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Covariance kernel and the central limit theorem in the total
variation distance

Toshio Mikami

Department of Mathematics
Hokkaido University

Sapporo 060-0810, Japan
E-mail: mikami@math.sci.hokudai.ac.jp

We modify and generalize the idea of covariance kernels for Borel probability
measures on Rd, and study the relation between the central limit theorem in
the total variation distance and the convergence of covariance kernels.
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1. INTRODUCTION.

Cacoullos and Papathanasiou introduced a function, called a covariance
kernel or ω-function ω(x), for a probability density function f(x) on R to
study the characterization of probability distributions (see [1]). It is known
that f(x) is normal if and only if ω(x) ≡ 1 (see [3]). Cacoullos, Papathana-
siou and Utev proved that the convergence, as n → 1 in L1(R, dx), of a
sequence of probability density functions {fn}1n=1 with interval supports on
R to g1(x) ≡ (2π)−1/2 exp(−x2/2) is equivalent to that of {ωnfn− fn}1n=1

to 0, where ωn denotes a ω-function of fn (see [4]).
We generalized their result, by a different method, to the case where

probability measures under consideration are Borel probability measures
on R (see [5]).

Cacoullos and Papathanasiou introduced a covariance kernel for a prob-
ability density function f(x) on Rd for d ≥ 2 (see [2]). Papathanasiou
used it to show that L1(Rd, dx)-norm of f − gd (gd(x) ≡ Πd

i=1g1(xi) for
x = (xi)d

i=1 ∈ Rd) is dominated by that of (ωi
ff − f)d

i=1, where (ωi
f )d

i=1

denotes a covariance kernel (vector) of f (see [7]). Papadatos and Pap-
athanasiou studied the relation between L1(Rd, dx)-norm of f1 − f2 and
covariance kernels of f1 and f2 and of their marginals for two probability
density functions f1 and f2 on Rd (see [6]).
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In these papers they assumed that

σk ≡ (
Z
Rd

yiyjfk(y)dy −
Z
Rd

yifk(y)dy

Z
Rd

yjfk(y)dy)d
i,j=1 (1)

is positive definite for k = 1, 2, and that the following holds:

(
Z
Rd

(σ−1
k y)ifk(y)dy)(

Z
R

fk(x)dxi) =
Z
R

(σ−1
k x)ifk(x)dxi (2)

for all i = 1, · · · , d and k = 1, 2, and that f1 and f2 have convex supports
since they used an identity in [2]. They also considered the discrete case
under a similar condition.

In this paper we modify and generalize the idea of a covariance kernel
for any Borel probability measure on Rd. We also show, without such a
restriction as above, that the convergence, as n →1 in the total variation
distance, of a sequence of Borel probability measures {Pn}n≥1 on Rd to a
standard normal distribution is equivalent to that of W(Pn)− Id×Pn to 0
(see section 2 for definition), where Id denotes an d×d-identity matrix. Our
proof is different from that of [5], and our result in this paper generalizes
it to a multi-dimensional case.

In section 2 we state our main result which will be proved in section 3.
In section 4 we give a typical example.

2. MAIN RESULT.

First we give some notations.
For a Borel probability measure P on (Rd,B(Rd)) and any set S and

S0 Ω {1, · · · , d} for which S ∩ S0 = ; and for which S0 6= {1, · · · , d}, put

PS
(xj)j∈S0

(Πi∈Sdxi) (3)

≡

8>><>>:
R
{(xj)j /∈S∪S0∈Rd−#(S∪S0)} P(xj)j∈S0 (Πi/∈S0dxi) if S ∪ S0 6= {1, · · · , d}

and if S 6= ;,
P(xj)j∈S0 (Πi/∈S0dxi) if S ∪ S0 = {1, · · · , d},
1 if S = ;,

PS(Πi∈Sdxi) ≡
8<:

R
{(xj)j /∈S∈Rd−#(S)} P (Πd

j=1dxj) if 1 ∑ #(S) < d,
P (Πd

j=1dxj) if #(S) = d,
1 if #(S) = 0,

(4)
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Here #(S) denotes a cardinal number of the set S, and P(xj)j∈S0 (Πi/∈S0dxi)
denotes a regular conditional probability of P given (xj)j∈S0 (see [8]).
When it is not confusing, we write {i} ≡ i, (xj){j:j<i} ≡ (xj)j<i, (xj){j:j 6=i} ≡
(xj)j 6=i, etc. for the sake of simplicity.

The following definition is a modification and a generalization of the idea
of covariance kernels in [2], and generalizes that in [5] to a multi-dimensional
case.

Definition 2.1. For a Borel probability measure P on (Rd,B(Rd))
such that

R
Rd |y|2P (dy) < 1, put for i = 1, · · · , d,

Wi(P )(dx) ≡ P (j)j 6=i(Πj 6=idxj)dxi (5)

×
Z xi

−1
{
Z
R

zP(xj)j 6=i
(dz)− y}P(xj)j 6=i

(dy),

W(P )(dx) ≡ (δijWi(P )(dx))d
i,j=1. (6)

Here we put δij = 1 if i = j, and = 0 if i 6= j (1 ∑ i, j ∑ d).
When Wi(P )(dx) is absolutely continuous with respect to dx, we put
Wi(P )(dx)/dx ≡ W i(P )(x) and W(P )(dx)/dx ≡ W (P )(x).

Remark 2. 1. Suppose that
R
Rd xiP (dx) = 0 and

R
Rd |xi|2P (dx) = 1 for

i = 1, · · · , d. Then Wi(P ) is a probability measure when d = 1 (see (22)).
Suppose also that P (dx)/dx ≡ p(x) exists and that P (dx) is a product
measure. Then the covariance kernel ωi

p(x) in [2] is equal to W i(P )(x)/p(x).

For two finite measures P and Q on (Rd,B(Rd)), let

ρ(P (dx), Q(dx)) ≡ sup{|
Z
Rd

'(x)(P (dx)−Q(dx))| (7)

: ' is Borel measurable from Rd to [−1, 1]}

denote the total variation distance between them.

Remark 2. 2. For two probability measures P and Q on (Rd,B(Rd)),

ρ(P (dx), Q(dx)) = 2 sup
A∈B(Rd)

|P (A)−Q(A)| (8)

(see [8, p. 360, Lemma 1]).
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The following is our main result.

Theorem 2.1. Suppose that {Pn}n≥1 is a sequence of Borel probability
measures on (Rd,B(Rd)) such that

R
Rd |yi|2Pn(dy) = 1 (1 ∑ i ∑ d, 1 ∑ n).

Then the following (I) and (II) are equivalent.

(I). lim
n→1 ρ(Pn(dx), gd(x)dx) = 0.

(II). lim
n→1

dX
i=1

ρ(Pn(dx),W i(Pn)(dx)) = 0.

Roughly speaking, Theorem 2.1 means that the central limit theorem in
the total variation distance is equivalent to the convergence of nonnegative
definite matrices, to an identity matrix, which are coefficinets of the second
order differential operators of the second order PDEs that are satisfied by
probability measures under consideration.

In fact, when P (dx)/dx ≡ p(x) exists, W (P )(x) is a nonnegative definite
matrix and the following holds: for any ' ∈ C1o (Rd;R),

Z
Rd

dX
i,j=1

(δijW
i(P )(x)/p(x))(@2'(x)/@xi@xj)p(x)dx (9)

= −
Z
Rd

dX
i=1

(
Z
R

zP(xj)j 6=i
(dz)− xi)(@'(x)/@xi)p(x)dx.

If (I) or (II) in Theorem 2.1 holds, then

lim
n→1

dX
i=1

Z
Rd

|
Z
R

z(Pn)(xj)j 6=i
(dz)|2Pn(dx) = 0 (10)

(see Lemmas 3.2 and 3.3).

3. PROOF.

Before we prove Theorem 2.1, we state and prove technical lemmas.
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Lemma 3.1. For any Borel probability measure P on (Rd,B(Rd)),

ρ(P (dx), gd(x)dx) (11)

∑
dX

i=1

ρ(P (dx), g1(xi)dxiP
(j)j 6=i(Πj 6=idxj))

∑ 2dρ(P (dx), gd(x)dx).

Proof. When d = 1, (11) is true (see (3)). Suppose that d > 1. Then
one can show the following by induction in d:

P (dx)− gd(x)dx

=
dX

i=1

Π1∑k∑i−1g1(xk)dxk(P (j)j≥i(Πj≥idxj)− g1(xi)dxiP
(j)j>i(Πj>idxj)),

where we put Π1∑k∑0g1(xk)dxk ≡ 1. This together with the following
proves the first inequality in (11): for i = 2, · · · , d,

P (j)j≥i(Πj≥idxj)− g1(xi)dxiP
(j)j>i(Πj>idxj)

=
Z
{(xj)j<i∈Ri−1}

(P (dx)− g1(xi)dxiP
(j)j 6=i(Πj 6=idxj)).

The second inequality in (11) can be shown by the following: for i =
1, · · · , d,

P (dx)− g1(xi)dxiP
(j)j 6=i(Πj 6=idxj)

= P (dx)− gd(x)dx + g1(xi)dxi

Z
{xi∈R}

(gd(x)dx− P (dx)).

Lemma 3.2. Suppose that d > 1, and that a sequence of Borel probability
measures {Pn}n≥1 on (Rd,B(Rd)) satisfies the following: for some i ∈
{1, · · · , d},

lim
n→1 ρ(Pn(dx), g1(xi)dxi(Pn)(j)j 6=i(Πj 6=idxj)) = 0, (12)
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and
R
Rd |xi|2Pn(dx) = 1 for all n ≥ 1. Then the following holds:

lim
n→1

Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z
R

xi(Pn)i
(xj)j 6=i

(dxi)|2 = 0. (13)

Proof. For R > 0,

Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z
R

xi(Pn)i
(xj)j 6=i

(dxi)|2 (14)

∑ 2
Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z R

−R
xi(Pn)i

(xj)j 6=i
(dxi)|2

+2
Z
{x∈Rd:|xi|≥R}

|xi|2Pn(dx).

The first part of the right hand side of (14) can be shown to converge to
zero as n →1, by the following:

|
Z R

−R
xi(Pn)i

(xj)j 6=i
(dxi)| ∑ R, (Pn)(j)j 6=i(Πj 6=idxj)− a.s., (15)

and

Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z R

−R
xi(Pn)i

(xj)j 6=i
(dxi)| (16)

=
2X

k=1

(−1)k

Z
An,k

(Pn)(j)j 6=i(Πj 6=idxj)

×{R((Pn)i
(xj)j 6=i

((−1, R])−
Z R

−1
g1(xi)dxi

+(Pn)i
(xj)j 6=i

((−1,−R])−
Z −R

−1
g1(xi)dxi)

−
Z R

−R
((Pn)i

(xj)j 6=i
((−1, xi])−

Z xi

−1
g1(y)dy)dxi}

∑ 4Rρ(Pn(dx), g1(xi)dxi(Pn)(j)j 6=i(Πj 6=idxj)),

where we put
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An,1 ≡ {(xj)j 6=i ∈ Rd−1 :
Z R

−R
xi(Pn)i

(xj)j 6=i
(dxi) < 0},

An,2 ≡ {(xj)j 6=i ∈ Rd−1 :
Z R

−R
xi(Pn)i

(xj)j 6=i
(dxi) ≥ 0}

(see Remark 2.2). In (16) we used the following:

Z R

−R
xig1(xi)dxi = 0.

The second part of the right hand side of (14) can be shown to converge to
zero as n →1, by the following: by (12),

Z
{x∈Rd:|xi|≥R}

|xi|2Pn(dx) n→1−→ 1−
Z R

−R
|y|2g1(y)dy

R→1−→ 0. (17)

Lemma 3.3. Suppose that d > 1, and that a sequence of Borel probability
measures {Pn}n≥1 on (Rd,B(Rd)) satisfies the following: for some i ∈
{1, · · · , d},

lim
n→1 ρ(W i(Pn)(dx), Pn(dx)) = 0, (18)

and that
R
Rd |xi|2Pn(x)dx = 1 for all n ≥ 1. Then the following holds:

lim
n→1

Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z
R

y(Pn)i
(xj)j 6=i

(dy)|2 = 0, (19)

and for any R > 0,

lim
n→1 sup

A∈B(Rd)
|
Z
{((xj)j 6=i,y)∈A:|y|∑R}

(Pn)(j)j 6=i(Πj 6=idxj)g1(y)dy (20)

×(
Z y

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(y)−

Z 0

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(0))|

= 0,

and
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lim
n→1 sup

A∈B(Rd−1)
|
Z

A
(Pn)(j)j 6=i(Πj 6=idxj) (21)

×(
Z 0

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(0)− 1)| = 0.

Proof. (19) can be proved by (18) and by the following:

Z
Rd

W i(Pn)(dx) (22)

=
Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)

×{
Z 0

−1
(−y)(

Z
R

z(Pn)i
(xj)j 6=i

(dz)− y)(Pn)i
(xj)j 6=i

(dy)

−
Z 1

0
y(

Z
R

z(Pn)i
(xj)j 6=i

(dz)− y)(Pn)i
(xj)j 6=i

(dy)}

= −
Z
Rd−1

(Pn)(j)j 6=i((xj)j 6=i)Πj 6=idxj |
Z
R

z(Pn)i
(xj)j 6=i

(dz)|2 + 1,

where we used the following:

Z
R

(
Z
R

z(Pn)i
(xj)j 6=i

(dz)− y)(Pn)i
(xj)j 6=i

(dy) = 0. (23)

(20) can be proved by (18)-(19) and by the following: for y ∈ [−R,R],

Z y

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(y)−

Z 0

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(0) (24)

=
Z y

0
xig1(xi)−1(

Z xi

−1
−z(Pn)i

(xj)j 6=i
(dz)dxi − (Pn)i

(xj)j 6=i
(dxi)),

and

(Pn)(j)j 6=i(Πj 6=idxj)
Z xi

−1
−z(Pn)i

(xj)j 6=i
(dz)dxi − Pn(dx) (25)
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= −(Pn)(j)j 6=i(Πj 6=idxj)
Z
R

z(Pn)i
(xj)j 6=i

(dz)(Pn)i
(xj)j 6=i

((−1, xi])dxi

+W i(Pn)(dx)− Pn(dx).

(21) can be proved by (17)-(20) and by the following: for R > 0,

(Pn)(j)j 6=i(Πj 6=idxj)(1−
Z 0

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(0)) (26)

= (Pn)(j)j 6=i(Πj 6=idxj){
Z
{xi∈R:|xi|>R}

((Pn)i
(xj)j 6=i

(dxi)

−(
Z 0

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(0))g1(xi)dxi)

+
Z
R

z(Pn)i
(xj)j 6=i

(dz)
Z R

−R
(Pn)i

(xj)j 6=i
((−1, xi])dxi

+
Z R

−R
(
Z y

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(y)

−
Z 0

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(0))g1(y)dy}

+
Z
{xi∈R:|xi|∑R}

(Pn(dx)−W i(Pn)(dx)).

Finally we prove Theorem 2.1.
Proof (Proof of Theorem 2.1). We only have to prove the case where

d > 1. In fact, when d = 1, the proof is done from the case where d > 1, by
considering probability measures {Pn(dx)× g1(y)dy}n≥1 on (R2,B(R2)).

We assume that d > 1 from here on.
Suppose that (I) in Theorem 2.1 holds. Then the following which will be

proved later holds: for any i ∈ {1, · · · , d}

lim
n→1 ρ(W i(Pn)(dx), (Pn)(j)j 6=i(Πj 6=idxj)g1(xi)dxi) = 0, (27)

which implies (II) by Lemma 3.1.
(27) is true. Indeed, by (23),

W i(Pn)(dx)− (Pn)(j)j 6=i(Πj 6=idxj)g1(xi)dxi (28)
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= (Pn)(j)j 6=i(Πj 6=idxj)dxi

×{1(−1,0](xi)(
Z
R

z(Pn)i
(xj)j 6=i

(dz)(Pn)i
(xj)j 6=i

((−1, xi])

−
Z

(−1,xi]
y((Pn)i

(xj)j 6=i
(dy)− g1(y)dy))

−1(0,1)(xi)(
Z
R

z(Pn)i
(xj)j 6=i

(dz)(Pn)i
(xj)j 6=i

((xi,1))

−
Z

(xi,1)
y((Pn)i

(xj)j 6=i
(dy)− g1(y)dy))},

where 1A(x) denotes an indicator function of the set A. We also have

Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z
R

z(Pn)i
(xj)j 6=i

(dz)| (29)

×(
Z 0

−1
dxi(Pn)i

(xj)j 6=i
((−1, xi]) +

Z 1

0
dxi(Pn)i

(xj)j 6=i
((xi,1)))

=
Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z
R

z(Pn)i
(xj)j 6=i

(dz)|
Z
R

|y|(Pn)i
(xj)j 6=i

(dy)

∑ (
Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj)|
Z
R

z(Pn)i
(xj)j 6=i

(dz)|2)1/2 → 0,

as n →1 by Lemma 3.2. For R > 0,

{(xi, y) : −1 < y ∑ xi ∑ 0}
= {(xi, y) : −1 < y ∑ xi ∑ −R} ∪ {(xi, y) : −1 < y ∑ −R < xi ∑ 0}

∪{(xi, y) : −R < y ∑ xi ∑ 0},
{(xi, y) : 0 < xi < y < 1}

= {(xi, y) : R ∑ xi < y < 1} ∪ {(xi, y) : 0 < xi < R ∑ y < 1}
∪{(xi, y) : 0 < xi < y < R}.

Hence the following (30)-(31) completes the proof of (27).

Z
Rd−1

(Pn)(j)j 6=i(Πj 6=idxj) (30)

×{
Z −R

−1
dxi

Z xi

−1
|y|((Pn)i

(xj)j 6=i
(dy) + g1(y)dy)

+
Z 1

R
dxi

Z 1

xi

|y|((Pn)i
(xj)j 6=i

(dy) + g1(y)dy)
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+R(
Z −R

−1
|y|((Pn)i

(xj)j 6=i
(dy) + g1(y)dy)

+
Z 1

R
|y|((Pn)i

(xj)j 6=i
(dy) + g1(y)dy))}

=
Z
{x∈Rd:|xi|≥R}

|xi|2Pn(dx) +
Z
{y∈R:|y|≥R}

|y|2g1(y)dy → 0,

as n → 1 and then R → 1 (see (17)), and for any Borel measurable
' : Rd 7→ [−1, 1],

|
Z
Rd

'(x)(Pn)(j)j 6=i(Πj 6=idxj)dxi (31)

×{1(−R,0](xi)
Z

(−R,xi]
y(−(Pn)i

(xj)j 6=i
(dy) + g1(y)dy)

+1(0,R)(xi)
Z

(xi,R)
y((Pn)i

(xj)j 6=i
(dy)− g1(y)dy)}|

∑ 2R2ρ(Pn(dx), (Pn)(j)j 6=i(Πj 6=idxj)g1(xi)dxi).

Suppose that (II) in Theorem 2.1 holds. Then the following which will
be proved later holds: for all i ∈ {1, · · · , d},

lim
n→1 ρ(Pn(dx), (Pn)(j)j 6=i(Πj 6=idxj)g1(xi)dxi) = 0, (32)

which implies (I) in Theorem 2.1 by Lemma 3.1.
We prove (32) to complete the proof. For any R > 0, by Chebychev’s

inequality,

Z
{x∈Rd:|xi|≥R}

(Pn(dx) + (Pn)(j)j 6=i(Πj 6=idxj)g1(xi)dxi) (33)

∑ R−2(
Z
{x∈Rd:|xi|≥R}

|xi|2Pn(dx) +
Z
{y∈R:|y|≥R}

|y|2g1(y)dy) < 2/R2,

and for any A ∈ B(Rd)

Z
{((xj)j 6=i,xi)∈A:|xi|∑R}

(Pn(dx)− (Pn)(j)j 6=i(Πj 6=idxj)g1(xi)dxi) (34)
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=
Z
{((xj)j 6=i,xi)∈A:|xi|∑R}

(Pn(dx)−W i(Pn)(dx))

+
Z
{((xj)j 6=i,xi)∈A:|xi|∑R}

(Pn)(j)j 6=i(Πj 6=idxj)dxi

×{
Z
R

z(Pn)i
(xj)j 6=i

(dz)
Z xi

−1
(Pn)i

(xj)j 6=i
(dz)

+(
Z xi

−1
−z(Pn)i

(xj)j 6=i
(dz)/g1(xi)− 1)g1(xi)},

which completes the proof of (32) by Lemma 3.3.

4. A TYPICAL EXAMPLE.

In this section we give a typical example.
Let {Xn}n≥1 be a sequence of independent and identically distributed

random variables such that

P (X1 ∈ dx) =
1
8π

1{y∈R2|1<|y|<3}(x)dx. (35)

Put

Sn :=
r

2
5n

nX
k=1

Xk,

µ
Sn,1

Sn,2

∂
:= Sn, Pn(dx) := P (Sn ∈ dx). (36)

Then the dispersion matrix of Sn is an identity matrix, and pn(x) :=
Pn(dx)/dx exists, and for any n ≥ 2,

pn(x) > 0 if and only if |x| < 3n

r
2
5n

. (37)

For i = 1, 2,

W i(Pn)(x)dx = P (Sn,j ∈ dxj)dxi

Z xi

−1
−yP (Sn,i ∈ dy|Sn,j = xj) (38)

(j = 1, 2, j 6= i), where (x1, x2) := x.
Replace E[wi

1(X1)gi(Sn)] in [2, (3.1)] and E[w1(T1)gi(Sn)] in [2, (3.2)]
by
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Z
R2

W i(P1)(x)dxE

∑
gi

µr
1
n

x +
r

n− 1
n

Sn−1

∂∏
.

Then one can show, in the same way as in [2, Theorem 3.1], that the
following holds: for n ≥ 2 and i = 1, 2,

ρ(W i(Pn)(x)dx, pn(x)dx) =
Z
R2

ØØØØW i(Pn)(x)
pn(x)

− 1
ØØØØpn(x)dx (39)

∑
Z
R2

ØØØØW i(Pn)(x)
pn(x)

− 1
ØØØØ2pn(x)dx =

Z
R2

ØØØØW i(Pn)(x)
pn(x)

ØØØØ2pn(x)dx− 1

→ 0 (as n →1).

This together with Theorem 2.1 implies that the following holds:

lim
n→1 ρ(Pn(dx), gd(x)dx) = 0. (40)
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