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Anisotropic convexified Gauss curvature flow of bounded open sets:

stochastic approximation, weak solution and viscosity solution

北海道大学 ·理学研究科　　三上　敏夫 (Toshio Mikami)

Department of Mathematics

Hokkaido University

1 Introduction

Gauss curvature flow is known as a mathematical model of the wearing pro-

cess of a convex stone rolling on a beach (see [2]).

In [3] we proposed and studied a two dimensional random crystalline

algorithm for the curvature flow of smooth simple closed convex curves.

In [4] we studied a convexified Gauss curvature flow of compact sets by

the level set approach in the theory of viscosity solutions.

In this talk we discuss a random crystalline algorithm of and PDE on an

anisotropic convexified Gauss curvature flow of bounded open sets in RN for

any N ≥ 2 (see [5]).

We introduce an assumption and a notation before we describe the PDE

under consideration.

(A.1). R ∈ L1(SN−1 : [0,1), dHN−1), and ||R||L1(SN−1) = 1.
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For p ∈ RN and a N × N -symmetric real matrix X, put G(o, X) := 0

and

G(p, X) := |p| det +

√
−(I − p

|p| ≠
p

|p|)
X

|p|(I −
p

|p| ≠
p

|p|) +
p

|p| ≠
p

|p|
!

if p 6= o.

We study a weak solution and a viscosity solution of the following PDE

in this talk:

@tu(t, x) = σ+(u, Du(t, x), t, x)R
µ

Du(t, x)

|Du(t, x)|
∂
G(Du(t, x), D2u(t, x)) (1.1)

((t, x) ∈ (0,1)×RN). Here

σ+(u, p, t, x) :=

8<: 1 if u(t, ·) ∑ u(t, x) on H(p, x) and p ∈ RN \ {o},
0 otherwise,

H(p, x) := {y ∈ RN\{x}| < y − x, p >∑ 0}.

To introduce the notion of a weak solution to (1.1), we give several nota-

tions.

Let F be a closed convex subset of RN . For x ∈ @F , put

NF (x) := {p ∈ SN−1|F Ω {y| < y − x, p >∑ 0}}.

Definition 1 Suppose that (A.1) holds. Let u : D(u)(Ω RN) 7→ R be

bounded and r ∈ R. For any B ∈ B(RN), put
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ωr(R, u, B) :=
Z

N(co u−1([r,1)))− (B∩@(co u−1([r,1))))
R(p)dHN−1(p),

w(R, u, B) :=
Z
R

drωr(R, u, B),

provided the right hand side is well defined.

Definition 2 (Weak Solutions) Suppose that (A.1) holds.

(i) A family of bounded open sets {D(t)}t≥0 in RN is called an anisotropic

convexified Gauss curvature flow if

D(t) =

8<: (co D(t)) ∩D(0) for t ∈ [0,Vol(D)),

; for t ≥ Vol(D)
(1.2)

; and for any ' ∈ Co(RN) and any t ≥ 0,

Z
RN

'(x)(ID(0)(x)− ID(t)(x))dx =
Z t

0
ds

Z
RN

'(x)ω1(ID(s)(·), dx). (1.3)

(ii) u ∈ Cb([0,1)×RN) is called the weak solution to (1.1) if the following

holds: for any ' ∈ Co(RN) and any t ≥ 0,

Z
RN

'(x)(u(0, x)− u(t, x))dx =
Z t

0
ds

Z
RN

'(x)w(u(s, ·), dx). (1.4)

Before we introduce the notion of a viscosity solution to (1.1), we intro-

duce notations

f ∈ F iff f ∈ C2([0,1)), f 00(r) > 0 on (0,1), and f(r)/rN → 0 as

r → 0.
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Let ≠ be an open subset of (0,1) ×RN . f ∈ A(≠) iff ' ∈ C2(≠), and

for any (t̂, x̂) ∈ ≠ for which D' vanishes, there exists f ∈ F such that

|'(t, x)−'(t̂, x̂)−@t'(t̂, x̂)(t− t̂)| ∑ f(|x− x̂|)+o(|t− t̂|) as (t, x) → (t̂, x̂).

Definition 3 (Viscosity solution) (see [6]).

Let 0 < T ∑ 1 and set ≠ := (0, T )×RN .

(i). A function u ∈ USC(≠) is called a viscosity subsolution of (1.1) in ≠ if

whenever ' ∈ A(≠), (s, y) ∈ ≠, and u−' attains a local maximum at (s, y),

then

@t'(s, y) + σ−(u, D'(s, y), s, y)R
µ

D'(s, y)

|D'(s, y)|
∂
G(D'(s, y), D2'(s, y)) ∑ 0,

(1.5)

where

σ−(u, p, s, y) :=

8<: 1 if u(s, ·) < u(s, y) on H(p, y) and p ∈ RN \ {o},
0 otherwise.

(ii). A function u ∈ LSC(≠) is called a viscosity supersolution of (1.1) in

≠ if whenever ' ∈ A(≠), (s, y) ∈ ≠, and u − ' attains a local minimum at

(s, y), then

@t'(s, y) + σ+(u, D'(s, y), s, y)R
µ

D'(s, y)

|D'(s, y)|
∂
G(D'(s, y), D2'(s, y)) ≥ 0.

(1.6)

(iii). A function u ∈ C(≠) is called a viscosity solution of (1.1) in ≠ if it is

both a viscosity subsolution and a supersolution of (1.1) in ≠.
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Next we introduce a class of stochastic processes of which continuum limit

becomes an anisotropic convexified Gauss curvature flow.

The following is an assumption on the initial set.

(A.2). D is a bounded open set in RN such that Vol(@D) = 0.

Take K > 0 so that co D Ω [−K + 1, K − 1]N . Put

Sn := {IA : [−K, K]N ∩ (ZN/n) 7→ {0, 1}|A Ω ZN/n}.

For x, z ∈ ZN/n and v ∈ Sn, put

vn,z(x) :=

(
v(x) if x 6= z,

0 if x = z
; and for a bounded f : Sn 7→ R, put

Anf(v) := nN
X

z∈[−K,K]N∩(ZN/n)

ω1(R, v, {z}){f(vn,z)− f(v)}.

Let {Yn(t, ·)}t≥0 be a Markov process on Sn (n ≥ 1), with the generator

An, such that Yn(0, z) = IDc∩(ZN/n)(z).

For (t, x) ∈ [0,1)× [−K, K]N , put also

Dn(t) := (co Yn(t, ·)−1(1))o ∩D. (1.7)

Xn(t, x) := IDn(t)(x). (1.8)

Then {Xn(t, ·)}t≥0 is a stochastic process on

S := {f ∈ L2([−K, K]N) : ||f ||L2([−K,K]N ) ∑ (2K)N}
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which is a complete separable metric space by the metric

d(f, g) :=
1X

k=1

max(| < f − g, ek >L2([−K,K]N ) |, 1)

2k
.

Here {ek}k≥1 denotes a complete orthonomal basis of L2([−K, K]N).

By definition, the following holds.

(1) Dn(0) → D in Hausdorf metric as n →1.

(2)
P

z∈(ZN/n)∩[−K,K]N |IDn(t)(z)− IDn(t−)(z)| = 0 or 1 for all t ≥ 0.

(3)If |IDn(t)(z)− IDn(t−)(z)| = 1, then z ∈ @(co Dn(t−)).

(4)
P

z∈(ZN/n)∩[−K,K]N |IDn(t)(z) − IDn(t−)(z)| = 1 if and only if t = σn,i for

some i, where 0 < σn,1 < σn,1 < · · · are random variables such that {σn,i+1−
σn,i}i>0 are independent and that

P (σn,i+1 − σn,i ∈ dt) = nN exp(−nN t)dt.

(5) P (IDn(σn,i)(z)− IDn(σn,i−)(z) = 1) = E[ω1(R, IDn(σn,i−), {z})].

2 Main reslut

In this section we give our main result from [5].

The following theorem implies that Dn is a random crystalline approxi-

mation of an anisotropic convexified Gauss curvature flow.

Theorem 1 Suppose that (A.1)-(A.2) hold. Then there exists a unique

anisotropic convexified Gauss curvature flow {D(t)}t≥0 with D(0) = D, and

for any ∞ > 0,
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lim
n→1P (sup

0∑t
||Xn(t, ·)− ID(t)(·)||L2([−K,K]N ) ≥ ∞) = 0. (2.1)

Suppose in addition that D is convex. Then for any T ∈ [0,Vol(D)) and

∞ > 0,

lim
n→1P ( sup

0∑t∑T
dH(Dn(t), D(t)) ≥ ∞) = 0, (2.2)

where dH denotes Hausdorff metric.

We introduce an additional assumption.

(A.3). h ∈ Cb(RN) and for any r ∈ R, the set h−1((r,1)) is bounded or

RN .

The following corollary implies that a level set of a continuous weak so-

lution to (1.1) is determined by that at t = 0.

Corollary 1 Suppose that (A.1) and (A.3) hold. Then there exists a unique

bounded continuous weak solution {u(t, ·)}t≥0 to (1.1) and for any r ∈ R,

{u(t, ·)−1((r,1))}t≥0 is a unique anisotropic convexified Gauss curvature flow

with initial data u(0, ·)−1((r,1)).

We state properties of anisotropic convexified Gauss curvature flows.

Theorem 2 Suppose that (A.1)-(A.2) hold. Let {D(t)}t≥0 be a unique anisotropic

convexified Gauss curvature flow {D(t)}t≥0 with D(0) = D. Then

(a) t 7→ D(t) is nonincreasing on [0,1).

(b) For any t ∑ T § := Vol(D(0)),

7



Vol(D(0)\D(t)) = t. (2.3)

(c) Let {D1(t)}t≥0 be an anisotropic convexified Gauss curvature flow such

that D1(0) is a bounded, convex, open set which contains D. Then

D(t) Ω D1(t) for all t ≥ 0, (2.4)

where the equality holds if and only if D(0) = D1(0).

We give an additional assumption and state the result on viscosity solu-

tions to (1.1).

(A.4). R ∈ C(SN−1 : [0,1)).

Theorem 3 Suppose that (A.2) and (A.4) hold. Let {D(t)}t≥0 be a unique

anisotropic convexified Gauss curvature flow {D(t)}t≥0 with D(0) = D. Then

ID(t)(x) and ID(t)−(x) are a viscosity supersolution and a viscosity subsolution

to (1.1), respectively.

The followng results imply that u ∈ Cb([0,1) ×RN) is a weak solution

to (1.1) if and only if it is a viscosity solution to (1.1), in case R is constant.

Corollary 2 Suppose that (A.3)-(A.4) hold. Then a unique weak solution

u ∈ Cb([0,1)×RN) to (1.1) is a viscosity solution to it.

Corollary 3 (see [4]) Suppose that (A.3) holds and that R is constant. Then

a continuous viscosity solution to (1.1) is unique and is a weak solution to

it.
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3 Sketch of Proof

(Idea of Proof of Theorem 1). We first show that {Xn(t, ·)}t≥0 is tight in

D([0,1) : S). By the weak convergence result on ω1 by Bakelman [1], we

show that any weak limit point of {Xn(t, ·)}t≥0 is a weak solution to (1.1).

The following lemma implies the uniqueness, and hence completes the

proof.

Lemma 1 Suppose that (A.1) hold. If {IDi(t)}t≥0 (i = 1, 2) are weak solu-

tions to (1.1) for which D1(0) Ω D2(0), then D1(t) Ω D2(t) for all t ≥ 0. In

particular,

d(D1(t), D2(t)
c) ≥ d(D1(0), D2(0)c), (3.1)

for t ∑ Vol(D1(0)).

(Sketch of Proof of Corollary 1). For r ∈ R, let {IDr(t)}t≥0 denote a unique

weak solution of (1.1) with Dr(0) = h−1((r,1)).

Put

u(t, x) := sup{r ∈ R|x ∈ Dr(t)}.

Then u is continuous. In particular, for all t ≥ 0 and r ∈ R,

u(t, ·)−1((r,1)) = Dr(t).

For n ≥ 1, put kn,1 := [n sup{h(y)|y ∈ RN}] and kn,0 := [n inf{h(y)|y ∈
RN}]. Then for any ' ∈ Co(RN) and any t ≥ 0,
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Z
RN

'(x)[
X

kn,0∑k∑kn,1

k

n
(ID k

n
(t)c(x)− ID k+1

n
(t)c(x))

− X
kn,0∑k∑kn,1

k

n
(ID k

n
(0)c(x)− ID k+1

n
(0)c(x))]dx

=
Z t

0
ds[

X
kn,0<k∑kn,1

1

n

Z
RN

'(x)ω0(R, ID k
n

(s)c(·), dx)].

Letting n →1 in (3.4), u is shown to be a weak solution to (1.1).

The uniqueness of u follows from that of Dr(·) for all r. In fact we can

show that for a continuous weak solution v to (1.1), {v(t, ·)−1((r,1))}t≥0 is

an anisotropic convexified Gauss curvature flow.

Q. E. D.

We omit the proof of Theorems 2 and 3.

(Sketch of Proof of Corollary 2)

Let u be a weak solution to (1.1).

We first show that u is a viscosity supersolution to (1.1). Suppose that

u is smooth in ≠ and that ' ∈ A(≠), (s, y) ∈ ≠, and u − ' attains a local

maximum at (s, y). Then

@s(u− ')(s, y) ≥ 0.

@s(u− 'ε)(s, y) ≥ 0

(ε > 0), where 'ε := '− ε. Hence formally, we have, in some neighborhood

of (s, y),
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@s'
ε(t, x)

∑ @su(t, x) = −w(u(t, ·), dx)/dx

∑ −w('ε(t, ·), dx)/dx = −R
µ

D'(t, x)

|D'(t, x)|
∂
G(D'(t, x), D2'(t, x)).

Then following lemma completes the proof.

Take ' ∈ C2(RN : R) for which D'(xo) 6= 0 for some xo ∈ RN . For

i = 1, · · · , N , put

yi(x) :=
µ
−(1− δij)

@j'(x)

|D'(x)| + δij'(x)
∂N

j=1
.

Then

Lemma 2 Suppose that all eigenvalues of −D(D'(xo)/|D'(xo)|) are non-

negative. Then, for i = 1, · · · , N ,

@i'(xo)

|D'(xo)|G(D'(xo), D
2'(xo)) = det(Dyi(xo)). (3.2)

Similarly one can show that u is a viscosity subsolution to (1.1).

Q. E. D.
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