui(t, x) is nondecreasing for i = 1, 2 and

x ∈ Rd.) Hence by (1.4), for any r > 0
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0 ∑
Z

|x|∑r

Z ε−1

0
ηn(u1(s, x)− u2(s, x)− εs) (3.24)

×(u1(ds, x)− u2(ds, x)− εds)dx

=
Z ε−1

0

Z
|x|∑r

ηn(u1(s, x)− u2(s, x)− εs)

×(w(R, u1(s, ·), dx)− w(R, u2(s, ·), dx)− εdx)ds

→
Z

Vε

w(R, u1(t, ·), dx)dt−
Z

Vε

w(R, u2(t, ·), dx)dt− ε|Vε|

as r →1 and then n →1. This together with (3.20) implies that |Vε| = 0,

which is a contradiction.

Q. E. D.

Lemma 8. Suppose that u ∈ C((0,1) × Rd) and √ ∈ C2((0,1) × Rd)

satisfy the following: for some (s, y) ∈ (0,1)×Rd,

χ−(u,D√(s, y), s, y) = 1, u(s, y) = √(s, y), D2√(s, y) > 0,

and there exists A > 0 such that for any ε > 0,

U−ε ≡ {(t, x) ∈ (0,1)×Rd|√(t, x)+ε > u(t, x)} Ω U(ε/A)1/2((s, y)). (3.25)

Then for sufficiently small ε > 0 and any (τ, ξ) ∈ U−ε , D√(τ, ξ) ∈ @u(τ, z)

for some z for which (τ, z) ∈ U−ε .

(Proof). Take r ∈ (0, s) such that

D2√(t, x) > 0 for all (t, x) ∈ [s− r, s + r]× Ur(y). (3.26)
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Since χ−(u,D√(s, y), s, y) = 1, by the continuity of u, there exists a constant

δ ∈ (0, r] such that for all p ∈ Uδ(D√(s, y)), and (t, x) ∈ [s−δ, s+δ]× (Rd \

Ur(y)),

u(t, x) ≥ √(s, y) + δ+ < p, x− y > (3.27)

(see Definition 3). Take a constant ∞ ∈ (0, δ] so that

√(s, y) + δ ≥ √(t, y) + ∞ for all t ∈ [s− ∞, s + ∞], (3.28)

D√(t, x) ∈ Uδ(D√(s, y)) for all (t, x) ∈ [s− ∞, s + ∞]× U∞(y). (3.29)

Take ε ∈ (0, ∞] sufficiently small so that U−ε Ω [s − ∞, s + ∞] × U∞(y).

Then for (τ, ξ) ∈ U−ε , from (3.26), we see that

√(τ, x) ≥ l̃(x) := √(τ, ξ)+ < D√(τ, ξ), x− ξ > for all x ∈ Ur(y). (3.30)

In particular, we have from (3.28),

√(s, y) + δ ≥ √(τ, y) + ε ≥ l̃(y) + ε. (3.31)

Hence for all x ∈ Rd \ Ur(y), by (3.27) and (3.29),

l̃(x) + ε = l̃(y) + ε+ < D√(τ, ξ), x− y > (3.32)

∑ √(s, y) + δ+ < D√(τ, ξ), x− y >∑ u(τ, x).

We also have, by (3.30), for all x ∈ Ur(y) for which (τ, x) 6∈ U−ε ,
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l̃(x) + ε ∑ √(τ, x) + ε ∑ u(τ, x). (3.33)

Since

u(τ, ξ)− l̃(ξ) < ε,

the function x 7→ u(τ, x)−l̃(x) attains a minimum at z for which (τ, z) ∈ U−ε ,

which means that D√(τ, ξ) ∈ @u(τ, z).

Q. E. D.

The following two lemmas can be shown by the arguments in the proof

of [15, Theorem 1], and we omit the proof.

Lemma 9. Suppose that (A.5)-(A.7) hold, and that u1 and u2 are contin-

uous viscosity solutions, to (1.5) with u1(0, ·) = u2(0, ·), for which

sup{|ui(t, x)− ui(0, x)| : i = 1, 2, (t, x) ∈ [0, T ]×Rd} < 1 for all T > 0.

(3.34)

Then u1 = u2.

Lemma 10. Suppose that (A.1) and (A.5) hold, that v and u are a vis-

cosity supersolution and a viscosity subsolution of (1.5) in (0, T ) × Rd,

respectively, where T > 0 is a constant, that v and u are lower semicontin-

uous and continuous on [0, T ]×Rd, respectively, and that u(0, x) ∑ v(0, x)

for all x ∈ Rd and
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u(s, x) ∑ v(t, x)− δ|x| + C0 for all s, t ∈ [0, T ], x ∈ Rd (3.35)

for some constants δ > 0 and C0 > 0. Then u ∑ v in [0, T )×Rd.

4. Proof of Main Result

In this section we prove theorems given in Sect. ??.

(Proof of Theorem 1). First of all, we point out that one can show, from

(A.4), that @v(t,Rd) = @h(Rd) for all t ≥ 0, for any continuous solution v

to (1.4) with v(0, ·) = h(·), by the argument of the first part of the proof of

Lemma 6. In particular, a continuous solution v to (1.4) with v(0, ·) = h(·)

is unique by Lemma 7.

Suppose first that (A.2) does not hold. Then u(t, ·) ≡ h(·) for all t ≥ 0

is a unique solution to (1.4) with u(0, ·) = h(·).

Suppose next that (A.2) holds. Take m0 > 0 such that

sup
|x|∑2m0+2

{2|ĥ(x)| + |h(x)|} > 0.

For t ≥ 0, put

Γt ≡ {max(f, h)(x)|f : Rd 7→ R is convex, and (4.1)

sup
|x|∑m

|f(x)| ∑ 2d+2m|Um(o)|−1( sup
|x|∑2m+2

{2|ĥ(x)|

+|h(x)|}|U2m+2(o)| + t||R||L1) for all m ≥ m0}.
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Then Γt is compact in C(Rd) (see [2, section 3.3]).

By Lemma 3 and (3.11), the following holds: for any t ≥ 0,

lim
n→1P (Xn(t, ·) ∈ Γt) = 1. (4.2)

This together with Lemma 4 implies the tightness of {Xn(t, ·)}0∑t,n≥1 in

D([0,1) : C(Rd)), since for any δ > 0 and any t and s for which [t/δ] =

[s/δ],

dC(Rd)(Xn(t, ·), Xn(s, ·)) ∑ dC(Rd)(Xn(([t/δ] + 1)δ, ·), Xn([t/δ]δ, ·))

(see [7, p. 129, Corollary 7.4]).

One can also show, by Lemma 4, that any weak limit point of {Xn(t, ·)}t≥0,

as n → 1, belongs to the set C([0,1) : C(Rd)), since for any t > 0 and

δ > 0,

dC(Rd)(Xn(t, ·), Xn(t−, ·)) ∑ max
1∑i∑[t/δ]+1

dC(Rd)(Xn(iδ, ·), Xn((i− 1)δ, ·))

(see [7, p. 148, Theorem 10.2, (a)]).

Let {Xnk}k≥1 be a weakly convergent subsequence of {Xn}n≥1, and u

be the weak limit of {Xnk}k≥1. Then by Skorohod’s theorem (see [7, p.

102, Theorem 1.8]), taking a new probability space, one can assume that

for any T ≥ 0, Xnk(t, ·) converges, as k →1, to u(t, ·) in C(Rd) uniformly

in t ∈ [0, T ] a.s.. By (3.8), we have
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E[
Z
Rd

(u(t, x)− h(x))dx] ∑ t||R||L1 , (4.3)

since

Xn(0, [nx]/n) = h([nx]/n) → u(0, x) = h(x) (as n →1) (4.4)

for x ∈ Rd, and since for ' ∈ Co(Rd)

|
X

z∈Zd/nk

'(z)(Znk(t, z)− Znk(0, z))n−d
k (4.5)

−
Z
Rd

'([nkx]/nk)(Xnk(t, [nkx]/nk)−Xnk(0, [nkx]/nk))dx|

∑ 2εnk

Z
Rd

|'([nkx]/nk)|dx → 0 (as k →1) a.s.

by (3.3). Hence by (1.3), (4.3), Lemmas 5 and 6, for any ' ∈ Co(Rd) and

any t ≥ 0,

X
z∈Zd/nk

'(z)w(R, Ẑnk(t, ·), {z}) =
Z
Rd

'(x)w(R,Xnk(t, ·), dx) (4.6)

→
Z
Rd

'(x)w(R, u(t, ·), dx)

as k →1 a.s.. (3.8) and (4.5)-(4.6) imply that u(t, x) is a unique continuous

solution to (1.4) with u(0, x) = h(x). In particular, u is nonrandom and

hence (2.6) holds.

Q. E. D.

(Proof of Theorem 2). The proof of (a) is standard and is omitted.
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(b) Suppose that û(t, x) < u(t, x). Then there exists a constant r > 0

such that

û(s, y) < u(s, y) for all (s, y) ∈ [t− r, t]× Ur(x), (4.7)

since the function s 7→ û(s, y) is non-decreasing in [0,1) for each y ∈ Rd,

and û(s, ·) ∈ C(Rd) for each s ∈ [0,1), and u ∈ C([0,1)×Rd). Therefore,

we have

Z
[t−r,t]×Ur(x)

dsw(R, u(s, ·), dy) = 0. (4.8)

This together with (1.4) implies the following:

u(s, y) = u(t, y) for all (s, y) ∈ [t− r, t]× Ur(x). (4.9)

Since the function s 7→ u(s, y) is nondecreasing in [0,1) for each y ∈ Rd,

this implies that u(t, ·) = u(0, ·) in the set Ur(x).

(c) If u(t, x) = û(t, x), then u(t, x)− û(t, x) ∑ h(x)− ĥ(x) since h(x) ≥

ĥ(x). Suppose that û(t, x) < u(t, x). Then u(t, x) = h(x) by (b), from which

we conclude that u(t, x)− û(t, x) ∑ h(x)− ĥ(x) since û(t, x) ≥ ĥ(x).

(d) @u(t,Rd) = @h(Rd) for all t ≥ 0 by the first argument of the proof of

Theorem 1. Plugging functions 'n ∈ Co(Rd) (n ≥ 1) into (1.4), where the

sequence {'n}n≥1 is nondecreasing and approximates the constant function

'(x) ≡ 1, and sending n →1, we get

Z
Rd

(u(t, x)−h(x))dx =
Z t

0
ds

Z
Rd

w(R, u(s, ·), dx) = t·w(R, h,Rd). (4.10)
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(e) We argue by contradiction. Suppose that û(t, ·) = u(t, ·) for some

t ≥ s. Then we have

Z
Rd

(u(t, x)− h(x))dx <

Z
Rd

(û(t, x)− ĥ(x))dx (4.11)

since

u(t, ·)− û(t, ·) ∑ u(s, ·)− û(s, ·) 6= h− ĥ,

in view of (c). Hence

Z
Rd

(u(t, x)− h(x))dx <

Z
Rd

(u(t, x)− ĥ(x))dx, (4.12)

which is a contradiction in view of (d), since (A.4) with h replaced by ĥ

holds (see Remark 2, (ii) in Sect. 2).

Q. E. D.

(Proof of Theorem 3). By (a) in Theorem 2, (1.4) is equivalent to

Z
[0,1)×Rd

'(t, x)[u(dt, x)dx− dtw(R, u(t, ·), dx)] = 0 (4.13)

for all ' ∈ Co([0,1)×Rd).

(Step I). We first show that u is a viscosity subsolution of (1.5).

Let √ ∈ C2((0,1) × Rd) and assume that u − √ attains a maximum at

(s, y) ∈ (0,1)×Rd. We may assume that u(s, y) = √(s, y), so that u(t, x) <

√(t, x) for all (t, x) ∈ (0,1)×Rd \ {(s, y)} (see [6]).

(i). Consider first the case when û(s, y) = u(s, y).
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By adding to √ the function (t, x) 7→ A{|t−s|2+|x−y|2}, with a suitable A >

0, if necessary, we may assume that D2√(s, y) > 0 and that the following

set

U+
ε ≡ {(t, x) ∈ (0,1)×Rd|√(t, x)− ε < u(t, x)} (ε > 0) (4.14)

is contained in the set U(ε/A)1/2((s, y)).

In the same way as in (3.18)-(3.20), considering (u,√,−ε) instead of

(u1, u2, εt), by the compactness of the closure of the set U+
ε , one can show

that if (τ, ξ) ∈ U+
ε and p ∈ @u(τ, ξ), then p ∈ @√(τ, z) = {D√(τ, z)} for

some z for which (τ, z) ∈ U+
ε and that

Z
U+

ε

w(R, u(t, ·), dx)dt ∑
Z

U+
ε

w(R,√(t, ·), dx)dt. (4.15)

We argue by contradiction. Assume that the following holds:

@√(s, y)/@t > R(D√(s, y)) det+D2√(s, y), (4.16)

since by the definition of χ, we have

χ(u,D√(s, y), s, y) = 1.

By reselecting ε > 0 if necessary, we may assume that

@√(t, x)/@t > ε + R(D√(t, x)) det+D2√(t, x), det+D2√(t, x) > 0 (4.17)
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for all (t, x) ∈ Uε/A((s, y)). Hence in the same way as in (3.21)-(3.24),

considering u− √ + ε instead of u1 − u2 − εt, we have

ε|U+
ε | ∑

Z
U+

ε

w(R, u(t, ·), dx)dt−
Z

U+
ε

R(D√(t, x)) det+D2√(t, x)dxdt ∑ 0,

(4.18)

by (4.15), which is a contradiction.

(ii). Consider next the case when û(s, y) < u(s, y).

We have

χ(u,D√(s, y), s, y) = 0,

from which we only have to show that

@√(s, y)/@t ∑ 0. (4.19)

(4.19) is true, since from (b) in Theorem 2, we have

u(t, y) = u(s, y) for all t ∈ (0, s),

from which we have

√(s, y) < √(t, y) for all t ∈ (0, s).

(Step II). Next, we show that u is a viscosity supersolution of (1.5).

Let √ ∈ C2((0,1) × Rd) and assume that u − √ attains a minimum at

(s, y) ∈ (0,1)×Rd. We may assume as well that u(s, y) = √(s, y), so that

u(t, x) > √(t, x) for all (t, x) ∈ (0,1)×Rd \ {(s, y)} (see [6]).
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By (a) in Theorem 2, we see that

@√(s, y)/@t ≥ 0.

Hence we only have to consider the case when the following holds:

χ−(u,D√(s, y), s, y) = 1, det+D2√(s, y) > 0.

By subtracting from √ the function (t, x) 7→ A{|t − s|2 + |x − y|2}, with

a sufficiently small A > 0, if necessary, we may assume that D2√(s, y) is

positive definite and that (3.25) holds. By Lemma 8, if ε > 0 is sufficiently

small, then for any (t, x) ∈ U−ε , D√(t, x) ∈ @u(t, z) for some z for which

(t, z) ∈ U−ε .

As in (Step I), we argue by contradiction. Suppose that

@√(s, y)/@t < R(D√(s, y)) det+D2√(s, y). (4.20)

Reselecting ε > 0 sufficiently small, we may assume that

@√(t, x)/@t + ε < R(D√(t, x)) det+D2√(t, x), det+D2√(t, x) > 0 (4.21)

for all (t, x) ∈ U(ε/A)1/2((s, y)). Then in the same way as in (Step I), we get

ε|U−ε | ∑
Z

U−ε
[R(D√(t, x)) det D2√(t, x)dxdt− w(R, u(t, ·), dx)dt] ∑ 0,

(4.22)

which is a contradiction.
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Q. E. D.

(Proof of Theorem 4). By Lemma 9 and Theorems 1 and 3, we only have

to show the following: for a solution u to (1.4) with u(0, ·) = h(·) and any

T > 0,

sup{|u(t, x)− h(x)| : (t, x) ∈ [0, T ]×Rd} < 1. (4.23)

This is true, since

u(t, x)− h(x) (4.24)

∑ |U1(o)|−1

Z
|y|∑1

(u(t, x + y)− h(x + y) + u(t, x− y)− h(x− y))dy/2

+|U1(o)|−1

Z
|y|∑1

(h(x + y) + h(x− y)− 2h(x))dy/2

∑ t|U1(o)|−1

Z
Rd

R(y)dy + C/2 < 1,

by (A.1) and (A.8). Here we used the following. If u(t, x)− h(x) > 0, then

by (b) in Theorem 2, for any y ∈ Rd,

u(t, x) = û(t, x) ∑ (û(t, x+y)+ û(t, x−y))/2 ∑ (u(t, x+y)+u(t, x−y))/2.

Q. E. D.

(Proof of Theorem 5). In Rd+1, the moving ball with a fixed center and

with radius given by

r(t) = (r0 − (d + 1)t)1/(d+1) t ∈ [0, r0/(d + 1)), (4.25)
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with r0 > 0, is a Gauss curvature flow. In particular, for fixed a ∈ Rd and

b ∈ R, put

w(t, x; a, b, r0) :=

8>>><>>>:
b− ((r0 − (d + 1)t)2/(d+1) − |x− a|2)1/2

if |x− a| ∑ (r0 − (d + 1)t)1/(d+1),

+1 otherwise.

(4.26)

Then w(·; a, b, r0) is a viscosity supersolution of (1.5) with R(p) = (1 +

|p|2)−(d+1)/2. Applying Lemma 10 to u and w(·; a, b, r), where r > 0 and

a ∈ Rd are chosen arbitrarily, and b = hr(a), we find that

u(t, x) ∑ w(t, x; a, b, r) for all (t, x) ∈ [0, r/(d + 1))×Rd. (4.27)

In particular,

u(t, a) ∑ w(t, a; a, b, r) < hr(a) for all (t, a) ∈ [0, r/(d + 1))×Rd. (4.28)

Let θ > 1, which will be selected later, and put

ε := sup
x∈Rd

(h(x)− h(θx))(≥ h(o)− h(θo) = 0), (4.29)

and define z : [0,1)×Rd 7→ R by

z(t, x) = ε + v(θ2dt, θx). (4.30)

Then z is a viscosity supersolution of (1.5) with R(p) = (1 + |p|2)−(d+1)/2

and satisfies
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z(0, x) = ε + h(θx) ≥ h(x) for all x ∈ Rd. (4.31)

Fix any r > 0. By (A.2)’ we can choose a θ > 1 depending on r, which

may be as close as required to 1, and δ > 0 and L > 0 depending on r and

θ such that

h(θx) > δ|x| + hr(x) if |x| ≥ L. (4.32)

Hence by (4.28), (4.31), and (4.32), if 0 ∑ t < r/(d + 1) and |x| ≥ L, then

u(t, x) < hr(x) < h(θx)− δ|x| ∑ z(0, x)− δ|x| ∑ z(t, x)− θ|x|, (4.33)

since for each x ∈ Rd the function t 7→ v(t, x) is non-decreasing in [0,1).

In view of (4.31) and (4.33), again by Lemma 10, we have

u(t, x) ∑ z(t, x) ≡ ε + v(θ2dt, θx) in (0, r/(d + 1))×Rd. (4.34)

Here we can choose θ > 1 arbitrarily close to 1 and, by (A.2)’, the constant

ε, as a function of θ, converges to zero as θ ↓ 1. Hence, in view of the

arbitrariness of r > 0, we have

u(t, x) ∑ v(t, x) in (0,1)×Rd. (4.35)

Q. E. D.
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5. Appendix

In this section we prove Remark 3.

Proposition 1. Let h ∈ C(Rd : R). Suppose that there exists a convex

function h0 : Rd 7→ R such that h0(x) → 1 as |x| → 1 and that (2.10)

holds. Then for each θ > 1, there exists δ > 0 such that the following holds:

lim
|x|→1

[h(θx)− δ|x|− hr(x)] = 1 for all r > 0, (5.1)

lim
θ↓1

{ sup
x∈Rd

[h(x)− h(θx)]} = 0. (5.2)

(Proof). Without loss of generality, we may assume that h0 ≥ 1.

For any θ > 1 and r > 0, by the convexity of h0, the following holds: for

any x and y ∈ Rd, with |y| ∑ r,

h0(x + y) = h0(θ−1θx + (1− θ−1)θ(θ − 1)−1y) (5.3)

∑ θ−1h0(θx) + (1− θ−1)h0(θ(θ − 1)−1y) ∑ θ−1h0(θx) + C(r, θ),

where C(r, θ) is a constant, and also

h0(x) ≥ ε|x| for all x ∈ Rd,

where ε is a positive constant. Thus we have

max
|y|∑r

h0(x + y) ∑ h0(θx)− (1− θ−1)εθ|x| + C(r, θ). (5.4)
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By (2.10) and the continuity of h and h0, there exists a constant C0 > 0

such that

|h(x)− h0(x)| ∑ C0 for all x ∈ Rd. (5.5)

We also have

hr(x) ∑ sup
|z|∑r

h(x + z) + r for all x ∈ Rd (5.6)

since Ur((x, y)) Ω epi(h) for all y ≥ sup|z|∑r h(x + z) + r.

Combining (5.4), (5.5), and (5.6), we get

hr(x)−C0−r ∑ h(θx)−(1−θ−1)εθ|x|+C0+C(r, θ) for all x ∈ Rd, (5.7)

from which we see that

lim
|x|→1

[h(θx)− 1
2εθ(1− θ−1)|x|− hr(x)] = 1, (5.8)

and conclude that (5.1) holds with δ = 1
2εθ(1− θ−1).

We also have, by (5.3) with y = o, for any θ > 1,

h0(x)− h0(θx) ∑ θh0(x)− h0(θx) ∑ (θ − 1)h0(0). (5.9)

This together with (2.10) and (4.29) implies (5.2).

Q. E. D.

Acknowledgement: We would like to thank Prof. K. Ishii for informing us

that Theorem 5 is similar to [3, Theorem 4.1] where they considered the
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mean curvature flow with a convex coercive initial function by a different

approach from ours.

References

1. B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math.

138, (1999) 151–161.

2. I. J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations

(Springer-Verlag, 1994).

3. G. Barles, S. Biton and O. Ley, Quelque résultats d’unicité pour l’equation
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