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Abstract

We study singularities of ruled surfaces in R3. The main result asserts that only
cross-caps appear as singularities for generic ruled surfaces.

1. Introduction

The study of ruled surfaces in R3 is a classical subject in differential geometry.
It has again been studied in some areas (i.e. Projective differential geometry [16],
Computer-aided design [7, 18], etc.). Generally, ruled surfaces have singularities.
Recently there have appeared several articles concerning singularities of developable
surfaces in R3 (cf. [3, 8–12, 14, 15, 17]). Developable surfaces are ruled surfaces which
have vanishing Gauss curvature on the regular part. Another characterization is
that developable surfaces are envelopes of one-parameter families of planes in R3,
so that they have singularities of discriminants of such families. In these articles
classifications of singularities of developable surfaces are given. Briefly speaking, the
cuspidal edge, the cuspidal cross-cap or the swallowtail appear as singularities of
developable surfaces in general (cf. Fig. 1).

On the other hand, the Gaussian curvature of the regular part of a ruled surface



2 S. Izumiya and N. Takeuchi

-0.5
-0.25

0
0.25

0.5

0

2

4

6

-2

-1

0

1

-2

-1

0

1

-2

0
2

-30-20-100

0

20

40

60

80

-2

0
2

-30-20-100

0

100

200

300

400

-100

0

100

-20

-10

0

10

0

10

0

10

Fig. 1

is generally nonpositive. So the developable surface is a member of the special class
of ruled surfaces. Therefore we have the natural question:

How are singularities of developable surfaces different from those of ‘general’ ruled
surfaces?

In this paper we give a classification of singularities of general ruled surface. A
ruled surface in R3 is (locally) the image of the map F(γ,δ) : I × J → R3 defined by
F(γ,δ)(t, u) = γ(t) + uδ(t), where γ : I → R3, δ : I → S2 are smooth mappings and
I, J are open intervals. We assume that I is bounded. We call γ a base curve and δ a
director curve. The straightlines u 7→ γ(t) + uδ(t) are called rulings.

In order to describe the main result in this paper we need some preparation. Let
fi : (Ni, xi)→ (Pi, yi) (i = 1, 2) beC∞map germs. We say that f1, f2 are A-equivalent
if there exist diffeomorphism germs φ : (N1, x1)→ (N2, x2) and ψ : (P1, y1)→ (P2, y2)
such that ψ ◦f1 = f2 ◦φ. Let C∞pr (I,R3×S2) be the space of smooth proper mappings
(γ, δ) : I → R3×S2 equipped with Whitney C∞-topology, where I is an open interval.
The following theorem is the main result in this paper which gives a ‘generic’ answer
to the above question.

Theorem 1·1. There exists an open dense subset O ⊂ C∞pr (I,R3 × S2) such that the
germ of the ruled surface F(γ,δ) at any point (t0, u0) is an immersion germ or A-equivalent
to the cross-cap for any (γ, δ) ∈ O.

Here, the cross-cap is the map germ defined by (x1, x2) 7→ (x2
1, x2, x1x2).

It is well known that any singular point for generic smooth mappings from a
surface to R3 is the cross-cap (cf. [1, 5, 13, 19]). The set of ruled surfaces is a very
small subset in the space of all C∞-mappings. The above theorem, however, asserts
that the generic singularities of ruled surfaces are the same as those of C∞-mappings.
We remark that the cross-cap is realized as a singularity of a ruled surface as follows:
consider curves γ(t) = (t2, 0, 0) and δ(t) = (0, 1/

√
1 + t2, t/

√
1 + t2), then F(γ,δ)(t, u) is

the cross-cap (cf. Fig. 2 below) which corresponds to the normal form.
We can summarize the results of the above theorem as the following relations by

referring to the previous results [3, 10–12, 15]:

{Singularities of generic developable surfaces}
� {Singularities of generic ruled surfaces},

{Singularities of generic ruled surfaces} = {Singularities of generic C∞-mappings}.
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One of the examples of ruled surfaces with cross-caps is the Plücker conoid which is
given by γ(θ) = (0, 0, 2 cos θ sin θ) and δ(θ) = (cos θ, sin θ, 0) (0 6 θ 6 2π) (cf. Fig. 3).

We can also see a beautiful picture of the ruled surface at the home page of
Banchoff [2].

In Section 2 we briefly review the classical theory of ruled surfaces. The idea of
the proof of Theorem 1·1 is that we may locally regard the ruled surface as a one-
dimensional unfolding of a map germ and apply the theory of unfoldings. In this case
the parameter along rulings is considered to be the unfolding parameter. In Section
3 we prepare the general theory of unfoldings. The proof of Theorem 1·1 is given in
Section 4.
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This is the first paper of the authors’ joint project entitled ‘Geometry of ruled

surfaces and line congruences’.
All manifolds and maps considered here are of class C∞ unless otherwise stated.

2. Basic notions and a review of the classical theory

We now present basic concepts and properties of ruled surfaces in R3. The classical
theory has been given in [6]. However, ruled surfaces are not so popular now, so that
we review the classical framework. For the ruled surface F(γ,δ), if δ is a constant
vector v, then the ruled surface F(γ,v) is a generalized cylinder. Therefore, the ruled
surface F(γ,δ) is said to be noncylindrical provided δ′ never vanishes. Thus the rulings
are always changing directions on a noncylindrical ruled surface. It is clear that
the set O1 consisting of noncylindrical ruled surfaces is an open and dense subset in
C∞pr (I,R3 × S2). Then we have the following lemma (cf. [6, lemmas 17·7, 17·8]).

Lemma 2·1. (1) Let F(γ,δ)(t, u) be a noncylindrical ruled surface. Then there exists a
smooth curve σ : I → R3 such that Image F(γ,δ) = Image F(σ,δ) and 〈σ′(t), δ′(t)〉 = 0,
where 〈, 〉 denotes the canonical inner product on R3. The curve σ(t) is called the striction
curve of F(γ,δ)(t, u).

(2) The striction curve of a noncylindrical ruled surface F(γ,δ)(t, u) does not depend on
the choice of the base curve γ.

We can specify the place where the singularities of the ruled surface are located.

Lemma 2·2. Let F(σ,δ) be a ruled surface with the striction curve σ. If x0 = F(σ,δ)(t0, u0)
is a singular point of the ruled surface F(σ,δ) then u0 = 0 (i.e. x0 ∈ Imageσ). Moreover,
if σ′(t0)� 0, then the ruling through σ(t0) is tangent to σ at t0.

Proof. We can calculate the partial derivative of F(σ,δ) as follows:

∂F(σ,δ)

∂t
(t, u) = σ′(t) + uδ′(t),

∂F(σ,δ)

∂u
(t, u) = δ(t).

Therefore we have
∂F(σ,δ)

∂t
× ∂F(σ,δ)

∂u
(t, u) = σ′(t)× δ(t) + uδ′(t)× δ(t),

where × denotes the vector product in R3.
Since ‖δ(t)‖ =

√〈δ(t), δ(t)〉 ≡ 1, we have 〈δ′(t), δ(t)〉 ≡ 0. By the condition
that 〈σ′(t), δ′(t)〉 ≡ 0 and the above, there exists a smooth function λ(t) such that
σ′(t)× δ(t) = λ(t)δ′(t). So we have∥∥∥∥∂F(σ,δ)

∂t
× ∂F(σ,δ)

∂u
(t, u)

∥∥∥∥2

= ‖λ(t)δ′(t) + uδ′(t)× δ(t)‖2

= λ(t)2‖δ′(t)‖2 + 2λ(t)u〈δ′(t), δ′(t)× δ(t)〉 + u2‖δ′(t)× δ(t)‖2

= (λ(t)2 + u2)‖δ′(t)‖2.

Suppose that x0 = F(σ,δ)(t0, u0) is a singular point of the ruled surface F(σ,δ), then∥∥∥∥∂F(σ,δ)

∂t
× ∂F(σ,δ)

∂u
(t0, u0)

∥∥∥∥ = 0.

Since F(σ,δ) is noncylindrical, this means that u0 = λ(t0) = 0.
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By Lemma 2·2, the singularities of a ruled surface are located on the striction curve.
If we consider the cross-cap F(γ,δ)(t, u) = (t2, u/

√
1 + t2, ut/

√
1 + t2), then γ′(t) =

(2t, 0, 0) and δ′(t) = (0,−t/√(1 + t2)3, 1/
√

(1 + t2)3). By definition, γ(t) is the striction
curve of F(γ,δ)(t, u) and the singular point is (0, 0, 0).

We also consider the following examples.

Example 2·3. Let γ : I → R3 and δ : I → S2 be curves given by γ(t) = (0, 0, f (t))
and δ(t) = (cos t, sin t, 0). Then the ruled surface F(γ,δ)(t, u) = (u cos t, u sin t, f (t)) is
called a positive conoid. We can easily calculate that singularities of F(γ,δ)(t, u) is given
by u = 0, f ′(t) = 0 and the striction curve is γ(t).

On the other hand, let g : (R2, 0) → (R3, 0) be a smooth map germ. It has been
known that the origin is the cross-cap if and only if there exists a local chart (x1, x2)
around the origin such that the following conditions hold:

∂g

∂x1
(0)� 0,

∂g

∂x2
(0) = 0 and det

(
∂g

∂x1
(0),

∂2g

∂x1∂x2
(0),

∂2g

∂x2
2
(0)
)
� 0.

By a direct calculation, F(γ,δ)(t0, 0) is the cross-cap if and only if f ′(t0) = 0 and
f ′′(t0) � 0. The above condition means that t0 is a Morse singular point of f (t).
Moreover, it is well-known that Morse functions are generic in the space of smooth
functions. Therefore, this example confirms the assertion of the main theorem. One
of the examples of positive conoids with cross-caps is the Plücker conoid which has
been given in Section 1 (cf. Fig. 3).

Example 2·4. Consider the developable surface

F(γ,δ)(t, u) = (u,−2t2 − 3
2 tu, t

4 + 1
2 t

3u)

with a cuspidal cross-cap. If we slightly perturb it into the ruled surface

F ε(γ,δ)(t, u) = (u,−2t2 − 3
2 tu, t

4 + εt2 + 1
2 t

3u),

we can easily show that the origin is a cross-cap. The situation is depicted in Fig. 4.
The left picture is F(γ,δ)(t, u) and the right one is F 0.2

(γ,δ)(t, u).

3. Unfoldings

For the proof of Theorem 1·1, we need to prepare and review the theory of one-
dimensional unfoldings of map germs. The definition of r-dimensional unfolding of
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f0 : (Rn, 0)→ (Rp, 0) (originally due to Thom) is a germ F : (Rn×Rr, 0)→ (Rp×Rr, 0)
given by F (x, u) = (f (x, u), u), where f (x, u) is a germ of r dimensional parameterized
families of germs with f (x, 0) = f0(x). This definition depends on the coordinates of
both spaces (Rn×Rr, 0) and (Rp×Rr, 0). We need the coordinate free definition of un-
foldings [4]. Let f : (N,x0)→ (P, y0) be a map-germ between manifolds. An unfolding
of f is a triple (F, i, j) of map germs, where i : (N,x0)→ (N ′, x′0), j : (P, y0)→ (P ′, y′0)
are immersions and j is transverse to F , such that F ◦ i = j ◦ f and (i, f ) : N →
{(x′, y) ∈ N ′ ×P | F (x′) = j(y)} is a diffeomorphism germ. The dimension of (F, i, j)
as an unfolding is dimN ′−dimN.We can easily prove that the above two definitions
are equivalent.

Lemma 3·1. Let F : (R2, 0) → (R3, 0) be a map germ with the components of the
form F (t, u) = (F1(t, u), F2(t, u), F3(t, u)). Suppose that (∂F3/∂u)(0, 0) � 0. By the
implicit function theorem, there exists a function germ g : (R, 0)→ (R, 0) with F−1

3 (0) =
{(t, g(t)) | t ∈ (R, 0)}. Let us consider immersion germs i : (R, 0) → (R2, 0) given by
i(t) = (t, g(t)), j : (R2, 0) → (R3, 0) given by j(y1, y2) = (y1, y2, 0) and a map germ
f : (R, 0) → (R2, 0) given by f (t) = (F1(t, g(t)), F2(t, g(t))). Then the triple (F, i, j) is a
one-dimensional unfolding of f.

Proof. It is clear that F ◦ i = j ◦ f. Since (∂F3/∂u)(0, 0)� 0, F is transverse to j.
We can easily show that

{(t, u, y1, y2) | F (t, u) = j(y1, y2)} = {(t, g(t), F1(t, g(t)), F2(t, g(t)) |t ∈ (R, 0)}.
Since (i, f ) : (R, 0) → (R2 × R2, 0) is given by (i, f )(t) = (t, g(t), F1(t, g(t)), F2(t, g(t))),
it maps diffeomorphically onto the above set. This completes the proof.

Since the cross-cap is a stable singularity of map germs (R2, 0) → (R3, 0), we
now discuss the stability of unfoldings. Let En be the local ring of function germs
(Rn, 0) → R and the unique maximal ideal is denoted by Mn. For a map germ
f : (Rn, 0)→ (Rp, 0), we say that f is infinitesimally A-stable if the following equality
holds:

E(n, p) =
〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
En

+ f∗E(p, p),

where E(n, p) denotes the En-module of map germs (Rn, 0) → (Rp, 0) and
f∗: E(p, p) → E(n, p) is the pull back map given by f∗(h) = h ◦ f. It is known that
an infinitesimally A-stable map germ (R2, 0)→ (R3, 0) is an immersion germ or the
cross-cap [1, 5, 13, 19].

For map germs f, g : (Rn, 0) → (Rp, 0), we say that they are K-equivalent if
there exists a diffeomorphism germ φ : (Rn, 0) → (Rn, 0) such that f∗(Mp)En =
φ∗ ◦ g∗(Mp)En. The K-equivalence is a equivalence relation among map germs. Let
Jk(n, p) be the k-jet space of map germ (Rn, 0) → (Rp, 0). For any z = jkf (0) ∈
Jk(n, p), we denote that

Kk(z) = {jkg(0) | g is K-equivalent to f}.
We call it a Kk-orbit since it is the orbit of a certain Lie group action. For any map
germ f : (Rn × Rr, 0) → (Rp, 0), we define a map germ jk1 f : (Rn × Rr, 0) → Jk(n, p)
by jk1 f (x0, u0) = jkfu0 (x0), where fu(x) = f (x, u) and jkfu0 (x0) = jk(fu0 (x + x0))(0).
We have the following Lemma (cf. [13]).
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Lemma 3·2. Under the same notation as the above, jk1 f is transverse to Kk(jk1 f0(0)) if

and only if

E(n, p) =
〈
∂f0

∂x1
, . . . ,

∂f0

∂xn

〉
En

+f∗0 (Mp)E(n, p)+
〈
∂f

∂u1
(x, 0), . . . ,

∂f

∂ur
(x, 0), e1, . . . , ep

〉
R
,

where ei = (0, . . . , 0, 1
i

, 0, . . . , 0) ∈ Rp.

The following lemma is folklore. However, we cannot find any context on where
the proof is explicitly written. So we give the proof here.

Lemma 3·3. Let F : (Rn × Rr, 0) → (Rp × Rr, 0) be an unfolding of f0 of the form
F (x, u) = (f (x, u), u). If jk1 f is transverse to Kk(jkf0(0)) for sufficiently large k, then F
is infinitesimally A-stable.

Proof. By Lemma 3·2 we may assume that

E(n, p) =
〈
∂f0

∂x1
, . . . ,

∂f0

∂xn

〉
En

+f∗0 (Mp)E(n, p)+
〈
∂f

∂u1
(x, 0), . . . ,

∂f

∂ur
(x, 0), e1, . . . , ep

〉
R
.

We can show that

E(n + r, p) =
〈
∂f0

∂x1
, . . . ,

∂f0

∂xn

〉
En+r

+ f∗0 (Mp)E(n + r, p)

+
〈
∂f

∂u1
(x, 0), . . . ,

∂f

∂ur
(x, 0), e1, . . . , ep

〉
Er

+ MrE(n + r, p).

We now apply the Malgrange preparation theorem (cf. [13, p. 141]) as follows: con-
sider M = E(n + r, p) as an En+r-module of finite type. Then we have the quotient
Er-module M0 = E(n + r, p)/MrE(n + r, p). We also consider an En+r-submodule

N =
〈
∂f0

∂x1
, . . . ,

∂f0

∂xn

〉
En+r

+ f∗0 (Mp)E(n + r, p)

of M . By the previous equality and the Malgrange preparation theorem, we have

M = N +
〈
∂f

∂u1
(x, 0), . . . ,

∂f

∂ur
(x, 0), e1, . . . , ep

〉
Er

.

This means that

E(n + r, p) =
〈
∂f0

∂x1
, . . . ,

∂f0

∂xn

〉
En+r

+f∗0 (Mp)E(n + r, p)

+
〈
∂f

∂u1
(x, 0), . . . ,

∂f

∂ur
(x, 0), e1, . . . , ep

〉
Er

.

For any ξ = (ξ1, ξ2) ∈ E(n + r, p + r) = E(n + r, p)× E(n + r, r), there exist λi, ηi ∈
En+rand µi, ζi ∈ Er such that

ξ1 =
n∑
i=1

λi
∂f0

∂xi
+

p∑
i=1

ηif0,i +
r∑
i=1

µi
∂f0

∂ui
+

p∑
i=1

ζiei.
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Therefore, we have

(ξ1, 0) =
n∑
i=1

λi
∂F

∂xi
+

p∑
i=1

ηi(fi, 0) +
r∑
i=1

µi

(
∂f

∂ui
, 0
)

+
p∑
i=1

ζi(ei, 0)

=
n∑
i=1

λi
∂F

∂xi
+

r∑
i=1

µi
∂F

∂ui
+

p∑
i=1

ηi(fi, 0) +
p∑
i=1

(ζi − µi)(ei, 0).

Since ζi − µi ∈ Er,
∑p

i=1(ζi − µi)(ei, 0) ∈ F ∗E(p + r, p + r). This means that

(ξ1, 0) ∈
〈
∂F

∂x1
, . . . ,

∂F

∂xn
,
∂F

∂u1
, . . . ,

∂F

∂ur

〉
En+r

+F ∗E(p+r, p+r)+F ∗(Mp+r)E(n+r, p+r).

On the other hand, we have

(0, ξ2) =
r∑
i=1

ξ2,i
∂F

∂ui
−

r∑
i=1

ξ2,i

(
∂f

∂ui
, 0
)
.

By the same argument as those above, we have

(0, ξ2) ∈
〈
∂F

∂x1
, . . . ,

∂F

∂xn
,
∂F

∂u1
, . . . ,

∂F

∂ur

〉
En+r

+F ∗E(p+r, p+r)+F ∗(Mp+r)E(n+r, p+r).

Hence, we have

E(n + r, p + r) =
〈
∂F

∂x1
, . . . ,

∂F

∂xn
,
∂F

∂u1
, . . . ,

∂F

∂ur

〉
En+r

+F ∗E(p + r, p + r) + F ∗(Mp+r)E(n + r, p + r).

Applying the Malgrange preparation theorem once again, we have

E(n + r, p + r) =
〈
∂F

∂x1
, . . . ,

∂F

∂xn
,
∂F

∂u1
, . . . ,

∂F

∂ur

〉
En+r

+ F ∗E(p + r, p + r).

4. Generic classifications

In this section we give the proof of Theorem 1·1. Since the infinitesimally A-stable
map germ (R2, 0)→ (R3, 0) is an immersion or the cross-cap, we now prove that the
germ of the ruled surface F(γ,δ) at any point is infinitesimally A-stable for generic
(γ, δ).

On the other hand, by the calculation of the proof of Lemma 2·2, the singular point
of the ruled surface F(γ,δ) is given by the condition that rank (γ′(t) + uδ′(t), δ(t)) < 2
and it is equivalent to the condition that two vectors γ′(t) + uδ′(t), δ(t) are parallel.
Since δ(t)� 0, rank (γ′(t) + uδ′(t), δ(t)) > 1.

We now regard the parameter u (i.e. the parameter along the ruling) of the ruled
surface as the parameter of a one-dimensional unfolding. For any (γ, δ) : I → R3×S2

with δ′(t)� 0, we denote that γ(t) = (γ1(t), γ2(t), γ3(t)) and δ(t) = (δ1(t), δ2(t), δ3(t)),
then we have the coordinate representation:

F(γ,δ)(t, u) = (γ1(t) + uδ1(t), γ2(t) + uδ2(t), γ3(t) + uδ3(t)).

For any fixed (t0, u0) ∈ I × J with δ3(t0)� 0, we define a non-empty open subset
U3 in I by

U3 = {t ∈ I | δ3(t)� 0}.
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We define a function g3(t) by g3(t) = −(γ3(t) − y0)/δ3(t) for any t ∈ U3, where y0 =
γ3(t0) + u0δ(t0). Therefore, we have

F(γ,δ)(t, u) = γ(t) + g3(t)δ(t) + (u− g3(t))δ(t) = γ(T ) + g3(T )δ(T ) + Uδ(T )

for T = t, U = u − g3(t). We denote the above map as F̃(γ,δ)(T,U ). By Lemma 3·1,
the map germ F̃(γ,δ)(T,U ) at (t0, 0) is a one-dimensional unfolding of π̂3 ◦ F̃(γ,δ)(T, 0) =
(γ1(T )+g3(T )δ1(T ), γ2(T )+g3(T )δ2(T )), where π̂3 : R3 → R2 is the canonical projection
given by π̂3(y1, y2, y3) = (y1, y2). The following lemma is the basis for the proof of
Theorem 1·1.

Lemma 4·1. Let W ⊂ Jk(1, 2) be a submanifold. For any fixed map germ δ : I → S2

with δ′(t)� 0 and any fixed point (t0, u0) ∈ I × J with δ3(t0)� 0, the set

3TW,(t0,u0) = {γ | jk1 π̂3 ◦ F̃(γ,δ) is transverse to W at (t0, u0)}
is a residual subset in C∞(I,R3)× {δ}.

Here, we consider that C∞(I,R3×S2) = C∞(I,R3)×C∞(I, S2) and relative topology
on C∞(I,R3)× {δ}.

For the proof of Lemma 4·1, we need to apply the following fundamental transver-
sality lemma of Thom (cf. [5, p. 53, lemma 4·6]).

Lemma 4·2. Let X,B and Y be C∞-manifolds. Let j : B → C∞(X,Y ) be a map-
ping (not necessarily continuous) and define Φ: X × B → Y by Φ(x, b) = j(b)(x).
Assume that Φ is smooth and transverse to the submanifold W of Y . Then the set
{b ∈ B | j(b) is transverse to W} is dense in B.

Proof of Lemma 4·1. Let {Kj}∞j=1 be the countable set of open covering of W such
that each closure K̄j is compact. We define the following set

3TW,(t0,u0),Kj =
{
γ | jk1 π̂3 ◦ F̃(γ,δ) is transverse to W with jk1 π̂3 ◦ F̃(γ,δ)(t0, u0) ∈ K̄j

}
.

We now prove that 3TW,(t0,u0),Kj is an open subset. For the purpose, we consider the
following mapping

ĵk : C∞(U3,R3)→ C∞(U3 × J, Jk(1, 2))

defined by ĵk(γ) = jkπ̂3 ◦ F̃(γ,δ). It is clear that the mapping ĵk is continuous. We also
define a subset

OW,Kj = {g ∈ C∞(U3×J, Jk(1, 2)) | g is transverse toWat (t0, u0) with g(t0, u0) ∈ Kj},
then it is open (cf. [5]). Since the restriction map resU3 : C∞(I,R3) → C∞(U3,R3)
is continuous, 3TW,(t0,u0),Kj = (resU3 )

−1 ◦ (ĵk)−1(OW,Kj ) is open. If we show that
3TW,(t0,u0),Kj is dense subset in C∞(I,R3) × {δ}, then TW,(t0,u0) =

⋂∞
j=1 TW,(t0,u0),Kj

is a residual subset.
Since resU3 is surjective, it is enough to show that

TW,(t0,u0),Kj ,U3 =
{
γ ∈ C∞(U3,R3) | jk1 π̂3 ◦ F̃(γ,δ) is transverse to W at (t0, u0)

with jk1 π̂3 ◦ F̃(γ,δ)(t0, u0) ∈ K̄j

}
is a dense subset in C∞(U3,R3).



10 S. Izumiya and N. Takeuchi
For any γ ∈ C∞(U3,R3) and p = (p1, p2) ∈ P (1, 2; k), we define a mapping

f(γ,p) : U3 × J → R2 by

f(γ,p)(t, u) = (γ1(t) + p1(t) + g3(t)δ1(t) + uδ1(t), γ2(t) + p2(t) + g3(t)δ2(t) + uδ2(t)),

where P (1, 2; k) denotes the space of pairs of polynomials (p1, p2) with degrees at most
k without constant terms. We also define a mapping Φ: U3×J×P (1, 2; k)→ Jk(1, 2)
by Φ(t, u, (p1, p2)) = jk1 f(γ,p)(t, u) = jkf(γ,p),u(t), where f(γ,p),u(t) = f(γ,p)(t, u). We may
consider that P (1, 2; k) is Euclidian space RN .

It is easy to show that Φ is a submersion, so that it is transverse to W . By Lemma
4·2,

{p = (p1, p2) ∈ P (1, 2; k) |Φ(p1,p2) is transverse toW at (t0, u0) with Φ(p1,p2)(t0, u0) ∈ K̄j}
is dense in P (1, 2, ; k). Hence, we can find (p1, p2)1, (p1, p2)2, (p1, p2)3, . . . in
P (1, 2; k) converging to (0, 0) so that Φ(p1,p2)i is transverse to W on Kj . Since
limi→∞ (γ + ((p1, p2)i, 0)) = γ in C∞(U3,R3), TW,(t0,u0),Kj ,U3 is dense in C∞(U3,R3).

We remark that jTW,(t0,u0) (j = 1, 2) can also be defined for (t0, u0) ∈ I × J with
δj(t0)� 0 and the same assertion for jTW,(t0,u0) as the above holds.

Proof of Theorem 1·1. Let Ki be the K-orbit with codimension i in Jk(1, 2) for suf-
ficiently large k.We also denote that Σ(1, 2) =

⋂
i>3 Ki ⊂ Jk(1, 2). It has been known

that Σ(1, 2) is a semi-algebraic subset in Jk(1, 2) with codimension greater than 2.
Therefore we have the canonical stratification {Si}mi=1of Σ(1, 2) with codim Si >
2. For any (t0, u0) with δ3(t0) � 0, we denote that 3TΣ(1,2),(t0,u0) =

⋂m
i=1 TSi,(t0,u0).

Since 3TKi,(t0,u0) and 3TΣ(1,2),(t0,u0) are residual subsets in C∞pr (I,R3 × S2), 3O(t0,u0) =⋂2
i=1 3TKi,(t0,u0)

⋂
TΣ(1,2),(t0,u0) is also a residual subset in C∞pr (I,R3 × S2). By the

remark after the proof of Lemma 4·1, jO(t0,u0) (j = 1, 2) are also residual sub-
sets in C∞pr (I,R3 × S2) respectively. Therefore, for any fixed (t0, u0) ∈ I × J, there
exists a residual subset O(t0,u0) ⊂ C∞pr (I,R3 × S2) such that the map germ F(γ,δ)

at (t0, u0) is an infinitesimally A-stable map germ for any (γ, δ) ∈ O by Lemma
3·3. Since the infinitesimally A-stable map germ R2 → R3 is an immersion or the
cross-cap and the singularities of F(γ,δ) are located on the striction curve, there
exists an open neighbourhood Ut0 ⊂ I of t0 such that F(γ,δ) is an immersion on
Ut0 × I − {(t0, u0)}. Since Ī is compact, we can extend (γ, δ) slightly on an open
interval I0 ⊃ Ī and there exist finitely many Uti (i = 1, . . . , `) such open sub-
sets as the above with I =

⋃`
i=1 Uti . Then O =

⋂`
i=1 O(ti,ui) is a residual subset of

C∞pr (I,R3 × S2). It is clear that the germ F(γ,δ) at any point (t, u) ∈ I × J is an
immersion or the cross-cap for any (γ, δ) ∈ O. It is easy to show that the map-
ping F] : C∞(I,R3 × S2) → C∞(I × J,R3) defined by F](γ, δ) = F(γ,δ) is continuous.
Since the cross-cap is the stable singularities of map germs (R2, 0)→ (R3, 0), the set
S = {f ∈ C∞(I × J,R3) | f is an immersion or the cross-cap at any point ∈ I × J}
is an open subset. Therefore, O = F−1

] (S) is an open subset of C∞pr (I,R3 × S2). This
completes the proof of Theorem 1·1.
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