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The one-cocycle property for shifts

A. KISHIMOTO

Department of Mathematics, Hokkaido University, Sapporo 060-0810, Japan
(e-mail: kishi@math.sci.hokudai.ac.jp)

(Received 11 December 2003 and accepted in final form 21 September 2004)

Abstract. The two-sided shift on the infinite tensor product of copies of the n × n matrix
algebra has the so-called Rohlin property, which entails the one-cocycle property, useful
in analyzing cocycle-conjugacy classes. In the case n = 2, the restriction of the shift to
the gauge-invariant CAR algebra also has the one-cocycle property. We extend the latter
result to an arbitrary n ≥ 2. As a corollary it follows that the flow α on the Cuntz algebra
On = C∗(s0, s1, . . . , sn−1) defined by αt(sj ) = eipj t sj has the Rohlin property (for flows)
if and only if p0, . . . , pn−1 generate R as a closed sub-semigroup. Note that then such
flows are all cocycle-conjugate to each other.

1. Introduction
For an integer n greater than 1 we denote byMn the n×n matrix algebra over the complex
numbers C. For each integer m ∈ Z we assign a copy M(m)

n of Mn and take the infinite
tensor product Bn = ⊗

m∈ZM
(m)
n . The shift automorphism σ of Bn is defined by sending

an element of M(m)
n to the corresponding element in M(m+1)

n .
In [4] it was shown that σ has the Rohlin property (see below) in the case n = 2.

The proof is based on a known connection between such a σ and a certain quasi-free
automorphism of theC∗-algebra associated with the canonical anti-commutation relations,
or the CAR algebra.

This prompts us to attempt to generalize it. A further exploitation of the CAR algebra
formalism was done in [2, 3]. A full generalization for any n ≥ 2 was done in [15, 16].
Also, an extension to the shift on B = ⊗

Z
(M2 ⊕M3) was done in [18]. In this generality

the Rohlin property for the shift σ reads as follows: for any N ∈ N and ε > 0 there is a
family {e1i | i = 0, 1, . . . , N − 1} ∪ {e2i | i = 0, 1, . . . , N} of projections in B such that∑
i e1i + ∑

2i e2i = 1 and
‖σ(e1,i)− e1,i+1‖ < ε

for i = 0, . . . , N − 2 and
‖σ(e2,i)− e2,i+1‖ < ε

for i = 0, 1, . . . , N − 1. (Hence, it follows that σ(e1,N−1 + e2,N) ≈ e1,0 + e2,0.)
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A useful consequence of this property is the one-cocycle property, i.e. for any unitary
u and ε > 0 there is a unitary v such that ‖u − vσ(v)∗‖ < ε, which is the property we
actually need for applications. We refer the reader to [7, 10] for the Rohlin property and
more applications.

There is yet another attempt on the restriction of the shift to a certain C∗-subalgebra
of

⊗
Z
M2, which corresponds to the gauge-invariant CAR algebra, based on the CAR

algebra formalism [19]. In this case the shift (on this subalgebra) cannot have the Rohlin
property, but can have an approximate version of Rohlin property. The result is that the
shift has the one-cocycle property (appropriately formulated).

In this note we extend the above result to the case of general n > 2. We now formulate
the problem more precisely below.

Let Un be the unitary group of Mn and define an action β of Un on Bn = ⊗
m∈ZM

(m)
n

by
βu =

⊗
m∈Z

Adu(m),

where u(m) is the copy of u in M(m)
n . Note that βu commutes with σ .

Denoting by T the group of complex numbers of modulus one, we regard T
n−1 as a

subgroup of Un by

(z1, . . . , zn−1) 	→




1
z1

. . .

zn−1




and define an action γ of T
n−1 by β|Tn−1. We call γ the gauge action (of T

n−1) on Bn.
Let {eij } denote the matrix units for Mn and let

vm =
∑
ij

e
(m)
ij e

(m+1)
j i .

Then it follows that vm is a self-adjoint unitary in the fixed-point algebra Bβn and satisfies
Ad vm(x(m)y(m+1)) = y(m)x(m+1) for x, y ∈ Mn. If we set Vm = v−mv−m+1 · · · v0 · · · vm,
then Vm ∈ Bβn satisfies that σ(x) = lim AdVm(x) for x ∈ Bn.

We set An = B
γ
n , the fixed-point algebra of Bn under γ = β|Tn−1. Note that σ restricts

to An, which is denoted by σ |An or simply σ . Our purpose is to prove that σ |An has the
one-cocycle property for all n.

To present a precise statement we should note that the approximately finite-dimensional
C∗-algebra An is prime and not simple. It has n maximal ideals of codimension one.

For i = 0, 1, . . . , n− 1, let Ii be the (closed, two-sided) ideal of An generated by e(m)jj ,
j �= i, m ∈ Z. We then note that

(⊗M
−M Mn

) ∩ Ii is orthogonal to �M−Me
(m)
ii . It follows

that the quotient An/Ii is isomorphic to C; let ϕi be the corresponding character on An.

THEOREM 1.1. Let n = 2, 3, . . . and let Bn,An, σ, ϕi be as above. Then the shift σ on
An has the following properties.
(1) For any unitary u ∈ An such that ϕi(u) = 1 for i = 0, . . . , n−1, there is a sequence

(vk) of unitaries in An such that ‖u− vkσ (vk)
∗‖ → 0.
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(2) If (uk) is a sequence in the unitary group U(An) such that ϕi(uk) = 1 for i =
0, . . . , n − 1 and ‖[uk, x]‖ → 0 for all x ∈ Bn, then there is a sequence (vk) in
U(An) such that ‖uk − vkσ (vk)‖ → 0 and ‖[vk, x]‖ → 0 for all x ∈ Bn.

(3) If (uk) is a sequence in U(An) such that ϕi(uk) = 1 for i = 0, . . . , n − 1 and
‖[un, x]‖ → 0 for all x ∈ An, then there is a sequence (vk) in U(An) such that
‖uk − vkσ (vk)‖ → 0 and ‖[vk, x]‖ → 0 for all x ∈ An.

The proof of this theorem occupies the following sections.
Note that An is an approximately finite-dimensional C∗-algebra, i.e. the closure of

the union of an increasing sequence of finite-dimensional C∗-algebras [1]. Since we
have to compare projections in such a C∗-algebra, we need a nice description of the
dimension groupK0(An) of An, i.e. the ordered group generated by equivalence classes of
projections [6]. If n = 2, A2 is already presented in [1], in terms of Bratteli diagram, and
K0(A2) is identified, by Renault [24], with the integer-coefficient polynomials Z[x], with
the positivity defined by strict positivity on the open interval (0, 1), which was good enough
in the discussions in [19]. In general, Handelman [9] shows that K0(An) is identified with
Z[x1, . . . , xn−1] with the order defined as follows: p is positive if p is expressed as

p =
∑

|v|=K
cv(1 − x1 − · · · − xn−1)

v0x
v1
1 · · · xvn−1

n−1

with non-negative coefficients cv ≥ 0, where the sum is taken over all v ∈ Z
n+ with |v| =∑n−1

i=0 vi = K . However, there seem to be no clear criteria for positivity as the Renault’s
result for n = 2, because the strict positivity on the interior of the (n− 1)-simplex
�n = {

(x1, . . . , xn−1) | xi > 0,
∑
i xi ≤ 1

}
with some boundary conditions is not enough.

By introducing a notion of vanguard for p ∈ Z[x1, . . . , xn−1] we give a sufficient
condition for positivity, which is useful enough in the following arguments. If p is
expressed as above and i = 0, 1, . . . , n − 1, the i-vanguard of p on the level K is a
certain subset of v with |v| = K such that cv �= 0 and there is no w between v and Kei
with cw �= 0. We see that the i-vanguard of p is essentially independent ofK as well as the
coefficients cv; hence, if p is positive, those coefficients cv must be positive, which does
not follow from the positivity of p as a function on �n. The sufficient condition states
in Proposition 2.5 that if p is strictly positive on �n possibly except for the vertices and
the above-mentioned condition is satisfied for all the vanguards, then p is positive as an
element of Z[x1, . . . , xn−1].

Note that An has quotients which are of type I. We consider irreducible representations
of An whose images contain the compact operators, which are necessarily σ -covariant
since σ is approximately inner. In Lemma 4.4 we show that the shift on a certain quotient
of An of type I has the properties as in the theorem. This gives the first step of the proof
by induction on n.

Then we show how to locally embed An into An+1, almost intertwining the shifts.
This process will show, with the known result for n = 2 shown by the CAR algebra
formalism (4.3), that the shift on An has the approximate Rohlin property for all n
(see Lemma 4.6); by this property (Definition 4.2) we essentially mean that there is a
sequence (e(k)i ) in the orthogonal family of N projections in An for arbitrarily large N

such that ‖σ(e(k)i ) − e
(k)
i+1‖ → 0 as k → ∞ and N[e(k)0 ](x) converges to 1 uniformly
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in x on every compact subset of �n except for the vertices, as well as the lower estimate
[e(k)0 ](x) ≥ C(x0x1 · · · xn−1)

S for some S ∈ N and C > 0 independent of k, where

x0 = 1 − x1 − · · · − xn−1, and some estimates on the vanguards of [e(k)0 ] independent of k.
We see that the additional conditions on [e(k)0 ] play an important role in comparison with
other projections.

With some explicit estimates, in K0(An), of the projections involved, we then proceed
just as in [19]. The crucial induction step is given in Lemma 4.12.

In the above theorem the first property is weaker than the third.

Remark 1.2. Let α be an approximately inner automorphism of An. If α has the third
property of Theorem 1.1, then it also has the first property. This follows because then α
is almost conjugate to the shift σ , i.e. there is a sequence (φm) of approximately inner
automorphisms of An such that ‖α − φmσφ

−1
m ‖ → 0, as follows from Theorem 4.1 of [8].

If u ∈ U(An) such that ϕi(u) = 1, we have a sequence (vm,k) in U(An) for each m ∈ N

such that ‖φm(u) − vm,kσ (vm,k)
∗‖ → 0 as k → ∞. Then we can choose a sequence

(vm) from (φ−1(vm,k)) such that ‖u − vmα(vm)
∗‖ → 0. (Since φm may not extend to an

automorphism of Bn, this method does not show that α also has the second property. If α
does not extend to an automorphism of Bn, α is unlikely to have the second property.)

The following is a corollary of Theorem 1.1(2).

COROLLARY 1.3. Let n,Bn,An, σ be as above. Then the shift σ on Bn has a sequence
(Um) in U(An) such that σ(x) = limm→∞ AdUm(x) for x ∈ Bn and limm→∞ ‖σ(Um)−
Um‖ = 0.

Proof. We have defined Vm = v−mv−m+1 · · · v0 · · · vm ∈ An, which satisfies

σ(x) = lim AdVm(x), x ∈ Bn
but does not satisfy lim ‖σ(Vm) − Vm‖ = 0. (By calculation, it follows that the spectrum
of Vmσ(V ∗

m) is {1, e2πi/3, e−2πi/3} and hence that ‖σ(Vm) − Vm‖ = √
3 for m ≥ 1.)

Since Vmσ(Vm)∗ ∈ An, ϕi(Vmσ(V ∗
m)) = 1, and (Vmσ(V ∗

m)) is a central sequence in
U(Bn), the previous theorem gives us a sequence (Wm) in U(An) such that ‖Vmσ(V ∗

m) −
Wmσ(W

∗
m)‖ → 0 and ‖[Wm, x]‖ → 0 for x ∈ Bn. LetUm = W∗

mVm ∈ U(An). Then (Um)
satisfies the required conditions. �

In connection with the above corollary a question arises naturally of whether (Um) can
be chosen from the smaller fixed-point algebra Bβn .

When � is a positive integer, we denote by σ (�) the cyclic shift on
⊗�−1

m=0M
(m)
n defined

by x(m) 	→ x(m+1) with x(�) = x(0). We also denote by γ (�) the action of T
n−1 on⊗�−1

m=0M
(m)
n by

⊗�−1
m=0 Ad z(m), z ∈ T

n−1.

COROLLARY 1.4. For the shift σ on Bn and ε > 0 there exists an increasing sequence
(�k) in N, an automorphism φ of Bn, and a unitary w ∈ An such that φγz = γzφ for
z ∈ T

n−1, ‖w − 1‖ < ε, and the pair of Adwφσφ−1 and γ is conjugate to the pair of⊗∞
k=1 σ

�k and
⊗∞

k=0 γ
(�k) on

⊗∞
k=1

(⊗�k−1
m=0 M

(m)
n

) ∼= Bn.
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Proof. For a, b ∈ N with a < b we define

u(a,b) =
∑
i,j

e
(a)
ij e

(b)
ji .

Then Adu(a,b)σ acts on
⊗b−1

m=a M
(m)
n as the cyclic shift.

By using Theorem 1.1 we can derive the following: for any finite subset F of Z and
ε > 0 there is a finite subset G of Z such that for any unitary u ∈ An ∩ ⊗

m�∈GM
(m)
n there

is a unitary v ∈ An ∩ ⊗
m�∈F M

(m)
n such that ‖u− vσ(v∗)‖ < ε.

By using this fact we define inductively a decreasing sequence (ak), an increasing
sequence (bk), and sequences (vk) and (wk) of unitaries in An such that a1 = 0,
b1 = 1, wkvkσ(vk)∗ = u(ak,bk), ‖wk − 1‖ < 2−kε, and vk,wk ∈ ⊗

Zk
Mn for mutually

disjoint family (Zk) of finite subsets of Z. Then φ = limk Ad(v1v2 · · · vk) is well
defined as an automorphism of Bn, as well as w = limk w1w2 · · ·wk as a unitary in
An. Then we check that Adwφσφ−1 leaves

⊗bk−1
m=ak Mn invariant and acts as a cyclic

shift on
⊗ak−1−1

m=ak Mn ⊗ ⊗bk−1
m=bk−1

Mn for each k ≥ 1 with a0 = b0 = 0. Then with
�k = bk − bk−1 − ak + ak−1 we can conclude the proof. �

The above corollary shows that the action of T
n−1 ×Z on Bn defined by (z, k) 	→ γzσ

k ,
which does not leave any finite-dimensional C∗-subalgebra of Bn invariant, is cocycle
conjugate to an action which is of product type.

Remark 1.5. Let z ∈ T
n−1 be such that zm �= 1 for any non-zero m ∈ Z and define an

action Z
2 on Bn by α(a,b) = γ az σ

b. Then α is cocycle conjugate to the action α′ defined by

α′
(a,b) = φ ◦ (γz)a(Adφ−1(w)σ)b ◦ φ−1 = γ az (Adwφσφ−1)b

in the notation of the above corollary, which is of product type. We should note that such an
action with the Rohlin property (i.e. each α(a,b) has the Rohlin property for (a, b) �= 0) is
unique up to cocycle-conjugacy [23]. Hence, since α has the Rohlin property, α is cocycle
conjugate to, e.g., the action α′′ defined by

α′′
(a,b) = γ az1

γ bz2
,

where z1, z2 ∈ T
n−1 is any pair which generates a copy of Z

2 in T
n−1. It seems that we

still do not know if there is an action of Z
2 on Bn with the Rohlin property which is not

cocycle conjugate to an action of product type.

Another corollary extends what is stated in [19] for n = 2.

COROLLARY 1.6. Let n be an integer greater than 1 and On be the Cuntz algebra
generated by n isometries s0, s1, . . . , sn−1 satisfying the relation

∑n−1
j=0 sj s

∗
j = 1 (see [5]).

For p = (p0, p1, . . . , pn−1) ∈ R
n define a flow α on On by αt (sj ) = eipj t sj for

j = 0, . . . , n− 1. Then the following conditions are equivalent:
(1) {p0, . . . , pn−1} generates R as a closed sub-semigroup;
(2) the crossed product On ×α R is purely infinite and simple;
(3) α has the Rohlin property, i.e. for any λ ∈ R there is a central sequence (um) in

U(On) such that ‖αt (um) − eiλtum‖ → 0 uniformly in t on every compact subset
of R.
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Proof. First we note that On is a purely infinite, simple, nuclear C∗-algebra [5] and such a
class is now well studied [12, 13].

The equivalence of (1) and (2) follows from [14, 22]. That (3) implies (2) follows
from [17]. What is left to prove is that (1) implies (3). If (1) holds, it is shown by
combinatorial arguments in [18] that for any λ ∈ R there is a sequence (um) of unitaries in
the ∗-subalgebra generated by s0, . . . , sn−1 such that ‖αt (um)−eiλtum‖ → 0 uniformly in
t on every compact subset of R. As in the proof of Proposition 3.2 of [19], with the property
of σ | An as given in Theorem 1.1(1), there is a sequence (φk) of unital endomorphisms
of On such that [φk(x), y] → 0 for any x, y ∈ On and αtφk = φkαt . Then we can choose
a central sequence from {φk(um) | k,m ∈ N} which satisfies the required condition for
λ ∈ R. �

We would like to add that the flows α on On satisfying the conditions in the above
corollary are cocycle conjugate to each other [19], i.e. for any flows α and α′ on On

of the above form there is an automorphism φ of On and an α-cocycle u such that
Adutαt = φα′φ−1. See [20, 21] for more on Rohlin flows.

2. The dimension group of An
For n = 2, 3, . . . we denote by Z[x1, . . . , xn−1] the abelian group of integer coefficient
polynomials in x1, . . . , xn−1. For v = (v0, v1, . . . , vn−1) ∈ Z

n+ we let

xv = x
v0
0 x

v1
1 · · · xvn−1

n−1 ,

where x0 = 1−x1−· · ·−xn−1 and Z+ is the set of non-negative integers. The polynomials
of degree less than or equal to N are linearly spanned by xv , |v| = ∑n−1

i=0 vi = N , which
are linearly independent.

We denote by Z
+[x1, . . . , xn−1] the cone generated by xv, v ∈ Z

n+. By using this
as a positive cone we define an order on Z[x1, . . . , xn−1], i.e. p1 ≥ p2 if p1 − p2 ∈
Z

+[x1, . . . , xn−1]. We call an element of Z
+[x1, . . . , xn−1] positive.

We define

�n =
{
λ = (λ1, . . . , λn−1) ∈ [0, 1]n−1

∣∣∣∣
n−1∑
j=1

λj ≤ 1

}
.

If λ ∈ �n, then λ0 denotes 1 − λ1 − · · · − λn−1.
If p ≥ 0, then p is non-negative on�n and moreover satisfies that if p(λ) = 0 for some

λ ∈ �n then p = 0 on the face of �n generated by λ. (This is because each xv satisfies
this condition.) However, the converse does not follow if n > 2 (compare this with the
case n = 2 in [24]).

For example, if p ∈ Z[x1, x2] is given by

p(x1, x2) = x1(x
2
1 + (1 − x1 − 2x2)

2),

then p = 0 on the face �′ = {x ∈ �3 | x1 = 0}, but p > 0 on �3 \�′. If p is expressed
as

p =
∑

k+�+m=N
ak,�,mx

k
0x
�
1x
m
2 ,
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for some N ∈ N with ak,�,m ∈ Z+, then that � = 0 implies that ak,�,m = 0. Hence, we
should have that

x2
1 + (1 − x1 − 2x2)

2 =
∑

k+�+m=N−1

ak,�+1,mx
k
0x
�
1x
m
2 .

If x1 = 0, the left-hand side vanishes for x2 = 1
2 but not for x2 �= 1

2 . This is not possible
for the right-hand side.

Another example can be given by p(x1, x2) = x2
1 +x2

2 −x1x2. This is strictly positive on
�3 except for x0 = 1 or x1 = 0 = x2. If we express p as p = ∑

k+�+m=N ak,�,mxk0x
�
1x
m
2 ,

then the highest order in x0 must be N − 2 and the sum of terms which include xN−2
0 is

xN−2
0 (x2

1 + x2
2 − x1x2) = xN−2

0 p(x); thus p is not positive.
Note that if p ∈ Z[x1, . . . , xn−1] is positive and�′ is a face of �n with �′ ∼= �m, 1 <

m < n, then p|�′ can be understood as a positive element (or zero) of Z[x1, . . . , xm−1] by
taking m− 1 free variables in a certain order.

The following is due to Handelman [9].

PROPOSITION 2.1. The dimension group K0(An) is isomorphic to Z[x1, . . . , xn−1],
where the isomorphism is defined by

[ M∏
m=−M

e
(m)
imim

]
	→

M∏
m=−M

xim

for im = 0, . . . , n− 1 andM ∈ N, with x0 = 1 − x1 − · · · − xn−1.
The positive cone C = Z

+[x1, . . . , xn−1] is the cone with the following properties:
(1) xi ∈ C for i = 0, . . . , n− 1, where x0 = 1 − x1 − · · · − xn−1;
(2) pq ∈ C if p, q ∈ C;
(3) p ∈ C if p ∈ Z[x1, . . . , xn−1] is strictly positive as a function on �n.

Proof. In this proof we write An as A omitting the subscript n.
Let (Zk) be an increasing sequence of finite subsets of Z such that the number |Zk| of

elements in Zk is k and
⋃
k Zk = Z, and let A0 = C1 and

Ak =
( ⊗
m∈Zk

M(m)
n

)γ
.

Then (Ak) is an increasing sequence of finite-dimensional C∗-subalgebras of A such that
A = ⋃

k Ak .
Let e0, . . . , en−1 be the canonical basis for Z

n and let, for each k ∈ N,

Vk =
{
v ∈ Z

n+
∣∣∣∣ |v| =

n−1∑
i=0

vi = k

}
,

where Z+ = {0, 1, 2, . . . , }. For v ∈ Vk we denote by N(v) the number of sequences
(ei1, . . . , eik ) in {e0, . . . , en−1} such that v = ∑k

j=1 eij , i.e.

N(v) = |v|!/v! = |v|!(v0!v1! · · · vn−1!)−1.

Define
Ev =

∑
�m∈Zke

(m)
im,im

∈ Ak,
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where the sum is taken over all the map i : Zk → {0, . . . , n − 1} such that∑
m∈Zk eim = v. It follows that Ev is a minimal central projection of Ak and AkEv ∼=

MN(v). The embedding of Ak into Ak+1 is given as follows: for v ∈ Vk and w ∈ Vk+1,
AkEv is mapped into Ak+1Ew with multiplicity one if and only if w = v + ei for some i
or w ≥ v in the sense that wi ≥ vi for all i.

We define a map ψk ofK0(Ak) into Z[x1, . . . , xn−1] by the following. If e is a minimal
projection in AkEv , then

ψk([e]) = xv = x
v0
0 x

v1
1 · · · xvn−1

n−1 ,

where v = (v0, . . . , vn−1) and x0 = 1 − x1 − · · · − xn−1. Since ψk+1 ◦ ι∗ coincides with
ψk onK0(Ak), where ι is the embedding of Ak into Ak+1, we can define a homomorphism
ψ of K0(A) into Z[x1, . . . , xn−1]. Since the range of ψk is the polynomials of order less
than or equal to k, it follows that ψ is surjective. Since ψk is injective, it also follows
that ψ is injective. It is easy to check that ψ is defined as indicated in the statement and
that the range of ψ on the projections in A generate the positive cone Z

+[x1, . . . , xn−1].
Therefore, ψ is indeed the required isomorphism. Note that ψ([1]) = 1.

We have to show the statement on the positive cone. It is immediate that conditions (1)
and (2) are valid and are enough to generate Z

+[x1, . . . , xn−1]. We now show the validity
of condition (3), which has been known for some time at least for n = 2 (see, e.g.,
[11, p. 126]).

First of all note that for each λ ∈ �n there is a unique tracial state τλ on A such that for
a minimal projection e ∈ AkEv with v ∈ Vk ,

τλ(e) = λv = λ
v0
0 λ

v1
1 · · · λvn−1

n−1 .

Moreover, τλ is factorial and all the factorial tracial states of A are of this form, as shown
by the following lemma.

Let p ∈ Z[x1, . . . , xn−1] be such that p is strictly positive on �n. Since ψ is a
group isomorphism, there are projections e, f in Mm ⊗ Ak for some m, k such that
p = ψ([e] − [f ]). What we have to show is that [e] ≥ [f ], i.e. f is equivalent to a
subprojection of e.

Suppose the contrary, i.e. there is a sequence (v�)�>k with v� ∈ V� such that

rank(e(1m ⊗ Ev�)) < rank(f (1 ⊗ Ev�))

in Mm ⊗ A�Ev� . We extend the state on A� defined by

x 	→ N(v�)
−1 Tr(xEv�)

to a state ϕ� on A, where Tr is the trace on A�Ev� ∼= MN(v�). We take a weak∗ limit point
τ of (ϕ�)�>k. Then it follows that τ is a tracial state on A for which

Trm ⊗ τ (e) ≤ Trm ⊗ τ (f ),

where Trm is the trace onMm. Since τ belongs to the closed convex hull of τλ, λ ∈ �n, this
contradicts the assumption that Trm⊗τλ(e) > Trm⊗τλ(f ) for all λ ∈ �n. This concludes
the proof of condition (3). (We see in Lemma 2.3 that the above τ is actually τλ for some
λ ∈ �n.) �



The one-cocycle property for shifts 831

LEMMA 2.2. Let τ be a factorial tracial state on An. Then there is a λ ∈ �n such that
τ = τλ.

Proof. Since τ is a tracial state on A = An, there is map ϕk : Vk → [0, 1] such that
τ (e) = ϕk(v) for a minimal projection e in AkEv . We should note that (ϕk) is independent
of the choice of (Zk) by which Ak is defined as Ak = (⊗

m∈Zk M
(m)
n

)γ . By choosing
Zk+1 = Zk ∪ {N} for a large N and by using

ϕk+1(v + ei) = τ (ee
(N)
ii ),

with e a minimal projection in AkEv , we get that

ϕk+1(v + ei) = ϕk(v)ϕ1(ei)

for v ∈ Vk . Here we have used the assumption that τ is factorial and that (e(N)ii )N is a

central sequence with τ (e(N)ii ) = ϕ1(ei). Setting λi = ϕ1(ei) for i = 0, . . . , n − 1, we get

that
∑n−1
i=0 λi = 1 and ϕk(v) = λv = λ

v0
0 · · · λvn−1

n−1 . Hence, λ = (λ1, . . . , λn−1) ∈ �n and
τ = τλ. �

In the following lemma we adopt the notation in the proof of the above proposition.
In particular, we simply denote by A the C∗-algebra An and we express A as the closure
of

⋃
k Ak , where Ak = (⊗

Zk
Mn

)γ and |Zk| = k.

LEMMA 2.3. Let (m�) be an increasing sequence of integers, (v�) a sequence in
⋃
m Vm,

and λ ∈ �n such that v� ∈ Vm� , m� → ∞, and

v�,i

m�
→ λi

as � → ∞ for i = 0, 1, . . . , n − 1, where v� = ∑n−1
i=0 v�,iei . Let ϕ� be a state of A

such that ϕ�|Ev�Am� = N(v�)
−1 Tr, where Tr is the trace on MN(v�)

∼= Ev�Am� . Then ϕ�
converges to τλ as � → ∞.

Proof. Let k ∈ N. We evaluate ϕ�|Ak form� � k. Note that ϕ�|Ak is a tracial state; hence,
it is expressed as

ϕ�|Ak =
∑
w∈Vk

dwN(w)
−1 Tr|EwAk,

for non-negative constants dw with
∑
w dw = 1.

The multiplicity with which EwAk is embedded into Ev�Am� is

N(w, v�) = (m� − k)!
(v�,0 −w0)!(v�,1 − w1)! · · · (v�,n−1 −wn−1)!

if w ≤ v�; otherwise it is zero. (For w ≤ v�, N(w, v�) is the coefficient of xv�−w in the
expansion of (x0 + x1 + · · · + xn−1)

m�−k .) Hence, we have that if dw is non-zero, then

dw = ϕ�(Ew) = N(v�)
−1N(w)N(w, v�).

Suppose that all λi are positive. If m� is so large that v�,i � wi , then it follows that

dw = N(w)
(m� − k)!v�,0! · · · v�,n−1!

m�!(v�,0 −w0)! · · · (v�,n−1 −wn−1)!
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is approximately equal to
N(w)λ

w0
0 λ

w1
1 · · · λwn−1

n−1 .

This shows that ϕ�|Ak converges to τλ|Ak .
Next we consider the case where some of λi are zero. For simplicity suppose that

λi = 0 for i = j, . . . , n− 1 with some j > 0. Then we have that for w ∈ Vk with wi = 0,
i = j, . . . , n− 1,

dw ≈ N(w)λ
w0
0 λ

w1
1 · · · λwj−1

j−1 ,

and for w ∈ Vk with
∑n−1
i=j wi = s > 0, dw is of the order of m−s

� v
wj
j · · · vwn−1

n−1 , which
converges to zero. Thus, in this case too one can conclude that ϕ�|Ak converges to τλ|Ak .
Since k is arbitrary, it follows that (ϕ�) converges to τλ in the weak∗ topology. �

Suppose that p ∈ Z[x1, . . . , xn−1] is strictly positive as a function on �n except for
some extreme points. If the degree of p is less than or equal to k, then p can be expressed
as

p(x1, . . . , xn−1) =
∑
w∈Vk

cwx
w

in a unique way, where the coefficients cw are integers and xw = x
w0
0 x

w1
1 · · · xwn−1

n−1 with
x0 = 1 − x1 − · · ·− xn−1. To obtain a similar expression in terms of xv, v ∈ Vk+1, we just
have to multiply the right-hand side with x0 + x1 + · · · + xn−1 and expand it.

Let a0 = max{w0 | cw �= 0} and define

q0(x1, . . . , xn−1) =
∑

w∈Vk, w0=a0

cwx
w1
1 · · · xwn−1

n−1 .

We note that q0 does not depend on k (if k increases by one, then so does a0); unique to
the vertex x0 = 1. If p(0, 0, . . . , 0) = c(k,0,...,0) = c �= 0, then q0 = c. Similarly we can
define qi as a polynomial in xj , j �= i. If p is positive in Z[x1, . . . , xn−1], it follows that
qi, i = 0, . . . , n− 1 are positive (or zero) in Z[x1, . . . , xn−1].

More generally we define the 0-vanguard V 0
k of p on the level k as the set of w ∈ Vk

which satisfies that cw �= 0 and that if v is in front of w in the direction to the zeroth vertex,
i.e. v = w + se0 − ei1 − ei2 − · · · − eis ∈ Vk with ij �= 0 for some s > 0, then cv = 0.

Then the map w 	→ w+e0 from Vk into Vk+1 restricts to a bijection from V 0
k onto V 0

k+1
preserving the coefficients cw.

To prove this, let w ∈ V 0
k . If v′ ∈ Vk+1 is in front of w + e0, then v′ − e0 ∈ Vk is in

front of w and hence cv′−e0 = 0. If v′ = w′ + ei for some i �= 0, then w′ = v′ − ei is in
front of w+ e0 − ei , which is in front of w, and hence cw′ = 0. This way we can conclude
that cv′ = 0 as cv′ is the sum of cv′−ei with v′ − ei ∈ Vk. If w + e0 = w′ + ei for some
w′ �= w, then w′ = w + e0 − ei is in front of w and hence cw′ = 0. This implies that
cw+e0 = cw �= 0. Hence, it follows that w + e0 ∈ V 0

k+1 and cw+e0 = cw.
On the other hand let v ∈ V 0

k+1; if w = v − e0 �∈ V 0
k , then it follows that cw = 0 or

there is a w′( �= w) in front of w such that cw′ �= 0. Since cv �= 0, there is i such that
cv−ei �= 0. If i = 0, then it means that cw �= 0. If i �= 0, then v − ei = w + e0 − ei is
in front of w and cw+e0−ei �= 0. Thus, in either case there is a w′ in front of w such that
cw′ �= 0. We choose such a w′ of maximal w′

0, i.e. w′ ∈ V 0
k . Then w′ + e0 is in front
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of w + e0 = v, which implies that cw′+e0 = 0. If w′ + e0 = u + ei for some i �= 0,
u = w′ +e0 −ei is in front ofw′ and hence cu = 0. Since cw′+e0 = cw′ +∑n−1

i=1 cw′+e0−ei ,
this would imply that cw′+e0 = cw′ , which is a contradiction. This proves that v− e0 ∈ V 0

k

for v ∈ V 0
k+1. From the first part it also follows that cv−e0 = cv . Hence, the above assertion

is now shown.
One can similarly define the i-vanguard V ik of p on the level k for i = 1, . . . , n− 1 and

we have a similar bijection from V ik onto V ik+1 with the property cw+ei = cw,w ∈ V ik .

Definition 2.4. Let p ∈ Z[x1, . . . , xn−1] and i = 0, 1, . . . , n − 1. The i-vanguard V i(p)
of p is the set of v : {0, 1, . . . , n − 1} \ {i} → Z such that v(k) ∈ V ik (p), where
V ik (p) is the ith vanguard of p on the level k and v(k) is defined by v(k)j = vj for j �= i

and v(k)i = k − ∑
j vj . When p = ∑

v∈Vk cvx
v and v ∈ V i(p) for some i, we set

p(v) = cv .

The following gives a sufficient condition for positivity.

PROPOSITION 2.5. Let p ∈ Z[x1, . . . , xn−1] be such that p is strictly positive on �n
except for some extreme points. Then p is positive if and only if p(v) > 0 for all
v ∈ V i(p), i = 0, 1, . . . , n− 1.

Proof. We write p as

p(x1, . . . , xn−1) =
∑
w∈Vk

cwx
w,

where k is greater than or equal to the degree of p. We have to show that for a sufficiently
large k, all cw are non-negative by using the assumption that p is strictly positive on �n
except for the vertices and that cw > 0 for w ∈ ⋃n−1

i=0 V
i
k (p); the other implication is

obvious.
If the assertion is false, there is a sequence (v�) such that v� ∈ V� and cv� < 0. We may

suppose that v�,i/� → λi for each i = 0, 1, . . . , n− 1. Then the above lemma shows that

cv�N(v�)
−1 → p(λ).

where N(v�) = �!(v�!)−1 and λ = (λ1, . . . , λn−1) ∈ �n. (To make the correspondence
with the lemma clearer, let us find two projections e, f in (a matrix-tensored) A such that
p = [e] − [f ] and let ϕ� be a state of A such that ϕ�|Ev�A� is a tracial state. Then it is
shown that ϕ�(e − f ) = cv�N(v�)

−1, which is negative, converges to τλ(e − f ) = p(λ).)
If λ is not a vertex of �n, then p(λ) > 0, which implies that λ must be a vertex; we may
thus assume that v�,0/� → 1 and v�,i/� → 0 for i = 1, . . . , n− 1.

Let w ∈ Vk . If w ≤ v�, EvAk is embedded into Ev�Av� with the multiplicity N(w, v�)
defined before. Hence, we have that

cv� =
∑

w∈Vk,w≤v�
cwN(w, v�).

If cw < 0 for somew ∈ Vk with w ≤ v�, then there is a w′ ∈ V 0
k (p) such thatw′ is in front

of w (and cw > 0). Then we can argue that cv� must be positive for large � by showing
that the contribution of cwN(w, v�) to cv� , which is negative, is overshadowed by a tiny
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portion of cw′N(w′, v�) which is positive, as follows. Since

N(w, v�) = (�− k)!
(v�,0 −w0)! · · · (v�,n−1 −wn−1)! ,

and w′
0 > w0 and w′

i ≤ wi for i > 0, we have that w′ ≤ v� for large � and

N(w′, v�)
N(w, v�)

= (v�,0 −w0)!
(v�,0 −w′

0)!
(v�,1 −w1)! · · · (v�,n−1 −wn−1)!
(v�,1 −w′

1)! · · · (v�,n−1 −w′
n−1)!

is approximately equal to or more than

�w
′
0−w0

v
w1−w′

1
�,1 · · · vwn−1−w′

n−1
�,n−1

which tends to infinity as � → ∞. Hence, we can conclude that cv� > 0 for a sufficiently
large �, which is a contradiction. �

LEMMA 2.6. Let p and q be positive elements of Z[x1, . . . , xn−1] and i = 0, 1, . . . , n−1.
Then the i-vanguard V i(pq) of pq is contained in {v +w | v ∈ V i(p), w ∈ V i(q)}.
Proof. Let p = ∑

v∈VK cvx
v and q = ∑

v∈VK dvx
v for some K ∈ N. Suppose that there

are v,w ∈ VK such that cv > 0, dw > 0, and v + w is in the i-vanguard of pq on the
level 2K . If v �∈ V iK(p), then there is a v′ ∈ VK such that v′ is in front of v toward
the ith vertex and cv′ �= 0. Then v′ + w is in front of v + w toward the ith vertex and
the coefficient of xv

′+w in the expansion of pq in xµ, µ ∈ V2K is greater than or equal
to cv′dw, i.e. does not vanish, which is a contradiction. Similarly we can conclude that
w ∈ V iK(q). If u ∈ V2K satisfies that if u = v+w with v,w ∈ VK then cv = 0 or dw = 0,
then u cannot belong to the vanguards of pq . This concludes the proof. �

Later we use a more elaborate form of the following.

COROLLARY 2.7. Let p ∈ Z[x1, . . . , xn−1] be a positive element such that p is strictly
positive on�n except for the vertices. Then there exists aK ∈ N such that p−q is positive
for any q ∈ (x0x1 · · · xn−1)

KZ[x1, . . . , xn−1] if p − q is strictly positive on �n except for
the vertices.

Proof. Suppose that the degree ofp is less thanK . Let q ∈ (x0 · · · xn−1)
KZ[x1, . . . , xn−1].

We express p and q as
p =

∑
v∈VL

cvx
v, q =

∑
v∈VL

dvx
v

for some L ≥ K . We consider the i-vanguard V iL(p−q) of p−q on the level L. Note that
the i-vanguard V iL(q) is confined to {v | vj ≥ K for j �= i}.

Let v ∈ V iL(p − q) and suppose that vi ≤ L − K . Since the i-vanguard of p on the
level L is V iK−1(p) + (L − K + 1)ei , we have that dv �= 0. (If dv = 0, then we must
have that cv �= 0; since v does not belong to V iL(p), there is w ∈ V iL(p) in front of v
toward the ith vertex such that cw �= 0 and wi > L − K . Since dw = 0 for such a w,
we have that cw − dw = cw �= 0, which is a contradiction.) Since dv �= 0, we have that all
vj ≥ K . If w ∈ VL satisfies that wi = L − K + 1, then wi − vi > 0 and wj − vj < 0
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for j �= i, i.e. we have that all w ∈ VL with wi = L−K + 1 are in front of v towards the
ith vertex. Thus, all of the points w ∈ VL with wi > L − K are in front of v; hence, v
cannot belong to V iL(p− q). This implies that if v ∈ V iL(p− q), then vi > L−K; hence,
V iL(p − q) = V iK−1(p) + L −K + 1. Note that cw − dw = cw > 0 for w ∈ V iL(p − q).
Since p − q is strictly positive on �n \ Ex(�n), the conclusion follows from the previous
proposition. �

To estimate the vanguards we use the following lemma.

LEMMA 2.8. Let p be a non-negative element of Z[x1, . . . , xn−1] such that

p(x1, . . . , xn−1) ≥ c
∑
i �=j
(xixj )

S

on �n for some c > 0 and S ∈ N. Then the vanguards V i(p) of p are confined in the
S-neighborhood of vertices; more precisely, if ω ∈ V i(p) for some i = 0, 1, . . . , n − 1,
then there is a j �= i such that ωk = 0 for k �= i, j and ωj ≤ S.

Proof. Let p = ∑
v∈VK cvx

v and let i = 0, 1, . . . , n−1 and j �= i. If x ∈ �n satisfies that
xk = 0 for k �= i, j , i.e. if x is on the edge [i, j ] between the vertices xi = 1 and xj = 1,
then p(x) ≥ c(xixj )

S . Since for xi ≈ 1 (and xj = 1 − xi ≈ 0),

p(x) =
∑

w∈V ik (p)
cwx

w + · · · ,

there must be an ω ∈ V ik (p) such that ωk = 0 for k �= i, j and ωj ≤ S. Hence,
V iK(p) contains ω(j) for each j �= i such that ω(j)j ≤ S and ω(j)k = 0 for k �= i, j

(and ω(j)i = K − ω
(j)

j ). This implies that if ω ∈ VK has j �= i such that ωj ≥ S, then ω(j)

is in front of ω (towards the ith vertex), i.e. ω �∈ V iK(p) unless ω = ω(j). This proves the
assertion. �

LEMMA 2.9. Let k = (k0, k1, . . . , kn−1) ∈ Z
n+. Then the order ideal of Z[x1, . . . , xn−1]

generated by xk = x
k0
0 · · · xkn−1

n−1 is equal to xkZ[x1, . . . , xn−1], where x0 = 1 − x1 − · · · −
xn−1.

Proof. Let p be a non-negative element of Z[x1, . . . , xn−1] such that Nxk − p ≥ 0 for
some N ∈ N. Then for a sufficiently large L ∈ N, we have c, d : VL → Z+ such that

Nxk =
∑
w∈VL

cwx
w, p =

∑
w∈VL

dwx
w

and cw ≥ dw ≥ 0 for all w ∈ VL. Since cw > 0 if and only if w ≥ k, this implies that if
dw > 0 then w ≥ k and that

p = xk
( ∑
w∈VL,w≥k

dwx
w−k

)
.

Since the other inclusion is obvious, this concludes the proof. �
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For k ∈ Z
n+ we denote by I (k) the ideal of An corresponding to the order ideal of

K0(An) ∼= Z[x1, . . . , xn−1] generated by xk = x
k0
0 x

k1
1 · · · xkn−1

n−1 . The ideal Ii which is used
to define the character ϕi in the main Theorem 1.1 is given as

Ii =
∑
j �=i

I (ej ).

We note that I (k) ∩ I (�) = I (k ∨ �) for k, � ∈ Z
n+, where (k ∨ �)i = max(ki, �i).

3. Covariant irreducible representations
In this section we define some covariant irreducible representations of (An, σ ), which are
an extension of what is well known for the case n = 2 and will be used in the proof of
Lemma 4.4, the very first step of the induction.

Let k = (k1, . . . , kn−1) ∈ Z
n−1+ such that |k| = ∑

i ki �= 0 and let

�k = {(S1, . . . , Sn−1) ∈ P(Z)n−1 | |Si | = ki, i �= j ⇒ Si ∩ Sj = ∅}.
For S, T ∈ �k let

e(S, T ) =
n−1∏
i=1

( ∏
m∈Si

e
(m)
i0

∏
m∈Ti

e
(m)
0i

)
∈ An.

Note that e(S, T ) ∈ I (0, k1, . . . , kn−1) = I (0, k). On the Hilbert space �2(�k) we define
a representation πk of I (0, k) such that Kerπk ⊃ I ((0, k)+ ei) for i = 1, 2, . . . , n−1 and

πk(e(S, T ))ξU = δT ,UξS

for S, T ,U ∈ �k, where (ξU )U∈�k is the canonical basis of �2(�k). (In the notation of
the proof of Proposition 2.1, I (0, k) ∩ A� is the ideal of A� = (⊗

Z�
Mn

)γ generated by

Ev, v ∈ V� with v ≥ (0, k) and πk(x) = πk(xEk̂), x ∈ A�, where k̂ = (� − |k|, k) ∈ V�.
For x ∈ A� it follows that there is c(S, T ) ∈ C for each pair S, T ∈ �k with ∪S,∪T ⊂ Z�

such that e(S, S)xE
k̂
e(T , T ) = c(S, T )e(S, T )E

k̂
and

∑
e(S, S)xE

k̂
e(T , T ) = xE

k̂
,

where the sum is taken over all pairs S, T with ∪S,∪T ⊂ Z�.) Note that πk(I (0, k)) is
K = K(�2(�k)), the C∗-algebra of compact operators on �2(�k) and that πk(I (m, k)) =
K(�2(�k)) for any m ∈ N (because I (m, k) is an ideal of I (0, k) not contained in the
kernel of πk). Since I (0, k) is an ideal of An, πk naturally extends to an irreducible
representation of An, which again is denoted by πk. For k = 0 = (0, . . . , 0), we let
π0 denote the character ϕ0 on An.

LEMMA 3.1. For k ∈ Z
n−1+ define an irreducible representation πk of An as above. Then

Kerπk =
n−1∑
i=1

I ((ki + 1)ei).

Proof. If k = 0, then π0 = ϕ0 is a character. We have already noted this at the end of the
previous section.

If k �= 0, then πk(I (0, k)) = K and Ker(πk|I (0, k)) = ∑n−1
i=1 K0(I (0, k))xi , because

K0(I (0, k)) includes the latter as a maximal ideal. Hence, Kerπk is the largest ideal
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J of An such that K0(J ) ∩ K0(I (0, k)) = ∑n−1
i=1 K0(I (0, k))xi . It is obvious that

J ⊃ ∑n−1
i=1 I ((ki + 1)ei).

If J �⊂ ∑n−1
i=1 I ((ki + 1)ei), then there is a positive p ∈ K0(J ) such that

p �∈
n−1∑
i=1

K0(An)x
ki+1
i .

We express p as

p =
∑
v∈V�

cvx
v

for some � such that cv ∈ Z+. Then if cv �= 0, then xv ∈ J . Hence, there must be a
v ∈ V� such that cv �= 0 and vi ≤ ki for i = 1, 2, . . . , n− 1. Then q = x

v0
0 x

k1
1 · · · xkn−1

n−1 ∈
J ∩ I (0, k) but q �∈ ∑n−1

i=1 K0(I (0, k))xi , which is a contradiction. This concludes the
proof. �

We note that πk is a σ -covariant representation. To show this define a unitary U on
�2(�k) by

UξS = ξS+1, s ∈ �k,
where S + 1 = (S0 + 1, S1 + 1, . . . , Sn−1 + 1) for S = (S0, . . . , Sn−1) and Si + 1 =
{m+ 1 | m ∈ Si}. Since

Uπk(e(S, T ))U
∗ξV = δT ,V−1UξS = δT+1,V ξS+1 = πk(e(S + 1, T + 1))ξV

for S, T , V ∈ �k , it follows that AdUπk(x) = πkσ(x), x ∈ An. If |k| = 1, �k is
identified with Z and U with the shift unitary S on �2(Z). If |k| > 1, then U is unitarily
equivalent to the shift unitary with infinite multiplicity.

From now on we denote by π(∞,k1,...,kn−1) the above representation πk with k =
(k1, . . . , kn−1). By assigning the role played by the index 0 to another index, we define
an irreducible representation πk for k ∈ (Z+ ∪ {∞})n such that ki = ∞ for a unique
i ∈ {0, 1, . . . , n− 1}. For such an index k, we define k̃ ∈ Z

n+ by k̃i = ki if ki < ∞ and by
k̃i = 0 if ki = ∞. We then have that πk(I (k̃)) = K and

Kerπk =
n−1∑
i=0

I ((ki + 1)ei),

where I ((∞ + 1)ei) = I (∞ ei) = {0}. Thus, we obtain the following lemma.

LEMMA 3.2. Let k ∈ (Z+ ∪ {∞})n be such that ki = ∞ for a unique i and let k̃ be as
above, and define a σ -covariant irreducible representation πk of An with an implementing
unitary U as above. If 0 < kj < ∞ for some j , πk(I (k̃)) is isomorphic to the C∗-algebra
of compact operators andU is unitarily equivalent to S⊗1 on the Hilbert space �2(Z)⊗H,
where S is the shift unitary on �2(Z) and H is a separable Hilbert space, and H is one
dimensional if |k̃| = 1 and infinite dimensional if |k̃| > 1.

In the following lemma, for a finite subset X of Z × Z, we denote by PX the projection
onto the subspace generated by ξm,m ∈ X in �2(Z × Z) = �2(Z)⊗ �2(Z).
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LEMMA 3.3. Let S be the shift unitary on �2(Z); Sξm = ξm+1, m ∈ Z. For any
finite subset X of Z × Z and ε > 0, there is a finite subset Y of Z × Z such that if
u ∈ K(�2(Z × Z))+ 1 with uPY = PY , then there is a unitary v ∈ K(�2(Z × Z))+ 1 such
that vPX = PX and

‖u− v(S ⊗ 1)v∗(S∗ ⊗ 1)‖ < ε.

Moreover, if X is empty, then Y can also be set to be empty.

Proof. This is Lemma 2.4 of [19] whenX = ∅ = Y . Strengthening it to the above assertion
is easy, but we present a proof below.

We may replace Z ⊗ Z by Z ⊗� with � a finite non-empty set, and X by X′ ×� with
X′ a finite subset of Z. We choose Y as Y ′ ⊗� with Y ′ a finite subset of Z.

We choose Y ′ so large that if u is a unitary in K(�2(Z ×�))+ 1 with uPY = PY , then
there is a projection f ∈ K(�2(Z)) such that ‖Sf S∗ − f ‖ < ε, fPX′ = 0, and

‖u− ((f ⊗ 1)u(f ⊗ 1)+ (1 − f )⊗ 1)‖ < ε/2.

There is a sequence (gn) of projections in K(�2(Z)) such that gn(f + PX′) = 0,
‖SgnS∗ −gn‖ → 0, ‖u(gn⊗1)−gn⊗1‖ → 0, and rank(gn) → ∞. Letting fn = f +gn,
we have that ‖fnSfnS∗fn − fn‖ < ε for all sufficiently large n and that

‖(fn ⊗ 1)u(S ⊗ 1)(fn ⊗ 1)(S∗ ⊗ 1)u∗(fn ⊗ 1)− fn ⊗ 1‖ < 2ε

for all sufficiently large n. It follows that fnSfn ⊗ 1 ≈ f Sf ∗ ⊗ 1 + gnSgn ⊗ 1 and
(fn ⊗ 1)u(S ⊗ 1)(fn ⊗ 1) ≈ (f ⊗ 1)u(S ⊗ 1)(f ⊗ 1) + gnSgn ⊗ 1 are approximated
by unitaries on fn�2(Z × �), up to the order ε, whose spectra are almost uniformly
distributed over T (due to the contribution from gnSgn ⊗ 1). Hence, we find a unitary
v ∈ K(�2(Z × �)) + 1 such that v = v(fn ⊗ 1) + (1 − fn) ⊗ 1 for a sufficiently large
n and ‖(fn ⊗ 1)u(S ⊗ 1)(fn ⊗ 1) − v(fn ⊗ 1)(S ⊗ 1)(fn ⊗ 1)v∗‖ is at most of order ε.
This implies that ‖u(S ⊗ 1)− v(S ⊗ 1)v∗‖ is at most of order ε, concluding the proof. �

4. The one-cocycle and the approximate Rohlin properties
For a subset F of Z we set

An(F ) =
( ⊗

F

Mn

)γ

as a C∗-subalgebra of An. Ifm ∈ Z+ and k ∈ N
m, letQ be the quotient map of An+m onto

B = An+m
/m−1∑

i=0

I (kien+i ).

For a subset F of Z we set B(F) = Q(An+m(F)), i.e. the local structure of B is defined
by {B(F) | F ⊂ Z}.
Definition 4.1. Let n = 2, 3, . . . . We say that the n-shift has the one-cocycle property if
the following conditions are satisfied.
(1) For any ε > 0 and any unitary u ∈ An such that ϕi(u) = 1 for i = 0, . . . , n − 1,

there is a unitary v ∈ An such that ‖u− vσ(v)∗‖ < ε.
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(2) If (uk) is a sequence in the unitary group U(An) and (Fk) is an increasing sequence
of finite subsets of Z such that ϕi(uk) = 1 for i = 0, . . . , n − 1,

⋃
k Fk = Z,

and uk ∈ An(Z \ Fk), then there is a sequence (vk) in U(An) and an increasing
sequence (Gk) of finite subsets of Z such that ‖uk − vkσ (vk)‖ → 0,

⋃
k Gk = Z,

and vk ∈ An(Z \Gk).
(3) If (uk) is a sequence in U(An) such that ϕi(uk) = 1 for i = 0, . . . , n − 1 and

‖[un, x]‖ → 0 for all x ∈ An, then there is a sequence (vk) in U(An) such that
‖uk − vkσ (vk)‖ → 0 and ‖[vk, x]‖ → 0 for all x ∈ An.

We say that the n-shift has the stable one-cocycle property if the above conditions are
satisfied for the shift σ on the quotient B = An+m/

∑m−1
i=0 I (kien+i ) for any m ∈ Z+ and

k ∈ N
m.

By the definition if the n-shift has the stable one-cocycle property then it has the one-
cocycle property. If the n-shift has the one-cocycle property for all n ≥ 2, then the
n-shift has the stable one-cocycle property. Since each of the properties in Theorem 1.1 is
equivalent to the corresponding one of the above definition, the main Theorem 1.1 states
that the n-shift has the stable one-cocycle property for all n.

Let Ex(�n) be the set of extreme points of �n, i.e. Ex(�n) consists of n vertices.
We call an N-cycle an orthogonal family of projections indexed by Z/NZ.

Definition 4.2. Let n = 2, 3, . . . . We say that the n-shift has the approximate Rohlin
property if for any N ∈ N and ε > 0, there exist an N1, S ∈ N with N1 ≥ N and a
constant C > 0 such that there is a sequence (e(k)i ) of N1-cycles in An with Ek = ∑

i e
(k)
i

satisfying the following:

max
i

‖σ(e(k)i )− e
(k)
i+1‖ → 0, k → ∞,

[Ek](x) ≥ C(x0x1 · · · xn−1)
S, x ∈ �n,

[Ek](x) ≥ ck
∑
i �=j
(xixj )

S, x ∈ �n

for some ck > 0, and [Ek](x) converges to 1 uniformly in x on every compact subset of
�n \ Ex(�n).

Note that when we define a Rohlin property we usually impose a centrality condition
such as ‖[e(k)i , x]‖ → 0 as k → ∞ for all x. Since we are dealing with the shift here, such
a condition follows automatically.

To see that the lower bound estimates on [Ek] are not redundant, we can construct an
automorphism α ofAn which has an approximate Rohlin property without the lower bound
estimates [Ek] above, but with a proper centrality condition. For example, we choose a
sequence (Fk) of finite subsets of Z which are mutually disjoint such that |Fk|/k → ∞
and choose a sequence (Uk) of unitaries in An such that Uk ∈ An(Fk) and UkEv = Ev

for v ∈ V|Fk | with mini vi < k and the spectrum of UkEv is equally distributed otherwise,
where Ev is the minimal central projection of An(Fk) as in the proof of Proposition 2.1.
And we define an automorphism α of An by the limit of Ad(U1U2 · · ·Uk). Then we can
see that α has the property that for anyN ∈ N there is a sequence (e(k)i ) of N-cycles in An
such that maxi ‖α(e(k)i ) − e

(k)
i+1‖ → 0, N[e(k)0 ](x) → 1 uniformly in x on every compact
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subset of �n \ Ex(�n), and ‖[e(k)i , x]‖ → 0 for x ∈ An (see, e.g., [2]). However, then the

ideal Jk of An generated by e(k)i must satisfy
⋂
k Jk = {0}.

Our purpose is to prove, by induction, that the properties defined above follow
universally. The following lemmas give the basic step for this induction, which are more
or less presented in [19].

LEMMA 4.3. The 2-shift has the approximate Rohlin property.

Proof. By using the CAR algebra formulation we show in [19] that for any N ∈ N there
is a sequence of 2N -cycles in A2 satisfying the required properties with M = N and
C = 2N . �

LEMMA 4.4. The 1-shift has the stable one-cocycle property.

Proof. Let m ∈ N and k ∈ Z
1+m+ such that k0 = 0 and kj > 0 for j > 0 and define

B = A1+m
/ m∑

i=1

I (kiei ).

We have to show that the shift σ defined on B has the one-cocycle property.
Let ϕ0 be the unique character of B. What we have to prove is that for any u ∈ U(B)

with ϕ0(u) = 1, there is a sequence (vn) in U(B) such that ‖u− vnσ(vn)
∗‖ → 0; and two

other versions.
By the following Lemma 4.5 and Lemmas 3.2 and 3.3 we find a finite decreasing

sequence (Ji)
N
i=0 of ideals of A1+m such that J0 =A1+m, J1 = ∑m

i=1 I (ei),
JN ⊂ ∑m

i=1 I (kiei), JN−1 �⊂ ∑m
j=1 I (kj ej ), Ji−1/Ji ∼=K for i > 1, and the automor-

phism, denoted by σ , induced on Ji−1/Ji by the shift σ has the one-cocycle property.
(In Lemma 4.5, since JN = Ker(ρN ) ∩ JN−1 = ∑m

j=1 I (kj ej ) ∩ JN−1, it follows that
JN−1 �⊂ ∑m

j=1 I (kj ej ).)
Let u1 ∈ U(A1+m) be such that Q(u1) = u, where Q is the quotient map of A1+m

onto B. Since ϕ0(Q(u1)) = 1, we have that u1 ∈ J1 + 1.
From the short exact sequence

0 → J2 → J1 → J1/J2 → 0,

and the one-cocycle property for the shift on J1/J2 applied to u1 + J2, proved in
Lemma 3.3, we find unitaries u2 ∈ J2 + 1 and v1 ∈ J1 + 1 such that

‖v∗
1u1σ(v1)− u2‖ < N−1ε.

Repeating this process, we have unitaries ui ∈ Ji + 1 for i ≤ N and unitaries vi ∈ Ji + 1
for i < N such that

‖v∗
i uiσ (vi)− ui+1‖ < N−1ε

for i < N . Then it follows that

‖v1v2 · · · vN−1uNσ(v1v2 · · · vN−1)− u1‖ < ε.

Thus, for v = Q(v1v2 · · · vN−1) ∈ B we get that ‖vσ(v)∗ − u‖ < ε. This concludes the
proof of the first property of Definition 4.1.
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We turn to the second property of Definition 4.1. Let G be a finite subset of Z. To get
vN−1 from A1+m(Z \G) ∩ JN−1 + 1 in the above arguments based on Lemma 3.3, uN−1

must be from A1+m(Z \F) for some finite subset F1 ⊂ Z with F1 ⊃ G. Here we used the
fact that requiring vN−1 ∈ A1+m(Z\G)∩JN−1+1 modulo JN is as strong as requiring that
vN−1p ∈ Cp for some p ∈ JN−1 which is a projection modulo JN since JN−1/JN ∼= K.
For that to be true, we must have that vN−2, uN−2 ∈ A1+m(Z \F1), which in turn requires
that uN−2 ∈ A1+m(Z \ F2) for some finite subset F2 ⊃ F1. In this way we can conclude
that there is a finite subset FN−1 of Z such that if u1 is a unitary from A1+m(Z \ FN−1),
then all v1, . . . , vN−1 will be chosen from A1+m(Z \ G) in the above arguments; then
v = Q(v1 · · · vN−1) ∈ B(Z \ G) is the desired unitary. This concludes the proof in this
case.

Finally, we come to the last property of Definition 4.1. Let G be a finite subset of B;
by lifting each element of G to A1+m we regard G as a subset of A1+m. We choose a
finite subset G of Z such that if v is a unitary in A1+m(Z \ G) then ‖[v, x]‖ < 1/2N ,
x ∈ G. To get vN−1 ∈ JN−1 + 1 for uN−1 such that vN−1 ∈ A1+m(Z \ G), we must
require that ‖[uN−1, x] + JN‖ < 1, x ∈ F1 for some finite subset of F1 of A1+m. For that
we have to require that vN−2 ∈ A1+m(Z \ G1) and ‖[uN−2, x] + JN‖ < 1/3N , x ∈ F1

for some finite subset G1 of Z with G1 ⊃ G. Again for this to be true, we have to
require that ‖[uN−2, x] + JN‖ < 1/N , x ∈ F2 for some finite subset F2 of A1+m.
In this way we obtain a finite subset FN−1 of A1+m such that if u1 ∈ J1 + 1 satisfies
that ‖[u1, x] + JN‖ < 1/N for x ∈ FN−1, then all v1, . . . , vN−1 can be taken from
A1+m(Z\G). Then v = Q(v1 · · · vN−1) would satisfy the required condition. (Thus, since
B = A1+m/

∑m
j=1 I (kj ej ) is of type I, properties (2) and (3) are equivalent for this

case.) �

LEMMA 4.5. There exists a finite sequence (ρi)Ni=1 of irreducible representations ofA1+m
of the form π(∞,�), � ∈ (Z+)m and a decreasing sequence (Ji)Ni=0 of ideals of A1+m such
that J0 = A1+m, ρ(Ji−1) = K or C, Ker(ρi |Ji−1) = Ji , and

Ker(ρi) ⊃
m∑
j=1

I (kj ej ),

JN ⊂
m∑
j=1

I (kj ej ).

Proof. Let ρ1 = π(∞,0,...,0) and J1 = Kerρ1. Then it follows that J1 = ∑m
j=1 I (ej ) ⊃∑m

j=1 I (kj ej ). We prove the assertion by induction as follows.
Suppose that we are given an ideal J of A1+m such that

J =
∑
w∈C

I (w),

where C is a subset of Z
1+m+ such that w ≤ k and |w| = ∑m

j=0 wj ≥ 1 for w ∈ C. We may
suppose that no pairs in C are comparable. (If w ≥ w′ in the sense that wj ≥ w′

j , then
I (w) ⊂ I (w′); so we may removew from C.)

Let
r = min{|w| | w ∈ C, wj < kj for all j = 1, . . . ,m}.
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For each w ∈ {w ∈ C | |w| = r}, we define ŵ ∈ (Z+ ∪ {∞})1+m by ŵ0 = ∞ and
ŵj = wj for j > 0 and consider πŵ. For z ∈ C \ {w}, we have that I (z) ⊂ Kerπŵ.
(Either zj ≥ kj > wj for some j = 1, 2, . . . ,m or zj > wj for some j > 0 as |z| ≥ |w|.)
Then πŵ(J ) = K and

Ker(πŵ|J ) =
∑

z∈C\{w}
I (z)+

m∑
j=1

I (w + ej ).

Note also that Kerπŵ ⊃ ∑m
j=1 I ((wj + 1)ej ) ⊃ ∑m

j=1 I (kj ej ).
We now set J to be Ker(πŵ|J ) and C to be an appropriate subset of C \ {w} ∪ {w+ ej |

j = 1, . . . ,m}. Repeating this process for a finite number of times we can increase
r = min{|w| | w ∈ C, wj < kj for all j > 0}. Eventually we reach the situation
where for any w ∈ C there is j > 0 such that wj = kj . Hence, we get J = ∑

w∈C I (w) ⊂∑m
j=1 I (kj ej ). This completes the proof. �

The following result combined with Lemma 4.3 shows that the n-shift has the
approximate Rohlin property for all n ≥ 2.

LEMMA 4.6. Let n = 2, 3, . . . . If the n-shift has the approximate Rohlin property, then
the n+ 1-shift has also the approximate Rohlin property.

Proof. Let K,L,M ∈ N be such that M � L and let ZM,K = {mM | m = 0, 1, . . . ,
K−1} and ZM,K,L = ⋃{ZM,K +m | m = 0, 1, . . . , L−1}. We define an embedding ι of
Mn into

⊗
{0}Mn+1 ⊂ ⊗

Z
Mn+1 by ι(eij ) = e

(0)
ij , where (e(0)ij ) are the canonical matrix

units for Mn+1 at 0 ∈ Z as a C∗-subalgebra of
⊗
Z
Mn+1; in particular, 1 − ι0(1) = e

(0)
nn .

We then define a homomorphism ψ0 of Mn into
⊗

ZM,K
Mn+1 ⊂ ⊗

Z
Mn+1 by

ψ0(x) = ι0(x)+ e0
nnσ

M(ι0(x))+ e(0)nn e
(L)
nn σ

2M(ι0(x))+ · · ·
+ e(0)nn · · · e((K−2)L)

nn σ (K−1)M(ι0(x)).

We setψk = σkψ0 for k = 1, 2, . . . ,M−1; note that the ranges ofψk , k = 0, 1, . . . ,M−1
mutually commute and that L � M . We then define a homomorphism ψ of

⊗L−1
0 Mn

into
⊗

ZM,K,L
Mn+1 ⊂ ⊗

Z
Mn+1 by ψ = ψ0 ⊗ ψ1 ⊗ · · · ⊗ ψL−1. Note that

ψL(1)ψσ = ψ0(1)σψ on
⊗L−2

0 Mn and that the range of ψ|(⊗L−1
0 Mn

)γ is contained
in An+1 = (⊗

Z
Mn+1

)γ
, where γ is the gauge action of T

n−1 (or T
n for the latter case).

We thus regard ψ as a homomorphism of BL = (⊗L−1
0 Mn

)γ into An+1.
We recall that there is a tracial state τλ on An+1 to each

λ ∈ �n+1 =
{
λ ∈ [0, 1]n

∣∣∣∣
n∑
i=1

λi ≤ 1

}
.

Note that τλψ0(1) = 1 − λKn and τλψ(1) = (1 − λKn )
L. For a projection e ∈ BL, we have

that τλψ(e) = 0 for λn = 1 and

τλψ(e) = (1 − λKn )
Lτµ(e)

for λn < 1, where

µ =
(

λ1

1 − λn
, . . . ,

λn−1

1 − λn

)
∈ �n.
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Hence, if [e] = g ∈ Z[y1, . . . , yn−1] in K0(An) under the embedding BL ⊂ An, then
f = [ψ(e)] in K0(An+1) is given by

f (x1, . . . , xn) = (1 − xKn )
Lg(x1/(1 − xn), . . . , xn−1/(1 − xn)),

which must be a polynomial in x1, . . . , xn, since g is at most of order L. If g is strictly
positive on �n \ Ex(�n), then f is strictly positive on �n+1 \ ⋃n−1

i=0 [i, n], where [i, n] is
the edges between xi = 1 and xn = 1 for i = 0, 1, . . . , n − 1. We can make f arbitrarily
close to 1 uniformly on a compact subset of�n+1 \⋃n−1

i=0 [i, n] by making g close to 1 on a
compact subset of�n\Ex(�n). If g(y1, . . . , yn−1) ≥ C(y0 · · · yn−1)

S for some S ∈ N and
C > 0, where y0 = 1−y1−· · ·−yn−1, then f (x) ≥ C(1−xKn )L(1−xn)−nS(x0 · · · xn−1)

S

for x ∈ �n+1 because

1 − x1

1 − xn
− x2

1 − xn
− · · · − xn−1

1 − xn
= x0

1 − xn
.

Note that if K is sufficiently large, then (1 − xKn )
L ≈ 1 uniformly for xn in [0, 1 − δ] for

δ > 0. Thus, for such a choice of K , we have that

f (x) ≥ C(x0x1 · · · xn−1)
S

for x ∈ �n+1 with xn ∈ [0, 1 − δ].
Since ψL(1)ψσ = ψ0(1)σψ on

(⊗L−2
0 Mn

)γ ⊗ 1 ⊂ BL, ψ does not really intertwine
the shifts σ even approximately. We have to modify ψ as follows.

By using the lemma below and taking a sufficiently large M , we define an embedding
φ : BL → An+1 by φ(x) = ψ(x)p, where p is a projection which resides
outside ZM,K,L and satisfies that ‖σ(φ(1)) − φ(1)‖ < ε for a prescribed ε > 0 and
τλ(φ(1)) ≥ (1 − λKn )

L+Lε with some Lε ∈ N. Since ‖σ(ψ(1)p) − ψ(1)p‖ < ε and
σ(ψ(1)p) = ψL(1)σ (ψ(1)p), it follows that ‖ψL(1)ψ(1)p − ψ(1)p‖ < 2ε. If e ∈
BL ⊂ An is a projection such that σ(e) ∈ BL, then it follows that ‖σφ(e) − φσ(e)‖ <
3ε because σφ(e) = σ(ψ(e))σ (ψ(1)p) ≈ σψ(e)ψ(1)p = σψ(e)ψ0(1)ψ(1)p =
ψσ(e)ψL(1)ψ(1)p ≈ ψσ(e)p = φσ(e). Since this modification of ψ introduces only
the factor (1 − λKn )

Lε in the estimate of τλ(φ(e)) for a projection e ∈ BL, we have a
similar estimate for f = [φ(e)] as in the previous paragraph.

Let N ∈ N. Then there are N1, C, S ∈ N with N1 ≥ N satisfying the following: we
have an N1-cycle (ei) in An such that ‖σ(ei) − ei+1‖ ≈ 0, N1[ei](x1, . . . , xn−1) is close
to 1 uniformly on a compact subset of �n \ Ex(�n), and

[ei](x1, . . . , xn−1) ≥ C(x0x1 · · · xn−1)
S

on �n, and
[ei](x1, . . . , xn−1) ≥ c

∑
i �=j
(xixj )

S

on �n for some c > 0 (which may depend on the choice of ei).
We may assume that ei ∈ ⊗L−1

m=0Mn for some L and we embed ei into An+1 by φ
which depends on the choice of K,M,p. Thus, for any ε > 0 we get an N1-cycle (Ei) in
An+1 such that ‖σ(Ei)− Ei+1‖ < ε,

N1[Ei](x1, . . . , xn) > 1 − ε
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for x ∈ �n+1 such that mini �=n dist(x, [i, n]) > ε, where the distance dist on �n+1 is
defined by dist(λ, ν) = max{|λi − µi |; i = 0, 1, . . . , n}, and

[Ei](x1, . . . , xn) ≥ C(x0x1 · · · xn)S

on the subset of �n+1 consisting of x with xn < 1 − ε, and

[Ei](x1, . . . , xn) ≥ c
∑

i �=j≤n−1

(xixj )
S

on the above subset for some c > 0.
In this way we embed a Rohlin cycle in An into An+1. Note that there are n + 1 types

of embedding by assigning the role played by the nth coordinate in the above to the other
coordinates. We combine the Rohlin cycles so obtained to get the desired one. The proof
is continued after the following lemmas.

LEMMA 4.7. For any ε > 0 there exists an Lε ∈ N such that if M > L + 2Lε , there is
a projection p in

(⊗
Z′ Mn+1

)γ
, where Z′ = ⋃{ZM,K + m | m = −1,−2, . . . ,−Lε ;

m = L,L + 1, . . . , L + Lε − 1} is disjoint from ZM,K,L = ⋃{ZM,K + m | m =
0, 1, . . . , L − 1} such that f = ψ(1)p is a projection satisfying ‖σ(f ) − f ‖ < ε and
τλ(f ) ≥ (1 − λKn )

L+2Lε for λ ∈ �n+1.

Proof. Let e = ψ0(1) as a projection in
(⊗

ZM,K
Mn+1

)γ . Then ψ(1) looks like

e ⊗ e ⊗ · · · ⊗ e (in
(⊗

ZM,K,L
Mn+1

)γ = (⊗L−1
0

⊗
ZM,K

Mn+1
)γ ), where e repeats L

times. If Z′′ = Z′ ∪ ZM,K,L, then
⊗

Z′′ Mn+1 is the tensor product of
⊗

ZM,K
Mn+1

indexed by m between −Lε and L + Lε − 1 inclusive, where σ shifts each factor to right
and ψ(1) resides at the tensor product between 0 and L − 1. Hence, the problem reduces
to finding an almost σ invariant projection in

(⊗L+lε−2
−Lε Mn+1

)γ dominates e⊗e⊗· · ·⊗e
(L+ 2Lε times) and is dominated by ψ(1) = e⊗ e⊗ · · ·⊗ e (L times). This follows from
the following lemma. �

LEMMA 4.8. Let m ∈ N and let A = (⊗
Z
Mm

)γ
, where γ is a restriction of the

(infinite tensor product type) action β of Um = U(Mm) to a compact abelian subgroup
of Um and let σ be the shift automorphism of A to the right. Let e be a projection
in (Mm)

γ . For K ∈ N, let eK = ⊗K
−K e. For L,N ∈ N there is a projection

p ∈ (⊗N+2L
−N−2L Mm

)γ ⊂ A such that eN+L ≤ p ≤ eN and ‖σ(p) − p‖ is of the order of
L−1/2. Moreover, p can be chosen to satisfy that if ϕ is a state on Mm and τ = ⊗

Z
ϕ is a

tracial state on A, then

τ (p) = ϕ(e)2N+2L+1(1 + L(1 − ϕ(e))).

Proof. Let f = eN+L and let fk = σk(f )(1 − σk−1(f )) and f−k = σ−k(f )(1 −
σ−k+1(f )) for k = 1, 2, . . . , L, which are all projections. If 1 ≤ k < �, then

fkf� ≤ σk(f )σ �(f )(1 − σ�−1(f )) = 0

because σk(f )σ �−1(f ) ≥ σk(f )σ �(f ). If k, � ≥ 1, then

f−kf� ≤ σ−k(f )(1 − σ−k+1(f ))σ �(f ) = 0
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because σ−k(f )σ �(f ) ≤ σk(f )σ−k+1(f ). Thus, one can conclude that the projections
fk , 0 < |k| ≤ L are mutually orthogonal and orthogonal to f . Note also that they are
mutually equivalent and that σ shifts the sequence of projections

f−L, f−L+1, . . . , f−1

to the right, the last one f−1 to f (1 − σ(f )), which is a subprojection of f , and a
subprojection, f (1 − σ−1(f )), of f to f1, and shifts the sequence

f1, f2, . . . , fL

to the right except for the last fL. Let v ∈ A be such that v∗v = f−L and vv∗ = f1 and
define

p = f +
L∑
k=1

(
k

L
f−L+k−1 + L− k

L
fk +

√
k(L− k)

L
σk−1(v + v∗)

)
.

Since all fk, f−k, f are dominated by eN and p ≥ f = eN+L, it follows that eN+L ≤
p ≤ eN . We can also estimate ‖σ(p)− p‖ as required (see [15] for details).

If τ is a tracial state on A as in the statement, then τ (f ) = ϕ(e)2N+2L+1 and
τ (fk) = τ (f )(1 − ϕ(e)). Since τ (v) = 0, we get that τ (p) = τ (f )+ τ (f )(1 − ϕ(e))L =
τ (f )(1 + L(1 − ϕ(e))). This concludes the proof. �

LEMMA 4.9. For each i = 0, 1, . . . , n and ε > 0 there exists a projection fi ∈ An+1 such
that ‖σ(fi )− fi‖ < ε and τλ(fi) depends only on λi ∈ [0, 1] and is a decreasing function
in λi and for any λ ∈ �n+1,

τλ(fi) < ε if λi > ε,

τλ(fi) = 1 if λi = 0,

from which there exists a δ > 0 such that if λi < δ then τλ(fi) > 1 − ε. Moreover fi
can be chosen from

(⊗
Z Mn+1

)γ
for some finite subset Z of Z and have the following

property. If λ ∈ �n+1 satisfies that dist(λ,Ex(�n+1)) ≥ ε + 2δ and dist(λ, [i, j ]) < δ for
some i �= j , then τλ(fi) < ε, τλ(fj ) < ε, and τλ(fk) > 1 − ε for all k �= i, j .

Proof. LetE(m)i = ∑
j �=i e

(m)
jj = 1− e(m)ii . It is shown by the previous lemma that for large

L,N ∈ N there is a projection fi ∈ (⊗2L+N
m=−2L−N Mn+1

)γ between
⊗L+N

m=−L−N E
(m)
i and⊗N

m=−N E
(m)
i such that ‖σ(fi)− fi‖ is of order L−1/2. By using the explicit formula for

fi given there, we have that

τλ(fi) = (1 − λi)
2N+2L+1(1 + Lλi)

for λ ∈ �n+1. Then if λi > ε, then τλ(f ) ≤ τλ
(⊗N

m=−N E
(m)
i

)
< (1 − ε)2N+1 and if

λi = 0 then τλ(fi) = 1. By choosing L,N sufficiently large, this concludes the proof of
the first part.

To show the second part suppose, in contrast, that dist(λ,Ex(�n+1)) ≥ ε + 2δ,
dist(λ, [i, j ]) < δ, and τλ(fi) ≥ ε; from the last condition it follows that λi ≤ ε.
Since min0≤t≤1 max{|λi − t|, |λj − (1 − t)|} < δ, there is a t ∈ [0, 1] such that t − λi < δ

and 1− t−λj < δ, which implies that λj > 1−λi−2δ ≥ 1−ε−2δ. Since this contradicts
that dist(λ,Ex(�n+1)) ≥ ε + 2δ, we get that τλ(fi) < ε. The same argument yields that
τλ(fj ) < ε. Since λk < δ for k �= i, j , it follows that τλ(fk) > 1 − ε for such a k. �
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Continuation of the proof of Lemma 4.6. By the previous lemma for any small ε > 0
we choose projections f0, f1, . . . , fn−1 in An+1 such that τλ(fi) < ε if λi > ε,
τλ(fi) = 1 if λi = 0, and ‖σ(fi ) − fi‖ ≈ 0 for all i. More explicitly we use the
same formula (as a function of E(m)i = 1 − e

(m)
ii ) for constructing fi ; hence, we have that

τλ(fi) = τµ(fj ) if λi = µj . Furthermore, we assume that all the fi reside at different
places (by applying powers of σ ), i.e. there are finite subsets Z0, . . . , Zn−1 of Z which are
mutually disjoint such that fi ∈ (⊗

Zi
Mn+1

)γ ; in particular, the fi commute with each
other and [fifj ] = [fi][fj ] in Z[x1, . . . , xn] for i �= j .

We suppose that ε < (n + 2)−1 and note that δ > 0 is chosen so that if λk < δ

then τλ(fk) > 1 − ε; obviously δ < ε. Let N,N1, C, S ∈ N be as in the proof before
the interruption. For each k = 0, 1, . . . , n let (Eki ) be an N1-cycle in An+1 such that
‖σ(Eki )− Eki+1‖ ≈ 0,

N1[Ek0 ](x1, . . . , xn) > 1 − ε

if mini �=k dist(x, [i, k]) ≥ δ, and

[Ek0] ≥ C(x0x1 · · · xn)S, [Ek0 ] ≥ c
∑

i �=j ;i,j �=k
(xixj )

S

for some c > 0, if xk ≤ 1 − nδ. We suppose that all (Eki ) and fk reside at disjoint
subsets of Z for various k; in particular, we have assumed that fkEki is a projection and
that τλ(fkEki ) = τλ(fk)τλ(E

k
i ). Now we define an N1-cycle:

Ei =
n∨
k=0

(fkE
k
i )+

(
1 −

n∨
k=0

fk

)
E0
i .

Here we have use the fact that all fkEki commute with each other. We show that (Ei) is
the requiredN1-cycle in An+1.

Since ‖σ(fkEki ) − fkE
k
i+1‖ ≈ 0 and ‖σ(F ) − F‖ ≈ 0 where F = ∨n

k=0 fk =
f0 + f1(1 − f1)+ f2(1 − f0 − f1(1 − f0))+ · · · , we obtain that ‖σ(Ei)− Ei+1‖ ≈ 0.

Let λ ∈ �n+1 with λ0 = 1 − λ1 − · · · − λn. We take k ∈ {0, 1, . . . , n} such that λk =
min{λi | i = 0, . . . , n}. Then we have that τλ(fk) = max{τλ(fi) | i = 0, . . . , n} since
λi 	→ τλ(fi) is decreasing and τλ(fi) = τλ(fj ) if λi = λj . If τλ(fk) ≥ 1/(n + 2) > ε,
then we have that λk ≤ ε.

If τλ(fi) < 1/(n + 2) < 1 − ε for all i, then λi ≥ δ and τλ(F ) ≤ ∑n
i=0 τλ(fi) <

(n+ 1)/(n+ 2) < 1 − 1/(n+ 2). Note that for any i,

λi = 1 −
∑
j �=i

λj < 1 − nδ.

Thus, we have two cases for λ ∈ �n+1: (I) the smallest of all λi is given by λk satisfying
λk ≤ ε < 1 −nδ and τλ(fk) ≥ 1/(n+ 2); and (II) τλ(1 −F) > 1/(n+ 2), λi ≥ δ for all i,
and λ0 ≤ 1 − nδ.

In the first case

τλ(E0) ≥ τλ(fk)τλ(E
k
0) ≥ C

n+ 2
(λ0λ1 · · · λn)S.
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In the second case

τλ(E0) ≥ τλ(1 − F)τλ(E
0
0) ≥ C

n+ 2
(λ0λ1 · · · λn)S.

In either case we have one of the required estimates from below.
To prove the other estimate, we have, for the first case,

τλ(E0) ≥ c

n+ 2

∑
i �=j ; i,j �=k

(λiλj )
S,

where λk < 1 − nδ is used. Since λk is the smallest in λi , we have that for each i �= k

(λiλk)
S ≤ 1/(n− 1)

∑
j �=i,k

(λiλj )
S ≤

∑
j �=i,k

(λiλj )
S,

which implies that
∑
i �=j
(λiλj )

S =
∑

i �=j ;i,j �=k
(λiλj )

S +
∑
i �=k
(λiλk)

S

≤
∑

i �=j ;i,j �=k
(λiλj )

S +
∑
i �=k

∑
j �=i,k

(λiλj )
S

= 3
∑

i �=j ;i,j �=k
(λiλj )

S.

Hence, we have that

τλ(E0) ≥ c

3(n+ 2)

∑
i �=j
(λiλj )

S.

We have, for the second case, that

τλ(E0) ≥ c

n+ 2

∑
i �=j ;i,j>0

(λiλj )
S.

Since (λ0λi)
S ≤ λSi ≤ (n− 1)−1δ−S

∑
j �=i,0(λiλj )S ≤ δ−S

∑
j �=i,0(λiλj )S , we have that

∑
i �=j ;i,j>0

(λiλj )
S ≥ 1

1 + 2δ−S
∑
i �=j
(λiλj )

S.

Hence, in this case we get that

τλ(E0) ≥ c

(n+ 2)(1 + 2δ−S)
∑
i �=j
(λiλj )

S.

Combining these cases we conclude that there is a c > 0 such that

[E0](x1, . . . , xn) ≥ c
∑
i �=j
(xixj )

S

on �n+1.
Let λ ∈ �n+1 such that dist(λ,Ex(�n+1)) ≥ 3ε(>ε + 2δ).
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If dist(λ, [i, j ]) < δ for some edge [i, j ], then by the previous lemma, τλ(fi) <
ε, τλ(fj ) < ε, and τλ(fk) > 1 − ε for k �= i, j . Hence, for k �= i, j , we have that

N1τλ(E0) ≥ N1τλ(fk)τλ(E
k
0) > (1 − ε)2,

where we have used the fact that dist(λ, [k, �]) ≥ δ for any �.
If dist(λ, [i, j ]) ≥ δ for any edge [i, j ], then τλ(fk) ≤ 1 − ε and τλ(Ek0) > 1 − ε for

all k. Since τλ
(
1 − ∨n

k=0(fkE
k
0)

) = ∏n
k=0 τλ(1 − fkE

k
0) ≤ ∏n

k=0(1 − τλ(fk)(1 − ε)),
we have that

N1τ (E0) ≥ 1 −
n∏
k=0

(1 − τλ(fk)(1 − ε))+
n∏
k=0

(1 − τλ(fk)) · (1 − ε).

If ε is sufficiently small, then the right-hand side is approximately equal to 1 − ε
∏n
k=0

(1 − τλ(fk))
(
1 + ∑n

k=0 τλ(fk)/(1 − τλ(fk))
)
, which is bigger than 1 − (n+ 2)ε.

This shows that N1[E0](x1, . . . , xn) is close to 1 uniformly on the compact subset of
�n+1 consisting of points distant at least 3ε from the vertices. �

The following lemma follows from the proof of the above lemma.

LEMMA 4.10. Let n,m ∈ N with n ≥ 2. Suppose that the n-shift has the approximate
Rohlin property. Then for any N ∈ N there are N1, S ∈ N and C > 0 as in Definition 4.2
such that there is a sequence (e(k)i ) of N1-cycles in An+m with Ek = ∑N1−1

i=0 e
(k)
i and a

decreasing sequence (δk) of positive numbers with limk δk = 0 satisfying

max
i

‖σ(e(k)i )− E
(k)
i+1‖ → 0, k → ∞,

[Ek](x) ≥ C(x0x1 · · · xn−1)
S, x ∈ �(δk)n+m,

[Ek](x) ≥ ck
∑

i �=j ; i,j<n
(xixj )

S, x ∈ �(δk)n+m

for some ck > 0, and [Ek](x) converges to 1 uniformly on every compact subset of
�
(0)
n+m \ Ex(�n+m), where

�
(δ)
n+m =

{
x ∈ �n+m

∣∣∣∣
m−1∑
i=0

xn+i < 1 − δ

}

for δ ≥ 0.

Proof. Let K,L,M ∈ N be such that M � L and let ZM,K = {mM | m =
0, 1, . . . ,K − 1} and ZM,K,L = ⋃{ZM,K + m | m = 0, 1, . . . , L}. We define a
(non-unital) embedding ι0 of Mn into

⊗
Z
Mn+m by ι0(eij ) = e

(0)
ij , where e(0)ij are matrix

units of Mn+m at 0 ∈ Z. In particular, f0 = 1 − ι0(1) = ∑n+m−1
i=n e

(0)
ii . We then define a

homomorphismψ0 into
⊗

ZM,K
Mn+m by

ψ0(x) = ι0(x)+ f0 · ιM(x)+ f0fM · ι2M(x)+ · · · + f0 · · · f(K−2)M · ι(K−1)M(x),

where ιM(x) = σMι0(x), fM = σM(f0), etc. By setting ψk = σkψ0, we define a
homomorphism ψ of

⊗L−1
0 Mn into

⊗
ZM,K,L

Mn+m ⊂ ⊗
Z
Mn+m by ψ0 ⊗ ψ1 ⊗ · · · ⊗

ψL−1.
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Then we proceed just as in the proof of Lemma 4.6. In particular, we should note that
for a projection e ∈ BL = (⊗L−1

0 Mn

)γ and λ ∈ �n+m with c ≡ ∑m−1
i=0 λn+i < 1,

τλψ(e) = (1 − cK)Lτµ(e),

where µ = (1 − c)−1(λ1, . . . , λn−1) ∈ �n. �

LEMMA 4.11. Let n,m ∈ Z+ and let S,M ∈ N with M > S. Let e be a non-zero
projection in An+m such that the i-vanguard V i([e]) for i = 0, 1, . . . , n− 1 is confined in
the S-deep face generated by the j th vertices for j = 0, . . . , n − 1, i.e. if v ∈ V i([e])
for i = 0, 1, . . . , n − 1, then vj ≤ S for j < n (and j �= i) and vj = 0 for
j ≥ n. Let f be a projection in I

( ∑n−1
i=0 Mei

)
such that [e] − [f ] is strictly positive on

�
(δ)
n+m = {x ∈ �n+m | xn + · · · + xn+m−1 < δ} for some δ > 0 except for the n

vertices of �n+m−1 inside. Then for any k = (k0, k1, . . . , km−1) ∈ N
m it follows that

[Q(e)] ≥ [Q(f )], where Q is the quotient map of An+m onto

B = An+m
/m−1∑

i=0

I (kien+i ).

Proof. We show that there are Cn+i ∈ N for i = 0, 1, . . . ,m− 1 such that

[e] +
m−1∑
i=0

Cn+i (x0x1 · · · xn−1)
Mx

ki
n+i ≥ [f ]

in Z[x1, . . . , xn+m−1]. Since the order ideal corresponding to
∑m−1
i=0 I (kien+i ) is

m−1∑
i=0

x
ki
n+iZ[x1, . . . , xn+m−1],

this will give the result.
Since [f ] = (x0 · · · xn−1)

Mr with some r ∈ Z[x1, . . . , xn+m−1], letD be the maximum
of r as a function on �n+m \�(δ)n+m. We choose Ci ∈ N sufficiently large so that

q(x1, . . . , xn+m−1) =
m−1∑
i=0

Cn+ixkin+i > D

on�n+m \�(δ)n+m. Note that the i-vanguard V i(q − r) of q − r with i ≥ n consists of one
point 0. If q1 = (x0 · · · xn−1)

Mq , then it follows that [e] + q1 − [f ] is strictly positive on
�n+m−1 except for the vertices. (If it vanishes at some point, excluding the endpoints,
on the edge [i, j ] with i < n, j ≥ n, it vanishes on the whole [i, j ], which contradicts
the assumption that it is strictly positive near the vertex xi = 1.) We have to check the
positivity condition on the vanguards of [e] + q1 − [f ] for each i = 0, 1, . . . , n+m− 1.

Let L ∈ N be such that [e] and q1 − [f ] can be expressed in terms of xv, v ∈ VL:

[e] =
∑
v∈VL

bvx
v, q1 − [f ] =

∑
v∈VL

dwx
w,

where we suppose that bv ≥ 0 for all v ∈ VL.
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Let v ∈ V iL([e] + q1 − [f ]) with i = 0, . . . , n − 1. If vj > S for some j �= i in
{0, 1, . . . , n−1}, then v does not belong to the i vanguardV iL([e]) of [e] by the assumption.
Hence, vj ≥ M for all j �= i in {0, . . . , n− 1} (otherwise dw = 0 for any w in front of v).
Hence, there must be a v′ ∈ V iL([e]) such that v′ is in front of v (since v′

j ≤ S < M ≤ vj

for j �= i in {0, 1, . . . , n − 1} and vj = 0 for j ≥ n). As bv′ + dv′ = bv′ > 0, v cannot
belong to V iL([e] + q1 − [f ]). This shows that if v ∈ V iL([e] + q1 − [f ]), then vj ≤ S

for all j �= i in {0, . . . , n − 1}; so its coefficient is positive because it is non-zero and has
contributions only from [e]; v must belong to V iL([e]).

Next let v ∈ V iL([e] + q1 − [f ]) with i = n, . . . , n + m − 1. If vj < M for some
j = 0, . . . , n − 1, then dv = 0 and hence bv + dv = bv must be positive. If vj ≥ M for
all j = 0, 1, . . . , n− 1, then v must be

∑n−1
j=0 Mej + (L− nM)ei , where dv > 0 (which is

the value taken by q − r on xi = 1); hence bv + dv ≥ dv > 0.
Thus, we conclude the proof that the coefficients of [e] + q1 − [f ] takes positive values

on the vanguards. Hence, [e] + q1 − [f ] ≥ 0 as claimed. �

The following lemma, together with Lemmas 4.3, 4.4 and 4.6, completes the induction,
thus implying the main theorem of this note. We closely follow the arguments given in the
proof of Theorem 2.8 of [19], where we must apologize since there was some confusion in
details.

LEMMA 4.12. Let n ∈ N with n ≥ 2. If the n-shift has the approximate Rohlin property
and (n − 1)-shift has the stable one-cocycle property, then the n-shift has the stable
one-cocycle property.

Proof. Let m ∈ Z+ and k = (k0, k1, . . . , km−1) ∈ N
m. We show that the shift σ on the

quotient

B = An+m
/m−1∑

i=0

I (kien+i )

has the one-cocycle property.
Let u ∈ U(B) be such that ϕi(u) = 1 for i = 0, 1, . . . , n− 1, where ϕi is the character

on B induced from the character on An denoted by the same symbol through

An ∼= An+m
/m−1∑

i=0

I (en+i ).

We have to show that for any ε > 0 there is a v ∈ U(B) such that ‖u− vσ(v)∗‖ < ε and
also the two other versions. First we just concentrate on approximating u by vσ(v)∗.

We denote by Q the quotient map of An+m onto B. Let M ∈ N. From the short exact
sequence

0 → Q(I (Me0)) → B → B/Q(I (Me0)) → 0

and the assumption that the shift has the one-cocycle property for B/Q(I (Me0)) ∼=
An+m/

(
I (Me0)+ ∑m−1

i=0 I (kien+i )
)
, there is a v ∈ U(B) such that

‖u− vσ(v∗)+Q(I (Me0))‖ ≈ 0,

where we have used that ϕi(Q(u)) = 1 for i = 1, . . . , n− 1. Thus, by taking a unitary in
Q(I (Me0))+ 1 close to v∗uσ(v) instead of u, we may suppose that u ∈ Q(I (Me0))+ 1.
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Similarly, from the short exact sequence

0 → Q(I (Me0 + Me1)) → Q(I (Me0)) → Q(I (Me0))/Q(I (Me0 + Me1)) → 0,

where the quotient is isomorphic to I (Me0)/(I (Me0 + Me1) + ∑m−1
i=0 I (Me0 + kien+i ))

which is an ideal of An+m/(I (Me1) + ∑m−1
i=0 I (kien+i )), there is a unitary v ∈

Q(I (Me0))+ 1 such that

‖u− vσ(v∗)+Q(I (Me0 + Me1))‖ ≈ 0.

Thus, we may assume that u ∈ Q(I (Me0 + Me1)) + 1. Repeating this process, we reach
the following conclusion. For any unitary u ∈ U(B), M ∈ N, and ε > 0 we find a
unitary u′ ∈ Q(JM) + 1 and a unitary v ∈ B such that ‖v∗uσ(v) − u′‖ < ε, where
JM = I

(∑n−1
i=0 Mei

)
. We may further suppose that there is a projection f ∈ Q(JM) such

that σ(f ) ≈ f and u′ = u′f + 1 − f .
We now have to approximate u′ by vσ(v)∗ for some v ∈ U(B) by assuming that M is

sufficiently large.
We proceed as follows. By mapping a Rohlin cycle for the shift on An into An+m

(by Lemma 4.10) and then into the quotient B, we try to approximate u′ by vσ(v)∗.
The Rohlin cycle, so-embedded, must commute with u′ and some translates of u′ under σ .
If the sum E of projections in the Rohlin cycle dominated f , the support of u′, then
we would be finished by using the now-standard arguments based on the Rohlin cycles.
However, E is not the identity and will never dominate f , because to assure the
commutativity we have to make the Rohlin cycle reside outside of where u′ resides. Thus,
the problem is how to deal with the left-over part u′f (1 − E) or u′′ = u′f (1 − E)+ 1 −
f (1 − E).

To approximate u′′ by vσ(v)∗ we use another similar method. We construct Rohlin
cycles for σ and for Ad u′′ ◦ σ such that they are of the same type and the sum of
projections covers f (1 − E). For example, let (ei) and (e′i ) be N-cycles such that

F = ∑N−1
i=0 ei = ∑N−1

i=0 e′i ≥ f (1 − E), σ(ei) ≈ ei+1, and Adu′′σ(e′i ) ≈ e′i+1; then
take a partial isometry w such that w∗w = e0 and ww∗ = e′0, and the desired unitary v
can be obtained by modifying

N−1∑
i=0

(u′′σ)i(v)+ 1 − F.

(As a matter of fact we need two Rohlin cycles for each of σ and Adu′′σ to make F large
enough to cover f (1 − E), and we apply this method to u′ directly.)

We now denote by u the unitary in Q(JM) + 1 for some M ∈ N which we have to
approximate by a unitary of the form vσ(v)∗.

Let ε > 0 and δ > 0; we specify δ for the given ε later.
First we choose N1 ∈ N such that 2πN−1

1 < ε; we construct a set of Rohlin cycles of
length N1, N1 + 1, and of longer length for each of σ and Adu′σ to approximate u′ by a
unitary of the form vσ(v)∗ within the error of order ε.

We then choose N2 ∈ N such that if U ∈ MN2+1 is a unitary with eigenvalues
exp(2πik/N2); k = 0, 1, . . . , N2, then there is a N1-cycle (ei) and a N1 + 1 cycle (e′i )
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in MN2+1 such that
∑N1−1
i=0 ei + ∑N1

i=0 e
′
i = 1 and

‖AdU(ei)− ei+1‖ < δ, ‖AdU(e′i )− e′i+1‖ < δ.

By making N2 larger if necessary, we obtain a sequence (e(k)2i ) of N2-cycles in An+m
with E2,k = ∑

i e
(k)
2,i such that

max
i

‖σ(e(k)2,i )− e
(k)
2,i+1‖ < δk,

[E2,k](x) ≥ C(x0x1 · · · xn−1)
M2 , x ∈ �(δk)n+m,

[E2,k](x) ≥ ck
∑

i �=j ;i,j<n
(xixj )

M2, x ∈ �(δk)n+m,

and [E2,k](x) converges to 1 uniformly on every compact subset of �(0)n+m \ Ex(�n+m),
where C > 0 is a constant independent of k as well as M2 ∈ N, ck > 0 is a constant,
(δk) is a sequence of positive numbers decreasing to 0, and �(δ)n+m = {

x ∈ �n+m |∑m−1
i=0 xn+i < δ

}
.

Let δ′ > 0 be sufficiently small and let N3 ∈ N be such that 2N−1/2
3 < δ′; δ′ will be

chosen for δ and N2. By taking N ′-cycles for σ for N ′ ≥ N2N3, we obtain a sequence
(e
(k)
3i ) of N3 projections in An+m with E3,k = ∑

i e
(k)
3,i such that

max
i

‖σN2 (e
(k)
3,i )− e

(k)
3,i+1‖ < δk, i = 0, . . . , N3 − 2,

[E3,k](x) ≥ C′(x0x1 · · · xn−1)
M3, x ∈ �(δk)n+m,

[E3,k](x) ≥ c′k
∑

i �=j ;i,j<n
(xixj )

M3, x ∈ �(δk)n+m,

and [E3,k](x) becomes larger than 1 − 1/N3 uniformly on every compact subset of
�
(0)
n+m \ Ex(�n+m), where C′ > 0 is a constant independent of k as well as M3 ∈ N,

and c′k > 0 is a constant. By taking a smaller one, we set C′ = C and ck = c′k.
We setM = M2+M3+1. We now assume that the unitary u ∈ B belongs toQ(JM)+1.

We also assume that there is a projection f ∈ JM such that ‖σ(f ) − f ‖ < N−1
2 δ′ and

u = uQ(f ) + 1 − Q(f ) and f is local in the sense that f belongs to An+m(Z1) =(⊗
Z1
Mn+m

)γ for some finite subset Z1. Further we may assume that (e(k)2,i )i and (e(k)3,i )i

are local, and they as well as f reside at disjoint subsets.
Then we have that [f (1 − E2,k)] = [f ][1 − E2,k], [f ] ∈ (x0x1 · · · xn−1)

MZ[x1, . . . ,

xn+m−1],
[f (1 − E2,k)](x) ≤ D(x0x1 · · · xn−1)

M, x ∈ �n+m
for some D > 0 and [f (1 − E2,k)](x) converges to 0 uniformly on every compact subset
of �(0)n+m \ Ex(�n+m) and hence of �(0)n+m. On the other hand, we have that

[e(k)20 e
(k)
30 ] ≥ C2(x0x1 · · · xn−1)

M−1, x ∈ �(δk)n+m,

[e(k)20 e
(k)
30 ] ≥ c2

k

∑
i �=j ;i,j<n

(xixj )
M−1, x ∈ �(δk)n+m,

and [e(k)20 e
(k)
30 ](x) becomes larger than (N2N3)

−1(1 − 1/N3) uniformly on every compact

subset of �(0)n+m \ Ex(�n+m).
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If e(k)2,i is constructed from a projection e′i ∈ An with [e′i] = g ∈ Z[x1, . . . , xn−1]
through the mapping φ into An+m (see the proof of Lemma 4.6), then [e(k)2,i ] is given by

(1 −XK)L
′
(1 + L′X) · (1 −XK)Lg(x1(1 − X)−1, . . . , xn−1(1 − X)−1),

where L′ depends only on the order of ‖σφ(e′i )− φσ(e′i )‖ and

X =
n+m−1∑
i=n

xi.

Thus, if g(x) = g(x1, . . . , xn−1) = ∑
v∈VL cvx

v, [e(k)20 ] is given as

(1 +Xp(X))GL(x1, . . . , xn+m−1),

where p(X) is a polynomial in X = xn + · · · + xn+m−1 and

GL(x1, . . . , xn+m−1) =
∑
v∈VL

(1 − x1 − · · · − xn+m−1)
v0x

v1
1 · · · xvn−1

n−1 .

Hence, for each i = 0, . . . , n − 1, the i-vanguard V i([e(k)20 ]) of [e(k)20 ] is the same as that

of GL. More precisely V i([e(k)20 ]) is confined in the M2-deep face generated by the ith
vertices for i = 0, . . . , n − 1, i.e. in the set of v : {0, 1, . . . , n +m− 1} \ {i} → Z+ with
vj ≤ M2 for j < n (and j �= i) and vj = 0 for j ≥ n.

Since {
x ∈ �n+m

∣∣∣∣
m−1∑
i=0

xn+i <
1

2
,D(x0 · · · xn−1)

M < C2(x0 · · · xn−1)
M−1

}

contains a small neighborhood of each vertex xi = 1 (except for the vertex) for i =
0, 1, . . . , n− 1, we have that for all sufficiently large k,

[f (1 − E2,k)](x) < [e(k)2,0e
(k)
3,0](x)

is strict on {x ∈ �n+m | ∑m−1
i=0 xn+i <

1
2 } except for the n vertices xi = 1 for

i = 0, . . . , n − 1. Note also the i-vanguards of [e(k)2,0e
(k)
3,0] with i = 0, . . . , n − 1 are

confined in the M2 + M3 deep face generated by the ith vertices for i = 0, . . . , n − 1.
Hence, we can conclude by Lemma 4.11 that

[Q(f (1 − E2,k))] ≤ [Q(e(k)2,0e
(k)
3,0)]

for all sufficiently large k.
The rest of the arguments proceed as in the proof of Theorem 2.8 of [19].
From now on we will work in B so that we denoteQ(f ),Q(e(k)2,i ), etc., simply by f, e(k)2,i

etc. There should be no confusion.
We take a sufficiently large k. First we find a partial isometry onto f (1 − E2,k) ∈ B

from a subprojection of e(k)2,0 ∈ B, which is almost σN2 -invariant, by using (e(k)3,i ) in B as
follows.

Let b be a partial isometry in B = An+m/
∑m−1
i=0 I (kien+i ) such that

bb∗ = f (1 − E2,k), b∗b ≤ e
(k)
2,0e

(k)
3,0.
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Note that we have assumed that f , (e(k)2,i ) and (e(k)3,i ) reside at disjoint subsets of Z, i.e. there
are finite subsets Z1, Z2, Z3 of Z, which are mutually disjoint, such that f ∈ B(Z1) =
Q(An+m(Z1)) = Q

(⊗
Z1
Mn+m

)γ
, e(k)2,i ∈ B(Z2), and e(k)3,i ∈ B(Z3). (Here we do

not mean that Z1, Z2, Z3 are independent of k; we pick up one k eventually.) We may
suppose that there are x, y, z ∈ U(B) such that x ∈ B(Z1), y ∈ B(Z2), z ∈ B(Z3),
‖x − 1‖ is of order ‖σ(f ) − f ‖ < N−1

2 δ′, ‖y − 1‖ ≈ 0, ‖z − 1‖ ≈ 0, Ad xσ(f ) = f ,

Ad yσ(e(k)2,i ) = e
(k)
2,i+1 and Ad z(Ad yσ)N2(e

(k)
3,i ) = Ad zσN2(e

(k)
3,i ) = e

(k)
3,i+1 for i < N3 − 1.

(If the original Z1, Z2, Z3 are not only disjoint, but mutually far away by N2, this is
certainly possible.) Note that the projection f ∈ Q(JM) is chosen so that u = uf + 1 −f .
We define

d = N
−1/2
3

N3−1∑
i=0

(Ad z(Ad(xy)σ )N2)i(b).

Then it follows that d is indeed a partial isometry such that dd∗ = f (1−E2,k), d∗d ≤ e
(k)
2,0

and ‖Ad z(Ad(xy)σ )N2(d)− d‖ < 2N−1/2
3 < δ′. By assuming that k is sufficiently large,

i.e. ‖y−1‖ and ‖z−1‖ are sufficiently small, and by the assumption that ‖x−1‖ � N−1
2 δ′,

we can assume that the unitary w ∈ B defined through (Ad(xy)σ )N2 = AdwσN2 satisfies
‖w − 1‖ � δ′. Since AdwσN2(e

(k)
2,0) = e

(k)
2,0 and ‖AdwσN2(d∗d) − d∗d‖ � 2δ′,

there is a unitary ζ ∈ B such that ζ = ζ e
(k)
2,0 + 1 − e

(k)
2,0 and ‖ζ − 1‖ � δ′ such that

Ad ζAdwσN2(d∗d) = d∗d . In any case we have that ‖σN2(d)−d‖ is at most of order of δ′.
By using the partial isometry d , we define D to be the C∗-algebra D generated by

(Ad(ζ xy) σ )k(d), k = 0, 1, . . . , N2 − 1. Then D is isomorphic to MN2+1 and its identity
is left invariant under Ad(ζ xy)σ , since Ad(ζ xy)σ (dd∗) = dd∗ = f (1 − E2,k) and
(Ad(ζ xy)σ )N2(d∗d) = d∗d . Since ‖ζσ ′(ζ )(σ ′)2(ζ ) · · · (σ ′)N2−1(ζ ) − 1‖ is of order
of δ′, where σ ′ = Ad(xy)σ , we have that ‖(Ad(ζ xy)σ )N2(d) − d‖ is of order of δ′.
Note that if (Ad(ζ xy)σ )N2(d) = d were true, then Ad(ζ xy)σ would leave D invariant
and be implemented by a unitary U with eigenvalues exp(2πkN−1

2 ), k = 0, 1, . . . , N2.
Since ‖ζxy − 1‖ is of the order of δ′, it follows that ‖(σ − AdU)|D‖ < δ with some
unitary U as above for a suitable choice of δ′ (which can depend on δ and N2). Then by
the choice of N2 we obtain a N1-cycle (f1,i) and a (N1 + 1)-cycle (f2,i) in D such that∑
i f1,i + ∑

i f2,i = 1D and

‖σ(f1,i )− f1,i+1‖ < 2δ, ‖σ(f2,i )− f2,i+1‖ < 2δ.

Let f3,i = e
(k)
2,i − (Ad(ζ xy)σ )i(d∗d) for i = 0, 1, . . . , N2 − 1. Then it follows that

Ad(ζ xy)σ (f3,i) = f3,i+1;
hence (f3,i) forms a N2-cycle in B such that

‖σ(f3,i)− f3,i+1‖ < δ + δ′ < 2δ.

Thus, we have obtained the three cycles (fj,i ), j = 1, 2, 3, which in particular satisfy that

N1−1∑
i=0

f1,i +
N1∑
i=0

f2,i +
N2−1∑
i=0

f3,i = f ∨ E2,k.



The one-cocycle property for shifts 855

We apply the same argument to Aduσ instead of σ . Note that Ad(xyu)σ(e(k)2,i ) = e
(k)
2,i+1,

Ad(xyu)σ(f (1 − E2,k)) = f (1 − E2,k) and Ad z(Ad(xyu)σ)N2(e
(k)
3,i ) = Ad zσN2(e

(k)
3,i )

= e
(k)
3,i+1. With the same b as above, we define a partial isometry d ′ onto f (1 −E2,k) from

a subprojection of e(k)2,0 by

d ′ = N
−1/2
3

N3−1∑
i=0

(Ad z(Ad(xyu)σ)N2)i(b),

which satisfies that ‖Ad z(Ad(xyu)σ)N2(d ′) − d ′‖ < 2N−1
3 < δ′, where we should

note that ‖Ad z(Ad(xyu)σ)N2 − σN2‖ � δ′. Let ζ ′ ∈ B be a unitary such that
ζ ′ = ζ ′e(k)2,0 +1− e(k)2,0 and Ad ζ ′(Ad(xyu)σ)N2((d ′)∗d ′) = (d ′)∗d ′ and ‖ζ ′ −1‖ is of order

of δ′. LetD′ denote theC∗-algebra generated by (Ad(ζ ′xyu)σ)i(d ′), i = 0, 1, . . . , N2−1.
Note that [1D] = (N2 + 1)[f (1 − E2,k)] = [1D′ ] in K0(B). Hence, by using the same
formula used to define f1,i and f2,i we obtain a N1-cycle (f ′

1,i) and a (N1 +1)-cycle (f ′
2,i )

in D′ such that [f ′
1,i] = [f1,i], [f ′

2,i] = [f2,i], ∑
i f

′
1,i + ∑

i f
′
2,i = 1D′ , and

‖Ad uσ(f ′
1,i)− f ′

1,i+1‖ < 2δ, ‖Ad uσ(f ′
2,i)− f ′

2,i+1‖ < 2δ.

Let f ′
3,i = e(k)2,i − (Ad(ζ ′xyu)σ)i((d ′)∗d ′), whence Ad(ζ ′xyu)σ(f ′

3,i)=f ′
3,i+1. Then (f3,i )

forms a N2-cycle such that
‖σ(f3,i)− f3,i+1‖ < 2δ.

Hence, we get the three cycles (f ′
j,i ), j = 1, 2, 3, which in particular satisfy that [f ′

j,i ] =
[fj,i ] and that the sum of all the projections f ′

j,i is f ∨ E2,k.
After having these cycles with appropriate permutation property for σ and Ad uσ ,

we proceed exactly as in [19]. We choose partial isometries b1, b2, b3 ∈ B such that

bjb
∗
j = e′j,0, b∗

j bj = ej,0.

Then the unitary v which satisfies that uσ(v) ≈ v is obtained by modifying

v1 =
N1−1∑
i=0

(Luσ)
i(b1)+

N1∑
i=0

(Luσ)
i(b2)+

N2−1∑
i=0

(Luσ)
i(b3),

where Lu denotes the left multiplication of u. The necessary modifications are done
as follows. First we choose Y, Y ′ ∈ U(B) such that ‖Y − 1‖ ≈ 0, ‖Y ′ − 1‖ ≈ 0,
AdYσ(fj,i ) = fj,i+1 and Ad(Y ′u)σ(f ′

j,i ) = f ′
j,i+1. Such Y (respectively Y ′) can be

obtained by modifying ζxy (respectively ζ ′xy). Second we choose sequences (z1i )
N1−1
i=0

in U(f1,0Bf1,0), (z2i )
N1
i=0 in U(f2,0Bf2,0) and (z3i )

N2−1
i=0 in f3,0Bf3,0 such that z1,N1−1 =

f1,0, z2,N1 = f2,0, z3,N2−1 = f3,0,

z1,0 = b∗
1(LY ′uRY ∗σ)N1(b1),

z2,0 = b∗
2(LY ′uRY ∗σ)N1+1(b∗

2),

z3,0 = b∗
3(LY ′uRY ∗σ)N2(b3),

and
‖zj,i − zj,i+1‖ < 2πN−1

1 < ε,
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where La (respectively Ra) denotes the left (respectively right) multiplication of a.
We then define a unitary v by

v =
N1−1∑
i=0

(LY ′uRY ∗σ)i(b1z1i )+
N1∑
i=0

(LY ′uRY ∗σ)i(b2z2i )

+
N2−1∑
i=0

(LY ′uRY ∗σ)i(b3z3i )+ 1 − f ∨ E2,k.

Then it follows that v is almost invariant under LY ′uRY ∗σ (up to the order of ε > 2π/N1).
Since Y ≈ 1 and Y ′ ≈ 1, it follows that uσ(v) ≈ v or u ≈ vσ(v)∗.

We now turn to the second property of the one-cocycle property. In the above proof
we should note that the unitary v essentially resides on Z1 ∪ Z2 ∪ Z3 (or belong to
B(Z1 ∪ Z2 ∪ Z3)). We have a total control of Z2 (where (e(k)2,i ) resides) and Z3 (where
(e
(k)
3,i ) resides); i.e. by applying σ many times we can make Z2, Z3 as far away as we want.

Hence, we only have to control Z1, where f resides.
This amounts to showing that for any finite subset F of Z, there is a finite subset G of

Z such that for any u ∈ B(Z \G), there are unitaries u′ ∈ Q(JM)+ 1 and v ∈ B(Z′
1) such

that ‖v∗uσ(v) − u′‖ < ε, where Z′
1 must be a finite subset of Z disjoint from F . If we

assume that u ∈ B(Z′′
1 ) with a finite subset Z′′

1 disjoint from G, then u′ essentially belong
to B(Z1), where Z1 = Z′

1 ∪Z′′
1 is disjoint from F . (We then apply the above arguments to

u′ instead of u.)
To get such u′ we apply the second condition of the one-cocycle property for the

(n − 1)-shift a finite number of times, as discussed in the beginning of this proof.
Hence, it is indeed possible.

We now turn to the third property of the one-cocycle property. In the above proof
we have chosen four partial isometries b, b1, b2, b3, which we now have to choose more
carefully, i.e. to make them almost commute with a prescribed finite subset of B requiring
some commutativity condition on the unitary u and the projection f , and the cycles e(k)j,i .

To find a partial isometry b onto Q(1 − E2,k) from a subprojection of Q(e(k)2,0e
(k)
3,0)

we have derived the condition

[Q(f (1 − E2,k))] ≤ [Q(e(k)2,0e
(k)
3,0)].

Since we have to impose the condition that b should commute with a prescribed finite-
dimensional C∗-subalgebra B1 of B, we have to assume that u, f, e(k)2,i , and e(k)3,i almost
commute with B1 and moreover that

[Q(f (1 − E2,k))P ] ≤ [Q(e(k)2,0e
(k)
3,0)P ]

for all minimal central projections P in B1.
The first part of the condition is easy. The near commutativity of e(k)2,i and e(k)3,i with B1

can be assumed just by shifting them by using σ . The near commutativity of f can also
be assumed by making f large (in the ideal retaining the condition σ(f ) ≈ f ). The near
commutativity of u follows from the induction assumption, where we use the stable one-
cocycle property for the (n − 1)-shift a finite number of times. Hence, we concentrate on
the second part.
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By lifting B1 to a finite-dimensional C∗-subalgebra of An+m, we regard B1 as a
C∗-subalgebra ofAn+m(Z0) for some finite subsetZ0 of Z. We can assume that u, f ∈ B ′

1
and Z2 ∪ Z3 is disjoint from Z0. From the latter it follows that

[e(k)2,0e
(k)
3,0p] = [e(k)2,0e

(k)
3,0][p] ≥ C2(x0 · · · xn−1)

M2+M3[p]
for a minimal central projection p in B1.

Let M0 = |Z0| and let p be a minimal central projection in B1. Let p = ∑
v∈V ′ pv ,

where pv is a non-zero projection such that [pv] = cvx
v with cv ∈ N and V ′ is a subset

of VM0 . Suppose that f ∈ JM for some M ∈ N with M > M0. Since fpv belongs to the
ideal JM ∩ I (v) = I

( ∑n−1
i=0 Mei + ∑n+m−1

i=n viei
)
, one can estimate that

[f (1 − E2,k)p](x) ≤ [fp](x) ≤ (x0x1 · · · xn−1)
M

∑
v∈V ′

Dvx
v[n]

on �n+m for some Dv ≥ 0, where xv[n] = x
vn
n · · · xvn+m−1

n+m−1.
Set M = M0 +M2 +M3 + 1. Since

[e(k)2,0e
(k)
3,0p](x) ≥ C2(x0 · · · xn−1)

M0+M2+M3
∑
v∈V ′

cvx
v[n]

on �n+m, it follows that

{x ∈ �n+m | [f (1 − E2,k)p](x) < [e(k)2,0e
(k)
3,0p](x)}

includes a neighborhood of the vertex xi = 1, excluding the vertex itself, for i =
0, . . . , n − 1. Hence, for a sufficiently large k we have that for all minimal central
projections p in B1,

[f (1 − E2,k)p](x) < [e(k)2,0e
(k)
3,0p](x)

on �(1/2)n+m .
As in the proof of Lemma 4.11 we choose Cn+i ∈ N such that

m−1∑
i=0

Cn+i xkn+in+i − (x0 · · · xn−1)
−M [f (1 − E2,k)p]

is strictly positive on�n+m \�(1/2)n+m . Hence,

[e(k)2,0e
(k)
3,0p] + q − [f (1 − E2,k)p]

is strictly positive on �n+m except for the vertices x0 = 1, . . . , xn−1 = 1, where
q = (x0 · · · xn−1)

M
∑m−1
i=0 Cn+ix

kn+i
n+i . We express each term as linear combinations of

xv, v ∈ VL for a sufficiently large L ∈ N. We have to show that the coefficient is positive
on each point of the i-vanguardV iL of [e(k)2,0e

(k)
3,0p]+q−[f (1−E2,k)p] for i = 0, . . . , n−1.

Let v ∈ V iL. If vj < M for some j �= i in {0, 1, . . . , n − 1}, the contribution from
[f (1 − E2,k)p] must be zero; hence the coefficient is positive.

Suppose that vj ≥ M for all j �= i in {0, . . . , n − 1}. If v� ≥ k� for some � ≥ n, then
w = ∑

j �=i;j<n Mej+(L−(n−1)M−k�)ei+k�e� is in front of v and the contribution to the

coefficient of xw from q−[f (1−E2,k)p], and hence from [e(k)2,0e
(k)
3,0p]+q−[f (1−E2,k)p],
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must be positive, which entails that w = v with positive coefficient of xv . So we now have
to consider the case v� < k� for all � ≥ n. In this case the contribution to the coefficient
of xv from q is zero. If there is no w ∈ V ′ such that Dw �= 0 and w� ≤ v� for all � ≥ n,
then the contribution from [f (1 − E2,k)p] is also zero; thus the coefficient of xv must be
positive because it is only contributed from [e(k)2,0e

(k)
3,0p]. Hence, we are left with the case

where there must be w ∈ V ′ such that Dw �= 0 and w� ≤ v� for all � ≥ n. Then there
must be v′ ∈ VL such that v′

j < M for j �= i in {0, 1, . . . , n− 1} and v′
� = w� for all � ≥ n

such that the contribution to the coefficient of xv
′

from [e(k)2,0e
(k)
3,0p] is non-zero. Since the

contribution to it from [f (1 − E2,k)p] must be zero, this implies that v cannot be in V iL.
Thus, we have shown that the coefficients are all positive on the vanguards V iL.

Hence, if Cn+i are sufficiently large as well as k, we can conclude that [e(k)2,0e
(k)
3,0p] +

q − [f (1 −E2,k)p] is positive for all minimal central projections p ∈ B1. Thus, it follows
that

[Q(e(k)2,0e
(k)
3,0p)] − [Q(f (1 − E2,k)p)]

is positive on the quotient B for all minimal central projection p ∈ B1. Hence, we can
choose a partial isometry b in the commutant of B1 such that

bb∗ = Q(f (1 − E2,k)), b∗b ≤ Q(e
(k)
2,0e

(k)
3,0).

We then define partial isometries d, d ′ ontoQ(f (1 −E2,k)) and construct C∗-subalgebras
D,D′ of B (which are isomorphic to MN2+1) as before.

We now work in the quotient B = Q(An+m); so we omit the symbolQ. Define

V =
N2−1∑
i=0

(Ad(ζ ′xyu)σ)i((d ′)∗)(Ad(ζ xy)σ )i(d)+ f (1 − E2,k).

Then V is a partial isometry, which we can assume almost commute with a prescribed
finite subset of B by imposing such a condition on u, d, d ′. Note that the map AdV :
x 	→ V xV ∗ defines an isomorphism of D onto D1 and satisfies that Ad(ζ ′xyu)σ ◦
AdV ≈ AdV ◦ Ad(ζ xy)σ on D, where Ad(ζ xy)σ (respectively Ad(ζ ′xyu)σ ) leaves
D (respectively D′) almost invariant. Thus, if we choose fj,i , j = 1, 2, then we may
define f ′

j,i = Vfj,iV
∗, which implies that we may set b1 = Vf1,0 and b2 = Vf2,0, which

almost commute with a prescribed finite subset.
Since V ∗V = 1D, the N2-cycle (f3,i) is defined by

f3,i = e
(k)
2,i (1 − V ∗V )

and similarly
f ′

3,i = e
(k)
2,i (1 − V V ∗).

Since we can assume that V as well as e(k)2,i almost commutes with elements of a prescribed
finite-dimensional C∗-subalgebra B1 of B, we have that [f3,ip] = [f ′

3,ip] for all minimal
central projection p in B1. Thus, we can find a partial isometry b3 which almost commutes
with B1 and b∗

3b3 = f3,0 and b3b
∗
3 = f ′

3,0.
Having chosen b, b1, b2, and b3 as above, the third property also follows as the first

property. �
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