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1 Introduction.

In the present paper we review a duality result and its applications for a
stochastic control problem with fixed marginals published in [10]. For a few
proofs we do not give all details, rather we prefered to focus on the arguments;
details for these proofs can be found in [10].

The problem were are interested in is defined as follows: given ε > 0,

Vε(P0, P1) := inf
{
E

[∫ 1

0
L(t,X(t); βX(t,X))dt

]∣∣∣∣
PX(t)−1 = Pt(t = 0, 1), X ∈ A

}
. (1.1)

where P0 and P1 are Borel probability measures on Rd and L(t, x;u) : [0, 1]×
Rd ×Rd 7→ [0,∞) is measurable and convex w.r.t. u. The infimum is taken
over the set A of all Rd-valued, continuous semimartingales {X(t)}0≤t≤1 on
a probability space (ΩX ,BX , PX) such that there exists a Borel measurable
βX : [0, 1]× C([0, 1]) 7→ Rd for which
(i) ω 7→ βX(t, ω) is B(C([0, t]))+-measurable for all t ∈ [0, 1], where B(C([0, t]))
denotes the Borel σ-field of C([0, t]),
(ii) {X(t)−X(0)−

∫ t
0 βX(s,X)ds :=

√
εWX(t)}0≤t≤1 where WX is a σ[X(s) :

0 ≤ s ≤ t]-Brownian motion (see [7]).

Remark It would appear more natural to consider semi martingales of the
form

Xu(t) = Xo +
∫ t

0
u(s)ds+W (t) (t ∈ [0, 1]). (1.2)

with {u(t)}0≤t≤1 a (Bt)-progressively measurable stochastic process. How-
ever, if we set

βXu(t,Xu) = E[u(t)|Xu(s), 0 ≤ s ≤ t], (1.3)

then using conditional expectations Jensen inequality and convexity of L one
obtains,

E
[∫ 1

0
L(t,Xu(t);u(t))dt

]
≥ E

[∫ 1

0
L(t,Xu(t); βXu(t,Xu))dt

]
. (1.4)

and therefore it is sufficient to consider drifts of the form βX as long as one
is interested in the minimizing problem Vε(P0, P1).
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When L depends only on u, problem Vε has a counterpart in the deter-
ministic setting. this counterpart has been intensively studied since it is the
Monge-Kantorovich problem (for a complete list of references we refer the
reader to [11] and [13])

T (P0, P1) := inf
{
E

[∫ 1

0
`
(
dφ(t)

dt

)
dt

]∣∣∣∣Pφ(t)−1 = Pt(t = 0, 1),

t 7→ φ(t) is absolutely continuous
}
. (1.5)

Actually the most usual (and better known) form of the Monge-Kantorovich
problem is

T (P0, P1) := inf
{
E(L(Y −X));X ∼ P0, Y ∼ P1

}
(1.6)

where X ∼ P0 (resp. Y ∼ P1) means that the law of X (resp. Y ) is P0 (resp.
P1). It is not difficult to show that T (P0, P1) = T (P0, P1). In the quadratic
case, that is when L(t, x, u) = 1

2
|u|2, the Monge-Kantorovich problem has

received much attention, in probability as well as in statistics, in particu-

lar because
√
T (P0, P1), called Wasserstein metric, metrizes convergence in

distribution on the set of probability measures on Rd with finite second mo-
ments. It is not difficult to show that T (P0, P1) = T (P0, P1). More recently
the results obtained by Brenier (cf. [1], [2]) have revived the subject by
enlightening its connection with fluid mechanics and geometry.

Duality results play a fundamental role in the study of Monge-Kantorovich
problem. There are two duality results. For the sequel the most important
for us is the duality result due to Evans ([5]):

T (P0, P1) = sup
{∫

Rd
ψ(1, x)P1(dx)−

∫
Rd
ψ(0, x)P0(dx)

}
, (1.7)

where the supremum is taken over all continuous viscosity solutions ψ to the
following Hamilton-Jacobi equation:

∂ψ(t, x)

∂t
+ `∗(Dxψ(t, x)) = 0 ((t, x) ∈ (0, 1)×Rd) (1.8)

(see E Chap. 3). Here Dx := (∂/∂xi)
d
i=1 and for z ∈ Rd,
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`∗(z) := sup
u∈Rd

{< z, u > −`(u)}

and < ·, · > denotes the inner product in Rd.
The second duality result was chronologically proved before by Kan-

torovich and implies (1.7) (cf. for instance V):

T (P0, P1) := sup
{∫

Rd
ψ(y)P1(dy) +

∫
Rd
ϕ(x)P0(dx);

(ϕ, ψ) ∈ L1(P0)× L1(P1), ϕ(x) + ψ(y) ≤ L(y − x)
}
.(1.9)

In the sequel we describet how it is possible to prove a duality theorem
for Vε in the spirit of (1.7) and describe applications. We will not give all
proofs in detail; for detailed proofs we refer the reader to [10].

2 Duality Theorem

For simplicity in what follows we restrict to the case when L(t, x, u) = L(u)
(that is L depends only on u). However our main result (duality theorem)
and its applications are valid even if L depends on (t, x) (cf. [10]). Let
us recall that P0 and P1 are given Borel probability measures on Rd, and
L(u) : Rd 7→ [0,∞) is a measurable and convex function of u. We moreover
assume that

Vε(P0, P1) < +∞ (2.1)

We will need assumptions on L which we denote as follows:
(A.1). L is superlinear: for some δ > 1,

lim inf
|u|→∞

L(u)

|u|δ
> 0.

(A.2). (i)L ∈ C3(Rd),
(ii) D2

uL(u) is positive definite for all u ∈ Rd,

We will look for sufficient conditions for Vε to admit a minimizer, unique
and/or Markovian and also for a characterization of minimizers. A duality
theorem will provide such a characterization(the characterization itself will
be obtained in the next section). As already mentioned we focus on the main
steps and articulations of the argument.
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2.1 Existence and uniqueness of a minimizer.

Results about existence and uniqueness are gathered in

Theorem 2.1 (i) Vε(P0, P1) admits a minimizer.
(ii) If assumpion (A.1) holds with δ = 2, Vε(P0, P1) admits a Markovian
minimizer
(iii) If L is strictly convex and assumpion (A.1) holds with δ = 2, then
Vε(P0, P1) admits a unique minimizer (which is Markovian from (ii)).

Our tool for the proof of (ii) and (iii) in Theorem 2.1 is the following mini-
mization problem with fixed marginals

V ε(P0, P1) := inf
∫ 1

0

∫
Rd
L(b(t, x))P (t, dx)dt, (2.2)

where the infimum is taken over all (b(t, x), P (t, dx)) for which P (t, dx) (0 ≤
t ≤ 1) are Borel probability measures, on Rd, such that p(t, x) := P (t, dx)/dx
exists for all t ∈ (0, 1], P (t, dx) = Pt (t = 0, 1) and the following Fokker-
Planck pde

∂P (t, dx)

∂t
=
ε

2
4P (t, dx)− div(b(t, x)P (t, dx)) (2.3)

is satisfied. Let us notice that V ε is a stochastic analog of the problem
onsidered by Benamou and Brenier in [3]. Then

Proposition 2.1 (cf. [10] Lemma 3.5). Assume (A.1) with δ = 2 holds.
Then Vε(P0, P1) = V ε(P0, P1).

Proof of Theorem 2.1. Proof of (i): Let (Xn) denote a minimizing se-
quence of processes in the set A; this means that

lim
n→∞

E
[∫ 1

0
L(βXn(t,Xn))dt

]
= Vε(P0, P1) (2.4)

Since Xn ∈ A for all n and assumption (A.1) holds (L is superlinear), it
follows that the sequence (Xn) is tight: the sufficient condition for tightness
of [14] is satisfied. In particular (A.1) implies that

E
[∫ 1

0
|βXn(t,Xn))|δdt

]
< +∞ (2.5)
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(with δ > 1). Hence there exists a subsequence (Xnk
) weach converges

weakly; let us denote its limit by (X(t)). The process X belongs to A:
from [14], Theorem 5, we obtain that 1√

ε
{X(t)−X(0)−A(t)}t∈[0,1] is a stan-

dard Brownian motion and {A(t)}t∈[0,1] is absolutely continuous. Moreover
(X(t)) satisfies

lim
k→∞

E
[∫ 1

0
L(βXnk

(t,Xnk
))dt

]
(2.6)

≥ E
[∫ 1

0
L

(
dA(t)

dt

)
dt

]
.

which implies that it is a minimizer of Vε. Inequality (2.6) may be proved fol-
lowing the argument of [9]in the proof of Theorem 1, which is here simplified
since L depends on u only.
Proof of (ii): we now assume that (A.1) holds with δ = 2. Using the same
argument as in the proof of (i) one can show that V ε(P0, P1) admits a mini-
mizer. From Proposition 2.1 this minimizer also is a minimizer of Vε ( here
it is actually sufficient that Vε ≥ V ε).
Proof of (ii): we moreover assume that L is strictly convex. From Proposition
(actually it is sufficient that Vε ≤ V ε) it is enough to show uniqueness for V ε

(cf. [10] proof of Proposition 2.2 where we use the strict convexity of L and
the linearity of Fokker-Planck pde). Q.E.D.

2.2 Duality Theorem.

Theorem 2.2 Suppose that (A.1) and (A.2) are satisfied. Then

Vε(P0, P1) = sup
{∫

Rd
ϕ(1, y)P1(dy)−

∫
Rd
ϕ(0, x)P0(dx)

}
, (2.7)

where the supremum is taken over all classical solutions ϕ, to the following
HJB equation, for which ϕ(1, ·) ∈ C∞b (Rd):

∂ϕ(t, x)

∂t
+
ε

2
4ϕ(t, x) +H(Dxϕ(t, x)) = 0 ((t, x) ∈ (0, 1)×Rd) (2.8)

Proof of 2.2 The two main arguments of the proof are:
1. A property of the Legendre transform: on a Banach space if f is a lower
semi continuous function not identically equal to +∞, then f ∗∗ = f where ∗
denotes Legendre transform.
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2. A representation of the value function of a stochastic control problem
(with sufficiently regular terminal cost) by a solution of an Hamilton-Jacobi-
Bellman pde.

For point 1., we rely on results of [4] ( namely Theorem 2.2.15 and Lemma
3.2.3). To apply these results, one has to prove first that P 7→ V (P0, P ) is
lower semicontinuous and convex. This is proved in detail in [10] Lemmas
3.1 and 3.2. It follows that

V (P0, P1) = sup
f∈Cb(Rd)

{∫
Rd
f(x)P1(dx)− V ∗P0

(f)
}
, (2.9)

where for f ∈ Cb(R
d),

V ∗P0
(f) := sup

P∈M1(Rd)

{∫
Rd
f(x)P (dx)− V (P0, P )

}
,

andM1(R
d) denotes the complete separable metric space, with a weak topol-

ogy, of Borel probability measures on Rd.
For point 2., we refer the reader to [6]: for f ∈ C∞b (Rd),

V ∗P0
(f) = sup

{
E[f(X(1))]− E

[∫ 1

0
L(t,X(t); βX(t,X))dt

]
:

X ∈ A, PX(0)−1 = P0

}
=

∫
Rd
ϕf (0, x)P0(dx), (2.10)

where ϕf denotes the unique classical solution to the HJB equation (2.3)
with ϕ(1, ·) = f(·). Using both identities (2.9) and (2.10), we obtain

Vε(P0, P1) ≥ sup
f∈C∞

b
(Rd)

∫
Rd
ϕ(1, y)P1(dy)−

∫
Rd
ϕ(0, x)P0(dx), (2.11)

To prove the converse inequality we have to pass from Cb(R
d) to C∞b (Rd)

with the help of a mollifier sequence. Take Φ ∈ C∞o ([−1, 1]d; [0,∞)) for which∫
Rd Φ(x)dx = 1, and for δ > 0, and define

Φδ(x) := δ−dΦ(x/δ).

For f ∈ Cb(R
d), we set
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fδ(x) :=
∫
Rd
f(y)Φδ(x− y)dy. (2.12)

Then fδ ∈ C∞b (Rd) and

sup
f∈C∞

b
(Rd)

∫
Rd
ϕ(1, y)P1(dy)−

∫
Rd
ϕ(0, x)P0(dx)

≥
∫
Rd
fδ(x)P1(dx)− V ∗P0

(fδ)

≥
∫
Rd
f(x)Φδ ∗ P1(dx)− VΦδ∗P0)

∗(f).

Indeed, for any X ∈ A

E[fδ(X(1))] =
∫
Rd

Φ(z)dzE[f(X(1)− δz)] (2.13)

Then identity (2.9) implies that

sup
f∈C∞

b
(Rd)

∫
Rd
ϕ(1, y)P1(dy)−

∫
Rd
ϕ(0, x)P0(dx)

≥ V (Φδ ∗ P0,Φδ ∗ P1)

It remains to let δ go to 0 and use the lower semi-continuity of (P,Q) 7→
V (P,Q) proved in [10]. Q.E.D.

3 Applications.

3.1 Characterization.

We first recall the following property of Legendre transform which we will
use repeatedly: if L is strictly convex, superlinear ( i.e. satisfies (A.1)) and
smooth (for instance belongs to C2(Rd)) then L∗∗ = L; ∇L : Rd → Rd is a
bijection from Rd onto itself and ∇H = ∇L−1 where H = L∗. If moreover
D2L is positive definite, H is twice differentiable and

D2H(∇L(u)) = D2L(u)
−1

(3.1)
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Theorem 3.1 Suppose that (A.1) and (A.2) hold. Then for any mini-
mizer {X(t)}0≤t≤1 of Vε(P0, P1), there exists a sequence of classical solutions
{ϕn}n≥1 to the HJB equation (2.8), such that ϕn(1, ·) ∈ C∞b (Rd) (n ≥ 1)
and that the following holds:

βX(t,X) = bX(t,X(t)) := E[βX(t,X)|(t,X(t))] (3.2)

= lim
n→∞

DzH(t,X(t);Dxϕn(t,X(t))) dtdPX(·)−1 − a.e..

Proof of Theorem 3.1 From Theorem 2.2 here exists a sequence of classical
solutions {ϕn}n≥1 to the HJB equation (2.8), such that ϕn(1, ·) ∈ C∞b (Rd)
(n ≥ 1) and

lim
n→∞

∫
Rd
ϕn(1, y)P1(dy)−

∫
Rd
ϕn(0, x)P0(dx) = Vε(P0, P1) (3.3)

Therefore, for X a minimizer of Vε, it holds

lim
n→∞

∫
Rd
ϕn(1, y)P1(dy)−

∫
Rd
ϕn(0, x)P0(dx) = E

[∫ 1

0
L(βX(t,X))dt

]
(3.4)

Since X(0) ∼ P0 (resp. X(1) ∼ P1) and {ϕn}n≥1 solves the HJB pde (2.8),
Ito formula yields

lim
n→∞

E
∫ 1

0
< βX(t,X),∇ϕn(t,X(t)) > −L(βX(t,X))−H(∇ϕn(t,X(t))dt = 0

(3.5)
Moreover by definition of H as the Legendre transform of L, the integrand
in (3.5) is positive. Hence the sequence

(< βX(t,X),∇ϕn(t,X(t)) > −L(βX(t,X))−H(∇ϕn(t,X(t))) (3.6)

converges to 0 in L1(dtdP ) and admits a subsequence which converges a.s.
For simplicity we still denote this subsequence by (ϕn). Let (t, ω) be such
that the sequence (< βX(t,X),∇ϕn(t,X(t)) > −H(∇ϕn(t,X(t))) converges
to L(βX) = H∗(βX). The supremum in the definition of

H∗(u) = sup(< p, u > −H(p)) (3.7)

is attained at p∗ = ∇L(u). We therefore obtain that

lim∇ϕn(t,X(t)) = ∇L(βX(t,X)) (3.8)
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or equivalently βX(t,X) = lim∇H(∇ϕn(t,X(t)). Q.E.D.
We would like to show now that a minimizer solves a stochastic equation.

We were able to prove such a result under the additional assumption:
(A.3). D2L(u) is bounded.

The following lemma will be useful below:

Lemma 3.1 Let L ∈ C2(Rd) be strictly convex and superlinear such that

C := sup{< D2L(u)z, z >: (u, z) ∈ Rd ×Rd, |z| = 1} < +∞ (3.9)

Then

∀(u, z) ∈ Rd ×Rd ||z −∇L(u)||2 ≤ C|L(u)− (< u, z > −H(z))| (3.10)

Proof of Lemma 3.1. By definition of H = L∗, for all (u, z), L(u) − (<
u, z > −H(z)) ≥ 0. The assumptions of the lemma ensure that for all
u, u = ∇H(∇L(u)) and H(p) =< p,∇H(p) > −L(∇H(p)) for all p. We
therefore have

L(u)−(< u, z > −H(z)) = H(z)−H(∇L(u))− < ∇H(∇L(u)), z−∇L(u) >
(3.11)

The conclusion follows from identity (3.1). Q.E.D.

Theorem 3.2 Suppose that (A.1) holds with δ = 2 as well as (A.2) and
(A.3). Then for the unique minimizer {X(t)}0≤t≤1 of Vε(P0, P1),
(1) there exist f(·) ∈ L1(Rd, P1(dx)) and a σ[X(s) : 0 ≤ s ≤ t]- continuous
semimartingale {Y (t)}0≤t≤1 such that

{(X(t), Y (t), Z(t) := DuL(bX(t,X(t))))}0≤t≤1

satisfies the following FBSDE in a weak sense: for t ∈ [0, 1],

X(t) = X(0) +
∫ t

0
DzH(Z(s))ds+

√
εW (t), (3.12)

Y (t) = f(X(1))−
∫ 1

t
L(DzH(Z(s)))ds

−
∫ 1

t
< Z(s), dW (s) > .
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(2) there exist f0(·) ∈ L1(Rd, P0(dx)) and ϕ(·, ·) ∈ L1([0, 1]×Rd, P ((t,X(t)) ∈
dtdx)) such that Y (0) = f0(X(0)) and such that

Y (t)− Y (0) = ϕ(t,X(t))− ϕ(0, X(0)) dtdPX(·)−1 − a.e., (3.13)

that is, Y (t) is a continuous version of ϕ(t,X(t))− ϕ(0, X(0)) + f0(X(0)).

Proof of Theorem 3.2 Let (ϕn) be a sequence satisfying the same con-
ditions as in the proof of Theorem 3.1 and X a minimizer of Vε. From Ito
formula,

ϕn(t,X(t))− ϕn(0, X(0)) (3.14)

=
∫ t

0
{< bX(s,X(s)), Dxϕn(s,X(s)) > −H(Dxϕn(s,X(s)))}ds

+
∫ t

0
< Dxϕn(s,X(s)),

√
εdW (s) > .

We first consider convergence of the martingale part. By Doob’s inequality

E( sup
0≤t≤1

∣∣∣∣∫ t

0
< Dxϕn(s,X(s))−DuL(bX(s,X(s))), dW (s) > |2)

≤ 4E(
∫ 1

0
|Dxϕn(s,X(s))−DuL(bX(s,X(s)))|2ds) (3.15)

By Lemma 3.1 it follows that

E( sup
0≤t≤1

∣∣∣∣∫ t

0
< Dxϕn(s,X(s))−DuL(bX(s,X(s))), dW (s) > |2)

≤ 4CE(
∫ 1

0
|L(bX(s,X(s)))− (< bX(s,X(s)), Dxϕn(s,X(s)) >

−H(Dxϕn(s,X(s))))|ds)

which converges to 0 by Theorem 3.1. This theorem also implies that∫ t

0
{< bX(s,X(s)), Dxϕn(s,X(s)) > −H(Dxϕn(s,X(s)))}ds (3.16)

converges in L1 to
∫ 1
0 L(bX(s,X(s)))ds. We therefore obtain that ϕn(1, y)−

ϕn(0, x) and ϕn(t, y)−ϕn(0, x) are convergent in L1(Rd×Rd, P ((X(0), X(1)) ∈
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dxdy)) and L1(Rd × [0, 1]×Rd, P ((X(0), (t,X(t))) ∈ dxdtdy)), respectively.
The question is whether the limit is still of the separable form ψ(1, y)−ψ(0, x)
and ψ(t, y) − ψ(0, x) respectively. From [12] this is indeed the case pro-
vided that the law of (X(0), X(1)) (resp. (X(0), X(t))) is absolutely contin-
uous with respect to P0(dx)P1(dy) ( resp. P0(dx)Pt(dy)) where Pt denotes
the law of Xt. These conditions are satisfied here since (A.1) holds with
δ = 2 and consequently the process X has finite entropy w.r.t. the Wiener
measure on C(Rd) with initial law P0. Hence, from [12], Prop. 2, there
exist f ∈ L1(Rd, P1(dx)), f0 ∈ L1(Rd, P0(dx)), ϕ0 ∈ L1(Rd, P0(dx)) and
ϕ ∈ L1([0, 1]×Rd, P ((t,X(t)) ∈ dtdy)) such that

lim
n→∞

E[|ϕn(1, X(1))− ϕn(0, X(0))− {f(X(1))− f0(X(0))}|] = 0, (3.17)

and

lim
n→∞

E
[∫ 1

0
|ϕn(t,X(t))− ϕn(0, X(0))− {ϕ(t,X(t))− ϕ0(X(0))}|dt

]
= 0.

(3.18)
It is easy to check that (Y (t)) defined by

Y (t) := f0(X(0)) +
∫ t

0
L(s,X(s); bX(s,X(s)))ds (3.19)

+
∫ t

0
< DuL(s,X(s); bX(s,X(s))), dW (s) > .

satisfies the statement of Theorem 3.2. Q.E.D.
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