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THE LIGHTCONE GAUSS MAP AND THE LIGHTCONE
DEVELOPABLE OF A SPACELIKE CURVE IN MINKOWSKI

3-SPACE

SHYUICHI IZUMIYA, DONGHE PEI* and TAKASI SANO
Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060, Japan

(Received 18 May, 1998)

Abstract. We de®ne the notion of lightcone Gauss maps, lightcone pedal
curves and lightcone developables of spacelike curves in Minkowski 3-space and
establish the relationships between singularities of these objects and geometric
invariants of curves under the action of the Lorentz group.

1991 Mathematics Subject Classi®cation. 53B30, 58C28, 57R70

1. Introduction. There are several articles concerning `generic di�erential geo-
metry' in Euclidean space [1±5, 8, 10, etc.]. The main tools in these articles are the
distance-squared functions and the height functions on submanifolds. In this paper
we introduce the notion of lightcone height functions and Lorentzian distance-
squared functions on spacelike curves in Minkowski 3-space. We also de®ne the
notion of lightcone Gauss maps, lightcone pedal curves and lightcone developables
of spacelike curves and establish the relationships between singularities of these
subjects and geometric invariants of curves under the action of the Lorentz group as
applications of standard techniques of singularity theory for the above functions.

On the other hand, there exists a special subject in Minkowski 3-space, called a
lightlike surface, which is de®ned to be a surface tangent to the light cone at any
point. We remark that any lightlike surface is the lightcone developable of a space-
like curve. Thus the main theorem (Theorem B) gives a generic classi®cation of sin-
gularities of lightlike surfaces. For the basic notions in Lorentzian geometry, see [9].

Let R3 � f�x1; x2; x3�jx1; x2; x3 2 Rg be a 3-dimensional vector space,
x � �x1; x2; x3� and y � �y1; y2; y3� two vectors in R3, the pseudo scalar product of x
and y is de®ned by hx; yi � ÿx1y1 � x2y2 � x3y3. We call �R3; h; i� a 3-dimensional
pseudo Euclidean space , or Minkowski 3-space . We write R3

1 instead of �R3; h; i�.
We say that a vector x in R3

1 is spacelike , lightlike or timelike if hx; xi > 0,
hx; xi � 0 or hx; xi < 0 respectively.

Let  : Iÿ!R3
1; �t� � �x1�t�; x2�t�; x3�t�� be a smooth regular curve in R3

1 (i.e.,
_�t� 6� 0 for any t 2 I), where I is an open interval. The curve  is called a spacelike
curve if h _�t�; _�t�i > 0, for any t 2 I. The norm of the vector x 2 R3

1 is de®ned by
kxk � ��������������jhx; xijp

: The arc-length of a spacelike curve ; measured from �t0�; t0 2 I is

s�t� �
Z t

t0

k _�t�k dt:
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Then a parameter s is determined such that k 0�s�k � 1; where  0�s� � d=ds�s�:
Consequently we say that a spacelike curve  is parameterized by arc-length if it
satis®es k 0�s�k � 1: Throughout the remainder of this paper we assume the para-
meter s of  is the arc-length parameter. Let us denote t�s� �  0�s�, and we call t�s� a
unit tangent vector of  at s: We de®ne the curvature by k�s� � �����������������������������jh 00�s�;  00�s�ijp

: If
k�s� 6� 0 then the unit principal normal vector n of the curve  at s is given by
 00�s� � k�s� � n�s�: The signature of x is de®ned to be

sign�x� �
1 x is spacelike;
0 x is lightlike;
ÿ1 x is timelike:

8<:
We write ���s�� � sign �n�s��.

For any x � �x1; x2; x3�, y � �y1; y2; y3� 2 R3
1, the pseudo vector product of x and

y is de®ned as follows:

x ^ y �
ÿe1 e2 e3
x1 x2 x3
y1 y2 y3

������
������ � �ÿ�x2y3 ÿ x3y2�; x3y1 ÿ x1y3; x1y2 ÿ x2y1�:

The unit vector b�s� � t�s� ^ n�s� is called a unit binormal vector of the curve  at s:
Since t�s� is spacelike, we have hb�s�; b�s�i � ÿ���s�� and sign � 0�s�� � 1: Then the
following Frenet-Serret type formula holds:

t0�s� � k�s� � n�s�
n0�s� � ÿ���s�� � k�s� � t�s� � ��s� � b�s�
b0�s� � ��s� � n�s�;

8<:
where ��s� is the torsion of the curve  at s (cf. [6]). This is the fundamental formula
for the study of spacelike curves in R3

1; it is, however, useless at the point �s� with
k�s� � 0: We now denote N�s� �  00�s� and B�s� � t�s� ^N�s�: We simply call N�s� a
principal normal vector and B�s� a binormal vector . If k�s� 6� 0; then we have
N�s� � k�s�n�s� and B�s� � k�s�b�s�: It follows that

hN�s� � B�s�;N�s� � B�s�i � k2�s�����s�� ÿ ���s��� � 0:

If k�s� � 0; then N�s� is a lightlike vector, so that any pseudo perpendicular vector in
the normal plane of �s� is parallel to N�s�:We can prove that N�s� � B�s� 6� 0: This
means that N�s� � B�s� is a lightlike vector which is parallel to the vector N�s� for
s 2 I with k�s� � 0: De®ne

S1
� � fx 2 R3

1jx � �1; x2; x3�; x22 � x23 � 1g;

Cp � fx � �x1; x2; x3� 2 R3
1j ÿ �x1 ÿ p1�2 � �x2 ÿ p2�2 � �x3 ÿ p3�2 � 0g;

where p � �p1; p2; p3�:We call S1
� a lightlike unit circle and C�p � Cp ÿ fpg a lightcone

at the vertex p: For any lightlike vector x � �x1; x2; x3�; we write ~x � �1; x2x1 ;
x3
x1
� 2 S1

�:
With this notation, we have gN�s� � B�s� � gN�s� if k�s� � 0:
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We now de®ne a map LG� : Iÿ!S1
� by

LG� �s� � gN�s� � B�s�

and a curve LP� : Iÿ!C� by

LP� �s� � h�s�; gN�s� � B�s�i � g�N�s� � B�s��;

where we may assume that �s� 6� 0: Under the assumption that k�s� 6� 0; we also
de®ne a ruled surface LD� : I� Rÿ!R3

1 by

LD� �s; u� � �s� � u�n�s� � b�s��:

We call LG� the lightcone Gauss map and LP� the lightcone pedal curve (or lightcone
dual curve) of : We also call LD� the lightcone developable of : The geometric
properties of these subjects will be discussed in §3. We can also de®ne LGÿ ; LP

ÿ
 and

LDÿ exactly in the same way as the above. Since these have the same properties as
those of the above, we do not consider these here.

Let  : S1ÿ!R3
1 be a spacelike curve with  00�s� 6� 0: We consider the following

properties of :
(A 1) The number of points p of �S1� where the lightcone at p has two-point

contact with the principal normal curve  00 is ®nite.
(A 2) There is no point p of �S1� where the lightcone at p has greater than

two-point contact with the principal normal curve  00:
In §3, under the assumption that k�s0� 6� 0; we shall show that there exist just

two lightcones at points

v� � �s0� � 1

k�s0����s0�� �n�s0� � b�s0��

such that  has three-point contact with the lightcones at v�:We call each lightcone
an osculating lightcone of :

(A 3) The number of points at which  has four-point contact with the osculat-
ing lightcone is ®nite.

(A 4) There is no osculating lightcone with which  has at least ®ve-point contact
at a point.

Our main results are formulated as follows.

Theorem A. (1) Let Imms�S1;R3
1� be a space of spacelike curves equipped with

Whitney C1-topology. Then the set of curves which satisfy (A 1) and (A 2) is a resi-
dual set in Imms�S1;R3

1�:
(2) Let Imm�s �S1;R3

1� be a space of spacelike curves with k�s� 6� 0 equipped with
Whitney C1-topology. Then the set of curves which satisfy (A 3) and (A 4) is a resi-
dual set in Imm�s �S1;R3

1�:

Theorem B. (1) Under the assumption of (A 1) and (A 2),
(a) the lightcone Gauss map LG� has a fold point at s0 if and only if k�s0� � 0;
(b) the lightcone pedal curve LP� has a cusp point at LP� �s0� if and only if

k�s0� � 0:
(2) Assume (A 3) and (A 4).
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(a) The lightcone developable LD� is nonsingular along the curve �s�: Moreover,
if we consider another lightcone developable LDÿ ; these surfaces intersect transver-
sally along the curve �s�:

(b) The lightcone developable LD� is locally di�eomorphic to the cuspidal edge at
�s0� � u0�n�s0� � b�s0�� if and only if u0 � 1

k�s0����s0�� : Moreover, the locus of the ver-

tices of the osculating lightcones �s� � 1
k�s����s�� �n�s� � b�s�� is the cuspidal edge.

(c) The lightcone developable LD� is locally di�eomorphic to the swallow tail at
�s0� � u0�n�s0� � b�s0��� if and only if u0 � 1

k�s0����s0�� and �k0 ÿ � � k��s� � 0:

If we consider a curve  on the �x2; x3�-plane, it is always a spacelike curve. In
this case the �x2; x3�-plane is a Euclidean plane, so that the curvature k�s� is the
ordinary Euclidean curvature and the torsion ��s� is constantly equal to zero. Then
�k0 ÿ � � k��s� � k0�s�: This means that the swallowtail point of the rightcone devel-
opable of  corresponds to the ordinary vertex of : Figure 1 is the picture of the
rightcone developable of the ellipse:

�t� � �0; 2 cos t; sin t� �0 � t � 2��:

We can easily recognize that there exist four swallowtails.

Figure 1
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In [7], M. Kossowski introduced the notion of S1 � S1-valued Gauss maps
associated with spacelike curves. The authors are much inspired by his paper.
Especially, the authors learned the fact that n�s� � b�s� is lightlike in his paper. As a
matter of fact, the notion of lightcone Gauss maps in this paper is almost the same
as that of S1 � S1-valued Gauss maps. The basic techniques in this paper depend
heavily on those in the attractive book of Bruce and Giblin [4]. In §2 we introduce
the notion of lightcone height functions and Lorentzian distance-squared functions
on spacelike curves and study these properties. The Lorentzian distance-squared
function is just a direct analogy of the distance squared function in Euclidean
3-space. We can consider the Lorentzian focal surfaces and the Lorentzian canal
surface of a spacelike curve by using Lorentzian distance squared functions. It is,
however, a simple analogy of the Euclidean case. Here, we consider the notion
of lightcone developables, which is a special subject in Lorentzian geometry. We
study some Lorentzian invariants in §3. These invariants are squeezed out by
the study of lightcone height functions and Lorentzian distance squared functions in
§2. The proof of Theorem B is given in §4. In §5 we consider the generic properties
by using the Lorentzian analogy of the notion of Monge-Taylor maps of curves in
[4].

2. Lorentzian invariant functions on spacelike curves. In this section we introduce
two di�erent families of functions on a spacelike curve which are useful in the study
of Lorentzian invariants of spacelike curves.

For a spacelike curve  : Iÿ!R3
1, we now de®ne a function

H : I� S1
�ÿ!R

by H�s; v� � h; vi: We call H a lightcone height function on the spacelike curves :
We denote this h�s� � Hv0 �s� � H�s; v0�, for any ®xed v0 2 S1

�:We have the following
proposition.

Proposition 2.1. Let  : Iÿ!R3 be a unit speed spacelike curve with  00�s� 6� 0:
(1) h0�s0� � 0 if and only if v is in the normal plane at �s0�: Especially, if

k�s0� 6� 0; then v � gN�s0� � B�s0�:
(2) h0�s0� � h00�s0� � 0 if and only if v � gN�s0� � B�s0� � gN�s0� and k�s0� � 0:

(3) h0�s0� � h00�s0� � h�3��s0� � 0 if and only if v�s0� � gN�s� � B�s0� � gN�s0�; and
k�s0� � hN0�s0�;N�s0�i � 0:

(4) h0�s0� � h00�s0� � h�3��s0� � h�4��s0� � 0 if and only if v � gN�s0� � B�s0� �gN�s0�; and k�s0� � hN0�s0�;N�s0�i � hN00�s0�;N�s0�i � 0:

Proof. Let H : I� S1
�ÿ!R be the lightcone height function on the spacelike

curve  : Iÿ!R3
1: Then we have @H@s � h 0�s�; vi � ht�s�; vi; where v � �1; x2; x3� 2 S�1:

It follows that @H@s � 0 if and only if hv; ti � 0: Especially, if k�s� 6� 0; then there exist
�; � such that v � ��n� �b�: Since hv; vi � 0; we have ��� � �2 ÿ ��� � �2 � 0; so
that we have �2 � �2: It follows that we have v � gn� b:

On the other hand, we have @2H
@s2
� hN�s�; vi: If k�s� 6� 0; then @H

@s � @2H
@s2
� 0 if and

only if v � gn� b � gN�s� � B�s� and hk � n; vi � 0. This is equivalent to the condition
that v � gn� b and khn; gn� bi � k��� � 0: Since ��� � �1; the above condition
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means that v � gn� b and k � 0: This is a contradiction, so that we have k�s� � 0;
then N�s� is a lightlike vector. Since hv;N�s�i � 0, v is parallel to N�s�: It is equivalent
to the fact that v � gN�s� � gN�s� � B�s�:

Since @3H
@s3
� hN0�s�; vi; @H@s � @2H

@s2
� @3F

@s3
� 0 if and only if v � gN�s� � gN�s� � B�s�;

k�s� � 0 and hN0�s�;N�s��i � 0:
Moreover, we have @

4H
@s4
� hN00�s�; vi: Then @H

@s � @2H
@s2
� @3H

@s3
� @4H

@s4
� 0 if and only if

v � gN�s0� � B�s0� � gN�s0� ; k � hN0;Ni � 0 and hN00; vi � 0: Since v is parallel to N;
we have hN00;Ni � 0: &

We now de®ne a function

G : I� R3
1ÿ!R

by

G�s; v� � h ÿ v;  ÿ vi:

We call G the Lorentzian distance-squared function on a spacelike curve : We note
that g�s� � Gv0�s� � G�s; v0�, for any ®xed v0 2 R1

3: We also have the following
proposition.

Proposition 2.2. Let  : Iÿ!R3
1 be a unit speed spacelike curve with k�s� 6� 0:

(1) g�s0� � g0�s0� � 0 if and only if �s0� ÿ v�s0� � ��n�s0��b�s0�� �� 2 Rÿ f0g�:
(2) g�s0� � g0�s0� � g00�s0� � 0 if and only if v � �s0� � 1

k�s0�����s0�� �n�s0� � b�s0��
and k�s0� 6� 0:

(3) g�s0� � g0�s0� � g00�s0� � g�3��s0� � 0 if and only if v � �s0� � 1
k�s0�����s0���n�s0� � b�s0��; k�s0� 6� 0 and �k0 � k � ���s0� � 0:

(4) g�s0� � g0�s0� � g00�s0� � g�3��s0� � g�4��s0� � 0 if and only if v � �s0��
�n�s0��b�s0��
k�s0�����s0�� ; k�s0� 6� 0 and �k0 � k � ���s0� � �k0 � k � ��0�s0� � 0:

Proof. Let G : I� R3
1ÿ!R be a Lorentzian distance-squared function on the

spacelike curve  : Iÿ!R3
1: Then we have @G

@s � 2h 0;  ÿ vi: It follows that @G@s � 0 if
and only if  ÿ v � � � n� � � b: Thus G�s; v� � @G

@s � 0 if and only if
 ÿ v � � � n� � � b and h� � n� � � b; � � n� � � bi � 0: This is equivalent to the
condition that  ÿ v � ��n�b�:

On the other hand, since @2G
@s2
� 2ht0;  ÿ vi � 2ht; ti � 2fhk � n;  ÿ vi � 1g;

G � @G
@s � @2G

@s2
� 0 if and only if  ÿ v � ��n�b� and hk � n; ��n� b�i � ÿ1: The last

equality is equivalent to the relation that k � � � ��� � k � �hn; ni � ÿ1. This means
that v �  � 1

k���� �n� b� and k 6� 0:

Since @3G
@s3 � 2h�k � n�0;  ÿ vi; G � @G

@s � @2G
@s2 � @3G

@s3 � 0 if and only if k 6� 0 and
hk0 � n� k � n0;ÿ 1

k���� �n�b�i � 0; which is equivalent to the condition that k 6� 0 and
k0 � ��� � k � �hb; bi � 0: This can be reduced to the condition that k 6� 0 and
k0 ÿ � � k � � � 0:

Finally, we have @
4G
@s4
� 2h�k � n�00;  ÿ vi � 2h�k � n�0; ti: Then @4G

@s4
� 0 if and only if

hk00 � n� k0 � n0 � �b0k� �bk0 ÿ 2�kk0tÿ �k2t0 � k�0b;  ÿ vi
�hk0n� �bkÿ �k2t; ti � 0:
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This is equivalent to the condition that

hk00n� k0n0 � k�b0 � �bk0 ÿ 2�kk0tÿ �k3n� k�0b;  ÿ vi ÿ �k2 � 0:

Therefore G � @G
@s � @2G

@s2
� @3G

@s3
� @4G

@s4
� 0 if and only if

hk00n� k0n0 � �b0k� �bk0 ÿ �k3n� k�0b;ÿ �n� b�
k � � i ÿ �k

2 � 0:

By the Frenet-Serret type formula, we can translate this condition into the condition
that

hk00n� k0�b� k�2n� k0�bÿ �k3n� k�0b;ÿ �n� b�
k � � i ÿ �k

2 � 0:

Hence we have the condition that k00 � 2k0� � k� � k�2 � 0: Under the condition
that k 6� 0; k0 � �k � �; the above condition is equivalent to �k0 � k � ��0 � 0: &

3. Lorentzian invariants of spacelike curves. In this section we study the geo-
metric properties of the lightcone Gauss maps, the lightcone pedal curve and the
lightcone developables of spacelike curves. By the propositions in the last section, we
can recognize that the functions k�s� and �k0 � �k��s� have special meanings. Firstly
we have the following proposition.

Proposition 3.1. (1) Let  : Iÿ!R3
1 be a spacelike curve with  00�s� 6� 0: Then

k�s� � 0 if and only if  00�s� 2 C�0:
(2) Let  : Iÿ!R3

1 be a spacelike curve with k�s� 6� 0: Then �k0 � �k��s� � 0 if and
only if p� � �s� � 1

k�s���� �n�s� � b�s�� are constant vectors. Under this condition
�s� 2 C�p� :

Proof. By de®nition, the assertion (1) holds. In order to prove the assertion (2),
we put

P��s� � �s� � 1

k�s���� �n�s� � b�s��;

then we have

P0��s� �
ÿ�k0 � �k��s�

k�s���s� �n�s� � b�s��:

It follows that P0��s� � 0 if and only if �k0 � �k��s� � 0: Since �n�s� � b�s�� is lightlike,
�s� 2 Cp� ; where p� � P��s�: &

Corollary 3.2. (1) Let  : Iÿ!R3
1 be a spacelike curve with  00�s� 6� 0: If

k�s� � 0; then the lightcone Gauss map of  is constant and the lightcone pedal curve of
 is a lightlike line.
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(2) Let  : Iÿ!R3
1 be a spacelike curve with k�s� 6� 0: If �k0 ÿ �k��s� � 0; then the

lightcone developable is the lightcone Cp� with vertices p�; where
p� � �s� � 1

k�s���� �n�s� � b�s�� are the constant points.

Proof. (1) Since N�s� �  00�s� is lightlike for any s 2 I; the locus of t�s� �  0�s� is a
lightlike line on the pseudo sphere S2

1; where

S2
1 � fx 2 R3

1jhx; xi � 1g:

It follows that eN�s� is constant and the locus of h�s�; gN�s�igN�s� is a lightlike line.
(2) By de®nition, we have

LD� �s; u� � �s� � u�n�s� � b�s�� � p� � �uÿ 1

k�s������n�s� � b�s��

so that the image of LD� �s; u� is in the pair of lightcones with vertices Cp� : Since
@LD�
@s �s; u� � �1ÿ u���k�s��t�s� � ��s�b�s� and @LD�

@u �s; u� � �n�s� � b�s��; we have

@LD�
@s
�s; u� ^ @LD

�


@u
�s; u� � �u���k�s� ÿ 1��n�s� � b�s�� � ��s�t�s�:

It follows that LD� �s; u� is an immersed surface at �s; u� with u 6� 1
k�s���� : The image of

the set u � 1
k�s���� consists of the vertices p� of the lightcones. This completes the

proof. &

Let F : R3
1ÿ!R be a submersion and  : Iÿ!R3

1 a spacelike curve. We say that 
and Fÿ1�0� have k-point contact for t � t0 if the function g�t� � F � �t� satis®es
g�t0� � g0�t0� � � � � � g�kÿ1��t0� � 0; g�k��t0� 6� 0: By Propositions 2.1, 2.2 and 3.1, we
have the following proposition.

Proposition 3.3. (1) Let  : Iÿ!R3
1 be a unit speed spacelike curve with

 00�s� 6� 0: Then  00 and the lightcone C�0 have 2-point contact for s � s0 if and only if
k�s0� � 0 and hN0�s0�;N�s0�i 6� 0:

(2) Let  : Iÿ!R3
1 be a unit speed spacelike curve with k�s� 6� 0: Then  and the

lightcone C�p� have 4-point contact for s � s0 if and only if �k0 ÿ k���s0� � 0 and
�k0 ÿ k��0�s0� 6� 0:

4. Unfoldings of functions of one-variable. In this section we use some general
results on the singularity theory for families of function germs. Detailed descriptions
are found in the book [4]. Let F : �R� Rr; �s0; x0�� ! R be a function germ. We call
F an r-parameter unfolding of f, where f�s� � Fx0 �s; x0�: We say that f has Ak-singu-
larity at s0 if f

�p��s0� � 0, for all 1 � p � k, and f �k�1��s0� 6� 0:We also say that f has
A�k-singularity at s0 if f

�p��s0� � 0, for all 1 � p � k: Let F be an unfolding of f and
f�s� have Ak-singularity �k � 1� at s0: We denote the �kÿ 1�-jet of the partial deri-
vative @F

@xi
at s0 by j �kÿ1��@F@xi �s; x0���s0� �

Pkÿ1
j�1 �jis

j for i � 1; . . . ; r. Then F is called a
�p� versal unfolding if the �kÿ 1� � r matrix of coe�cients ��ji� has rank kÿ 1
�kÿ 1 � r�. Under the same condition as the above, F is called a versal unfolding if
the k� r matrix of coe�cients ��0i; �ji� has rank k �k � r�; where �0i � @F

@xi
�s0; x0�:
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We now introduce important sets concerning the unfoldings relative to the
above notions. The singular set of F is the set

SF � f�s; x�j @F@s �s; x� � 0g:

The bifurcation set BF of F is the critical value set of the restriction to SF of the
canonical projection � : R� Rrÿ!R:

BF � fx 2 Rrj there exists s with
@F

@s
� @

2F

@s2
� 0 at �s; x�g:

The discriminant set of F is the set

DF � fx 2 Rrj there exists s with F � @F
@s
� 0 at �s; x�g:

Then we have the following well-known result (cf. [4]).

Theorem 4.1. Let F : �R� Rr; �s0; x0�� ! R be an r-parameter unfolding of f�s�
which has Ak singularity at s0.

(1) Suppose that F is a �p� versal unfolding.
(a) If k � 2, then �s0; x0� is the fold point of �jSF and BF is locally di�eo-

morphic to f0g � Rrÿ1.
(b) If k � 3, then BF is di�eomorphic to C� Rrÿ2.

(2) Suppose that F is a versal unfolding.
(a) If k � 1, then DF is locally di�eomorphic to f0g � Rrÿ1.
(b) If k � 2, then DF is locally di�eomorphic to C� Rrÿ2.
(c) If k � 3, then DF is locally di�eomorphic to SW� Rrÿ3.

Here, C � f�x1; x2�jx12 � x2
3g is the ordinary cusp and

SW � f�x1; x2; x3�jx1 � 3u4 � u2v; x2 � 4u3 � 2uv; x3 � vg

is the swallow tail. We also say that a point x0 2 Rr is a fold point of a map germ
f : �Rr; x0�ÿ!�Rr; f�x0�� if there exist di�eomorphism germs � : �Rr; x0�ÿ!�Rr; 0�
and  : �Rr; f�x0��ÿ!�Rr; 0� such that  � ��x1; ; xr� � �x1; . . . ; xrÿ1; x2r �:

For a unit speed spacelike curve  : Iÿ!R3
1; we now de®ne a function

eH : I� S1
� � R! R

by eH�s; v; u� � H�s; v� ÿ u � h�s�; vi ÿ u; where H is the lightcone height function.
Then we have the following fundamental theorem in this paper.

Theorem 4.2. Let  : Iÿ!R3
1 be a unit speed spacelike curve with  00�s� 6� 0 and

H : I� S1
�ÿ!R the lightcone height function on :

(1) If h�s� � Hv0 �s� has A2-singularity at s0; then H is the (p)versal unfolding of h:

A SPACELIKE CURVE IN MINKOWSKI 3-SPACE 83



(2) If h�s� � eH�v0;u0��s� has Ak-singularity �k � 1; 2� at s0; then eH is the versal
unfolding of h:

Let  : Iÿ!R3
1 be a unit speed spacelike curve with k�s� 6� 0 and G : I� R3

1ÿ!R

the Lorentzian distance-squared function. We consider the point �s0; v0� 2 I� R3
1 with

G�s0; v0� � 0 and v0 6� �s0�:
(3) If g�s� has Ak-singularity �k � 1; 2; 3� at s0; then G is the versal unfolding of

g :� Gv0 :

Proof. (1) We have shown that Hv0 has A2-singularity at s0 if and only if there
exists a non-zero real number � such that v � �N�s0� and k�s0� � 0: We denote by
�s� � �x1�s�; x2�s�; x3�s��; v � �1; cos �; sin ��: By de®nition, we have H�s; �� �
ÿx1�s� � x2�s� � cos � � x3�s� � sin �: It follows that @H

@� � ÿx2�s� � sin � � x3�s� � cos �
and the 1-jet of @H@� at s0 is given by s � ÿx02�s0� � sin � � s � x03�s0� � cos �: So we require
the 1� 2 matrix �ÿx2�s� � sin � � x3�s� � cos �;ÿx02�s0� � sin � � x03�s0� � cos �� to have
rank 1 which it always does since ÿx02�s0� � sin � � x03�s0� � cos � 6� 0: In fact,
ÿx02�s0� � sin � � x03�s0� � cos � is equal to the ®rst component of  0 ^ v: Suppose
that ÿx02�s0� � sin � � x03�s0� � cos � � 0: Since h 0 ^ v;  0 ^ vi � ht ^ �1N; t ^ �1Ni �
�2hB;Bi � �2hN;Ni � 0, we have

h�0; x03 ÿ x01 sin �; x01 cos � ÿ x02�; �0; x03 ÿ x01 sin �; x01 cos � ÿ x02�i � 0:

This is equivalent to the condition that

x03
2 ÿ 2x01x

0
3 sin � � x01

2
sin 2� � x01

2
cos 2� ÿ 2x01x

0
2 cos � � x02

2 � 0:

It follows that

x03
2 � x02

2 � x01
2 ÿ 2x01�x02 sin � � x03 cos �� � 0:

Since ÿx01 � x02 sin � � x03 cos � � h 0; vi � 0; we have ÿx012 � x02
2 � x03

2 � 0: On the
other hand, ÿx012 � x02

2 � x03
2 � h 0;  0i � 1: This is a contradiction. Hence H is (p)

versal.
(2) In this case we have

eH�s; �; u� � H�s; �� ÿ u � ÿx1�s� � x2�s� � cos � � x3�s� � sin � ÿ u:

By Proposition 2.1, h has A1-singularity at s0 if and only if v is in the normal plane at
�s0� and A2-singularity at s0 if and only if there exists a non-zero real number �1
such that v � �1�s0�N�s0� and k�s0� � 0:

Since eH�s; v; u� � H�s; v� ÿ u � h�s�; vi ÿ u � ÿx1�s� � x2�s� � cos � � x3�s��
sin � ÿ u: we have @eH

@� � ÿx2 � sin � � x3 � cos � and @eH
@u � 1 at s0. So the rank of the

1� 2 matrix �ÿx2 � sin � � x3 � cos �; 1� is 1. By the same reason as the case (1), we
have ÿx02�s0� � sin � � x03�s0� � cos � 6� 0: It follows that the rank of the 2� 2 matrix

ÿx2 � sin � � x3 � cos � 1
ÿx02 � sin � � x03 � cos � 0

� �

is 2: This means that eH is versal when h�s� has the Ak-singularity �k � 1; 2� at s0.
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(3) In this case we have

G�s; v� � ÿ�x1�s� ÿ v1�2 � �x2�s� ÿ v2�2 � �x3�s� ÿ v3�2;

where �s� � �x1�s�; x2�s�; x3�s�� and v � �v1; v2; v3�:
Thus we have @G@v1 �s� � 2�x1�s� ÿ v1�; and so the 2-jet at s0 is 2�sx01�s0� � 1

2 s
2x1
00�s0��:

We also have @G
@vi
� ÿ2�xi�s� ÿ vi� �i � 2; 3�; and so the 2-jet at s0 is

ÿ2�sx0i�s0� � 1
2 s

2xi
00�s0��: The condition for versality can be checked as follows.

(i) By Proposition 2.2, g has A1-singularity at s0 if and only if there exists a
non-zero real number � such that v � �s0� ÿ ��n�s0� � b�s0�� and
k�s� � � � � 6� ÿ1: When g has A1-singularity at s0; we require the 1� 3
matrix �2�x1�s0� ÿ v0;1�;ÿ2�x2�s0� ÿ v0;2�;ÿ2�x3�s0� ÿ v0;3�� to have rank 1,
which it always does since v0 6� �s0�:

(ii) It also follows from Proposition 2.2 that g has the A2-singularity at s0 if

and only if v �  � 1
k�s0����� �n�s0� � b�s0�� and k�s� 6� 0; k0�s� 6� �k�s� � �:

When g has A2-singularity at s, we require the 2� 3 matrix

2�x1�s0� ÿ v1� ÿ2�x2�s0� ÿ v2� ÿ2�x3�s0� ÿ v3�
2x01�s0� ÿ2x02�s0� ÿ2x03�s0�

� �

to have rank 2, which follows from the proof of the case (iii).
(iii) By Proposition 2.2, g has A3-singularity at s0 if and only if v �  � �n�b�k�� �

and k�s0� 6� 0; �k0 � k � ���s0� � 0 and �k0 � k � ��0�s0� � 0: When g has A3-
singularity at s, we require the 3� 3 matrix

2�x1�s0� ÿ v1� ÿ2�x2�s0� ÿ v2� ÿ2�x3�s0� ÿ v3�
2x01�s0� ÿ2x02�s0� ÿ2x03�s0�
x1
00�s0� ÿx200�s0� ÿx300�s0�

0@ 1A
to be nonsingular. The determinant of this matrix is 4det��vÿ �s0��  0�s0�  00�s0�� �
4h�vÿ �s0�� ^ t�s0�; k�s0� � n�s0�i � 4h��n�s0� � b�s0��^ t�s0�; k�s0� � n�s0�i � 4hÿ�b�s0�
��n�s0�; k�s0�n�s0�i � �4�k�s0���� 6� 0: But this just says k�s0� 6� 0. This completes
the proof. &

We now give the proof of Theorem B.

Proof of Theorem B. For the proof of the assertion (1) (a), we consider the
set SH associated with the lightcone height function H given by SH �
f�s; v� 2 I� S1

�jh0�s� � 0g: By Proposition 2.1, we have SH � f�s; v�jv � gN�s� � B�s�g:
We also consider the canonical projection � : I� S1

�ÿ!S1
� and we can identify �jSH

and the lightcone Gauss map LG� : By the assumption and Propositions 2.1 and 3.3,
h has A2-singularity at s0 if and only if k�s0� � 0: It follows from Theorem 4.2 that H
is the (p)versal unfolding of h at s0:

Therefore Lemma 4.1, (1) (a) asserts that �jSH has a fold point at s0:
In order to prove the assertion (1) (b), we de®ne a map

A SPACELIKE CURVE IN MINKOWSKI 3-SPACE 85



eH : I� S1
� � Rÿ!R

by

eH�s; v; u� � H�s; v� ÿ u � h�s�; vi ÿ u:

The discriminant set of eH is

DeH � f�v; u�ju � h; vi; v � gN�s� � B�s�g:

Applying a Lorentzian motion to the curve ; we may assume that
h�s�; �s�i 6� 0: This means that u � h�s�; gN�s� � B�s�i 6� 0:

We now de®ne a map � : S1
� � R�ÿ!C� by ���1; x2; x3�; �� � ��;� � x2; � � x3�;

where R� � fx 2 Rjx > 0g and C� � f�x1; x2; x3�jx12 � x2
2 � x3

2; x1 > 0g: Since
�ÿ1�x1; x2; x3� � ��1; x2x1 ;

x3
x1
�; x1�; � is a di�eomorphism. By the above arguments we

may assume that D ~H � S1
� � R�: It is clear that

��D ~H� � f�u � v�jv � h; gN�s� � B�s�i � � gN�s� � B�s��; s 2 Ig:
By Lemma 4.1 and Theorem 4.2 (2), the discriminant set D ~H of eH is locally di�eo-
morphic to a line or the cusp. It follows from Proposition 2.1 that the proof of
Theorem B (1) (b) is completed.

The assertions (2) (a) is trivial by the de®nition of the lightcone developable.
For the proof of the assertion (2) (b), (c), we consider the discriminant set of G:

By Proposition 2.2, the discriminant set of G is given by

DG � fv 2 R1
3j there exists s and non-zero real number � with v � �s� ÿ ��n�s� � b�s��g:

Hence the assertions follow from Proposition 2.2 and Theorem 4.2. &

5. Generic properties of spacelike curves. In this section we consider the notion of
Lorentzian Monge-Taylor maps for spacelike curves analogous to the ordinary
notion of Monge-Taylor maps for space curves in Euclidean space (cf. [4]).

Firstly we try to choose a pseudo orthonormal frame along  like the Euclidean
case. In this case the tangent vector of  is always spacelike, so that the normal plane
contains lightlike vectors. We cannot choose a lightlike normal vector as a member
of the basis of the frame along : If we construct such a frame, all arguments in the
sequel are parallel to those of the Euclidean case. Let  : Iÿ!R3

1 be a (regular)
spacelike curve, with I an open connected subset of the unit circle S1, increasing t
corresponding to the anticlockwise orientation of S1. We now choose a smooth
family of unit vectors n�t�; with n�t� pseudo-normal to  at t, so that kn�t�k � 1 and
hn�t�; t�t�i � 0, for all t 2 I. Such n�t� can be obtained as follows: consider the
smooth map t : I! S2

1 which takes t to the unit tangent vector t�t�. If V is any vec-
tor in H2

1 (where H2
1 � fp 2 R3

1 j hp; pi � ÿ1g) we can obtain the vector ®eld n�t� by
pseudo-orthogonally projecting V onto each of the normal planes and normalizing.

Thus n�t� � VÿhV;t�t�it�t�
kVÿhV;t�t�it�t�k ; then we have hn; ni � ÿ1 and hn; ti � 0. This means that
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we can choose n�t� as a timelike vector ®eld along :We can obtain a second smooth
family of unit vectors b�t� � t�t� ^ n�t� normal to  at t. We remark that the triple
t�t�; n�t�; b�t� is the Lorentzian frame along  and b�t� is spacelike. We now use the
pseudo-perpendicular lines spanned by t�t�; n�t�; b�t� as axes at �t� with the unit
points on the axes corresponding to the three given vectors. We remark that the
Minkowski metric is invariant under the Lorentz transformation. Note that the curve
�t� is not necessarily of unit speed, with �t0� � 0. Then the coordinates �; � and � of
�t� relative to axes t; n and b are functions of t : ��t� � �t� � t�t0�; ��t� � �t� � n�t0�,
��t� � �t� � b�t0�; ��t� � f���t��; ��t� � g����t�� where f � f0; g � g0. So jkft�0� �
a2�t��2 � a3�t��3 � � � � � ak�t��k, jkgt�0� � b2�t��2 � b3�t��3 � � � � � bk�t��k in the
neighbourhood �0; 0; 0�. Locally then �I� can be written in the form f�ft���; �; gt����g,
with f�0� � g�0� � j1ft�0� � j1gt�0� � 0. If Vk denotes the space of polynomials in �
of degree � 2 and � k; we have the Lorentzian Monge-Taylor map for the spacelike
curve ; � : Iÿ!Vk � Vk given by ��t� � �jkft�0�; jkgt�0��: (Vk � Vk can be identi-
®ed with Rkÿ1 � Rkÿ1 � R2�kÿ1� via the coordinates �a2; . . . ; ak; b2; . . . ; bk�:) Of course

� depends rather heavily on our choice of unit normals n�t�; where ai�t� � ft�0��i�
i! ;

bi�t� � gt�0��i�
i! �2<� i<� k�; that is

Vk � Vk � f�a2�2 � b3�
3 � � � � � bk�

k�; �b2�2 � b3�
3 � � � � � ak�

k�g:

Let Pk denote the set of maps  : R3
1 ! R3

1 of the form

� �x; y; z� � � 1�x; y; z�;  2�x; y; z�;  3�x; y; z��;

where  i�x; y; z� is a polynomial in x; y and z of degree <� k. An element  2 Pk is
determined by the coe�cients of the various monomials xlyizj occurring in  1;  2

and  3. There are altogether 1� 3� � � � � �2kÿ 1� � 2k� 1 � �k� 1�2 monomials
of degree <� k, so that Pk can be thought of as a Euclidean space R�k�1�

2

. It is this
space which will provide the required deformations of the curve.

To simplify matters we now assume that the curve �I� is compact; that is
I � S1. The identity map 1R3

1
: R3

1! R3
1, is of course an element of Pk (provided

k � 1), and using the compactness of �S1� it easily follows that there is a open
neighbourhood U of 1R3

1
in Pk with the property that if  2 U then the linear map

T ��t�� : R3
1! R3

1; v 7!D ��t�� � v is such that D ��t�� � n�t� is a timelike vector
and D ��t�� � t�t� is a spacelike vector, where D ��t�� denotes the derivative of  at
�t�. If we deform the original curve by the map  , then we can also obtain the
required new smooth family of normal vectors n �t� as follows. Since the map
 : R3

1! R3
1 is a di�eomorphism on some open set containing �I�, the vector n�t�

will be sent to some new timelike vector D ��t��n�t� which will be neither zero nor
tangent to  �  at t. Pseudo-orthogonally project this vector onto the psudo-normal
plane to  �  at t and normalize, that is

n �t� � D ��t��n�t� ÿ hD ��t��n�t�; t it 
kD ��t��n�t� ÿ hD ��t��n�t�; t it k ; hn �t�; n �t�i � ÿ1;

where t denotes the tangent vector of the curve  �  at t. Assuming as before that
I � S1, we choose an open neighbourhood U of 1S1 2 Pk consisting of polynomial
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maps which map an open set containing �S1� di�eomorphically to its image. We
have now shown that there is a smooth map

� : S1 �Uÿ!Vk � Vk

de®ned by ��ÿ;  � � Monge-Taylor map for the curve  �  using the family of
normal vectors n �t�. By exactly the same arguments as in the proof of Theorem 9.9
in [4], we have the following theorem.

Theorem 5.1. Let Q be a manifold in Vk � Vk � R2kÿ2. For some open set
U1 � U containing the identity map, the map � : S1 �U1 ! Vk, de®ned by
��t;  � � � ��t�, is transverse to Q. (In fact we can prove that � is a submersion so
that Q does not enter the argument at all.)

By the direct calculations, we have the following lemmas. The calculations are
rather long and tedious and so we omit the details.

Lemma 5.2. Let  : S1! R3
1 be a spacelike curve de®ned by

�t� � �ft���; �; gt���� � �a2�2 � a3�
3 � � � � ; �; b2�2 � b3�

3 � � � ��

with ��t0� � 0.

(1) k � 0 and hN0;Ni � 0 at t0 if and only if a2
2 ÿ b2

2 � 0 and a2a3 ÿ b2b3 � 0.
(2) k0�s0� ÿ k�s0� � ��s0� � 0 and �k0 ÿ k � ��0 � 0 at t0 if and only if

��a2a3 ÿ b2b3� ÿ �a3b2 ÿ a2b3� � 0;
ÿ3�a2a3 ÿ b2b3�2 � f4�a2a4 ÿ b2b4� � 3�a32 ÿ b3

2�g � ja22 ÿ b2
2j;

ÿ4�a22 ÿ b2
2� � ja22 ÿ b2

2j2 � 3�a2a3 ÿ b2b3� � �a3b2 ÿ a2b3�;
ÿ4ja22 ÿ b2

2j � �a4b2 ÿ a2b4� � 6�a2a3 ÿ b2b3� � �a3b2 ÿ a2b3� � 0;

8>><>>:
where � is the coordinate along the t-direction, ft��� the coordinate along the n-direction
and gt��� the coordinate along the b-direction. Moreover, �a2; a3; � � � ; ak; b2; b3;
� � � ; bk� 2 R2k, k; k0 as in x2.

Lemma 5.3 We consider smooth maps �i : V3 � V3 � R4ÿ!R �i � 1; 2� given by

�1 � a2
2 ÿ b2

2;
�2 � ÿb2b3 � a2a3;

�
and �i : V4 � V4 � R6ÿ!R �i � 1; 2� given by

�1 � ��a2a3 ÿ b2b3� ÿ �a3b2 ÿ a2b3�;
�2 � ÿ3�a2a3 ÿ b2b3�2 � f4�a2a4 ÿ b2b4� � 3�a32 ÿ b3

2�g � ja22 ÿ b2
2j;

ÿ4�a22 ÿ b2
2� � ja22 ÿ b2

2j2 � 3�a2a3 ÿ b2b3� � �a3b2 ÿ a2b3�;
ÿ4ja22 ÿ b2

2j � �a4b2 ÿ a2b4� � 6�a2a3 ÿ b2b3� � �a3b2 ÿ a2b3�:

8>><>>:
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(1) The set Q1 � f�a2; a3; b2; b3� 2 R4j�1 � �2 � 0g is a codimension two sub-
manifold in R4:

(2) The set Q2 � f�a2; a3; a4; b2; b3; b4� 2 R6j�1 � �2 � 0g is a codimension two
submanifold in R6:

We can use Theorem 5.1, Lemmas 5.2 and 5.3 for the proof of Theorem A in
exactly the same way as the proof of Corollary 9.7 in [4]. We omit the details here.
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