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Abstract

We study the optimal control problem for Rd-valued absolutely
continuous stochastic processes with given marginal distributions at
every time. When d = 1, we show the existence and the uniqueness of
a minimizer which is a function of a time and an initial point. When
d > 1, we show that a minimizer exists and that minimizers satisfy
the same ordinary differential equation.

1 Introduction

Monge-Kantorovich problem (MKP for short) plays a crucial role in many
fields and has been studied by many authors (see [2, 3, 7, 10, 12, 20] and the
references therein).
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Let h : Rd 7→ [0,1) be convex, and Q0 and Q1 be Borel probability
measures on Rd, and put

µh(Q0, Q1) := inf E[
Z 1

0
h

µ
dφ(t)

dt

∂
dt], (1)

where the infimum is taken over all absolutely continuous stochastic processes
{φ(t)}0∑t∑1 for which Pφ(t)−1 = Qt(t = 0, 1). (In this paper we use the same
notation P for different probability measures, for the sake of simplicity, when
it is not confusing.)

As a special case of MKPs, we introduce the following problem (see e.g.
[2, 3] and also [18]).

Does there exist a minimizer {φo(t)}0∑t∑1, of (1.1), which is a function of t
and φo(0)?

Suppose that there exist p ∈ L1([0, 1] × Rd : R, dtdx) and b(t, x) ∈
L1([0, 1] × Rd : Rd, p(t, x)dtdx) such that the following holds: for any f ∈
C1o (Rd) and any t ∈ [0, 1],

Z
Rd

f(x)(p(t, x)− p(0, x))dx =
Z t

0
ds

Z
Rd

< ∇f(x), b(s, x) > p(s, x)dx,

p(t, x) ≥ 0 dx− a.e.,
Z
Rd

p(t, x)dx = 1. (2)

Here < ·, · > denotes the inner product in Rd and ∇f(x) := (@f(x)/@xi)d
i=1.

Put, for n ≥ 1,

en := inf{E[
Z 1

0
h

µ
dY (t)

dt

∂
dt] : {Y (t)}0∑t∑1 ∈ An}, (3)

where An is the set of all absolutely continuous stochastic processes {Y (t)}0∑t∑1

for which P (Y (t) ∈ dx) = p(t, x)dx for all t = 0, 1/n, · · · , 1.
Then the minimizer of en can be constructed by those of

µh(n·)
n

µ
p
µ

k

n
, x

∂
dx, p

µ
k + 1

n
, x

∂
dx

∂
(k = 0, · · · , n− 1)

(see (1.1) for notation). As n→1, en formally converges to

e := inf{E[
Z 1

0
h

µ
dY (t)

dt

∂
dt] : {Y (t)}0∑t∑1 ∈ A}, (4)
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where A is the set of all absolutely continuous stochastic processes {Y (t)}0∑t∑1

for which P (Y (t) ∈ dx) = p(t, x)dx for all t ∈ [0, 1].
In this sense, the minimizer of e can be considered as the continuum limit

of those of en as n→1.
In this paper, instead of h(u), we would like to consider more general

function L(t, x; u) : [0, 1]×Rd×Rd 7→ [0,1) which is convex in u, and study
the minimizers of

e0 := inf{E[
Z 1

0
L

µ
t, Y (t);

dY (t)

dt

∂
dt] : {Y (t)}0∑t∑1 ∈ A}. (5)

Remark 1 It is easy to see that the set An is not empty, but it is not trivial
to show that the set A is not empty if b in (1.2) is not smooth. As a similar
problem, that of the construction of a Markov diffusion process {X(t)}0∑t∑1

such that PX(t)−1 satisfies a given Fokker-Planck equation with nonsmooth
coefficients is known and has been studied by many authors (see [4], [5], [15],
[19] and the references therein).

We would also like to point out that (1.1) and (1.5) can be formally con-
sidered as the zero-noise limits of h-path processes and variational processes,
respectively, when h = L = |u|2 (see [8] and [15], respectively).

More generally, we have the following.
Let (≠,B, P ) be a probability space, and {Bt}t≥0 be a right continuous,

increasing family of sub σ-fields of B, and Xo be a Rd-valued, B0-adapted
random variable such that PX−1

o (dx) = p(0, x)dx, and {W (t)}t≥0 denote a
d-dimensional (Bt)-Wiener process (see e.g. [11] or [13]).

For ε > 0 and a Rd-valued (Bt)-progressively measurable {u(t)}0∑t∑1,
put

Xε,u(t) := Xo +
Z t

0
u(s)ds + εW (t) (t ∈ [0, 1]). (6)

Put also

eε := inf{E[
Z 1

0
L(t, Xε,u(t); u(t))dt] : {u(t)}0∑t∑1 ∈ Aε} (ε > 0), (7)

where Aε := {{u(t)}0∑t∑1 : P (Xε,u(t) ∈ dx) = p(t, x)dx(0 ∑ t ∑ 1)}; and
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ẽε := inf{
Z 1

0

Z
Rd

L(t, y; B(t, y))p(t, y)dtdy : B ∈ Ãε} (ε ≥ 0), (8)

where Ãε is the set of all B(t, x) : [0, 1] ×Rd 7→ Rd for which the following
holds: for any f ∈ C1o (Rd) and any t ∈ [0, 1],

Z
Rd

f(x)(p(t, x)− p(0, x))dx

=
Z t

0
ds

Z
Rd

µ
ε24f(x)

2
+ < ∇f(x), B(s, x) >

∂
p(s, x)dx.

Then we expect that the following holds:

eε = ẽε → e0 = ẽ0 (as ε→ 0). (9)

In this paper we show that the set A is not empty and (1.9) holds, and
that a minimizer of e0 exists when the cost function L(t, x; u) grows at least
of order of |u|2 as u→1 (see Theorem 1 in section 2).

We also show that the minimizers satisfy the same ordinary differential
equation (ODE for short) when L is strictly convex in u (see Theorem 2 in
section 2). (In this paper we say that a function {√(t)}0∑t∑1 satisfies an ODE
if and only if it is absolutely continuous and d√(t)/dt is a function of t and
√(t), dt-a.e..)

When d = 1, we show the uniqueness of the minimizer of e0 (see Corollary
1 in section 2).

Since a stochastic process which satisfies an ODE is not always nonran-
dom, we would also like to know if the minimizer is a function of a time and
an initial point. In fact, the following is known as Salisbury’s problem (SP
for short).

Is a continuous strong Markov process which is of bounded variation in time
a function of an initial point and a time?

If x(t)0∑t∑1 is a R-valued strong Markov process, and if there exists a

Borel measurable function f , on R, such that x(t) = x(0) +
R t
0 f(x(s))ds

(0 ∑ t ∑ 1), then SP has been solved positively by Çinlar and Jacod (see
[6]). When d > 1, a counter example is known (see [21]).
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When d = 1, we give a positive answer to SP for time-inhomogeneous
stochastic processes (see Proposition 2 in section 4). This is a slight gen-
eralization of [6] where they made use of the result on time changes of
Markov processes, in that the stochastic processes under consideration are
time-inhomogeneous and need not be Markovian. In particular, we show,
when d = 1, that {Y (t)}0∑t∑1, ∈ A, which satisfies an ODE is unique and
nonrandom. It will be used to show that the unique minimizer of e0 is a
function of an initial point and of a time when d = 1 (see Corollary 1 and
Theorem 3 in section 2).

Remark 2 When d > 1, {Y (t)}0∑t∑1, ∈ A, which satisfies an ODE is not
unique (see Proposition 1 in section 2).

When L(t, x; u) = |u|2 and p(t, x) satisfies the Fokker-Planck equation
with sufficiently smooth coefficients, the optimization problem (1.5) was con-
sidered in [16] where the minimizer exists uniquely and is a function of a time
and an initial point, and where we used a different approach which depends
on the form of L(t, x; u) = |u|2.

Our main tool in the proof is the weak convergence method, the result
on the construction of a Markov diffusion process from a family of marginal
distributions, and the theory of Copulas.

In section 2 we state our main result. We first consider the case where a
cost function L(t, x; u) grows at least of order of |u|2 as u → 1 and d ≥ 1.
Next we restrict our attention to the case where L is a function of u and
d = 1. The proof is given in section 3. We discuss SP in section 4.

2 Main result

In this section we give our main result.
We state assumptions before we state the result when d ≥ 1.

(H.0). ẽ0 is finite (see (1.8) for notation).
(H.1). L(t, x; u) : [0, 1]×Rd ×Rd 7→ [0,1) is convex in u, and as h, δ ↓ 0,

R(h, δ) := sup
Ω

L(t, x; u)− L(s, y; u)

1 + L(s, y; u)
: |t− s| < h, |x− y| < δ, u ∈ Rd

æ
↓ 0.

(H.2). There exists q ≥ 2 such that the following holds:
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0 < lim inf
|u|→1

inf{L(t, x; u) : (t, x) ∈ [0, 1]×Rd}
|u|q , (10)

sup
Ωsupz∈@uL(t,x;u) |z|

(1 + |u|)q−1
: (t, x, u) ∈ [0, 1]×Rd ×Rd

æ
≡ C∇L <1, (11)

where @uL(t, x; u) := {z ∈ Rd : L(t, x; v)−L(t, x; u) ≥< z, v−u > for all v ∈
Rd} (t ∈ [0, 1], x, u ∈ Rd).
(H.3). p(t, ·) is absolutely continuous dt-a.e., and for q in (H.2),Z 1

0

Z
Rd

ØØØØ∇xp(t, x)

p(t, x)

ØØØØqp(t, x)dtdx <1. (12)

Remark 3 If (H.0) does not hold, then e0 in (1.5) is infinite. (H.1) implies
the continuity of L(·, ·; u) for each u ∈ Rd. (H.2) holds if L(t, x; u) = |u|q.
We need (H.3) to make use of the result on the construction of a Markov
diffusion process of which the marginal distribution at time t is p(t, x)dx
(0 ∑ t ∑ 1). (2.3) holds if b(t, x) in (1.2) is twice continuously differentiable
with bounded derivatives up to the second order, and if p(0, x) is absolutely
continuous, and if the following holds:Z

Rd

ØØØØ∇xp(0, x)

p(0, x)

ØØØØqp(0, x)dx <1. (13)

The following theorem implies the existence of a minimizer of e0 (see
(1.5)-(1.8) for notations).

Theorem 1 Suppose that (H.0)-(H.3) hold. Then the sets Aε (ε > 0) and
A are not empty, and the following holds:

ẽε = eε → e0 = ẽ0 (as ε→ 0). (14)

In particular, for any {uε(t)}0∑t∑1, ∈ Aε(ε > 0), for which

lim
ε→0

E[
Z 1

0
L(t, Xε,uε

(t); uε(t))dt] = e0, (15)

{{Xε,uε
(t)}0∑t∑1}ε>0 is tight in C([0, 1] : Rd), and any weak limit point of

{Xε,uε
(t)}0∑t∑1 as ε→ 0 is a minimizer of e0.
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The following theorem implies the uniqueness of the minimizer of ẽ0 and
that of the ODE which is satisfied by the minimizers of e0.

Theorem 2 Suppose that (H.0)-(H.3) hold. Then for any minimizer {X(t)}0∑t∑1

of e0, bX(t, x) := E[dX(t)/dt|(t, X(t) = x)] is a minimizer of ẽ0. Suppose
in addition that L is strictly convex in u. Then ẽ0 has the unique minimizer
bo(t, x) and the following holds: for any minimizer {X(t)}0∑t∑1 of e0,

X(t) = X(0) +
Z t

0
bo(s, X(s))ds for all t ∈ [0, 1], a.s.. (16)

Remark 4 By Theorems 1 and 2, if (H.0) with L = |u|2 and (H.3) with
q = 2 hold, then there exists a stochastic process {X(t)}0∑t∑1, ∈ A, which
satisfies an ODE.

Since b ∈ Ã0 is not always the gradient, in x, of a function, the following
implies that the set Ã0 does not always consist of only one point.

Proposition 1 Suppose that L = |u|2, and that (H.0) and (H.3) with q = 2
hold, and that for any M > 0,

ess.inf{p(t, x) : t ∈ [0, 1], |x| ∑M} > 0. (17)

Then the unique minimizer of ẽ0 can be written as ∇xV (t, x), where V (t, ·) ∈
H1

loc(R
d : R) dt-a.e..

We next consider the one-dimensional case. Put

Ft(x) :=
Z
(−1,x]

p(t, y)dy (t ∈ [0, 1], x ∈ R),

F−1
t (u) := sup{y ∈ R : Ft(y) < u} (t ∈ [0, 1], 0 < u < 1).

(H.3)’. d = 1, and Ft(x) is differentiable and has the locally bounded first
partial derivatives on [0, 1]×R.

By Proposition 2 in section 4, we obtain the following.

Corollary 1 Suppose that (H.0)-(H.3) and (H.3)’ hold, and that L is strictly
convex in u. Then the minimizer {X(t)}0∑t∑1 of e0 is unique. Moreover,
lims∈Q∩[0,1],s→t F−1

s (F0(X(0))) exists and is equal to X(t) for all t ∈ [0, 1]
a.s..
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The theory of copulas allows us to treat a different set of assumptions by
a different method (see (1.3)-(1.4) for notations).
(H.0)’. {en}n≥1 is bounded.
(H.1)’. h : R 7→ [0,1) is even and convex.
(H.2)’. There exists r > 1 such that the following holds:

0 < lim inf
|u|→1

h(u)

|u|r . (18)

(H.3)”. d = 1, and p(t, x) is positive on [0, 1]×R.

Theorem 3 Suppose that (H.0)’-(H.2)’ and (H.3)” hold. Then {F−1
t (F0(x))}0∑t∑1

on (R,B(R), p(0, x)dx) belongs to the set A and is a minimizer of e. Sup-
pose in addition that (H.3)’ holds. Then {F−1

t (F0(x))}0∑t∑1 is the unique
minimizer, of e, that satisfies an ODE.

Remark 5 If {en}n≥1 is unbounded, then so is e. By (H.1)’, {X(t) :=
F−1

t (F0(x))}0∑t∑1 satisfies the following (see e.g. [20, Chap. 3.1]): for any t
and s ∈ [0, 1],

µh(p(s, x)dx, p(t, x)dx) = E0[h(X(t)−X(s))] (19)

(see (1.1) for notation), where we put P0(dx) := p(0, x)dx. Indeed,

X(t) = F−1
t (Fs(X(s))) (20)

since for a distribution F on R,

F (F−1(u)) = u (0 < u < 1) (21)

(see e. g. [17]).

3 Proof of the result

In this section we prove the result given in section 2.
Before we give the proof of Theorem 1, we state and prove three technical

lemmas.

Lemma 1 Suppose that (H.2) holds. Then for any ε > 0, ẽε = eε.
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(Proof). For any Bε ∈ Ãε for which
R 1
0

R
Rd L(t, x; Bε(t, x))p(t, x)dtdx is finite,

there exists a Markov process {Zε(t)}0∑t∑1 such that the following holds:

Zε(t) = Xo +
Z t

0
Bε(s, Zε(s))ds + εW (t), (22)

P (Zε(t) ∈ dx) = p(t, x)dx (0 ∑ t ∑ 1), (23)

since
R 1
0

R
Rd |Bε(t, x)|2p(t, x)dtdx is finite by (H.2) (see [4] and [5]). This

implies that {Bε(t, Zε(t))}0∑t∑1 ∈ Aε, and that the following holds:

Z 1

0

Z
Rd

L(t, x; Bε(t, x))p(t, x)dtdx =
Z 1

0
E[L(t, Zε(t); Bε(t, Zε(t)))]dt, (24)

from which eε ∑ ẽε.
We next show that eε ≥ ẽε.
For any {uε(t)}0∑t∑1 ∈ Aε, bε,uε

(t, x) := E[uε(t)|(t, Xε,uε
(t) = x)] ∈ Ãε.

Indeed, for any f ∈ C1o (Rd) and any t ∈ [0, 1], by the Itô formula,

Z
Rd

f(x)(p(t, x)− p(0, x))dx = E[f(Xε,uε
(t))− f(Xε,uε

(0))] (25)

=
Z t

0
E

∑
ε2

2
4f(Xε,uε

(s))+ < ∇f(Xε,uε
(s)), uε(s) >

∏
ds

=
Z t

0
E

∑
ε2

2
4f(Xε,uε

(s))+ < ∇f(Xε,uε
(s)), bε,uε

(s, Xε,uε
(s)) >

∏
ds

=
Z t

0
ds

Z
Rd

µ
ε2

2
4f(x)+ < ∇f(x), bε,uε

(s, x) >
∂
p(s, x)dx.

The following completes the proof: by Jensen’s inequality,

Z 1

0
E[L(t, Xε,uε

(t); uε(t))]dt (26)

≥
Z 1

0
E[L(t, Xε,uε

(t); bε,uε
(t, Xε,uε

(t)))]dt

=
Z 1

0

Z
Rd

L(t, x; bε,uε
(t, x))p(t, x)dtdx.

Q. E. D.
The following lemma can be shown by the standard argument and the

proof is omitted (see [13, p. 17, Theorem 4.2 and p. 33, Theorem 6.10]).
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Lemma 2 For any {uε(t)}0∑t∑1 ∈ Aε (ε > 0) for which {E[
R 1
0 |uε(t)|2dt]}ε>0

is bounded, {{Xε,uε
(t)}0∑t∑1}ε>0 is tight in C([0, 1] : Rd).

Lemma 3 For any {uεn(t)}0∑t∑1 ∈ Aεn (n ≥ 1) (εn → 0 as n → 1) such
that {E[

R 1
0 |uεn(t)|2dt]}n≥1 is bounded and that {Xn(t) := Xεn,uεn (t)}0∑t∑1

weakly converges as n → 1, the weak limit {X(t)}0∑t∑1 in C([0, 1] : Rd) is
absolutely continuous.

(Proof). We only have to show the following: for any δ > 0 and any m ≥ 2,
n ≥ 1 and any si,j, ti,j ∈ Q for which 0 ∑ si,j ∑ ti,j ∑ si,j+1 ∑ ti,j+1 ∑ 1
(1 ∑ i ∑ n, 1 ∑ j ∑ m− 1) and for which

Pm
j=1 |ti,j − si,j| ∑ δ (1 ∑ i ∑ n) ,

E[max
1∑i∑n

(
mX

j=1

|X(ti,j)−X(si,j)|)2] ∑ δ lim inf
k→1

E[
Z 1

0
|uεk(t)|2dt]. (27)

Indeed, by the monotone convergence theorem and by the continuity of
{X(t)}0∑t∑1, (3.6) implies that, for all m ≥ 2,

E[sup{(
mX

j=1

|X(tj)−X(sj)|)2 :
mX

j=1

|tj − sj| ∑ δ (28)

, 0 ∑ sj ∑ tj ∑ sj+1 ∑ tj+1 ∑ 1(1 ∑ j ∑ m− 1)}]
∑ δ lim inf

k→1
E[

Z 1

0
|uεk(t)|2dt].

The left hand side of (3.7) converges, as m→1, to

E[sup{(
mX

j=1

|X(tj)−X(sj)|)2 :
mX

j=1

|tj − sj| ∑ δ, m ≥ 2 (29)

, 0 ∑ sj ∑ tj ∑ sj+1 ∑ tj+1 ∑ 1(1 ∑ j ∑ m− 1)}]
since the integrand on the left hand side of (3.7) is nondecreasing in m.

Hence by Fatou’s lemma,

lim
δ→0

(sup{(
mX

j=1

|X(tj)−X(sj)|)2 :
mX

j=1

|tj − sj| ∑ δ, m ≥ 2 (30)

, 0 ∑ sj ∑ tj ∑ sj+1 ∑ tj+1 ∑ 1(1 ∑ j ∑ m− 1)}) = 0 a.s.,
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since the integrand in (3.8) is nondecreasing in δ > 0 and henceforth is
convergent as δ → 0.

To complete the proof, we prove (3.6). By Jensen’s inequality, for i =
1, · · · , n for which

Pm
j=1 |ti,j − si,j| > 0,

(
mX

j=1

|X(ti,j)−X(si,j)|)2 (31)

∑ (
mX

j=1

|ti,j − si,j|)
X

1∑j∑m,si,j<ti,j

ØØØØX(ti,j)−X(si,j)

ti,j − si,j

ØØØØ2(ti,j − si,j).

Put Amn := {ti,j, si,j; 1 ∑ i ∑ n, 1 ∑ j ∑ m} and {tk}1∑k∑#(Amn) := Amn

so that tk < tk+1 for k = 1, · · · , #(Amn) − 1, where #(Amn) denotes the
cardinal number of the set Amn. Then, by Jensen’s inequality,

X
1∑j∑m,si,j<ti,j

ØØØØX(ti,j)−X(si,j)

ti,j − si,j

ØØØØ2(ti,j − si,j) (32)

∑ X
1∑k∑#(Amn)−1

ØØØØX(tk)−X(tk+1)

tk+1 − tk

ØØØØ2(tk+1 − tk).

The following completes the proof: for any k = 1, · · · , #(Amn)− 1,

E
∑ØØØØX(tk)−X(tk+1)

tk+1 − tk

ØØØØ2∏ ∑ lim inf
`→1

E
∑ØØØØX`(tk)−X`(tk+1)

tk+1 − tk

ØØØØ2∏ (33)

∑ 1

tk+1 − tk
lim inf

`→1
E[

Z tk+1

tk
|uε`(t)|2dt].

Q. E. D.
We prove Theorem 1 by Lemmas 1-3.

(Proof of Theorem 1). The proof of (2.5) is divided into the following:

lim sup
ε→0

ẽε ∑ ẽ0, (34)

lim inf
ε→0

eε ≥ e0, (35)
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since eε = ẽε by Lemma 1, and since e0 ≥ ẽ0 in the same way as in the proof
of the inequality eε ≥ ẽε (see (3.4)-(3.5)).

We first prove (3.13). For B ∈ Ã0 for which
R 1
0

R
Rd L(t, x; B(t, x))p(t, x)dtdx

is finite and ε > 0, B(t, x) + ε2∇p(t, x)/(2p(t, x)) ∈ Ãε.
Indeed, for any f ∈ C1o (Rd) and any t ∈ [0, 1],

Z
Rd

f(x)(p(t, x)− p(0, x))dx

=
Z t

0
ds

Z
Rd

< ∇f(x), B(s, x) > p(s, x)dx

=
Z t

0
ds

Z
Rd

µ
ε2

2
4f(x) +

ø
∇f(x), B(s, x) +

ε2∇p(s, x)

2p(s, x)

¿∂
p(s, x)dx.

For any t ∈ [0, 1], x, u, v ∈ Rd, and z ∈ @uL(t, x; u + v), by (2.2),

L(t, x; u + v) ∑ L(t, x; u)− < z, v > (36)

∑ L(t, x; u) + C∇L(1 + |u + v|)q−1|v|.
Putting u = B(t, x) and v = ε2∇p(t, x)/(2p(t, x)) in (3.15), we have

ẽε ∑
Z 1

0

Z
Rd

L
µ
t, x; B(t, x) +

ε2∇p(t, x)

2p(t, x)

∂
p(t, x)dtdx (37)

∑
Z 1

0

Z
Rd

C∇L

µ
1 +

ØØØØB(t, x) +
ε2∇p(t, x)

2p(t, x)

ØØØØ∂q−1ØØØØε2∇p(t, x)

2p(t, x)

ØØØØp(t, x)dtdx

+
Z 1

0

Z
Rd

L(t, x; B(t, x))p(t, x)dtdx

→
Z 1

0

Z
Rd

L(t, x; B(t, x))p(t, x)dtdx (as ε→ 0)

by (2.1) and (H.3), where we used the following in the last line of (3.16):

q − 1

q
+

1

q
= 1.

Next we prove (3.14). By Lemmas 2-3, we only have to show the follow-
ing: for any {uεn(t)}0∑t∑1 ∈ Aεn (n ≥ 1) (εn → 0 as n → 1) for which

12



{Xn(t) := Xεn,uεn (t)}0∑t∑1 weakly converges, as n→1, to a stochastic pro-
cess {X(t)}0∑t∑1, and for which {E[

R 1
0 L(t, Xn(t); uεn(t))dt]}n≥1 is bounded,

lim inf
n→1 E[

Z 1

0
L(t, Xn(t); uεn(t))dt] ≥ E[

Z 1

0
L

µ
t, X(t);

dX(t)

dt

∂
dt]. (38)

We prove (3.17). For α ∈ (0, 1) and δ > 0,

E[
Z 1

0
L(t, Xn(t); uεn(t))dt] (39)

≥ 1

1 + R(α, δ)
E[

Z 1−α

0
dsL

µ
s, Xn(s);

1

α

Z s+α

s
uεn(t)dt

∂
; sup
0∑t,s∑1,|t−s|<α

|Xn(t)−Xn(s)| < δ]−R(α, δ).

Indeed, if sup0∑t,s∑1,|t−s|<α |Xn(t) − Xn(s)| < δ, then for s ∈ [0, 1 − α], by
Jensen’s inequality and (H.1),

L
µ
s, Xn(s);

1

α

Z s+α

s
uεn(t)dt

∂
∑ 1

α

Z s+α

s
L(s, Xn(s); uεn(t))dt (40)

∑ R(α, δ) +
1 + R(α, δ)

α

Z s+α

s
L(t, Xn(t); uεn(t))dt.

Hence putting u =
R s+α
s uεn(t)dt/α and v = (Xn(s + α) − Xn(s) −R s+α

s uεn(t)dt)/α in (3.15), we have, from (3.18),

E[
Z 1

0
L(t, Xn(t); uεn(t))dt] (41)

≥ 1

1 + R(α, δ)
E[

Z 1−α

0
L

µ
s, Xn(s);

Xn(s + α)−Xn(s)

α

∂
ds

; sup
0∑t,s∑1,|t−s|<α

|Xn(t)−Xn(s)| < δ]

−E[
Z 1−α

0
C∇L

µ
1 +

ØØØØXn(s + α)−Xn(s)

α

ØØØØ∂q−1

×
ØØØØεn

α
(W (s + α)−W (s))

ØØØØds]−R(α, δ).

13



Letting n→1 and then α → 0 and δ → 0 in (3.20), we obtain (3.17).
Indeed, by Skorohod’s theorem (see e.g. [13]), taking a new probability

space, we can assume that {Xn(t)}0∑t∑1 converges, as n→1, to {X(t)}0∑t∑1

in sup norm, a.s., and that the following holds: for any β ∈ (0, δ/3), by (H.1),

(1 + R(0, β))E[
Z 1−α

0
L

µ
s, Xn(s);

Xn(s + α)−Xn(s)

α

∂
ds

; sup
0∑t,s∑1,|t−s|<α

|Xn(t)−Xn(s)| < δ]

≥ E[
Z 1−α

0
L

µ
s, X(s);

Xn(s + α)−Xn(s)

α

∂
ds; sup

0∑t∑1
|X(t)−Xn(t)| < β

, sup
0∑t,s∑1,|t−s|<α

|X(t)−X(s)| < β]−R(0, β).

The liminf of the right-hand side of this inequality as n → 1, and α → 0
and then β → 0 is dominated by E[

R 1
0 L(s, X(s); dX(s)/ds)ds] from below

by Fatou’s lemma. The second mean value on the right hand side of (3.20)
can be shown to converge to zero as n→1 in the same way as in (3.16) by
(2.1).

(H.0) and (2.5) implies that the set A and Aε (ε > 0) are not empty.
(2.5) and (3.17) completes the proof.

Q. E. D.
(Proof of Theorem 2). bX(t, x) is a minimizer of ẽ0 by (2.5) in the same way
as in (3.4)-(3.5).

We prove the uniqueness of the minimizer of ẽ0. Suppose that bo(t, x) is
also a minimizer of ẽ0. Then for any ∏ ∈ (0, 1), ∏bX + (1− ∏)bo ∈ Ã0, and

ẽ0 ∑
Z 1

0

Z
Rd

L(t, y; ∏bX(t, y) + (1− ∏)bo(t, y))p(t, y)dtdy (42)

∑ ∏
Z 1

0

Z
Rd

L(t, y; bX(t, y))p(t, y)dtdy

+(1− ∏)
Z 1

0

Z
Rd

L(t, y; bo(t, y))p(t, y)dtdy = ẽ0.

By the strict convexity of L in u,

bX(t, x) = bo(t, x), p(t, x)dtdx− a.e.. (43)
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We prove (2.7). Since L is strictly convex in u, the following holds:

dX(t)

dt
= bX(t, X(t)) dtdP − a.e. (44)

by (2.5) (see (3.5)). By (3.22),

E[ sup
0∑t∑1

|X(t)−X(0)−
Z t

0
bo(s, X(s))ds|] (45)

∑
Z 1

0
E[|bX(s, X(s))− bo(s, X(s))|]ds = 0.

Q. E. D.
(Proof of Proposition 1). From [15], ẽε = eε for ε > 0, and the minimizer of
ẽε can be written as ∇xΦε(t, x), where Φε(t, ·) ∈ H1

loc(R
d : R) dt-a.e.. Since

{∇xΦε}0<ε<1 is strongly bounded in L2([0, 1]×Rd : Rd, p(t, x)dtdx) by (2.5),
it is weakly compact in L2([0, 1] × Rd : Rd, p(t, x)dtdx) (see [9, p. 639]).
We denote a weak limit point by ™. Then ™ is the unique minimizer of ẽ0.
Indeed, ™ ∈ Ã0, and by (2.5) and Fatou’s lemma,

ẽ0 = lim
ε→0

Z 1

0

Z
Rd

|∇xΦ
ε(t, y)|2p(t, y)dtdy (46)

≥
Z 1

0

Z
Rd

|™(t, y)|2p(t, y)dtdy ≥ ẽ0.

In particular, {∇xΦε}0<ε<1 converges, as ε→ 0, to ™, strongly in L2([0, 1]×
Rd : Rd, p(t, x)dtdx), which completes the proof in the same way as in [15,
Proposition 3.1].

Q. E. D.

Remark 6 If V (t, x) and p(t, x) in Proposition 1 are sufficiently smooth,
then

∇xΦ
ε(t, x) = ∇xV (t, x) +

ε2∇xp(t, x)

2p(t, x)

(see [16, section 1]).

15



(Proof of Theorem 3). Put for t ∈ [0, 1], x ∈ R and n ≥ 1,

Y (t, x) = F−1
t (F0(x)), (47)

Yn(t, x) = Y
µ

[nt]

n
, x

∂
(48)

+n
µ
t− [nt]

n

∂µ
Y

µ
[nt] + 1

n
, x

∂
− Y

µ
[nt]

n
, x

∂∂
,

where [nt] denotes the integer part of nt.
Then by (H.3)”, Y (·, x) ∈ C([0, 1] : R), P0(dx) := p(0, x)dx− a.s., and

lim
n→1Yn(t, x) = Y (t, x) (0 ∑ t ∑ 1), P0 − a.s., (49)

and

en = E0[
Z 1

0
h

µ
dYn(t, x)

dt

∂
dt] (n ≥ 1) (50)

(see Remark 5 in section 2 and [11, p. 35, Exam. 8.1]).
Hence in the same way as in the proof of Lemma 3, we can show that the

following holds: for any δ > 0

E0[sup{(
mX

j=1

|Y (tj, x)− Y (sj, x)|)r :
mX

j=1

|tj − sj| ∑ δ, m ≥ 2 (51)

, 0 ∑ sj ∑ tj ∑ sj+1 ∑ tj+1 ∑ 1(1 ∑ j ∑ m− 1)}]
∑ δr−1 lim inf

n→1 E0[
Z 1

0

ØØØØdYn(t, x)

dt

ØØØØrdt],

which implies that Y (·, x) is absolutely continuous P0 − a.s., by (H.0)’ and
(H.2)’. In particular, {Y (t, x)}0∑t∑1 on (R,B(R), P0) belongs to the set A.

For n ≥ 1 and α ∈ (0, 1), by Jensen’s inequality and (H.1)’,

1 > sup
m≥1

em ≥ en ≥ E0[
Z 1−α

0
ds

µ
1

α

Z s+α

s
h

µ
dYn(t, x)

dt

∂
dt

∂
] (52)

≥ E0[
Z 1−α

0
h

µ
Yn(s + α, x)− Yn(s, x)

α

∂
ds].
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Let n→1 and then α → 0 in (3.31). Then the proof of the first part is
over by Fatou’s lemma since supm≥1 em ∑ e.

The following together with Proposition 2 in section 4 completes the
proof: by (2.12),

Y (t, x) = Y (0, x) +
Z t

0

@F−1
s (Fs(Y (s, x)))

@s
ds (0 ∑ t ∑ 1) P0 − a.s..

Q. E. D.

4 Appendix

In this section we solve SP positively for R-valued, time-inhomogeneous
stochastic processes.

Proposition 2 Suppose that (H.3)’ holds, and that there exists {Y (t)}0∑t∑1,
∈ A, which satisfies

Y (t) = Y (0) +
Z t

0
bY (s, Y (s))ds (0 ∑ t ∑ 1) a.s. (53)

for some bY (t, x) ∈ L1([0, 1]×R : R, p(t, x)dtdx). Then the following holds:

Y (t) = F−1
t (F0(Y (0))) (t ∈ Q ∩ [0, 1]) a.s.. (54)

In particular, lims∈Q∩[0,1],s→t F−1
s (F0(Y (0))) exists and is equal to Y (t) for

all t ∈ [0, 1] a.s..

Remark 7 If F0 is not continuous, then SP does not always have a positive
answer. For example, put Y (t) ≡ tY (ω) for a R-valued random variable
Y (ω) on a probability space. Then dY (t)/dt = Y (t)/t for t > 0. But, of
course, Y (t) is not a function of t and Y (0) ≡ 0.

(Proof of Proposition 2). It is easy to see that the following holds:

Ft(Y (t)) = F0(Y (0)) (t ∈ [0, 1]) a.s.. (55)

Indeed,
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@Ft(x)

@t
= −bY (t, x)p(t, x), dtdx− a.e.

since bY (t, x) = b(t, x), p(t, x)dtdx− a.e., and henceforth by (H.3)’

E[ sup
0∑t∑1

|Ft(Y (t))− F0(Y (0))|]

∑
Z 1

0
E[

ØØØØ@Fs(Y (s))

@s
+ p(s, Y (s))bY (s, Y (s))

ØØØØ]ds = 0.

Since {Y (t)}0∑t∑1 is continuous, the proof is over by (4.3) and by the
following:

P (F−1
t (Ft(Y (t))) = Y (t)(t ∈ [0, 1] ∩Q)) = 1. (56)

We prove (4.4). For (t, x) ∈ [0, 1]×R for which Ft(x) ∈ (0, 1),

F−1
t (Ft(x)) ∑ x,

and for t ∈ [0, 1], the set {x ∈ R : F−1
t (Ft(x)) < x, Ft(x) ∈ (0, 1)} can be

written as a union of at most countably many disjoint intervals of the form
(a, b] for which P (a < Y (t) ∑ b) = 0, provided that it is not empty.

Indeed, if F−1
t (Ft(x)) < x and if Ft(x) ∈ (0, 1), then

{y ∈ R : F−1
t (Ft(y)) < y, Ft(y) = Ft(x)}

= (F−1
t (Ft(x)), sup{y ∈ R : Ft(y) = Ft(x)}].

Q. E. D.
(Acknowledgement) We would like to thank Prof. M. Takeda for a useful
discussion on Salisbury’s problem.
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