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Department of Mathematics

Hokkaido University

1 Introduction

Gauss curvature flow is known as a mathematical model of the wearing pro-
cess of a convex stone rolling on a beach (see [2]).

In [3] we proposed and studied a two dimensional random crystalline
algorithm for the curvature flow of smooth simple closed convex curves.

In [4] we studied a convexified Gauss curvature flow of compact sets by
the level set approach in the theory of viscosity solutions.

In this talk we discuss a random crystalline algorithm of and PDE on an
anisotropic convexified Gauss curvature flow of bounded open sets in RY for
any N > 2 (see [5]).

We introduce an assumption and a notation before we describe the PDE
under consideration.

(A.1). R e LY(SN-1: [0,00), dHN1), and ||R|pigv-1) = 1.



For p € RN and a N x N-symmetric real matrix X, put G(o, X) := 0

and

p _p.X P D P P
Glp, X) = |p] det (—(1 EIPNN NP ST IPNN A I _>
" pl = el el el T el Il Il

if p # o.
We study a weak solution and a viscosity solution of the following PDE

in this talk:

Du(t, x)

Ouult, ) = o* (u, Dult.a). 1, )R

>G(Du(t,x),D2u(t,m)) (1.1)

((t,z) € (0,00) x RY). Here

if u(t, ) <wu(t,x) on H(p,z) and p € RN \ {0},

1
ot (u,p,t,z) =
0 otherwise,

H(p,7) = {y c R"\{z}| <y—2,p>< 0}

To introduce the notion of a weak solution to (1.1), we give several nota-
tions.

Let F be a closed convex subset of RY. For x € OF, put

Np(z) :={pe SV Fc{y <y—xp><0}}

Definition 1 Suppose that (A.1) holds. Let u : D(u)(C RY) — R be
bounded and r € R. For any B € B(RY), put
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wy(R,u, B ;:/ R(p) Y1),
( | Nico um1(1r,00))~ (BNO(co u=([r,00))) (¥) (p)

w(R,u, B) : /dmRuB)

provided the right hand side is well defined.

Definition 2 (Weak Solutions) Suppose that (A.1) holds.
(i) A family of bounded open sets {D(t)};>0 in RN is called an anisotropic
convezified Gauss curvature flow if
D(t) = { (co D(t)) N D(0) fort e [0, Vol(D)), 12)
0 fort > Vol(D)
; and for any o € C,(RY) and any t > 0,

/RN o(x)(Ipy(z) — ))dx —/ ds/ 2)or(Ipg (), dz).  (1.3)

(i) u € Cy([0,00) x RY) is called the weak solution to (1.1) if the following
holds: for any ¢ € Co(RY) and any t > 0,

/RN () (u (OI)—utxdx—/ds/RN s,),dz).  (1.4)

Before we introduce the notion of a viscosity solution to (1.1), we intro-
duce notations
f e Fiff fe C*[0,00)), f"(r) > 0 on (0,00), and f(r)/r¥ — 0 as

r — 0.



Let Q be an open subset of (0,00) x RY. f € A(Q) iff p € C*(Q), and
for any (£,#) € Q for which Dy vanishes, there exists f € F such that

oty ) = o(t, &) = Opp(E, &) (t =D < flw =) +o(lt—1])  as (t,2) — (£, 2).

Definition 3 (Viscosity solution) (see [6]).

Let 0 < T < oo and set := (0,T) x RV,
(1). A function uw € USC(R) is called a viscosity subsolution of (1.1) in Q if
whenever ¢ € A(Q), (s,y) € Q, and u— ¢ attains a local mazimum at (s,y),
then

Oup5,9) + (0. Dl ), 5. )R 2 ) GUDs.9), Do) <0
(1.5)
where
1 ifu(s,:) <u(s,y) on H(p,y) and p € RV \ {0},
O'_(U,p78,y) = .
0  otherwise.

(ii). A function w € LSC(Q) is called a viscosity supersolution of (1.1) in
Q if whenever p € A(Q), (s,y) € Q, and u — ¢ attains a local minimum at
(5,9), then

D(s,y)

Ouplo) +" (0, D). s R( DA

)G(De(s, ), (s, ) 2 0.
(1.6)
(i1i). A function u € C(Q) is called a viscosity solution of (1.1) in  if it is

both a viscosity subsolution and a supersolution of (1.1) in §Q.
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Next we introduce a class of stochastic processes of which continuum limit
becomes an anisotropic convexified Gauss curvature flow.

The following is an assumption on the initial set.
(A.2). D is a bounded open set in R such that Vol(9D) = 0.

Take K > 0 so that co D C [-K + 1, K — 1]". Put

Sy i={14: [-K, KN N (Z" /n) — {0,1}|]A C Z" /n}.

For z, 2 € ZV /n and v € S,, put

v(z) ifx#z,
nal®) = {0 if
ifr=z

; and for a bounded f : S, — R, put

Anf(v) i=n" Z wl(R’ v, {Z}){f(vn,z) - f(v)}

2€[- K, K]NN(ZN /n)
Let {Y,(¢,-)}+>0 be a Markov process on S,, (n > 1), with the generator
A, such that Y,(0, 2) = Ipenzy m)(2).
For (t,z) € [0,00) x [-K, K]V, put also

Da(t) == (co Yy(t, )" (1))° N D, (1.7)

Xo(t,x) .= Ip,u(x). (1.8)

Then {X,(t,-) }+>0 is a stochastic process on

S:={f e L*([-K, KI") : | fllr2—r,x) < (2K)N}



which is a complete separable metric space by the metric

= max(| < f — g6 >uaora | )
a(f,0) =3 T —

k=1

Here {e;}x>1 denotes a complete orthonomal basis of L?([— K, K|V).
By definition, the following holds.

1) D,(0) — D in Hausdorf metric as n — oo.

(1) D
(2) Xoe@ myn—K,KN [ Ip,t)(2) = Ip,-)(2)| =0 or 1 for all t > 0.
(3)If |1p, 1) (2) — Ip,-)(2)| =1, then z € d(co Dy(t—)).

(4) > 2€(ZN Jn)[— K, K]V \Ip,)(2) — Ip,—y(2)] = 1if and only if t = o, for
some i, where 0 < 0,1 < 0,1 < --- are random variables such that {o, ;11 —

On,itiso are independent and that

P(Un,i+1 —Oni € dt) = nN eXp(—nNt)dt

(5) P(Ip,(0,.)(?) = ID,(0,,—)(2) = 1) = Elwi(R, Ip, (0, ), 12})]-

2 Main reslut

In this section we give our main result from [5].
The following theorem implies that D,, is a random crystalline approxi-

mation of an anisotropic convexified Gauss curvature flow.

Theorem 1 Suppose that (A.1)-(A.2) hold. Then there exists a unique
anisotropic convexified Gauss curvature flow {D(t)}i>o with D(0) = D, and
for any v > 0,



lim P(sup || Xn(t, ) = Ipw ()| 2= r,x5) = 7) = 0. (2.1)

n—0oo o<t

Suppose in addition that D is convex. Then for any T € [0, Vol(D)) and
v >0,

lim P( sup dy(D,(t), D(t)) > ~) =0, (2.2)

n—oo g<t<T o

where dg denotes Hausdorff metric.

We introduce an additional assumption.
(A.3). h € Cy(RY) and for any r € R, the set h~'((r,00)) is bounded or
RY.

The following corollary implies that a level set of a continuous weak so-

lution to (1.1) is determined by that at t = 0.

Corollary 1 Suppose that (A.1) and (A.3) hold. Then there exists a unique
bounded continuous weak solution {u(t,-)}>0 to (1.1) and for any r € R,

{u(t, )" ((r,00)) }i>0 is a unique anisotropic convezified Gauss curvature flow

with initial data u(0,-)~((r, 0)).
We state properties of anisotropic convexified Gauss curvature flows.

Theorem 2 Suppose that (A.1)-(A.2) hold. Let {D(t)}i>0 be a unique anisotropic
convezified Gauss curvature flow {D(t)}+>o with D(0) = D. Then
(a) t — D(t) is nonincreasing on [0, 00).

(b) For any t < T* := Vol(D(0)),



Vol(D(0)\D(t)) = t. (2.3)

(c) Let {D;(t)}i>0 be an anisotropic convezified Gauss curvature flow such

that D1(0) is a bounded, convezx, open set which contains D. Then

D(t) € Di(t) forallt >0, (2.4)

where the equality holds if and only if D(0) = D;(0).

We give an additional assumption and state the result on viscosity solu-
tions to (1.1).
(A4). Re C(SN=1:[0,00)).

Theorem 3 Suppose that (A.2) and (A.4) hold. Let {D(t)}+>0 be a unique
anisotropic convexified Gauss curvature flow { D(t)}+>o with D(0) = D. Then
Ipw(x) and Ipy)-(x) are a viscosity supersolution and a viscosity subsolution

to (1.1), respectively.

The followng results imply that u € Cy([0,00) x RY) is a weak solution

to (1.1) if and only if it is a viscosity solution to (1.1), in case R is constant.

Corollary 2 Suppose that (A.3)-(A.4) hold. Then a unique weak solution

u € Cy([0,00) x RN) to (1.1) is a viscosity solution to it.

Corollary 3 (see [4]) Suppose that (A.3) holds and that R is constant. Then
a continuous viscosity solution to (1.1) is unique and is a weak solution to

it.



3 Sketch of Proof

(Idea of Proof of Theorem 1). We first show that {X,(¢,)}:>0 is tight in

D([0,00) : §). By the weak convergence result on w; by Bakelman [1], we

show that any weak limit point of {X,,(¢,)}+>0 is a weak solution to (1.1).
The following lemma implies the uniqueness, and hence completes the

proof.

Lemma 1 Suppose that (A.1) hold. If {Ip,}teo0 (i =1, 2) are weak solu-
tions to (1.1) for which D1(0) C Dy(0), then Dy(t) C Ds(t) for allt > 0. In

particular,

d(Dy(t), D2(t)%) = d(D1(0), D2(0)%), (3.1)
fort < Vol(D:(0)).
(Sketch of Proof of Corollary 1). For r € R, let {Ip, ) }+>0 denote a unique

weak solution of (1.1) with D,.(0) = h™((r, 0)).
Put

u(t,z) :=sup{r € Rl|z € D,.(¢)}.

Then w is continuous. In particular, for all ¢ > 0 and r € R,

u(t, )" ((r,00)) = Du(2).

For n > 1, put k, 1 := [nsup{h(y)ly € R"}] and k, := [ninf{h(y)|y €
RM}]. Then for any ¢ € C,(R") and any ¢ > 0,



kn,OSkSkn,l
k
— Z _<]DE(O)C(J7) — ]Du(o)c(l‘))]dl’
kno<k<kni 't 7 B
t 1
= [ast X o[ e(@en(R, o, (9 (), o).
0 kyo<k<hn, VIR n

Letting n — oo in (3.4), u is shown to be a weak solution to (1.1).

The uniqueness of u follows from that of D,() for all r. In fact we can
show that for a continuous weak solution v to (1.1), {v(t,-) ' ((r, 00)) }+>0 is
an anisotropic convexified Gauss curvature flow.

Q. E. D.

We omit the proof of Theorems 2 and 3.

(Sketch of Proof of Corollary 2)

Let u be a weak solution to (1.1).

We first show that w is a viscosity supersolution to (1.1). Suppose that
u is smooth in © and that ¢ € A(Q), (s,y) € Q, and u — ¢ attains a local

maximum at (s,y). Then

Os(u —¢)(s,y) > 0.

Os(u— ¢°)(s,9) = 0
(¢ > 0), where ¢° := ¢ — . Hence formally, we have, in some neighborhood

of (s,v),
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0s°(t, )

Osu(t,x) = —w(u(t,),dx)/dx

De(t, )
[ Dp(t, )]
Then following lemma completes the proof.

Take ¢ € C?*(RY : R) for which Dy(z,) # 0 for some z, € R". For
1=1,---,N, put

IA

< —wl(ge(t, ), dx)/de = —R< )G(Dgo(t,x),DQw(t,x))-

Then

Lemma 2 Suppose that all eigenvalues of —D(Dy(x,)/|Dy(x,)|) are non-
negative. Then, fori=1,--- N,

aﬁO(xo)
[ Do (,)|

Similarly one can show that u is a viscosity subsolution to (1.1).

Q. E. D.

G(De(xo), D*p(,)) = det(Dy;(w,)). (3.2)
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