Title	Anisotropic convexified Gauss curvature flow of bounded open sets:stochastic approximation, weak solution and viscosity solution
Author(s)	Mikami, Toshio
Citation	解析研究所講究録, 1323, 1-12
Issue Date	2003-05
Doc URL	http://hdl.handle.net/2115/5883
Туре	article (author version)
File Information	mikami1323.pdf

Anisotropic convexified Gauss curvature flow of bounded open sets: stochastic approximation, weak solution and viscosity solution

北海道大学·理学研究科 三上 敏夫 (Toshio Mikami)

Department of Mathematics

Hokkaido University

1 Introduction

Gauss curvature flow is known as a mathematical model of the wearing process of a convex stone rolling on a beach (see [2]).

In [3] we proposed and studied a two dimensional random crystalline algorithm for the curvature flow of smooth simple closed convex curves.

In [4] we studied a convexified Gauss curvature flow of compact sets by the level set approach in the theory of viscosity solutions.

In this talk we discuss a random crystalline algorithm of and PDE on an anisotropic convexified Gauss curvature flow of bounded open sets in \mathbb{R}^N for any $N \geq 2$ (see [5]).

We introduce an assumption and a notation before we describe the PDE under consideration.

(A.1).
$$R \in L^1(\mathbf{S}^{N-1} : [0, \infty), d\mathcal{H}^{N-1})$$
, and $||R||_{L^1(\mathbf{S}^{N-1})} = 1$.

For $p \in \mathbf{R}^N$ and a $N \times N$ -symmetric real matrix X, put G(o,X) := 0 and

$$G(p,X) := |p| \det_+ \left(-(I - \frac{p}{|p|} \otimes \frac{p}{|p|}) \frac{X}{|p|} (I - \frac{p}{|p|} \otimes \frac{p}{|p|}) + \frac{p}{|p|} \otimes \frac{p}{|p|} \right)$$

if $p \neq o$.

We study a weak solution and a viscosity solution of the following PDE in this talk:

$$\partial_t u(t,x) = \sigma^+(u, Du(t,x), t, x) R\left(\frac{Du(t,x)}{|Du(t,x)|}\right) G(Du(t,x), D^2 u(t,x))$$
 (1.1)

$$((t,x) \in (0,\infty) \times \mathbf{R}^N). \text{ Here}$$

$$\sigma^+(u,p,t,x) := \begin{cases} 1 & \text{if } u(t,\cdot) \le u(t,x) \text{ on } H(p,x) \text{ and } p \in \mathbf{R}^N \setminus \{o\}, \\ 0 & \text{otherwise,} \end{cases}$$

$$H(p,x) := \{ y \in \mathbf{R}^N \setminus \{x\} | < y - x, p > \le 0 \}.$$

To introduce the notion of a weak solution to (1.1), we give several notations.

Let F be a closed convex subset of \mathbf{R}^N . For $x \in \partial F$, put

$$N_F(x) := \{ p \in \mathbf{S}^{N-1} | F \subset \{ y | < y - x, p > \le 0 \} \}.$$

Definition 1 Suppose that (A.1) holds. Let $u: \mathcal{D}(u) (\subset \mathbf{R}^N) \mapsto \mathbf{R}$ be bounded and $r \in \mathbf{R}$. For any $B \in B(\mathbf{R}^N)$, put

$$\omega_r(R, u, B) := \int_{N_{(co\ u^{-1}([r,\infty)))^-}(B \cap \partial(co\ u^{-1}([r,\infty))))} R(p) d\mathcal{H}^{N-1}(p),$$

$$\mathbf{w}(R, u, B) := \int_{\mathbf{R}} dr \omega_r(R, u, B),$$

provided the right hand side is well defined.

Definition 2 (Weak Solutions) Suppose that (A.1) holds.

(i) A family of bounded open sets $\{D(t)\}_{t\geq 0}$ in \mathbf{R}^N is called an anisotropic convexified Gauss curvature flow if

$$D(t) = \begin{cases} (co \ D(t)) \cap D(0) & for \ t \in [0, Vol(D)), \\ \emptyset & for \ t \ge Vol(D) \end{cases}$$
 (1.2)

; and for any $\varphi \in C_o(\mathbf{R}^N)$ and any $t \geq 0$,

$$\int_{\mathbf{R}^{N}} \varphi(x) (I_{D(0)}(x) - I_{D(t)}(x)) dx = \int_{0}^{t} ds \int_{\mathbf{R}^{N}} \varphi(x) \omega_{1}(I_{D(s)}(\cdot), dx).$$
 (1.3)

(ii) $u \in C_b([0,\infty) \times \mathbf{R}^N)$ is called the weak solution to (1.1) if the following holds: for any $\varphi \in C_o(\mathbf{R}^N)$ and any $t \ge 0$,

$$\int_{\mathbf{R}^N} \varphi(x)(u(0,x) - u(t,x))dx = \int_0^t ds \int_{\mathbf{R}^N} \varphi(x)\mathbf{w}(u(s,\cdot), dx). \tag{1.4}$$

Before we introduce the notion of a viscosity solution to (1.1), we introduce notations

 $f\in\mathcal{F}$ iff $f\in C^2([0,\infty)),\ f''(r)>0$ on $(0,\infty),$ and $f(r)/r^N\to 0$ as $r\to 0.$

Let Ω be an open subset of $(0, \infty) \times \mathbf{R}^N$. $f \in \mathcal{A}(\Omega)$ iff $\varphi \in C^2(\Omega)$, and for any $(\hat{t}, \hat{x}) \in \Omega$ for which $D\varphi$ vanishes, there exists $f \in \mathcal{F}$ such that

$$|\varphi(t,x) - \varphi(\hat{t},\hat{x}) - \partial_t \varphi(\hat{t},\hat{x})(t-\hat{t})| \le f(|x-\hat{x}|) + o(|t-\hat{t}|) \quad \text{as } (t,x) \to (\hat{t},\hat{x}).$$

Definition 3 (Viscosity solution) (see [6]).

Let
$$0 < T \le \infty$$
 and set $\Omega := (0, T) \times \mathbf{R}^N$.

(i). A function $u \in USC(\Omega)$ is called a viscosity subsolution of (1.1) in Ω if whenever $\varphi \in \mathcal{A}(\Omega)$, $(s,y) \in \Omega$, and $u - \varphi$ attains a local maximum at (s,y), then

$$\partial_t \varphi(s, y) + \sigma^-(u, D\varphi(s, y), s, y) R\left(\frac{D\varphi(s, y)}{|D\varphi(s, y)|}\right) G(D\varphi(s, y), D^2\varphi(s, y)) \le 0,$$
(1.5)

where

$$\sigma^-(u,p,s,y) := \begin{cases} 1 & \textit{if } u(s,\cdot) < u(s,y) \textit{ on } H(p,y) \textit{ and } p \in \mathbf{R}^N \setminus \{o\}, \\ 0 & \textit{otherwise}. \end{cases}$$

(ii). A function $u \in LSC(\Omega)$ is called a viscosity supersolution of (1.1) in Ω if whenever $\varphi \in \mathcal{A}(\Omega)$, $(s,y) \in \Omega$, and $u - \varphi$ attains a local minimum at (s,y), then

$$\partial_t \varphi(s, y) + \sigma^+(u, D\varphi(s, y), s, y) R\left(\frac{D\varphi(s, y)}{|D\varphi(s, y)|}\right) G(D\varphi(s, y), D^2\varphi(s, y)) \ge 0.$$
(1.6)

(iii). A function $u \in C(\Omega)$ is called a viscosity solution of (1.1) in Ω if it is both a viscosity subsolution and a supersolution of (1.1) in Ω .

Next we introduce a class of stochastic processes of which continuum limit becomes an anisotropic convexified Gauss curvature flow.

The following is an assumption on the initial set.

(A.2). D is a bounded open set in \mathbb{R}^N such that $Vol(\partial D) = 0$.

Take K > 0 so that $co D \subset [-K+1, K-1]^N$. Put

$$S_n := \{I_A : [-K, K]^N \cap (\mathbf{Z}^N/n) \mapsto \{0, 1\} | A \subset \mathbf{Z}^N/n\}.$$

For $x, z \in \mathbf{Z}^N/n$ and $v \in \mathcal{S}_n$, put

$$v_{n,z}(x) := \begin{cases} v(x) & \text{if } x \neq z, \\ 0 & \text{if } x = z \end{cases}$$

; and for a bounded $f: \mathcal{S}_n \mapsto \mathbf{R}$, put

$$A_n f(v) := n^N \sum_{z \in [-K,K]^N \cap (\mathbf{Z}^N/n)} \omega_1(R,v,\{z\}) \{ f(v_{n,z}) - f(v) \}.$$

Let $\{Y_n(t,\cdot)\}_{t\geq 0}$ be a Markov process on \mathcal{S}_n $(n\geq 1)$, with the generator A_n , such that $Y_n(0,z)=I_{D^c\cap(\mathbf{Z}^N/n)}(z)$.

For $(t,x) \in [0,\infty) \times [-K,K]^N$, put also

$$D_n(t) := (co Y_n(t, \cdot)^{-1}(1))^o \cap D.$$
(1.7)

$$X_n(t,x) := I_{D_n(t)}(x).$$
 (1.8)

Then $\{X_n(t,\cdot)\}_{t\geq 0}$ is a stochastic process on

$$\mathcal{S} := \{ f \in L^2([-K, K]^N) : ||f||_{L^2([-K, K]^N)} \le (2K)^N \}$$

which is a complete separable metric space by the metric

$$d(f,g) := \sum_{k=1}^{\infty} \frac{\max(|\langle f - g, e_k \rangle_{L^2([-K,K]^N)} |, 1)}{2^k}.$$

Here $\{e_k\}_{k\geq 1}$ denotes a complete orthonomal basis of $L^2([-K,K]^N)$. By definition, the following holds.

- (1) $D_n(0) \to D$ in Hausdorf metric as $n \to \infty$.
- (2) $\sum_{z \in (\mathbf{Z}^N/n) \cap [-K,K]^N} |I_{D_n(t)}(z) I_{D_n(t-)}(z)| = 0$ or 1 for all $t \ge 0$.
- (3)If $|I_{D_n(t)}(z) I_{D_n(t-)}(z)| = 1$, then $z \in \partial(co\ D_n(t-))$.
- (4) $\sum_{z \in (\mathbf{Z}^N/n) \cap [-K,K]^N} |I_{D_n(t)}(z) I_{D_n(t-)}(z)| = 1$ if and only if $t = \sigma_{n,i}$ for some i, where $0 < \sigma_{n,1} < \sigma_{n,1} < \cdots$ are random variables such that $\{\sigma_{n,i+1} \sigma_{n,i}\}_{i>0}$ are independent and that

$$P(\sigma_{n,i+1} - \sigma_{n,i} \in dt) = n^N \exp(-n^N t) dt.$$

(5)
$$P(I_{D_n(\sigma_{n,i})}(z) - I_{D_n(\sigma_{n,i-1})}(z) = 1) = E[\omega_1(R, I_{D_n(\sigma_{n,i-1})}, \{z\})].$$

2 Main reslut

In this section we give our main result from [5].

The following theorem implies that D_n is a random crystalline approximation of an anisotropic convexified Gauss curvature flow.

Theorem 1 Suppose that (A.1)-(A.2) hold. Then there exists a unique anisotropic convexified Gauss curvature flow $\{D(t)\}_{t\geq 0}$ with D(0)=D, and for any $\gamma > 0$,

$$\lim_{n \to \infty} P(\sup_{0 \le t} ||X_n(t, \cdot) - I_{D(t)}(\cdot)||_{L^2([-K, K]^N)} \ge \gamma) = 0.$$
 (2.1)

Suppose in addition that D is convex. Then for any $T \in [0, Vol(D))$ and $\gamma > 0$,

$$\lim_{n \to \infty} P(\sup_{0 \le t \le T} d_H(D_n(t), D(t)) \ge \gamma) = 0, \tag{2.2}$$

where d_H denotes Hausdorff metric.

We introduce an additional assumption.

(A.3). $h \in C_b(\mathbf{R}^N)$ and for any $r \in \mathbf{R}$, the set $h^{-1}((r, \infty))$ is bounded or \mathbf{R}^N .

The following corollary implies that a level set of a continuous weak solution to (1.1) is determined by that at t = 0.

Corollary 1 Suppose that (A.1) and (A.3) hold. Then there exists a unique bounded continuous weak solution $\{u(t,\cdot)\}_{t\geq 0}$ to (1.1) and for any $r\in \mathbf{R}$, $\{u(t,\cdot)^{-1}((r,\infty))\}_{t\geq 0}$ is a unique anisotropic convexified Gauss curvature flow with initial data $u(0,\cdot)^{-1}((r,\infty))$.

We state properties of anisotropic convexified Gauss curvature flows.

Theorem 2 Suppose that (A.1)-(A.2) hold. Let $\{D(t)\}_{t\geq 0}$ be a unique anisotropic convexified Gauss curvature flow $\{D(t)\}_{t\geq 0}$ with D(0)=D. Then

- (a) $t \mapsto D(t)$ is nonincreasing on $[0, \infty)$.
- (b) For any $t \leq T^* := Vol(D(0))$,

$$Vol(D(0)\backslash D(t)) = t. (2.3)$$

(c) Let $\{D_1(t)\}_{t\geq 0}$ be an anisotropic convexified Gauss curvature flow such that $D_1(0)$ is a bounded, convex, open set which contains D. Then

$$D(t) \subset D_1(t) \quad \text{for all } t \ge 0,$$
 (2.4)

where the equality holds if and only if $D(0) = D_1(0)$.

We give an additional assumption and state the result on viscosity solutions to (1.1).

(A.4).
$$R \in C(S^{N-1} : [0, \infty)).$$

Theorem 3 Suppose that (A.2) and (A.4) hold. Let $\{D(t)\}_{t\geq 0}$ be a unique anisotropic convexified Gauss curvature flow $\{D(t)\}_{t\geq 0}$ with D(0)=D. Then $I_{D(t)}(x)$ and $I_{D(t)^{-}}(x)$ are a viscosity supersolution and a viscosity subsolution to (1.1), respectively.

The following results imply that $u \in C_b([0,\infty) \times \mathbf{R}^N)$ is a weak solution to (1.1) if and only if it is a viscosity solution to (1.1), in case R is constant.

Corollary 2 Suppose that (A.3)-(A.4) hold. Then a unique weak solution $u \in C_b([0,\infty) \times \mathbf{R}^N)$ to (1.1) is a viscosity solution to it.

Corollary 3 (see [4]) Suppose that (A.3) holds and that R is constant. Then a continuous viscosity solution to (1.1) is unique and is a weak solution to it.

3 Sketch of Proof

(Idea of Proof of Theorem 1). We first show that $\{X_n(t,\cdot)\}_{t\geq 0}$ is tight in $D([0,\infty):\mathcal{S})$. By the weak convergence result on ω_1 by Bakelman [1], we show that any weak limit point of $\{X_n(t,\cdot)\}_{t\geq 0}$ is a weak solution to (1.1).

The following lemma implies the uniqueness, and hence completes the proof.

Lemma 1 Suppose that (A.1) hold. If $\{I_{D_i(t)}\}_{t\geq 0}$ (i=1, 2) are weak solutions to (1.1) for which $D_1(0) \subset D_2(0)$, then $D_1(t) \subset D_2(t)$ for all $t \geq 0$. In particular,

$$d(D_1(t), D_2(t)^c) \ge d(D_1(0), D_2(0)^c), \tag{3.1}$$

for $t \leq Vol(D_1(0))$.

(Sketch of Proof of Corollary 1). For $r \in \mathbf{R}$, let $\{I_{D_r(t)}\}_{t\geq 0}$ denote a unique weak solution of (1.1) with $D_r(0) = h^{-1}((r,\infty))$.

Put

$$u(t,x) := \sup\{r \in \mathbf{R} | x \in D_r(t)\}.$$

Then u is continuous. In particular, for all $t \geq 0$ and $r \in \mathbb{R}$,

$$u(t,\cdot)^{-1}((r,\infty)) = D_r(t).$$

For $n \geq 1$, put $k_{n,1} := [n \sup\{h(y)|y \in \mathbf{R}^N\}]$ and $k_{n,0} := [n \inf\{h(y)|y \in \mathbf{R}^N\}]$. Then for any $\varphi \in C_o(\mathbf{R}^N)$ and any $t \geq 0$,

$$\int_{\mathbf{R}^{N}} \varphi(x) \left[\sum_{k_{n,0} \leq k \leq k_{n,1}} \frac{k}{n} (I_{D_{\frac{k}{n}}(t)^{c}}(x) - I_{D_{\frac{k+1}{n}}(t)^{c}}(x)) \right]
- \sum_{k_{n,0} \leq k \leq k_{n,1}} \frac{k}{n} (I_{D_{\frac{k}{n}}(0)^{c}}(x) - I_{D_{\frac{k+1}{n}}(0)^{c}}(x)) dx
= \int_{0}^{t} ds \left[\sum_{k_{n,0} < k \leq k_{n,1}} \frac{1}{n} \int_{\mathbf{R}^{N}} \varphi(x) \omega_{0}(R, I_{D_{\frac{k}{n}}(s)^{c}}(\cdot), dx) \right].$$

Letting $n \to \infty$ in (3.4), u is shown to be a weak solution to (1.1).

The uniqueness of u follows from that of $D_r(\cdot)$ for all r. In fact we can show that for a continuous weak solution v to (1.1), $\{v(t,\cdot)^{-1}((r,\infty))\}_{t\geq 0}$ is an anisotropic convexified Gauss curvature flow.

Q. E. D.

We omit the proof of Theorems 2 and 3.

(Sketch of Proof of Corollary 2)

Let u be a weak solution to (1.1).

We first show that u is a viscosity supersolution to (1.1). Suppose that u is smooth in Ω and that $\varphi \in \mathcal{A}(\Omega)$, $(s,y) \in \Omega$, and $u - \varphi$ attains a local maximum at (s,y). Then

$$\partial_s(u-\varphi)(s,y) \ge 0.$$

$$\partial_s(u-\varphi^{\varepsilon})(s,y) \ge 0$$

 $(\varepsilon > 0)$, where $\varphi^{\varepsilon} := \varphi - \varepsilon$. Hence formally, we have, in some neighborhood of (s, y),

$$\partial_{s}\varphi^{\varepsilon}(t,x)$$

$$\leq \partial_{s}u(t,x) = -\mathbf{w}(u(t,\cdot),dx)/dx$$

$$\leq -\mathbf{w}(\varphi^{\varepsilon}(t,\cdot),dx)/dx = -R\left(\frac{D\varphi(t,x)}{|D\varphi(t,x)|}\right)G(D\varphi(t,x),D^{2}\varphi(t,x)).$$

Then following lemma completes the proof.

Take $\varphi \in C^2(\mathbf{R}^N : \mathbf{R})$ for which $D\varphi(x_o) \neq 0$ for some $x_o \in \mathbf{R}^N$. For $i = 1, \dots, N$, put

$$y_i(x) := \left(-(1 - \delta_{ij}) \frac{\partial_j \varphi(x)}{|D\varphi(x)|} + \delta_{ij} \varphi(x) \right)_{j=1}^N.$$

Then

Lemma 2 Suppose that all eigenvalues of $-D(D\varphi(x_o)/|D\varphi(x_o)|)$ are non-negative. Then, for $i = 1, \dots, N$,

$$\frac{\partial_i \varphi(x_o)}{|D\varphi(x_o)|} G(D\varphi(x_o), D^2 \varphi(x_o)) = \det(Dy_i(x_o)). \tag{3.2}$$

Similarly one can show that u is a viscosity subsolution to (1.1).

Q. E. D.

References

- [1] I. J. Bakelman, Convex Analysis and Nonlinear Geometric Elliptic Equations (Springer-Verlag, 1994).
- [2] W. J. Firey, Shapes of worn stones, Mathematika 21, (1974) 1-11.

- [3] H. Ishii and T. Mikami, A two dimensional random crystalline algorithm for Gauss curvature flow, Adv. Appl. Prob., 34, 491-504, 2002.
- [4] H. Ishii and T. Mikami, A level set approach to the wearing process of a nonconvex stone, preprint.
- [5] H. Ishii and T. Mikami, Convexified Gauss curvature flow of bounded open sets in an anisotropic external field: a stochastic approximation and PDE, preprint.
- [6] H. Ishii and P. E. Souganidis, Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor, Tôhoku Math. J., 47 (1995), 227 - 250.