e
ol

%{} HOKKAIDO UNIVERSITY
N

x‘

<\

Title The one-cocycle property for shifts
Author(s) KISHIMOTO, A.
Citation ErgoQic Theory and Dynamical Systems, 25, 823-859
https://doi.org/10.1017/S0143385704000860
Issue Date 2005
Doc URL http://hdl.handle.net/2115/5907
Rights Copyright © 2005 Cambridge University Press
Type article
File Information ETDS25.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Ergod. Th. & Dynam. Sys. (2005), 25, 823-859 © 2005 Cambridge University Press
doi:10.1017/S0143385704000860 Printed in the United Kingdom

The one-cocycle property for shifts

A. KISHIMOTO

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
(e-mail: kishi@math.sci.hokudai.ac.jp)

(Received 11 December 2003 and accepted in final form 21 September 2004)

Abstract. The two-sided shift on the infinite tensor product of copies of the n x n matrix
algebra has the so-called Rohlin property, which entails the one-cocycle property, useful
in analyzing cocycle-conjugacy classes. In the case n = 2, the restriction of the shift to
the gauge-invariant CAR algebra also has the one-cocycle property. We extend the latter
result to an arbitrary n > 2. As a corollary it follows that the flow o on the Cuntz algebra
O, = C*(s0, 51, . .., Su—1) defined by o, (s;) = e"pf"s.,' has the Rohlin property (for flows)
if and only if po, ..., ps—1 generate R as a closed sub-semigroup. Note that then such
flows are all cocycle-conjugate to each other.

1. Introduction

For an integer n greater than 1 we denote by M,, the n x n matrix algebra over the complex
numbers C. For each integer m € Z we assign a copy M,(,m) of M, and take the infinite
tensor product B, = ),,c7 M,(,m). The shift automorphism ¢ of B, is defined by sending
an element of M,(,m) to the corresponding element in M,(,mH).

In [4] it was shown that ¢ has the Rohlin property (see below) in the case n = 2.
The proof is based on a known connection between such a ¢ and a certain quasi-free
automorphism of the C*-algebra associated with the canonical anti-commutation relations,
or the CAR algebra.

This prompts us to attempt to generalize it. A further exploitation of the CAR algebra
formalism was done in [2, 3]. A full generalization for any n > 2 was done in [15, 16].
Also, an extension to the shift on B = ) (M> & M3) was done in [18]. In this generality
the Rohlin property for the shift o reads as follows: for any N € N and € > O there is a
family {ey; | i =0,1,...,N —1}U{ez; | i =0, 1,..., N} of projections in B such that
Zi el + 221» ey = 1 and

lo(er,i) —erivill <€

fori =0,..., N —2and
lo(ez,i) —ezit1ll <€

fori =0,1,..., N — 1. (Hence, it follows that o (e; y—1 + €2.8) < €10+ €2.0.)
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A useful consequence of this property is the one-cocycle property, i.e. for any unitary
u and € > 0 there is a unitary v such that ||u — vo (v)*|| < €, which is the property we
actually need for applications. We refer the reader to [7, 10] for the Rohlin property and
more applications.

There is yet another attempt on the restriction of the shift to a certain C*-subalgebra
of @, M>, which corresponds to the gauge-invariant CAR algebra, based on the CAR
algebra formalism [19]. In this case the shift (on this subalgebra) cannot have the Rohlin
property, but can have an approximate version of Rohlin property. The result is that the
shift has the one-cocycle property (appropriately formulated).

In this note we extend the above result to the case of general n > 2. We now formulate
the problem more precisely below.

Let U, be the unitary group of M,, and define an action 8 of U;, on B, = &)

by
Bu= ) Adu™,
meZ,

Mr(lm)

meZ

where ™ is the copy of u in M™. Note that 8, commutes with o
Denoting by T the group of complex numbers of modulus one, we regard T" ! as a
subgroup of U, by

(z1,---52n—1)

in—1

and define an action y of T"~! by B|T"~!. We call y the gauge action (of T" ') on B,,.
Let {e;;} denote the matrix units for M, and let

in= 3P0,
ij

Then it follows that vy, is a self-adjoint unitary in the fixed-point algebra B,’f and satisfies
Ad vy, (x W ym+Dy — ), n+D for x vy e M, If we set Vi, = v_pmV_pmil -0 - - Un,
then V,,, € B,’f satisfies that o (x) = lim Ad V,,,(x) for x € B,.

We set A, = B, the fixed-point algebra of B, under y = B|T" . Note that o restricts
to A,, which is denoted by o |A,, or simply o. Our purpose is to prove that o |A,, has the
one-cocycle property for all n.

To present a precise statement we should note that the approximately finite-dimensional
C*-algebra A, is prime and not simple. It has n» maximal ideals of codimension one.

Fori =0,1,...,n — 1, let I; be the (closed, two-sided) ideal of A, generated by ey;l),
j # i, m € Z. We then note that (®IZIM Mn) N I; is orthogonal to H]i’lMei(T). It follows
that the quotient A, /1; is isomorphic to C; let ¢; be the corresponding character on A,,.

THEOREM 1.1. Letn = 2,3, ... and let B,, Ay, 0, ¢; be as above. Then the shift o on

A, has the following properties.

(1) Foranyunitaryu € A, such that ;(u) = 1fori =0, ...,n—1, there is a sequence
(vr) of unitaries in A, such that |lu — vgo (vg)*|| — 0.
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(2)  If (uy) is a sequence in the unitary group U(A,) such that ¢;(uy) = 1 fori =
0,...,n —1and ||[ux, x]|| — O for all x € B,, then there is a sequence (vi) in
U(A,) such that ||uy — viko (vg)|| = 0 and ||[vk, x]1|| = O forall x € B,.

() If (ux) is a sequence in U(A,) such that ¢;(uy) = 1 fori = 0,...,n — 1 and
un, x]l = O for all x € Ay, then there is a sequence (vy) in U(A,) such that
lux — vio (Vi) || = O and ||[vg, x]|| — O forall x € A,,.

The proof of this theorem occupies the following sections.

Note that A, is an approximately finite-dimensional C*-algebra, i.e. the closure of
the union of an increasing sequence of finite-dimensional C*-algebras [1]. Since we
have to compare projections in such a C*-algebra, we need a nice description of the
dimension group Ko(A,) of A,, i.e. the ordered group generated by equivalence classes of
projections [6]. If n = 2, A» is already presented in [1], in terms of Bratteli diagram, and
Ko(A») is identified, by Renault [24], with the integer-coefficient polynomials Z[x], with
the positivity defined by strict positivity on the open interval (0, 1), which was good enough
in the discussions in [19]. In general, Handelman [9] shows that K((A,) is identified with

Z[x1, ..., xp—1] with the order defined as follows: p is positive if p is expressed as
p= Z c(l—x1—---— xn—l)voxfl . .x;n_—ll
lv|=K

with non-negative coefficients ¢, > 0, where the sum is taken over all v € Z’jr with |v| =
Zfl:_()l v; = K. However, there seem to be no clear criteria for positivity as the Renault’s
result for n = 2, because the strict positivity on the interior of the (n — 1)-simplex
A, = {(xl, e Xp—1) | xi >0, Zi x; < 1} with some boundary conditions is not enough.

By introducing a notion of vanguard for p € Z[xy,...,x,—1] we give a sufficient
condition for positivity, which is useful enough in the following arguments. If p is
expressed as above and i = 0,1,...,n — 1, the i-vanguard of p on the level K is a
certain subset of v with |[v| = K such that ¢, % 0 and there is no w between v and Ke;
with ¢y, # 0. We see that the i-vanguard of p is essentially independent of K as well as the
coefficients c,; hence, if p is positive, those coefficients ¢, must be positive, which does
not follow from the positivity of p as a function on A,. The sufficient condition states
in Proposition 2.5 that if p is strictly positive on A, possibly except for the vertices and
the above-mentioned condition is satisfied for all the vanguards, then p is positive as an
element of Z[x1, ..., xXn—1].

Note that A,, has quotients which are of type I. We consider irreducible representations
of A, whose images contain the compact operators, which are necessarily o-covariant
since o is approximately inner. In Lemma 4.4 we show that the shift on a certain quotient
of A, of type I has the properties as in the theorem. This gives the first step of the proof
by induction on 7.

Then we show how to locally embed A, into A,4+1, almost intertwining the shifts.
This process will show, with the known result for n = 2 shown by the CAR algebra
formalism (4.3), that the shift on A, has the approximate Rohlin property for all n
(see Lemma 4.6); by this property (Definition 4.2) we essentially mean that there is a
sequence (efk)) in the orthogonal family of N projections in A, for arbitrarily large N

such that ||0’(€;k)) — egk)l | — 0as k — oo and N[e(()k)](x) converges to 1 uniformly

i+
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in x on every compact subset of A, except for the vertices, as well as the lower estimate
(k)

[eg '1(x) = C(xoxg-- xp—1)S for some S € Nand C > 0 independent of k, where
xo =1—x1—---—x,_1, and some estimates on the vanguards of [e(()k)] independent of k.

We see that the additional conditions on [e(()k)] play an important role in comparison with
other projections.

With some explicit estimates, in Ko(A,), of the projections involved, we then proceed
just as in [19]. The crucial induction step is given in Lemma 4.12.

In the above theorem the first property is weaker than the third.

Remark 1.2. Let a be an approximately inner automorphism of A,. If o has the third
property of Theorem 1.1, then it also has the first property. This follows because then «
is almost conjugate to the shift o, i.e. there is a sequence (¢,,) of approximately inner
automorphisms of A,, such that ||o — q)maq),;l || = 0, as follows from Theorem 4.1 of [8].
If u € U(Ap) such that ¢; (u) = 1, we have a sequence (vy, k) in U(A,) foreachm € N
such that ||¢p () — vm ko (Um k)*| — 0 as k — oo. Then we can choose a sequence
(vy) from (q)_l(vm,k)) such that ||u — v (vy)*|| — 0. (Since ¢, may not extend to an
automorphism of By, this method does not show that « also has the second property. If
does not extend to an automorphism of B, « is unlikely to have the second property.)

The following is a corollary of Theorem 1.1(2).

COROLLARY 1.3. Let n, B,, A,, 0 be as above. Then the shift o on B, has a sequence
(Un) inU(A,) such that o (x) = limy— o0 Ad Uy, (x) for x € By, and limy,—. o ||l0 (Up) —
Unll = 0.

Proof. We have defined V,;, = v_,,v_j41---v0 - - - Uy € Ay, Which satisfies
o(x) =1limAdV,(x), xeB,

but does not satisfy lim ||o (V};) — V|| = 0. (By calculation, it follows that the spectrum
of Vo (V) is {1, e?7/3 ¢=27/3} and hence that |6 (Vy) — Viull = +/3 form > 1.)
Since Vo (Vi)* € An, i (Vo (V) = 1, and (V,,o (V) is a central sequence in
U(By), the previous theorem gives us a sequence (W,,;) in U/ (A,) such that ||V,,0 (V) —
Wo (W)l — Oand [|[Wy,, x]|| = Oforx € B,. LetU,, = W)V, € U(A,). Then (Uy,)
satisfies the required conditions. O

In connection with the above corollary a question arises naturally of whether (Up,) can
be chosen from the smaller fixed-point algebra B,’? .

When ¢ is a positive integer, we denote by o©) the cyclic shift on ®ﬁ;lo M,(,'") defined
by x™ > xtD with x© = x©_ We also denote by y© the action of T"~! on
R\ M by @41 Adz™, z e T

m=0

COROLLARY 1.4. For the shift o on B,, and € > 0 there exists an increasing sequence
(€y) in N, an automorphism ¢ of B,, and a unitary w € A, such that ¢y, = y,¢ for
z €T |lw—1| < € and the pair of Adwpo ™" and y is conjugate to the pair of
®PZ 0" and @y on @, (®yy M) = By.
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Proof. Fora,b € Nwitha < b we define

by _ (a) (b)
u @b — Zeij e -
i,j

Then Ad u@?) o acts on ®,bn_:la M,(,m) as the cyclic shift.

By using Theorem 1.1 we can derive the following: for any finite subset F of Z and
€ > 0 there is a finite subset G of Z such that for any unitary u € A, N ), ¢G M,S'") there
is aunitary v € A, N ®m¢}— M,i’”) such that ||u — vo (V¥)| < €.

By using this fact we define inductively a decreasing sequence (ax), an increasing
sequence (by), and sequences (vy) and (wy) of unitaries in A, such that a; = 0,
bi = 1, wrvro (vp)* = u @b Jwe — 1] < 2 %¢, and v, wy € ®Zk M,, for mutually
disjoint family (Z;) of finite subsets of Z. Then ¢ = limg Ad(vivy---vg) is well

defined as an automorphism of B,, as well as w = limy wiw, - - wi as a unitary in
A,. Then we check that Ad wgpo ¢! leaves ®ﬁf=_alk M,, invariant and acts as a cyclic
. =1 br—1 . .
shift on ®zlk=;k M, ® ®mk=bk,1 M,, for each k > 1 with a9 = by = 0. Then with
Ly = by — bi—1 — ax + ax—1 we can conclude the proof. O

The above corollary shows that the action of T"~! x Z on B,, defined by (z, k) > y.o*,
which does not leave any finite-dimensional C*-subalgebra of B, invariant, is cocycle
conjugate to an action which is of product type.

Remark 1.5. Let z € T"! be such that z” # 1 for any non-zero m € Z and define an
action Z? on B, by Qa,b) = y;’ab . Then « is cocycle conjugate to the action o’ defined by

W = b0 (1) (Adp™ (W)o) 0 ¢! = yi(Adwgpogp™!)’

in the notation of the above corollary, which is of product type. We should note that such an
action with the Rohlin property (i.e. each a4 5) has the Rohlin property for (a, b) # 0) is
unique up to cocycle-conjugacy [23]. Hence, since « has the Rohlin property, « is cocycle
conjugate to, e.g., the action ” defined by

v _ .a.b
Xa,p) = V21 Vapo

where z1,zo0 € T"~! is any pair which generates a copy of Z> in T"~!. It seems that we
still do not know if there is an action of Z2 on B, with the Rohlin property which is not
cocycle conjugate to an action of product type.

Another corollary extends what is stated in [19] for n = 2.

COROLLARY 1.6. Let n be an integer greater than 1 and O, be the Cuntz algebra

generated by n isometries sq, S1, . . . , Sp—1 satisfying the relation Z?;(l) Sjs}k = 1 (see [5]).
For p = (po, pt1,..., pn=1) € R" define a flow a on O, by a;(s;) = e[”f’sj for
j=0,...,n— 1. Then the following conditions are equivalent:

() {po, ..., pn—1} generates R as a closed sub-semigroup;

(2)  the crossed product O, x4 R is purely infinite and simple;

(3) « has the Rohlin property, i.e. for any » € R there is a central sequence (u) in
U(O,) such that |lo; (um) — €™ uy|l — O uniformly in t on every compact subset
of R.



828 A. Kishimoto

Proof. First we note that O, is a purely infinite, simple, nuclear C*-algebra [5] and such a
class is now well studied [12, 13].

The equivalence of (1) and (2) follows from [14, 22]. That (3) implies (2) follows
from [17]. What is left to prove is that (1) implies (3). If (1) holds, it is shown by
combinatorial arguments in [18] that for any A € R there is a sequence (u,,) of unitaries in
the *-subalgebra generated by sg, . . ., s,—1 such that || (i) — My, | = O uniformly in
t on every compact subset of R. As in the proof of Proposition 3.2 of [19], with the property
of o | A, as given in Theorem 1.1(1), there is a sequence (¢x) of unital endomorphisms
of O, such that [¢(x), y] — O forany x, y € O, and a;¢x = ¢ro;. Then we can choose
a central sequence from {¢y(u,,) | k, m € N} which satisfies the required condition for
AreR. O

We would like to add that the flows @ on O, satisfying the conditions in the above
corollary are cocycle conjugate to each other [19], i.e. for any flows « and &’ on O,
of the above form there is an automorphism ¢ of O, and an «-cocycle u such that
Adusa; = q)o/q)_l. See [20, 21] for more on Rohlin flows.

2. The dimension group of A,

Forn = 2,3,... we denote by Z[x1, ..., x,—1] the abelian group of integer coefficient
polynomialsin xy, ..., x,—1. Forv = (vo, v1, ..., vp—1) € Z we let
v __ V0.Vl Un—1
XU =xp X, e x,
where xo = 1 —x; —---—x,—1 and Z is the set of non-negative integers. The polynomials

of degree less than or equal to N are linearly spanned by xV, |v| = Z:l;ol v; = N, which
are linearly independent.

We denote by Z¥[x1, ..., xn—1] the cone generated by xV, v € Zﬁ’r. By using this
as a positive cone we define an order on Z[x1,...,x,—1], i.e. p1 = p2if p1 — p2 €
ZT[x1, ..., xp—1]. We call an element of Z"[x1, ..., x,_1] positive.

We define

n

_
Z)»j < 1}.
=1

Ay = {A = (Alseeey ln1) €10, 17771
J

If A € A,,,then A\g denotes 1 — Ay —--- — A,_1.

If p > 0, then p is non-negative on A, and moreover satisfies that if p(A) = 0 for some
A € A, then p = 0 on the face of A, generated by A. (This is because each xV satisfies
this condition.) However, the converse does not follow if n > 2 (compare this with the
case n = 2 in [24]).

For example, if p € Z[x1, x2] is given by

p(x1, x2) = x1(xF 4+ (1 — x1 — 2x2)%),

then p = 0 on the face A’ = {x € A3 | x; =0}, but p > 0on A3z \ A’. If p is expressed
as

k ¢
p= Z Ak, mXo X[ X3,
k+l+m=N
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for some N € N with ax ¢ m € Z+, then that £ = O implies that ax ¢ » = 0. Hence, we
should have that

(1 —x —2x)% = Z o1 mXex .
k+£+m=N—1
If x; = 0, the left-hand side vanishes for x, = % but not for x, # % This is not possible
for the right-hand side.

Another example can be given by p(x, x2) = xl2 +x§ —x1x3. This is strictly positive on
A3z except for xg = 1 or x; = 0 = x». If we express p as p = Zk+£+m:N ak,g,mxgxfxén,
then the highest order in xo must be N — 2 and the sum of terms which include xév 2is
x(l)v_z(xf + x% —X1x2) = x(l)v_zp(x); thus p is not positive.

Note that if p € Z[x1, ..., x,—1] is positive and A’ is a face of A, with A" = A, 1 <
m < n, then p|A’ can be understood as a positive element (or zero) of Z[x1, ..., Xpu—1] by
taking m — 1 free variables in a certain order.

The following is due to Handelman [9].

PROPOSITION 2.1. The dimension group Ko(A,) is isomorphic to Z[x1, ..., Xn—1],
where the isomorphism is defined by

M M
[ T1 ]~ 11 =

m=—M m=—M
foriy =0,...,n—1land M e N,withxo=1—x1 — -+ — xp_1.
The positive cone C = Z1[x1, ..., X,_1] is the cone with the following properties:
(1) xieCfori=0,....,.n— 1, wherexo=1—x1 — -+ — Xp_1,
2 pgeCifp.qeC;
3) peCifpelZlxi,...,xy—1]is strictly positive as a function on A,,.

Proof. In this proof we write A, as A omitting the subscript n.
Let (Z;) be an increasing sequence of finite subsets of Z such that the number | Zx| of
elements in Z is k and | J; Zx = Z, and let Ag = C1 and

14

meZy

Then (Ay) is an increasing sequence of finite-dimensional C*-subalgebras of A such that

Let eg, ..., en—1 be the canonical basis for Z" and let, for each k € N,
n—1
Vi = {u eZ|vl=) v :k},
i=0
where Z, = {0,1,2,...,}. Forv € V; we denote by N(v) the number of sequences
(€iys...,ey)in{eg, ..., ey—1} such that v = Z];=1 eij,i.e.
N(@) = [v]!/v! = [v]!(volvr! - - vam D7
Define

EU = Z l_[mezke(m) € Ak,

Umslm
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where the sum is taken over all the map i : Z;y — {0,...,n — 1} such that
Zme Zi €im = V- It follows that E, is a minimal central projection of Ay and Ay E, =
My ). The embedding of Ay into Ay4 is given as follows: forv € Vi and w € Vi,
A E, is mapped into Ag41 E,, with multiplicity one if and only if w = v + ¢; for some i
or w > v in the sense that w; > v; for all i.

We define a map ¥ of Ko(Ag) into Z[x1, ..., X,—1] by the following. If ¢ is a minimal
projection in Ag E,, then

vy v Uy—
wk([e]) =x'= x00x11 e .xnn_ll’

where v = (vg, ..., v,—1) and xo = 1 — x; — - -+ — x,—1. Since Yx41 o L4 coincides with
Y on Ko(Ag), where ¢ is the embedding of Ay into A4 1, we can define a homomorphism
Y of Ko(A) into Z[x1, ..., x,—1]. Since the range of v is the polynomials of order less
than or equal to k, it follows that ¢ is surjective. Since ¥ is injective, it also follows
that i is injective. It is easy to check that ¥ is defined as indicated in the statement and
that the range of ¢ on the projections in A generate the positive cone Zx1, ..., xn_1].
Therefore, v is indeed the required isomorphism. Note that ¢ ([1]) = 1.

We have to show the statement on the positive cone. It is immediate that conditions (1)

and (2) are valid and are enough to generate ZT[x1, ..., xn—1]. We now show the validity
of condition (3), which has been known for some time at least for n = 2 (see, e.g.,
[11, p. 126]).

First of all note that for each A € A, there is a unique tracial state 7, on A such that for
a minimal projection e € Ay E, with v € Vj,

n.(e) = AV = AA A

Moreover, 1 is factorial and all the factorial tracial states of A are of this form, as shown
by the following lemma.

Let p € Z[x1,...,x,—1] be such that p is strictly positive on A,. Since ¢ is a
group isomorphism, there are projections e, f in M,, ® Ay for some m, k such that
p = ¥([e] — [f]). What we have to show is that [e] > [f], i.e. f is equivalent to a
subprojection of e.

Suppose the contrary, i.e. there is a sequence (v¢)¢~x With vy € Vy such that

rank(e(l,;, ® Ey,)) < rank(f(1 ® Ey,))
in M, ® A¢E,,. We extend the state on A, defined by
x > N@o) ' Tr(xEy,)

to a state ¢ on A, where Tr is the trace on A¢Ey, = My(y,). We take a weak™ limit point
T of (¢¢)e=k. Then it follows that 7 is a tracial state on A for which

Trm ® t(e) < Ty @ T(f),

where Tr,, is the trace on M,,. Since 7 belongs to the closed convex hull of 7, A € A, this
contradicts the assumption that Tr,, ® 7). (¢) > Tr,, @ 5. (f) forall L € A,,. This concludes
the proof of condition (3). (We see in Lemma 2.3 that the above 7 is actually 7, for some
e A,) O
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LEMMA 2.2. Let t be a factorial tracial state on A,. Then there is a . € A, such that
T =T).

Proof. Since t is a tracial state on A = A, there is map ¢; : Vy — [0, 1] such that
7(e) = i (v) for a minimal projection e in Ay E,. We should note that (¢ ) is independent
of the choice of (Z;) by which Ay is defined as Ay = (®meZk M,i’"’)y. By choosing
Zi+1 = Zi U {N} for alarge N and by using

Orr1(v+e) = r(eeffv)),
with e a minimal projection in A; E,,, we get that

or+1(v +e) = pr(V)e1(e)

for v € Vi. Here we have used the assumption that 7 is factorial and that (el.(fv)) N isa

central sequence with r(efiN)) = @1(e;). Setting A; = ¢1(e;) fori =0,...,n — 1, we get
that 3070 & = 1 and g (v) = A% = A’ --- A" Hence, A = (A1, ..., ky—1) € A, and
T =rT1. O

In the following lemma we adopt the notation in the proof of the above proposition.
In particular, we simply denote by A the C*-algebra A, and we express A as the closure
of Uy A, where Ay = (® 4, Ma)” and | Zi| = k.

LEMMA 2.3. Let (my) be an increasing sequence of integers, (v¢) a Sequence in Um Vi,
and A € Ay such that vg € Vi, mg — 00, and

ast — oo fori = 0,1,...,n — 1, where vy = Z:’z_ol veiei. Let ¢y be a state of A
such that g¢|Ey,Apm, = N(U@)_l Tr, where Tr is the trace on My, = Ev,Am,. Then ¢
converges to T, as { — o0.

Proof. Letk € N. We evaluate @¢|Ag for my > k. Note that ¢¢| A, is a tracial state; hence,
it is expressed as
el Ax =Y dNw) ™" Tr|Ey Ay,

we Vi
for non-negative constants d, with Zw dy = 1.
The multiplicity with which E, Ay is embedded into Ey, A, is
(mg — k)!

N(w, ve) =
(ve,0 — wo)!(ve,1 —w!--- (Ve p—1 — Wp—1)!

if w < vg; otherwise it is zero. (For w < vy, N(w, vy) is the coefficient of x"¢~% in the
expansion of (xo + x1 +--- + xn_l)’"f_k.) Hence, we have that if d,, is non-zero, then

dy = @u(Ew) = N(p) ' Nw)N (w, ve).
Suppose that all ; are positive. If my is so large that vy ; > w;, then it follows that

(mg — K)ol vep—1!
mel(ve,o — wo)! - - (Vg n—1 — Wp—1)!

dy = N(w)
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is approximately equal to
N(w)rg Ayt - At

n—1
This shows that ¢¢| A converges to T, |Ak.
Next we consider the case where some of A; are zero. For simplicity suppose that
Ai =0fori =j,...,n— 1 withsome j > 0. Then we have that for w € Vj with w; = 0,

i=j,...,n—1,
w/-_|

dy & N()ro 27" -2,

. — . — w; _ .
and for w € Vi with Z?:jl w; = s > 0, dy is of the order of m, Svj I -v;ffll, which
converges to zero. Thus, in this case too one can conclude that ¢g| Ay converges to ) | Ak.

Since k is arbitrary, it follows that (¢,) converges to 7, in the weak™ topology. a

Suppose that p € Z[xy, ..., x,—1] is strictly positive as a function on A, except for
some extreme points. If the degree of p is less than or equal to k, then p can be expressed
as

P(X1, . Xpm1) = Z cwx”

we Vg
. . . . Wy — .
in a unique way, where the coefficients c,, are integers and x* = x(l)” Oxf” . -xnill with
xo =1—x1—---—x,_1. To obtain a similar expression in terms of x", v € Vj41, we just

have to multiply the right-hand side with xo + x; + - - - + x,—1 and expand it.
Let ap = max{wg | ¢y # 0} and define

wq Wp—1
Qo1 X)) = Y cwx)tx
we Vi, wo=aog

We note that gg does not depend on k (if k increases by one, then so does ap); unique to
the vertex xo = 1. If p(0,0,...,0) = c,0,..,00 = ¢ # 0, then go = c. Similarly we can
define ¢; as a polynomial in x;, j # i. If p is positive in Z[x1, ..., x,—1], it follows that
qi,i =0,...,n— 1 are positive (or zero) in Z[xy, ..., X,—1].

More generally we define the O-vanguard Vk0 of p on the level k as the set of w € Vi
which satisfies that ¢,, # 0 and that if v is in front of w in the direction to the zeroth vertex,
ie.v=w+sey—e; —e, —---—e; € Vi withij # 0forsomes > 0, then c, = 0.

Then the map w — w + eg from Vi into Vi1 restricts to a bijection from Vk0 onto V,?Jrl
preserving the coefficients cy,.

To prove this, let w € Vko. If v' € Vjy is in front of w + e, then v/ — ¢g € Vj is in
front of w and hence ¢,/—., = 0. If v" = w’ + ¢; for some i # 0, then w’ = v' — ¢; is in
front of w 4 eg — e;, which is in front of w, and hence ¢,y = 0. This way we can conclude
that ¢,; = 0 as ¢, is the sum of ¢,y_,, with v’ —¢; € Vi. If w + ¢9 = w’ + ¢; for some
w’ # w, then w' = w + ep — ¢; is in front of w and hence ¢,y = 0. This implies that
Cuwtey = Cw 7 0. Hence, it follows that w + ¢g € Vko+1 and ¢y ey = Cy.

On the other hand let v € Vk0+1; ifw=v—e & V9, then it follows that cw = 0or
there is a w'(# w) in front of w such that ¢,y # 0. Since ¢, # 0, there is i such that
Cy—e; 7 0. If i = 0, then it means that ¢, # 0. If i # 0, thenv —e; = w + ey — ¢; is
in front of w and ¢y 4¢y—¢; 7 0. Thus, in either case there is a w' in front of w such that
cyw # 0. We choose such a w’ of maximal w6, ie.w € V,?. Then w’ + e is in front
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of w + ep = v, which implies that ¢4, = 0. If w + ey = u + e; for some i # 0,
u = w'+ep—e; is in front of w” and hence ¢, = 0. Since ¢y 4¢y = Cuy + Z:':]l Cu'+eg—ei»
this would imply that ¢,y 4., = ¢y, Which is a contradiction. This proves that v —eg € Vk0
forv e Vk e From the first part it also follows that ¢,_., = ¢,. Hence, the above assertion
is now shown.

One can similarly define the i-vanguard Vk" of ponthelevel k fori =1,...,n—1and

we have a similar bijection from Vk" onto V,f 1 With the property cyt¢; = cw, w € V,f .

Definition 2.4. Let p € Z[x1,...,xp—1]andi =0,1,...,n — 1. The i- vanguard V'(p)
of pisthesetof v : {0,1,...,n — 1} \ {i} — Z such that v® € Vi(p), where
Vk (p) is the ith vanguard of p on the level k and v® is defined by v( ) = =vjforj #i
and v(k —k—Z vj. When p = ) coxV and v € Vi(p) for some i, we set
p(v) = cy.

ve Vi

The following gives a sufficient condition for positivity.

PROPOSITION 2.5. Let p € Z[x1,...,xn—1] be such that p is strictly positive on A,
except for some extreme points. Then p is positive if and only if p(v) > 0 for all
veVi(p),i=0,1,....n— 1.

Proof. We write p as

pxL, ..., Xpm1) = Z waw,

we Vg

where k is greater than or equal to the degree of p. We have to show that for a sufficiently
large k, all ¢y, are non-negative by using the assumption that p is strictly positive on A,
except for the vertices and that ¢,, > 0 for w € U?:_ol Vk" (p); the other implication is
obvious.

If the assertion is false, there is a sequence (v¢) such that vy € Vy and ¢, < 0. We may
suppose that vy ; /£ — A; foreachi =0, 1, ..., n — 1. Then the above lemma shows that

o, Nwe) ™" = p(n).

where N(vg) = l(ve))" and A = (A1, ..., As—1) € An. (To make the correspondence
with the lemma clearer, let us find two projections e, f in (a matrix-tensored) A such that
p = [e] — [f] and let ¢, be a state of A such that ¢;|E,, A, is a tracial state. Then it is
shown that ¢¢(e — ) = CWN(Ug)_l, which is negative, converges to 7, (¢ — f) = p(X).)
If X is not a vertex of A, then p(A) > 0, which implies that A must be a vertex; we may
thus assume that vy o/¢ — land vg; /€ — Ofori =1,...,n — 1.

Letw € V. If w < v, Ey A is embedded into E,, A,, with the multiplicity N (w, v¢)
defined before. Hence, we have that

Cyp = Z cwN(w, ve).

we Vi, w<vy

If ¢y, < O for some w € Vi with w < vy, thenthereisa w’ € V,?(p) such that w’ is in front
of w (and ¢,, > 0). Then we can argue that ¢,, must be positive for large £ by showing
that the contribution of ¢, N (w, v¢) to ¢, which is negative, is overshadowed by a tiny
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portion of ¢,y N (w’, vg) which is positive, as follows. Since
€ —k)!
(ve,0 — wo)! - (Ven—1 — Wo—1)!’

N(w, vy) =

and w, > wo and w, < w; fori > 0, we have that w’ < vy for large £ and

Nw',v)) (o —wo)! (ve,1 — wi)!--- (Ven—1 — Wy—1)!
N(w,ve)  (vg,0 —wp)! (ve,1 —wD!- -+ (vgn—1 — w,_)!

is approximately equal to or more than

Zwé—wo
! /
wy—w) Wy—1 =W, _,
L S . |

which tends to infinity as £ — oo. Hence, we can conclude that ¢,, > O for a sufficiently
large £, which is a contradiction. g

LEMMA 2.6. Let p and q be positive elements of Z[x1, ..., xp,—1landi =0,1,...,n—1.
Then the i-vanguard Vi(pq) of pq is containedin {v+w | v € Vi(p), we Vi (9)}

Proof. Letp = oy, cox’and g = ) .y, dyx" for some K € N. Suppose that there
are v, w € Vg such that ¢, > 0, dy, > 0, and v 4+ w is in the i-vanguard of pg on the
level 2K. If v ¢ V[[((p), then there is a v' € Vg such that v’ is in front of v toward
the ith vertex and ¢,y % 0. Then v’ 4+ w is in front of v + w toward the ith vertex and
V4 in the expansion of pg in x*, ;1 € Vak is greater than or equal
to ¢ydy, i.e. does not vanish, which is a contradiction. Similarly we can conclude that
w e VI’;(q). If u € Vg satisfies thatif u = v+ w with v, w € Vg thency, =0ord, =0,
then u cannot belong to the vanguards of pg. This concludes the proof. O

the coefficient of x

Later we use a more elaborate form of the following.

COROLLARY 2.7. Let p € Z[x1,...,xn—1] be a positive element such that p is strictly
positive on A\, except for the vertices. Then there exists a K € N such that p — q is positive
forany q € (xoxq - - -xn_l)KZ[xl, ooy Xn—11 if p — q is strictly positive on A, except for
the vertices.

Proof. Suppose that the degree of p islessthan K. Letg € (xo - - - x,— 1)K Z[x1, ..., x,_1].

We express p and g as

veVy veVy

for some L > K. We consider the i-vanguard Vz (p—q) of p—q on the level L. Note that
the i-vanguard Vz (q) is confined to {v | v; > K for j # i}.

Letv € Vi (p — q) and suppose that v; < L — K. Since the i-vanguard of p on the
level L is Vi _,(p) + (L — K + 1)e;, we have that d, # 0. (If d, = 0, then we must
have that ¢, # 0; since v does not belong to V; (p), there is w € V; (p) in front of v
toward the ith vertex such that ¢,, 2 0 and w; > L — K. Since dy, = 0 for such a w,
we have that ¢, — d,, = ¢ # 0, which is a contradiction.) Since d, # 0, we have that all

v; > K. If w € V satisfies that w; = L — K 4+ 1, thenw; —v; > 0Oand w; —v; <0



The one-cocycle property for shifts 835

for j # i, 1i.e. we have that all w € Vg with w; = L — K + 1 are in front of v towards the
ith vertex. Thus, all of the points w € V with w; > L — K are in front of v; hence, v
cannot belong to Vi (p — ¢)- This implies that if v € V£ (p —q),thenv; > L — K; hence,
Vi(p —q) = V;;fl(p) + L — K + 1. Note that ¢y, — dy = ¢y > 0 forw € Vz(p —q).
Since p — g is strictly positive on A, \ Ex(A,), the conclusion follows from the previous
proposition. O

To estimate the vanguards we use the following lemma.

LEMMA 2.8. Let p be a non-negative element of 7Z[x1, ..., Xn—1] such that

PGt X)) = ey (xix))®
i#]

on A, for some ¢ > 0 and S € N. Then the vanguards V' (p) of p are confined in the
S-neighborhood of vertices; more precisely, if o € V(p) for somei = 0,1,...,n — 1,
then there is a j # i such that wy =0 fork # i, jand w; < §.

Proof. Letp = ZveVK cyxVandleti =0,1,...,n—1and j #i. Ifx € A, satisfies that
xp =0fork #1, j,ie. if x is on the edge [i, j] between the vertices x; = 1 and x; = 1,
then p(x) > c(x,-xj)S. Since for x; ~ 1 (and x; = 1 — x; ~ 0),

Py = D cux" 4,

weV{(p)

there must be an w € Vk (p) such that wy = O for k # i,j and w; < S. Hence,
Vi (p) contains /) for each j # i such that a)(’) < S and a)kj) =0fork # i,j
(and a)( Ry g a)( ). This implies that if w € Vg has J #isuchthatw; > S, then )
is in front of w (towards the ith vertex), i.e. ® ¢ V’ (p) unless w = /). This proves the

assertion. O
LEMMA 2.9. Letk = (ko, k1, ..., kn—1) € Z'J’r. Then the order ideal of Z[x1, . .., Xn—1]
generated by xk = xgo .- -)crll("_fl1 is equal to x*7Z[x1, ..., xp_1], wherexop =1 —x1 — -+ —
Xn—1-

Proof. Let p be a non-negative element of Z[xy, ..., x,—1] such that Nxk — p > 0 for

some N € N. Then for a sufficiently large L € N, we have ¢, d : Vi, — Z_ such that

= Z cwx”, p= Z dyx”

weVy weVy

and ¢y > dy, > 0 for all w € V. Since ¢y, > 0 if and only if w > k, this implies that if

dy, > 0then w > k and that
p= xk( Z dwxw_k>.
weVr, w>k

Since the other inclusion is obvious, this concludes the proof. O
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For k € 7!, we denote by I(k) the ideal of A, corresponding to the order ideal of
Ko(Ay) = Z[x1, ..., xp—1] generated by xk = xgoxf‘ . ~x:”:1]. The ideal I; which is used

to define the character ¢; in the main Theorem 1.1 is given as

I =Y"Iej).

J#i
We note that I (k) N I (£) = I(k v £) fork, £ € 7", where (k Vv £); = max(k;, ¢;).

3. Covariant irreducible representations
In this section we define some covariant irreducible representations of (A,, o), which are
an extension of what is well known for the case n = 2 and will be used in the proof of
Lemma 4.4, the very first step of the induction.

Letk = (ki,...,kn_1) € Zi_l such that [k| = )", k; # 0 and let

Q=11 S €eP@)" ISl =ki,i #j = $NS; =0}

For S, T € Q let

n—1

es.T) =] < [T T1 e(g;w) € Ap.
i=1 “meS; meT;

Note that e(S, T) € 1(0, k1, ..., ky,—1) = I1(0, k). On the Hilbert space 02() we define

a representation st of (0, k) such that Ker7y O I((0, k) +e¢;) fori =1,2,...,n—1and

me(e(S, T)éy = dr,ués

for S, T,U € 4, where (§y)yecg, is the canonical basis of Ez(Qk). (In the notation of
the proof of Proposition 2.1, 7(0, k) N Ay is the ideal of A, = (®Zz M,,)y generated by
Ey,,v e Vywithv > (0,k) and i (x) = nk(xE,;),x € Ay, where k = € — k|, k) € V,.
For x € Ay it follows that there is ¢(S, T) € C for each pair S, T € Q4 with US, UT C Z,
such that e(S, S)xEpe(T,T) = c(S,T)e(S, T)E; and > e(s, SxEpe(T, T) = xEp,
where the sum is taken over all pairs S, T with US, UT C Z;.) Note that (7 (0, k)) is
K= IC(EZ(Qk)), the C*-algebra of compact operators on EZ(Qk) and that 7 (I (m, k)) =
K(€2()) for any m € N (because I(m, k) is an ideal of (0, k) not contained in the
kernel of 7). Since (0, k) is an ideal of A,, 7 naturally extends to an irreducible
representation of A,, which again is denoted by n;. For k = 0 = (0,...,0), we let
1o denote the character ¢g on A,,.

LEMMA 3.1. Fork € Z'J’r_l define an irreducible representation wwy of A, as above. Then

n—1
Kermy = Zl((k,- + De;).
i=1

Proof. If k = 0, then mg = ¢ is a character. We have already noted this at the end of the
previous section.

If k #£ 0, then 7 (1(0, k)) = K and Ker(m¢|1(0, k)) = Z;’;ll Ko(1(0, k))x;, because
Ko(1(0, k)) includes the latter as a maximal ideal. Hence, Kermy is the largest ideal
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J of A, such that Ko(J) N Ko(1(0,k)) = Z;’;ll Ko(1(0,k))x;. It is obvious that
J 2 Y Ik + Dey).
IfJ ¢ 27;11 I((k; + 1)e;), then there is a positive p € Ko(J) such that

n—1
ki+1
P& Ko(Anx ™.
i=1

We express p as

p= chx”

veVy

for some ¢ such that ¢, € Z,. Then if ¢, # 0, then x € J. Hence, there must be a

v e Vi such that ¢, # 0and v; < k; fori =1,2,...,n— 1. Theng = x2°xf1 ... x¥ 1 ¢
JNIO,k)butg ¢ Zl'-’;ll Ko(1(0, k))x;, which is a contradiction. This concludes the
proof. O

We note that 7y is a o-covariant representation. To show this define a unitary U on
€%(S2) by
Uts =&s41, s € S,

where S+ 1 = (So+ 1,81 +1,...,8-1+1)forS = (Sp,...,S—1)and S; + 1 =
{m+1]|me S;}. Since

Umni(e(S, T)HU*Ey = 87,v—1UEs = 8741,vEs+1 = me(e(S+ 1, T + 1))éy

for S, T,V € Q, it follows that AdUmi(x) = mpo(x), x € A,. If |k| = 1, Qg is
identified with Z and U with the shift unitary S on £2(Z). If |k| > 1, then U is unitarily
equivalent to the shift unitary with infinite multiplicity.

From now on we denote by m(cok,,...k, ;) the above representation 7, with k =
(ki1, ..., ky,—1). By assigning the role played by the index O to another index, we define
an irreducible representation 7y for k € (Z4+ U {oo})” such that k; = oo for a unique
i €{0,1,...,n — 1}. For such an index k, we define k € Z" by k; = k; if k; < 0o and by
ki = 0if k; = oo. We then have that 73 (1 (k)) = K and

n—1

Ker 7y = Z I((ki + 1)e;),
i=0

where I ((0co + 1)e;) = I(coe;) = {0}. Thus, we obtain the following lemma.

LEMMA 3.2. Let k € (Z U {o0})" be such that ki = oo for a unique i and let k be as
above, and define a o -covariant irreducible representation mwy of A, with an implementing
unitary U as above. If 0 < k; < oo for some j, mx(1(k)) is isomorphic to the C*-algebra
of compact operators and U is unitarily equivalent to S® 1 on the Hilbert space ¢*(Z)H,
where S is the shift unitary on £*(Z) and 'H is a separable Hilbert space, and H is one
dimensionalif|/§| = 1 and infinite dimensionalifllzl > 1.

In the following lemma, for a finite subset X of Z x Z, we denote by Py the projection
onto the subspace generated by &,,, m € X in 2(Z x 7) = 02(Z) @ 1*(Z).
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LEMMA 3.3. Let S be the shift unitary on €*(Z); S&n = &ui1, m € Z. For any
finite subset X of Z. x Z and € > 0, there is a finite subset Y of 7 x Z such that if
u € K(C2(Z x Z)) + 1 withuPy = Py, then there is a unitary v € K(¢*(Z x 7)) + 1 such
that vPx = Px and

lu —v(S Q@ DV (S*®@ 1| <e.

Moreover, if X is empty, then Y can also be set to be empty.

Proof. Thisis Lemma?2.4 of [19] when X = ) = Y. Strengthening it to the above assertion
is easy, but we present a proof below.

We may replace Z ® Z by Z ® A with A a finite non-empty set, and X by X’ x A with
X' a finite subset of Z. We choose Y as Y’ ® A with Y’ a finite subset of Z.

We choose Y’ so large that if u is a unitary in K(2(Z x A)) + 1 with u Py = Py, then
there is a projection f € KC(€3(Z)) such that |SfS* — f|| <€, fPx =0, and

lu—((fRDu(f@D+ (- @D <e€/2.

There is a sequence (g,) of projections in /C(¢>(Z)) such that g,(f + Px) = O,
1SgnS* —gull = 0, lu(gn®1)— g, ®1|| = 0, and rank(g,) — oo. Letting f,, = f +gu,
we have that || f,,Sf,, S* f, — full < € for all sufficiently large n and that

[(fn ® Du(S @ D(fa ® DIS* @ Du*(fn ® 1) — fu ® 1]| < 2¢

for all sufficiently large n. It follows that f,Sf, ® 1 ~ fSf*® 1 + g,5¢, ® 1 and
(r@DuE@D(fn®D =~ (f @ Du(S® D(f ® 1) + g.Sg» ® 1 are approximated
by unitaries on f,£2(Z x A), up to the order ¢, whose spectra are almost uniformly
distributed over T (due to the contribution from g,Sg, ® 1). Hence, we find a unitary
veKWUZx A)+1suchthatv =v(f, ® 1)+ (1 — f,) ® 1 fora sufficiently large
nand [(f @ Du(SQD(f, ® 1) — v(f @ N(S ® 1)(f, ® 1)v*| is at most of order €.
This implies that [|u(S ® 1) — v(S ® 1)v*| is at most of order ¢, concluding the proof. O

4. The one-cocycle and the approximate Rohlin properties

For a subset F of Z we set y
An(F) = (® Mn>
F

as a C*-subalgebraof A,,. If m € Zy and k € N, let Q be the quotient map of A, onto

m—1
B = An+m/ Z I(kienti).
i=0

For a subset F' of Z we set B(F) = Q(An+4m(F)), i.e. the local structure of B is defined
by {B(F) | F C Z}.

Definition 4.1. Letn = 2,3, .... We say that the n-shift has the one-cocycle property if

the following conditions are satisfied.

(1) For any € > 0 and any unitary u € A, such that 9;(u) = 1fori =0,...,n —1,
there is a unitary v € A, such that |lu — vo (v)*| < e.
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(2) If (ug) is a sequence in the unitary group U (A,) and (Fy) is an increasing sequence
of finite subsets of Z such that ¢;(ux) = 1 fori = 0,....,n — 1, |J; Fx = Z,
and uy € A,(Z \ Fy), then there is a sequence (vx) in U(A,) and an increasing
sequence (Gy) of finite subsets of Z such that ||ux — vio (vp) || — 0, [, Gk = Z,
and vy € A, (Z \ Gy).

(3) If (ux) is a sequence in U/(A,) such that ;(ux) = 1 fori = 0,...,n — 1 and
l[un, x]| — O for all x € A,, then there is a sequence (vg) in U(A;) such that
lur — vgo (vp)]| — O and ||[vg, x]|] = Oforall x € A,.

We say that the n-shift has the stable one-cocycle property if the above conditions are
satisfied for the shift o on the quotient B = A4,/ Z;";Ol I (kjenyi) forany m € Z4 and
ke N™,

By the definition if the n-shift has the stable one-cocycle property then it has the one-
cocycle property. If the n-shift has the one-cocycle property for all n > 2, then the
n-shift has the stable one-cocycle property. Since each of the properties in Theorem 1.1 is
equivalent to the corresponding one of the above definition, the main Theorem 1.1 states
that the n-shift has the stable one-cocycle property for all n.

Let Ex(A,) be the set of extreme points of A,, i.e. EX(A,) consists of n vertices.
We call an N-cycle an orthogonal family of projections indexed by Z/NZ.

Definition4.2. Let n = 2,3,.... We say that the n-shift has the approximate Rohlin
property if for any N € N and € > 0, there exist an N1, S € N with Ny > N and a
constant C > 0 such that there is a sequence (el.(k)) of Ni-cyclesin A, with Ex =) ; efk)
satisfying the following:

®y _ )

max ||o (e; ivil— 0, k— oo,
L

[El(x) > C(xox1 - xn—1)5, X € Ay,

[Ex(x) = ex Y _(xix))S, x €A,
i#]
for some c; > 0, and [E](x) converges to 1 uniformly in x on every compact subset of
An \ Ex(Ay).

Note that when we define a Rohlin property we usually impose a centrality condition
such as || [efk), x]|l = 0 as k — oo for all x. Since we are dealing with the shift here, such
a condition follows automatically.

To see that the lower bound estimates on [ Ej] are not redundant, we can construct an
automorphism « of A, which has an approximate Rohlin property without the lower bound
estimates [ Ex] above, but with a proper centrality condition. For example, we choose a
sequence (Fy) of finite subsets of Z which are mutually disjoint such that |Fi|/k — oo
and choose a sequence (Uy) of unitaries in A, such that Uy € A, (Fy) and U E, = E,
for v € V|g,| with min; v; < k and the spectrum of Uy E, is equally distributed otherwise,
where E, is the minimal central projection of A, (Fy) as in the proof of Proposition 2.1.
And we define an automorphism « of A, by the limit of Ad(U U, - - - Uy). Then we can

see that o has the property that for any N € N there is a sequence (el.(k)) of N-cyclesin A,

Q)

such that max; ||oz(e;k)) —e Il =0, N[e(()k)](x) — 1 uniformly in x on every compact
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subset of A, \ Ex(A,), and ||[e;k), x]|l = Oforx € A, (see, e.g., [2]). However, then the
ideal J; of A, generated by efk) must satisfy (1), Ji = {0}.

Our purpose is to prove, by induction, that the properties defined above follow
universally. The following lemmas give the basic step for this induction, which are more
or less presented in [19].

LEMMA 4.3. The 2-shift has the approximate Rohlin property.

Proof. By using the CAR algebra formulation we show in [19] that for any N € N there
is a sequence of 2V-cycles in A, satisfying the required properties with M = N and
c =2V m

LEMMA 4.4. The 1-shift has the stable one-cocycle property.

Proof. Letm € Nand k € Zf"" such that ko = 0 and k; > 0 for j > 0 and define

m
B= A1+m/ > I(kiei).
i=1

We have to show that the shift o defined on B has the one-cocycle property.

Let ¢ be the unique character of B. What we have to prove is that for any u € U(B)
with ¢o(u) = 1, there is a sequence (vy,) in U/ (B) such that ||u — v,0 (v,)*|| — 0; and two
other versions.

By the following Lemma 4.5 and Lemmas 3.2 and 3.3 we find a finite decreasing
sequence (Ji)zNzo of ideals of A4, such that Jo=Ai+p, J1= Zf"zl I(ei),
INC Y Ikied), IN—-1 Zf;’zl I(kjej), Ji—1/Ji =K for i >1, and the automor-
phism, denoted by o, induced on J;_1/J; by the shift o has the one-cocycle property.
(In Lemma 4.5, since Jy = Ker(py) N Jy—1 = Z'}'zl I(kjej) N Jy_1, it follows that
In-1 & Y I(kje)).)

Let u1 € U(A14+m) be such that Q(u1) = u, where Q is the quotient map of Aj4,
onto B. Since ¢o(Q(u1)) = 1, we have that u; € J; + 1.

From the short exact sequence

0—> Jr— J1 = J1/J2 = 0,

and the one-cocycle property for the shift on J;/J, applied to u; + J2, proved in
Lemma 3.3, we find unitaries u, € J> + 1 and v; € J; + 1 such that

lviuio (v) —uz| < N~ le.

Repeating this process, we have unitaries u; € J; + 1 fori < N and unitaries v; € J; + 1
fori < N such that
-1
lviujo(vi) —uivill < N™'e

fori < N. Then it follows that
lviva - -vyv—uyo (Viva---vn—1) — U1l <e.

Thus, for v = Q(vivy---vy—1) € B we get that ||vo (v)* — u|| < €. This concludes the
proof of the first property of Definition 4.1.
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We turn to the second property of Definition 4.1. Let G be a finite subset of Z. To get
vy—1 from A14,,(Z \ G) N Jy—1 + 1 in the above arguments based on Lemma 3.3, u_
must be from A4, (Z \ F) for some finite subset F| C Z with F1 D G. Here we used the
fact that requiring vy_1 € A1+, (Z\G)NJny—1+1 modulo Jy is as strong as requiring that
vy—1p € Cp for some p € Jy_; which is a projection modulo Jy since Jy_1/Jy = K.
For that to be true, we must have that vy >, uy—2 € A14m(Z\ F1), which in turn requires
that uy_> € A14m(Z \ F>) for some finite subset F, D Fi. In this way we can conclude
that there is a finite subset Fy_1 of Z such that if u is a unitary from A1, (Z \ Fn-1),
then all vy, ..., vy—1 will be chosen from Aj4,(Z \ G) in the above arguments; then
v=Q(---vy—1) € B(Z\ G) is the desired unitary. This concludes the proof in this
case.

Finally, we come to the last property of Definition 4.1. Let G be a finite subset of B;
by lifting each element of G to A4, we regard G as a subset of Aj4,,. We choose a
finite subset G of Z such that if v is a unitary in A4, (Z \ G) then ||[v, x]|| < 1/2N,
x € G. Togetvy—1 € Jy—1 + 1 for uy—_1 such that vy_; € A14n(Z \ G), we must
require that ||[[un—_1, x] + Jy| < 1, x € F; for some finite subset of F; of A4,,. For that
we have to require that vy—2 € A14m(Z \ G1) and |[[uy—2,x]+ Jn|l < 1/3N,x € Fi
for some finite subset G| of Z with G; D G. Again for this to be true, we have to
require that ||[[uy—2,x] + Jn| < 1/N, x € F, for some finite subset 7, of Aqyy.
In this way we obtain a finite subset Fy_1 of A4, such that if u; € J; 4 1 satisfies
that |[[u1, x] + Jy|| < 1/N for x € Fy—1, then all vy,...,vy—1 can be taken from
A14m(Z\G). Thenv = Q(v1 - - - vy—1) would satisfy the required condition. (Thus, since
B = Aiyn/ 27‘:1 I(kjej) is of type I, properties (2) and (3) are equivalent for this
case.) O

LEMMA 4.5. There exists a finite sequence (,0,-)5\]:1 of irreducible representations of A1+m
of the form m (00,1, £ € (Z4)™ and a decreasing sequence (J,-)INZO of ideals of A14+m such
that Jo = A14m, p(Ji—1) = K or C, Ker(p;|Ji—1) = Ji, and

m
Ker(pi) D Z I(kjej),
j=1

m
Iy Y Ikjej).
=1

J

Proof. Let p1 = m(x0,0,..,0) and J; = Ker p;. Then it follows that J; = Z?:l I(ej) D
Zf;’zl I(kjej). We prove the assertion by induction as follows.
Suppose that we are given an ideal J of A14,, such that

J = Z I(w),

weC

where C is a subset of Zf’" such that w < k and |w| = ZT:O wj > 1forw € C. We may
suppose that no pairs in C are comparable. (If w > w’ in the sense that w; > w}, then
I(w) C I(w); so we may remove w from C.)
Let
r=min{|lw| |w eC,w; <k;forall j =1,...,m}.
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For each w € {w € C | |w| = r}, we define & € (Zy U {oo})!*” by Wy = oo and
w; = w; for j > 0 and consider 7y. For z € C\ {w}, we have that /(z) C Kermy.
(Eitherz; > kj > wj forsome j =1,2,...,morz; > w; forsome j > 0 as |z| > |w]|.)
Then 7 (J) = K and

m
Ker(myl )= Y 1@+ Y I(w+e;).
zeC\{w) j=l1
Note also that Ker g D Z’]":] I((wj+ Dej) D Z’]":] I(kjej).

We now set J to be Ker(ry;|J) and C to be an appropriate subset of C \ {w} U {w +¢; |
j = 1,...,m}. Repeating this process for a finite number of times we can increase
r = min{lw| | w € C,w; < k; forall j > 0}. Eventually we reach the situation
where for any w € C thereis j > 0 such that w; = k;. Hence, we get J = Y, .~ [ (w) C
>_"_1 I(kje;). This completes the proof. 0

The following result combined with Lemma 4.3 shows that the n-shift has the
approximate Rohlin property for all n > 2.

LEMMA 4.6. Letn = 2,3, .... If the n-shift has the approximate Rohlin property, then
the n + 1-shift has also the approximate Rohlin property.

Proof. Let K,L,M € Nbesuchthat M > Landlet Zy x = {mM | m =0,1,...,
K—1}Yand Zy gk = U{Zuxk+m|m=0,1,..., L—1}. We define an embedding ¢ of
M,, into ®{0} M1 C Qg Muy1 by t(eij) = ef?), where (ef?)) are the canonical matrix
units for M1 at 0 € Z as a C*-subalgebra of ®Z My 41; in 'particular, 1 —1¢o(1) = ef,(,),).

We then define a homomorphism v of M, into ®ZM « Mny1 C Ry My41 by

Yo (x) = 10(x) + €2,0M (1(x)) + DD (15 (x)) + - - -

+ el UKD (K=DM (4 (x)).

We set ¥, = akwofork =1,2,..., M—1;notethat therangesof Y, k =0, 1,..., M—1
mutually commute and that L <« M. We then define a homomorphism v of ®é “'m,
into @z, ., Mit1 C QzMut1 by ¥ = Yo ® Y1 ® --- ® Yr—1. Note that
v (Dyo = Yo(l)oy on ®572 M, and that the range of /|( 371 M,)" is contained
in A1 = (Qy Mn+1)y, where y is the gauge action of T" ! (or T" for the latter case).
We thus regard  as a homomorphism of B, = ( 871 M,)" into Ayq.

We recall that there is a tracial state t) on A4+ to each

i)‘i < 1}.

i=1

A€ Ay = {A e [0, 17"

Note that 73 (1) = 1 — AKX and 7,9 (1) = (1 — AX)L. For a projection e € By, we have
that 7y ¥ (e) = 0 for A, = 1 and

ny(e) = (1 — 15kt

Al An—1
= € A,.
’ <1—)\n 1—)\n) "

for A,, < 1, where
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Hence, if [e] = g € Z[y1,..., yn—1] in Ko(A,) under the embedding By C A,, then
f =1[¥(e)]in Ko(A,+1) is given by

Fr, o) =0 —xK g /(0 —x0), oy xam1 /(1 — x0)),

which must be a polynomial in x, ..., x,, since g is at most of order L. If g is strictly
positive on A, \ Ex(A,), then f is strictly positive on A, 11 \ Ufl:_()l [i, n], where [i, n] is
the edges between x; = l and x,, = 1 fori =0, 1,...,n — 1. We can make f arbitrarily
close to 1 uniformly on a compact subset of A, 41\ U?:_ol [i, n] by making g closeto 1 ona
compact subset of A, \Ex(A,). If g(y1,..., yn—1) = C(yo-- -yn_l)s for some S € N and
C > 0,where yo = 1—y;—-+-—y,_1, then f(x) > C(1—xS)E(1—x,) ™S (x0 -+ - xp1)3
for x € A, because

X1 X2 Xn—1 X0

1—x, 1—2x, 1—x, 1—x,

Note that if K is sufficiently large, then (1 — xX)L & 1 uniformly for x, in [0, 1 — §] for
& > 0. Thus, for such a choice of K, we have that

f(x) > Clxoxy - xp—1)3

for x € A,4q with x, € [0, 1 —§].

Since ¥z (1) = Yo(1)oy on ( 872 M,)" ® 1 C By, ¥ does not really intertwine
the shifts o even approximately. We have to modify ¥ as follows.

By using the lemma below and taking a sufficiently large M, we define an embedding
¢ : B — Ay by ¢(x) = ¥(x)p, where p is a projection which resides
outside Zys k.1 and satisfies that |jo (¢ (1)) — ¢(1)|| < € for a prescribed € > 0 and
T(@(1)) > (1 — AK)E+Le with some Le € N. Since [o(¥(1)p) — ¥ (Dp| < € and
s ()p) = Yo (1)p), it follows that [y (DY (H)p — y(Dpll < 2. Ife e
B; C A, is a projection such that o (e¢) € B, then it follows that ||o¢(e) — ¢ (e)||
3e because ogp(e) = a(Y(e))o(W()p) =~ oy(e)y()p = oy(e)Po(HY()p =
YooYy (l)p =~ Yo(e)p = ¢po(e). Since this modification of i introduces only
the factor (1 — )»,If)Lf in the estimate of 7, (¢(e)) for a projection e € Br, we have a
similar estimate for f = [¢(e)] as in the previous paragraph.

Let N € N. Then there are N1, C, S € N with N; > N satisfying the following: we
have an Nj-cycle (e;) in A, such that ||o(e;) — ej41]| = 0, Nile;1(x1, ..., xn—1) is close
to 1 uniformly on a compact subset of A, \ Ex(A,), and

A

[ei1(x1, ...\ Xn—1) = C(xox1 - Xp—1)5

on Ay, and
[eilCxr, s Xnm1) = ¢ Y (xix )’
i#]
on A, for some ¢ > 0 (which may depend on the choice of ¢;).
We may assume that ¢; € ®,€,;2) M, for some L and we embed ¢; into A,4+1 by ¢
which depends on the choice of K, M, p. Thus, for any € > 0 we get an N-cycle (E;) in
Ap+1 suchthat o (E;) — Eip1]l < e,

Ni[Ei](x1, ..., x0) > 1 —€
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for x € Ap41 such that min;, dist(x, [i, n]) > €, where the distance dist on A4 is
defined by dist(A, v) = max{|A; — u;l;i =0,1,...,n}, and

[Eil(x1, ..., %) = Clxoxi -+ - xa)°
on the subset of A, consisting of x with x, < 1 — ¢, and

[Ed@1,....x) = ¢ Y (xS

i#j<n—1

on the above subset for some ¢ > 0.

In this way we embed a Rohlin cycle in A, into A,. Note that there are n + 1 types
of embedding by assigning the role played by the nth coordinate in the above to the other
coordinates. We combine the Rohlin cycles so obtained to get the desired one. The proof
is continued after the following lemmas.

LEMMA 4.7. For any € > 0 there exists an L € N such that if M > L + 2L, there is
a projection p in (®Z/ Mn+1)y, where Z' = U{Zuxk +m | m = —1,-2,...,—L;
m = L,L+1,...,L+ L¢ — 1} is disjoint from Zy k.1 = U Zux +m | m =
0,1,..., L — 1} such that f = y(1)p is a projection satisfying |lo(f) — fl < € and
G(f) = (=4O for k€ Ay,

Proof. Let ¢ = (1) as a projection in (®ZM.K M,H_l)y. Then ¥ (1) looks like

eRe® - ® e (in (®ZM.K.L Mn+1)y = ( é_l Rz« M,H_l)y), where e repeats L
times. If Z” = Z' U Zy k1, then @ ,» M,y is the tensor product of ®ZM,1< M4
indexed by m between —L. and L 4+ L, — 1 inclusive, where o shifts each factor to right
and ¥ (1) resides at the tensor product between 0 and L — 1. Hence, the problem reduces
to finding an almost ¢ invariant projection in ( f{iﬁz Mn+1)y dominates e ®@e®@ - - - Qe
(L 4 2L, times) and is dominated by /(1) = e®e ® - - - ® e (L times). This follows from
the following lemma. a

LEMMA 4.8. Let m € N and let A = (®Z Mm)y, where y is a restriction of the
(infinite tensor product type) action B of U, = U(M,,) to a compact abelian subgroup
of Uy, and let o be the shift automorphism of A to the right. Let e be a projection
in (M,)Y. For K € N, let ex = ®IEK e. For L,N € N there is a projection
pE ( EQELZL Mm)y C A suchthatenyp < p < ey and |lo(p) — pl is of the order of
L~Y2. Moreover, p can be chosen to satisfy that if ¢ is a state on My, and T = QRueisa
tracial state on A, then

T(p) = (@™ 2L 4 L(1 — g(e))).

Proof. Let f = eyyr and let fi = oX(f)A — ok 1(f)) and fx = oK1 —
okl (f)) fork =1,2,..., L, which are all projections. If 1 <k < ¢, then

fife <X (Ht(HU -7 (f) =0
because o X (f)at1(f) = X (f)at(f). If k, £ > 1, then

fokfo <o 8(HA - (ot =0
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because o ¥ (f)(re(f) < ak(f)a_kH(f). Thus, one can conclude that the projections
Jfx» 0 < |k| < L are mutually orthogonal and orthogonal to f. Note also that they are
mutually equivalent and that o shifts the sequence of projections

S=Ls f=L+15--5 f=1

to the right, the last one f_; to f(1 — o(f)), which is a subprojection of f, and a
subprojection, f(1 — o ~1(f)), of f to f1, and shifts the sequence

fi, oo fL

to the right except for the last f;. Let v € A be such that v*v = f_; and vv* = f] and
define

L L—k (L —k
P=f+];(sz+k1+ 7 fe + ( )okl(v—i—v*)).

L

Since all fi, f—x, f are dominated by ey and p > f = enyp, it follows that eyy; <
p < ey. We can also estimate ||o (p) — p|| as required (see [15] for details).

If t is a tracial state on A as in the statement, then 7(f) = go(e)“““z“rl and
T(fi) = (/)1 —¢(e)). Since T(v) = 0, we get that 7(p) = 7(f) + (/)1 —¢(e))L =
T(f)(1 + L(1 — ¢(e))). This concludes the proof. O

LEMMA 4.9. Foreachi =0, 1,...,n and e > 0 there exists a projection f; € A,41 such
that o (fi) — fill < € and ©).(f;) depends only on A; € [0, 1] and is a decreasing function
in A; and for any A € Ap41,

T.(fi) <€ ifA; > €,
n(fi)=1 ifr =0,

from which there exists a § > 0 such that if »; < 8 then 1) (f;) > 1 — €. Moreover f;
can be chosen from (®Z M,,_H)V for some finite subset Z of 7 and have the following
property. If A € A, 41 satisfies that dist(h, ExX(Ap+1)) > € + 28 and dist(X, [i, j]) < § for
somei # j, then Ty (fi) <€, ta(fj) <€ andty(fx) > 1 —€ forallk #1, j.

Proof. Let El.(m) =>4 eﬁ.';?) =1- ef;"). It is shown by the previous lemma that for large
L, N e N there is a projection f; € (®1%1L=+7A£L7N Mn+1)y between ®,I;,J;IXL_N El.('") and
®Z=7N El.(m) such that ||o(f;) — fi|l is of order L~1/2, By using the explicit formula for
fi given there, we have that

n.(f) = (1= 2N+ L)
for L € A,41. Thenif A; > €, then 7, (f) < m(@N N El.(m)) < (1 - 6)2N+1 and if

m=
Ai = 0then 7, (f;) = 1. By choosing L, N sufficiently large, this concludes the proof of
the first part.

To show the second part suppose, in contrast, that dist(A, Ex(A,+1)) > € + 286,
dist(A, [i, j]) < 6, and 7, (f;) > e€; from the last condition it follows that A; < e.
Since ming<;<1 max{|A; — ¢, |A; — (1 —1)|} < J, thereisat € [0, 1] suchthatt —; <&
and 1 —r—X; < §, whichimplies that 1; > 1—A; =25 > 1 —¢€ —24. Since this contradicts
that dist(A, Ex(A,+1)) > € + 28, we get that 7, (f;) < €. The same argument yields that
T2 (fj) < €. Since Ay < & for k # i, j, it follows that 7 (fx) > 1 — € for such a k. O
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Continuation of the proof of Lemma 4.6. By the previous lemma for any small € > 0
we choose projections fo, f1,..., fu—1 in A,y1 such that 7, (f;) < € if A; > €,
n(fi) = 1ifA; = 0, and |lo(fi) — fill = 0 for all i. More explicitly we use the
same formula (as a function of El.(m) =1- ef;")) for constructing f;; hence, we have that
T (fi) = tu(fj) if A; = p;. Furthermore, we assume that all the f; reside at different
places (by applying powers of o), i.e. there are finite subsets Z, ..., Z,—1 of Z which are
mutually disjoint such that f; € (&, My+1)”; in particular, the f; commute with each
otherand [ f; f;]1 = [fil[fj]lin Z[x1, ..., x,] fori # j.

We suppose that ¢ < (n 4+ 2)~! and note that § > 0 is chosen so that if Ay < §
then 7, (fx) > 1 — €; obviously § < €. Let N, N, C, S € N be as in the proof before

the interruption. For each k = 0,1,...,n let (El{‘) be an Nj-cycle in A, such that
lo(Ef) — EF, | =0,

NIEEI(x1, o x) > 1 — €
if min; dist(x, [7, k]) > 6, and

[E§] = Clxoxr -+ xn)S, [Efl=c Y (xx))’
i#]30, j#k

for some ¢ > O, if x; < 1 — nd. We suppose that all (Ef) and fi reside at disjoint
subsets of Z for various k; in particular, we have assumed that f; Elk is a projection and
that 1, (kal{‘) = tx(fk)rA(El{‘). Now we define an Nj-cycle:

Ei = \/(fED) + (1 -V fk)E?.
k=0 k=0

Here we have use the fact that all f;E lk commute with each other. We show that (E;) is
the required Ni-cycle in A, 4.

Since [lo (i Ef) — ftEf, |l &~ 0 and |o(F) — F|| ~ 0 where F = \/{_y fk =
fo+ fill = f)+ 21— fo— fi(l = fo)) + - - -, we obtain that [lo (E;) — Ei11] ~ 0.

LetA € Appr withAig=1—Xx; —--- —A,. Wetake k € {0, 1, ..., n} such that Ay =
min{A; | i = 0,...,n}. Then we have that 7, (f) = max{ty(f;) | i = 0, ...,n} since
Ai = T.(fi) is decreasing and 7). (f;) = T(f;) it A = A T (fi) = 1/(n+2) > ¢,
then we have that 1, < €.

Ifo(fi) < 1/mn+2) <1 —¢€foralli,then A; > & and 7, (F)
m+1)/(n+2) <1—1/(@n+2). Note that for any i,

Mi=1=Y 2 <1=—ns.
J#

IA

Yicon(fi) <

Thus, we have two cases for A € A,41: (I) the smallest of all A; is given by A satisfying
M<e<l—-nSandt(fr) > 1/(n+2);and (D) 1, (1 — F) > 1/(n+2), A; > é forall i,
and Ao < 1 — né.

In the first case

C
©.(Eo) > t.(f)u.(Eb) > —— 0ok can)S.
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In the second case
C
Eop) > 1.(1 — F)T(ED) > —— (ki -+ An)S.
T (Eo) = T ( YT (Ep) > n+2( 01 n)

In either case we have one of the required estimates from below.
To prove the other estimate, we have, for the first case,

c
T(E) = ——= Y (irp)°,
P2 T
where Ay < 1 — nd is used. Since A is the smallest in A;, we have that for each i # k
Gir)S <1/ —1) D irp® < Y (idp®,
J#iLk J#ik
which implies that

D= >0 S+ Y ik)®

i#] i# ], j#k i#k

< Z (inj)S +Z Z (irj)S

i#j30, j#k i#k j#ik
=3 Z (hir))S.
i# )30, j#k
Hence, we have that

< S
(ko) = 3o ;(m,) .

‘We have, for the second case, that

C
n(E) = —= Y. (ir)P.
n+2 i 0
Since (Aor)® <47 < (n = 17185 Y, ik )S <875 3 o(hikj)®, we have that
1

2)S S
. Z (Aidy)" = 1+25-S Z(A’M) '
i#]3i,j>0 i#]

Hence, in this case we get that

¢ 4 S
7,.(Eo) = T HAT 5 ;(Mﬂ .

Combining these cases we conclude that there is a ¢ > 0 such that

[Eol(x1, . xa) = ¢ Y (xix))’
i#j

on Ayt1.
Let & € Aj41 such that dist(A, Ex(A,+1)) > 3€(>€ + 26).
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If dist(A, [i, j]) < & for some edge [i, j], then by the previous lemma, 7, (f;) <
€, Ta(fj) <e,and 1, (fx) > 1 — e fork #1i, j. Hence, for k # i, j, we have that

N1t (Eo) = Nin(f)m(ES) > (1 —€)?,

where we have used the fact that dist(}, [k, £]) > § for any £.

If dist(X, [Z, j]) > & for any edge [i, j], then 7, (fx) < 1 — € and r;L(ES) > 1 — € for
all k. Since 7, (1 — \/}_o(fkEY)) = [Tico (1 — fLES) < [Tico(l — n(fidd — ),
we have that

n n

Nit(Eg) = 1= [ [ —u(fod —e)+ [0 =) - (A —e).
k=0 k=0
If € is sufficiently small, then the right-hand side is approximately equal to 1 — € [];_,
(1 = T (i (1 + koo (fi) /(1 — T2(fi))), which is bigger than 1 — (1 + 2)e.
This shows that Ni[Ep](x1, ..., x,) is close to 1 uniformly on the compact subset of
A,+1 consisting of points distant at least 3¢ from the vertices. o

The following lemma follows from the proof of the above lemma.

LEMMA 4.10. Let n,m € N with n > 2. Suppose that the n-shift has the approximate
Rohlin property. Then for any N € N there are N1, S € N and C > 0 as in Definition 4.2
such that there is a sequence (el.(k)) of Ni-cycles in Ay+, with Ef = vazlal efk) and a

decreasing sequence (8x) of positive numbers with limy §; = 0 satisfying
max ||cr(e§k)) — Ei(i)l | =0, k— oo,
1

[Ex](x) > Clxoxt - x0-1)5, xe A

n+m»

Sk

[EQx) = ey (ix)S, xe Al
i#j;i,j<n

for some ¢y > 0, and [Er](x) converges to 1 uniformly on every compact subset of
0
A \Ex(Apim), where

n+m

A = {x € Apim

m—1
Zx,,+,<1—5}

i=0

fors > 0.

Proof. Let K,L,M € N be such that M > L and let Zy x = {mM | m =
0,1,....K —1}and Zy k1t = UZux +m | m = 0,1,...,L}. We define a
(non-unital) embedding to of M, into Q7 Myuym by to(eij) = efj(.)l), V\(/)here eg.)) are matrix
units of My4, at 0 € Z. In particular, fo = 1 — o(1) = 3771 @ We then define a

1=n 2
homomorphism v into &, . Mu+m by

Yo(x) =tx)+ fo-tmx)+ fofm-om(x)+ -+ fo-- fik—2ym - Lk—1ym(x),

where 1y (x) = oMi(x), fu = oM™ (fo), etc. By setting Y = ok, we define a
homomorphism v of ®(I)‘_l M, into ®ZM,K,L Muim C Q@ Muymby Vo @Y1 ® - ®
Yr-1.
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Then we proceed just as in the proof of Lemma 4.6. In particular, we should note that
for a projectione € By = ( é_l M,,)y and A € Apypy withc = Z;":_Ol Anyi < 1,

nye) = (1 -l (e),
where u = (1 —¢) " YA1, ..., Auet1) € Ap. O

LEMMA 4.11. Let n,m € Z4 and let S,M € N with M > S. Let e be a non-zero
projection in Ay, such that the i-vanguard V' ([e]) fori =0, 1, ..., n — 1 is confined in
the S-deep face generated by the jth vertices for j = 0,...,n — 1, i.e. if v € Vi([e])
Jori = 0,1,...,n — 1, thenv; < S for j < n (and j # i) and v;j = 0 for
j = n. Let f be a projection in I( Z::ol Mei) such that [e] — [ f] is strictly positive on
Aff_im ={x € Ap+m | xn + -+ + Xngm—1 < 8} for some § > 0 except for the n
vertices of Ap+m—1 inside. Then for any k = (ko, ki, ..., km—1) € N" it follows that

[O(e)] = [Q(f)], where Q is the quotient map of Apym onto

m—1
B = An+m/ Z I(kienti).
i=0

Proof. We show that there are C,,; € Nfori =0, 1,...,m — 1 such that

m—1

le] + Z Cni(x0x1 "'an)Mx’,eri > [f]

i=0
in Z[x1, ..., Xn+m—1]. Since the order ideal corresponding to Z;";Ol I(kjepyi) is
m—1 '
Z xn;l‘Z[xla e Xppm—1],
i=0

this will give the result.
Since [ f] = (x0-- <xp—1)Mr with some r € Z[x1, ..., Xn+m—1], let D be the maximum

of r as a function on Ay, \ Aff_im We choose C; € N sufficiently large so that

m—1

k.
q(X1, s Xntm—1) = Z Cn+ixnt+i > D
i=0

on Ayqm \ Afﬁm. Note that the i-vanguard V(g — r) of ¢ — r with i > n consists of one

point 0. If g1 = (xo - - -xn_l)Mq, then it follows that [e] + g1 — [ f] is strictly positive on

Ap+m—1 except for the vertices. (If it vanishes at some point, excluding the endpoints,

on the edge [i, j] with i < n, j > n, it vanishes on the whole [i, j], which contradicts

the assumption that it is strictly positive near the vertex x; = 1.) We have to check the

positivity condition on the vanguards of [e] + g1 — [ f] foreachi =0,1,...,n+m — 1.
Let L € N be such that [e] and g; — [ f] can be expressed in terms of xV, v € V:

[el= Y box", qi—[f1= ) dux",
veVy veVy

where we suppose that b, > O forall v € V.
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Letv € Vz([e]+q1 —[fDwithi =0,...,n—1. If v; > § for some j # i in
{0, 1, ..., n—1}, then v does not belong to the i vanguard Vz([e]) of [e] by the assumption.
Hence, v; > M forall j #iin{0,...,n — 1} (otherwise d,, = 0 for any w in front of v).
Hence, there must be a v’ € Vi([e]) such that v’ is in front of v (since v} <S<M<=<v;
for j #iin{0,1,...,n —1}and v; = O for j > n). As by +dyy = by > 0, v cannot
belong to Vi([e] + g1 — [f]). This shows that if v € Vi([e] +q1 — [fD,thenv; < §
forall j #iin {0, ...,n — 1}; so its coefficient is positive because it is non-zero and has
contributions only from [e]; v must belong to Vlf([e]).

Next let v € Vi([e] +q1 = [fD) withi =n,....,n+m —1. If v; < M for some
j=0,...,n—1,thend, = 0 and hence b, + d, = b, must be positive. If v; > M for
all j=0,1,...,n— 1, then v mustbe " Me + (L — nM)e;, where d, > 0 (which is
the value taken by ¢ — r on x; = 1); hence b, + d, > d, > 0.

Thus, we conclude the proof that the coefficients of [e] 4+ g1 — [ f] takes positive values
on the vanguards. Hence, [e] + g1 — [ f] > O as claimed. O

The following lemma, together with Lemmas 4.3, 4.4 and 4.6, completes the induction,
thus implying the main theorem of this note. We closely follow the arguments given in the
proof of Theorem 2.8 of [19], where we must apologize since there was some confusion in
details.

LEMMA 4.12. Letn € N withn > 2. If the n-shift has the approximate Rohlin property
and (n — 1)-shift has the stable one-cocycle property, then the n-shift has the stable
one-cocycle property.

Proof. Letm € Z4 and k = (ko, k1, ..., kn—1) € N”. We show that the shift o on the
quotient

m—1
B = An+m/ > Ikienti)
i=0

has the one-cocycle property.
Letu € U(B) be such that ; (u) = 1 fori =0, 1,...,n — 1, where ¢; is the character
on B induced from the character on A, denoted by the same symbol through

m—1
An = Apim / > enti).
i=0

We have to show that for any € > 0 there is a v € U/(B) such that |[u — vo (v)*| < € and
also the two other versions. First we just concentrate on approximating u by vo (v)*.
We denote by Q the quotient map of A4, onto B. Let M € N. From the short exact
sequence
0— QI (Mey)) > B — B/Q(Mey)) — 0

and the assumption that the shift has the one-cocycle property for B/Q(I(Megy)) =
A,,+m/(1 (Meg) + an:_ol I(kie,H_,-)), there is a v € U (B) such that

lu —vo (v*) + QI (Meo))|| ~ 0,

where we have used that ; (Q(u)) = 1 fori = 1,...,n — 1. Thus, by taking a unitary in
QI (Megp)) + 1 close to v*uo (v) instead of u, we may suppose that u € Q (I (Meg)) + 1.
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Similarly, from the short exact sequence
0 — O (Meg + Me1)) — QI (Meo)) — QI (Meo))/ QI (Meo + Me1)) — 0,

where the quotient is isomorphic to I (Meg)/(I (Mey + Mey) + Z;nz—ol [(Meo + kiensi))
which is an ideal of A,i,,/(I(Me;) + ;":BI I(kie,+;)), there is a unitary v €
Q(I(Mep)) + 1 such that

lu —vo (v*) + QI (Meg + Mey))|| =~ 0.

Thus, we may assume that u € Q(I(Meo + Me1)) + 1. Repeating this process, we reach
the following conclusion. For any unitary u € U(B), M € N, and ¢ > 0 we find a
unitary #’ € Q(Jy) + 1 and a unitary v € B such that ||v*uo (v) — u’|| < €, where
Juy = I( Z?;& Me,-). We may further suppose that there is a projection f € Q(Jy) such
thato (f) ~ fandu' =u'f+1— f.

We now have to approximate u’ by vo (v)* for some v € U(B) by assuming that M is
sufficiently large.

We proceed as follows. By mapping a Rohlin cycle for the shift on A, into A,+n
(by Lemma 4.10) and then into the quotient B, we try to approximate u’ by vo (v)*.
The Rohlin cycle, so-embedded, must commute with u” and some translates of ' under o.
If the sum E of projections in the Rohlin cycle dominated f, the support of u’, then
we would be finished by using the now-standard arguments based on the Rohlin cycles.
However, E is not the identity and will never dominate f, because to assure the
commutativity we have to make the Rohlin cycle reside outside of where u’ resides. Thus,
the problem is how to deal with the left-over part u’ f(1 — E) oru” = u' f(1 — E) + 1 —
f(—E).

To approximate u” by vo (v)* we use another similar method. We construct Rohlin
cycles for o and for Adu” o o such that they are of the same type and the sum of
projections covers f(1 — E). For example, let (¢;) and (e;) be N-cycles such that
F=YNle =N e; > f(1 — E), o(e)) = eit1, and Adu"o(e]) ~ e ; then
take a partial isometry w such that w*w = ep and ww* = e, and the desired unitary v
can be obtained by modifying

N-1

Z W'o) (v)+1—F.
i=0

(As a matter of fact we need two Rohlin cycles for each of o and Adu” o to make F large
enough to cover f(1 — E), and we apply this method to u’ directly.)

We now denote by u the unitary in Q(Jy) + 1 for some M € N which we have to
approximate by a unitary of the form vo (v)*.

Lete > 0 and § > 0; we specify § for the given € later.

First we choose N1 € N such that 27 N~ I < €; we construct a set of Rohlin cycles of
length N1, N1 + 1, and of longer length for each of o and Adu’c to approximate u’ by a
unitary of the form vo (v)* within the error of order €.

We then choose N» € N such that if U € My,41 is a unitary with eigenvalues
exp(2rik/N2); k = 0,1, ..., Na, then there is a Nj-cycle (e;) and a N1 + 1 cycle (e;)
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in My,+1 such that vazlo_l e + vazlo e; = 1and

IAdU (e)) — eipll < 8. IAdU(E]) — €1l <.

By making N, larger if necessary, we obtain a sequence (egf)) of Np-cycles in A4y,
with Ex =), eg? such that

k k
max [l (e3)) — €31l < 8.
L

S

[E241(x) = Claoxy - xp-)™2, x € ALY,
S

[Exil(x) = e Y (ixp™, xe Al

i#£ji,j<n

and [E3 ] (x) converges to 1 uniformly on every compact subset of Ay(;(Rm \ Ex(An+m),
where C > 0 is a constant independent of k£ as well as M, € N, ¢ > 0 is a constant,
(6x) is a sequence of positive numbers decreasing to 0, and Aff_im = {x € Apym |
271:?)1 Xnti < 5}.

Let 8’ > 0 be sufficiently small and let N3 € N be such that 2N, 12 _ 5 : 8" will be
chosen for § and N,. By taking N’-cycles for o for N’ > N, N3, we obtain a sequence
(eglf)) of N3 projections in A,4,, with E3x =) ; egl;) such that

k k .
max [lo™(e§)) — e} Il <& i=0,... N3 -2,
l
)
[E3](x) > C'(xox1 - xaD™2,  x € ALY
)
[Esfl() = ¢, > xp™s, xenl),
i#jii,j<n

and [E3x](x) becomes larger than 1 — 1/N3 uniformly on every compact subset of
A,(g:m \ Ex(An+m), where C’ > 0 is a constant independent of k as well as M3 € N,
and ¢; > 0 is a constant. By taking a smaller one, we set C’ = C and ¢; = ¢;.

We set M = M>+ M3+ 1. We now assume that the unitary u € B belongsto Q(Jy)+1.
We also assume that there is a projection f € Jy such that |lo(f) — fIl < N2_18’ and
u =uQ(f)+1— Q(f) and f is local in the sense that f belongs to A+, (Z1) =
(® Z M,,er)y for some finite subset Z;. Further we may assume that (egfg),- and (eglfl.)),-
are local, and they as well as f reside at disjoint subsets.

Then we have that [f(1 — Ex )] = [f1[1 — E24], [f] € (xox1 -- X DMZx1, ...,
Xntm—11,

[f(1 = E20](x) < D(xox1 - xp—DD™, X € Apgm

for some D > 0 and [ f(1 — E3 x)](x) converges to 0 uniformly on every compact subset

of A\ EX(A i) and hence of A,,. On the other hand, we have that
k) (k - %
[l e = C2roxr - -x M7 x e AL,
ok - .
BIzd T @t veal,

i#jii,j<n
and [eg(())eyz))](x) becomes larger than (NaN3)~ L1 =1 /N3) uniformly on every compact
subset of A,(g:m \ ExX(Aj4m)-
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If egfi) is constructed from a projection e, € A, with [¢]] = ¢ € Z[x1,...,x,-1]
through the mapping ¢ into A, ,, (see the proof of Lemma 4.6), then [eékg ] is given by
(1= XY+ %) (1= X5k -7 (=07,

where L’ depends only on the order of [0 ¢ (e)) — ¢o (e})|| and

n+m—1
X = Z Xi.
i=n
Thus, if g(x) = g(x1, ..., xp—1) = ZUE‘,L cpx?, [egf))] is given as

(1 + Xp(X))GL(-xla ceey xn+m—l)a

where p(X) is a polynomial in X = x,, + - - - + x4»—1 and

GL&i, - Xngm—1) = 3 (L= x1 =+ = Xppm—1) 0} oo x"
veVy
Hence, for eachi = 0,...,n — 1, the i-vanguard V"([egé)]) of [eg(?] is the same as that
of G. More precisely V' ([egf))]) is confined in the M>-deep face generated by the ith
vertices fori = 0,...,n — 1,i.e.inthesetof v : {0, 1,...,n +m — 1} \ {i} - Z; with
v < Mpforj <n(and j #i)andv; =0for j > n.
Since
m—1 1
{x € Aptm Z Xn+i < 3 D(xop-- ‘xnfl)M < CZ(XO e 'xnl)M_l}
i=0
contains a small neighborhood of each vertex x; = 1 (except for the vertex) for i =
0,1,...,n — 1, we have that for all sufficiently large k,

Lf(1 = E201(x) < [e3es01(x)

is strict on {x € Autm | an:_ol Xnti < %} except for the n vertices x;, = 1 for
i =0,...,n — 1. Note also the i-vanguards of [eék())egk())] withi = 0,...,n — 1 are
confined in the M> + M3 deep face generated by the ith vertices fori = 0,...,n — 1.

Hence, we can conclude by Lemma 4.11 that

[Q(f(1 = E20)] < [Q(e5gei )]

for all sufficiently large k.

The rest of the arguments proceed as in the proof of Theorem 2.8 of [19].

From now on we will work in B so that we denote Q(f), Q(egfl.)
etc. There should be no confusion.

We take a sufficiently large k. First we find a partial isometry onto f(1 — Exx) € B
from a subprojection of egf()) € B, which is almost o2-invariant, by using (egﬁ? ) in B as
follows.

Let b be a partial isometry in B = A4,/ an:_ol I (kje,+i) such that

), etc., simply by f, egfl.)

k) (k
bb* = f(1— Ea4).  b*b < e§ely.
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Note that we have assumed that f, (egfl? ) and (eg)? ) reside at disjoint subsets of Z, i.e. there
are finite subsets Z1, Z», Z3 of Z, which are mutually disjoint, such that f € B(Z;) =
QAnsm(Z1) = O(Rz, Musm)’. ¢} € B(Z2), and € € B(Z3). (Here we do
not mean that Z1, Z,, Z3 are independent of k; we pick up one k eventually.) We may
suppose that there are x,y,z € U(B) such that x € B(Z1), y € B(Z»), z € B(Z3),
lx — 1] is of order [lo(f) — fIl < N;'8", [ly = 1] = 0, |z — 1] ~ 0, Adxo (f) = f,
Adyo(eS)) = el | and Adz(Ad yo )2 () = Adzo M2 (ef) = e, | fori < N3 —1.
(If the original Z;, Z5, Z3 are not only disjoint, but mutually far away by N,, this is
certainly possible.) Note that the projection f € Q(Jp) ischosensothatu = uf +1— f.

We define

N3—1
d =Ny 3" (Adz(Ad(xy)0) ™) ().
i=0

Then it follows that d is indeed a partial isometry such that dd* = f(1 — E2 ), d*d < eék())
and |Ad z(Ad(xy)0)N2(d) — d|| < 2N; '/* < §'. By assuming that k is sufficiently large,
i.e. ||ly—1| and ||z—1|| are sufficiently small, and by the assumption that ||x —1|| < N{lé’,
we can assume that the unitary w € B defined through (Ad(xy)o)™? = Ad wo ™ satisfies
lw— 1] < &. Since Adwo™2(el)) = egg) and |Ad woN2(d*d) — d*d| < 28,
there is a unitary ¢ € B such thatyg = {egy()) +1- egf()) and || — 1] < &’ such that
Ad ¢ Adwo ™ (d*d) = d*d. In any case we have that |02 (d)—d || is at most of order of §'.

By using the partial isometry d, we define D to be the C*-algebra D generated by
(Ad(Cxy)o)k(d), k =0,1,...,N» — 1. Then D is isomorphic to My, and its identity
is left invariant under Ad(¢xy)o, since Ad(¢xy)o(dd*) = dd* = f(1 — Ez) and
(Ad(Cxy)o)N2(d*d) = d*d. Since |[co’(0)(0")2(C) - (6")N2~1(¢) — 1]| is of order
of &', where 0/ = Ad(xy)o, we have that ||[(Ad(¢xy)o)N2(d) — d|| is of order of &'
Note that if (Ad(zxy)o)M2(d) = d were true, then Ad(¢xy)o would leave D invariant
and be implemented by a unitary U with eigenvalues exp(2rkN, Hhok=01,.. N.
Since ||Zxy — 1|| is of the order of &', it follows that ||[(c — AdU)|D| < § with some
unitary U as above for a suitable choice of §’ (which can depend on § and N). Then by
the choice of N, we obtain a Nj-cycle (f1 ;) and a (N7 + 1)-cycle (f2;) in D such that

Y fui+ 2 fi=1pand
lo(f1,i) — frivill <28, lo(f2,i) — f2iv1ll < 26.

Let f3; = &) — (Ad(Zxy)o)i(d*d) fori =0, 1,..., Ny — 1. Then it follows that

Ad(Exy)o(f3.) = f3i+1;
hence (f3,;) forms a N>-cycle in B such that

lo(f3.0) — fiv1ll <8 +38 <28.
Thus, we have obtained the three cycles (f;;), j = 1, 2, 3, which in particular satisfy that

Ny—1

Ny
fit Y =V Eun
=0 i=0

Ni—1

Y it
i=0

i



The one-cocycle property for shifts 855

(k)

We apply the same argument to Ad uo instead of 0. Note that Ad(xyu)o (e, ;) = e

2,i+1>
AdGryw)o (F(1 = Esp) = f(1 — Ezg) and Adz(AdCeyn)o) ™2 (el)) = Adzo™2(el)

= egkg 41+ With the same b as above, we define a partial isometry d' onto f(1 — Ep ) from

a subprojection of egk()) by

Ni—1
d = N3_1/2 Z (Ad z(Ad(xyu)o)N2)i (b),
i =0

which satisfies that |Ad z(Ad(xyu)o)2(d") — d'| < 2N371 < §’, where we should
note that ||Ad z(Ad(xyu)o)> — o™2|| < §'. Let ¢’ € B be a unitary such that
¢ = ¢'ef)+1—ef) and Ad ¢/ (Ad(xyu)o) > ((d')*d') = (d')*d’ and ||’ — 1| is of order
of 8'. Let D’ denote the C*-algebra generated by (Ad(¢'xyu)o) (d'),i =0,1,..., No—1.
Note that [1p] = (N2 + D[f(1 — E2x)] = [1p/] in Ko(B). Hence, by using the same
formula used to define fi; and f>; we obtain a Nj-cycle (fl/!l.) and a (N1 + 1)-cycle (f2/,i)
in D" such that [ f{ ;1= [f1.i], [fs;1=[f2i), 2 fi; + 2 fo; = 1p, and

IAduo (ff )= f1ll <26, IAduc(f3,) — fr, ]l < 25.

Let f3’)i = egfl.) — (Ad(¢'xyu)o) ((d")*d"), whence Ad(g/xyu)a(fg)i) :f3/,i+l' Then (f3,;)
forms a N;-cycle such that
lo(f3.) — fi+1ll < 28.

Hence, we get the three cycles (fjf!l.), j = 1,2, 3, which in particular satisfy that [fj/.,,.] =
[ f},:] and that the sum of all the projections f]/l is fV Epg.

After having these cycles with appropriate permutation property for o and Aduo,
we proceed exactly as in [19]. We choose partial isometries b1, b>, b3 € B such that

bjbjf = e})o, bjfbj =€;,0-
Then the unitary v which satisfies that uo (v) =~ v is obtained by modifying

Ni—1 Ny Na—1
vi= Y (Luo) (b1) + D _(Luo) (b2) + Y (Ly,o) (b3),
i=0 i=0 i=0
where L, denotes the left multiplication of u. The necessary modifications are done
as follows. First we choose Y, Y’ € U(B) such that |[Y — 1| =~ 0, |Y/ — 1] = 0,
AdYo(fji) = fji+1 and Ad(Y’u)o(fjf,i) = f;,i+1' Such Y (respectively Y’) can be
obtained by modifying ¢xy (respectively ¢’xy). Second we choose sequences (z1; 1N=]0_ !

. N Np—1 .
in U(f1,0B/1,0), (z2i); 2y in U(f2,0Bf2,0) and (z3,);2, in f3,0Bf3,0 such that z; y,—1 =
f1.0: 22,8, = 12,0, 23,N,—1 = f3,0,

21,0 = b (Lyry Ry+0)N1 (by),
22,0 = b3 (Lyr, Ry=0)M1 T (b3),
23,0 = b3(Lyry Ry+a) (b3),

and
-1
lzji = zjis1ll <27N; ' <€,
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where L, (respectively R,) denotes the left (respectively right) multiplication of a.
We then define a unitary v by

Ni—1 Ny

v=Y (LyyuRy-0) (biz1) + Y _(LyuRy=0) (br22))
i=0 i=0
Nr—1 )
+ Y (LywRy=0) (b3z3i) + 1 — f V En.
i=0

Then it follows that v is almost invariant under Ly, Ry=o (up to the order of € > 27 /N).
Since Y ~ 1 and Y’ & 1, it follows that uo (v) =~ v or u ~ vo (v)*.

We now turn to the second property of the one-cocycle property. In the above proof
we should note that the unitary v essentially resides on Z; U Zy U Z3 (or belong to
B(Z] U Z> U Z3)). We have a total control of Z, (where (eg )) resides) and Z3 (where
(e3 )) resides); i.e. by applying ¢ many times we can make Z;, Z3 as far away as we want.
Hence, we only have to control Z1, where f resides.

This amounts to showing that for any finite subset F' of Z, there is a finite subset G of
Z such that for any u € B(Z\ G), there are unitaries u’ € Q(Jy) + 1 and v € B(Z)) such
that ||v*uo (v) — u’|| < €, where Z| must be a finite subset of Z disjoint from F. If we
assume that u € B(Z{) with a finite subset Z{ disjoint from G, then u’ essentially belong
to B(Z1), where Z1 = Z| U Z{ is disjoint from F. (We then apply the above arguments to
u’ instead of u.)

To get such u’ we apply the second condition of the one-cocycle property for the
(n — 1)-shift a finite number of times, as discussed in the beginning of this proof.
Hence, it is indeed possible.

We now turn to the third property of the one-cocycle property. In the above proof
we have chosen four partial isometries b, b1, ba, b3, which we now have to choose more
carefully, i.e. to make them almost commute with a prescribed finite subset of B requiring
some commutativity condition on the unitary u and the projection f, and the cycles e

To find a partial isometry b onto Q(1 — E3 ) from a subprojection of Q(egk())eg o)
we have derived the condition

[Q(f(1 = E20)] < [Q(edges )]

Since we have to impose the condition that b should commute with a prescribed finite-
dimensional C*-subalgebra B; of B, we have to assume that u, f, eéki), and egkl? almost

commute with B; and moreover that

[Q(f(1 — E20))P] < [Q(e5gel o) P]

for all minimal central projections P in Bj.

The first part of the condition is easy. The near commutativity of egfl.) and eglfl.) with Bj
can be assumed just by shifting them by using o. The near commutativity of f can also
be assumed by making f large (in the ideal retaining the condition o (f) = f). The near
commutativity of u follows from the induction assumption, where we use the stable one-
cocycle property for the (n — 1)-shift a finite number of times. Hence, we concentrate on
the second part.
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By lifting B; to a finite-dimensional C*-subalgebra of A,i,,, we regard B; as a
C*-subalgebra of A, (Zo) for some finite subset Zy of Z. We can assume that u, f € Bi
and Z, U Z3 is disjoint from Z. From the latter it follows that

[eS0esop] = [e5eso1tp] = C2(xp - - xa) M2 M2 [ p]
for a minimal central projection p in Bj.

Let Mo = |Zo| and let p be a minimal central projection in By. Let p = Y _ p,
where p, is a non-zero projection such that [p,] = c,x¥ with ¢, € N and V' is a subset
of V. Suppose that f € Jy for some M € N with M > M. Since fp, belongs to the
ideal Jyy N1 (v) = I( Z:l;ol Me; 4 Y Hm=1 vie;j), one can estimate that

[f (1 = E2)p](x) < [fplx) < (ox1 - x0-)™ Y Dyx[n]
veV’

v, —
on Ay for some D, > 0, where x"[n] = x," - - - x,""" .

Set M = My + M» + M3 + 1. Since
[e30es 1) = C2(xg -+ duo ) MOHMAMs N7 0 V)
veV’

on Ay4m, it follows that
k) (k
(X € Angm | [F(1 = E2)pl(x) < [eygelypl ()

includes a neighborhood of the vertex x; = 1, excluding the vertex itself, for i =
0,...,n — 1. Hence, for a sufficiently large k& we have that for all minimal central
projections p in By,

[f (1 — E20)pl(x) < [eygel o pl(x)
on ALY

n+m
As in the proof of Lemma 4.11 we choose C,4+; € N such that

m—1
3 Copix = o xa-) ML — E20)p]
L

AL/

ntm - HeNce,

is strictly positive on Ayt \

e pl 4+ q — (1 = E2p)p]

is strictly positive on A4+, except for the vertices xo = 1,...,x,—1 = 1, where
- ki . .
g = (x0- xp_)M Z;ﬂ:ol Cn+ix,". We express each term as linear combinations of

xV, v € Vi for a sufficiently large L € N. We have to show that the coefficient is positive
on each point of the i-vanguard Vi of [egf())egf())p] +qg—-[f(A—Exx)plfori =0,...,n—1.
Letv € V£~ If vi < M for some j # i in {0,1,...,n — 1}, the contribution from
[f(1 — E2.x)p] must be zero; hence the coefficient is positive.
Suppose that v; > M forall j #iin{0,...,n — 1}. If v, > k¢ for some £ > n, then
w = Zj#;jq Mej+(L—(n—1)M—kg)e;+k¢eg is in front of v and the contribution to the

coefficient of x* from ¢ —[ f (1— E2 «) p], and hence from [egf())egf())p]+q —[f(A—E2x)pl,
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must be positive, which entails that w = v with positive coefficient of x”. So we now have
to consider the case vy < k¢ for all £ > n. In this case the contribution to the coefficient
of xV from g is zero. If there is no w € V' such that Dy, # 0 and wy < vy forall £ > n,
then the contribution from [ f (1 — E2 ) p] is also zero; thus the coefficient of x” must be
positive because it is only contributed from [egk())egk()) pl. Hence, we are left with the case
where there must be w € V’ such that D,, # 0 and wy; < vy for all £ > n. Then there
mustbe v’ € V suchthatv < M for j #iin {O 1, — 1} and v, = wy forall £ > n
such that the contribution to the coefficient of x?' from [egk())egk()) p] is non-zero. Since the
contribution to it from [ f(1 — E2 x) p] must be zero, this implies that v cannot be in V’
Thus, we have shown that the coefficients are all positive on the vanguards V’
Hence, if C,,4; are sufficiently large as well as k, we can conclude that [e;k())egk()) pl+

— [f(1 — E2.x) pl is positive for all minimal central projections p € Bj. Thus, it follows

that

(0568 o] — [O(f (1 — Exp)p)]

is positive on the quotient B for all minimal central projection p € Bj. Hence, we can
choose a partial isometry b in the commutant of By such that

b = Q(f(1 = Ezp)), b < Q(e)el).

We then define partial isometries d, d’ onto Q(f (1 — E x)) and construct C*-subalgebras
D, D' of B (which are isomorphic to My, 1) as before.
We now work in the quotient B = Q(A;4,;); so we omit the symbol Q. Define

Ny—1
V=" (A xyu)o) (d)*)(AdExy)o) (d) + f(1 — Exp).

i=0
Then V is a partial isometry, which we can assume almost commute with a prescribed
finite subset of B by imposing such a condition on u, d, d’. Note that the map AdV :
x > VxV* defines an isomorphism of D onto D; and satisfies that Ad({’xyu)o o
AdV ~ AdV o Ad(¢xy)o on D, where Ad(¢xy)o (respectively Ad(¢'xyu)o) leaves
D (respectively D) almost invariant. Thus, if we choose f;;, j = 1,2, then we may
define f;’i = Vf;iV*, which implies that we may set by = V f1 0 and b, = V f> o, which
almost commute with a prescribed finite subset.

Since V*V = 1p, the Na-cycle (f3;) is defined by

fri =01 = VY

and similarly
k
i == Vv,

Since we can assume that V' as well as 62, ; ) almost commutes with elements of a prescribed
finite-dimensional C*-subalgebra B; of B, we have that [ f3; p] = [ f3’) ; p] for all minimal
central projection p in Bj. Thus, we can find a partial isometry b3 which almost commutes
with By and b3b3 = f3 0 and b3b} = f3”0.

Having chosen b, by, b>, and b3 as above, the third property also follows as the first
property. U
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